JULY 9–13, 2023
MOSCON WEST CENTER
SAN FRANCISCO, CA, USA
Mitigating Distribution Shift for Congestion Optimization in Global Placement

Su Zheng1,2, Lancheng Zou1, Siting Liu1, Yibo Lin2, Bei Yu1, Martin Wong1

1Chinese University of Hong Kong
2Peking University
Outline

1. Introduction
2. Proposed Method
3. Experiments
4. Conclusion
Introduction
Placement and Congestion Modeling

- Placement is crucial but time-consuming
- Congestion modeling and optimization is important
- Congestion optimization techniques
 - Trial global routing\(^1\)
 - Analytical model\(^2\)

Congestion Modeling via Deep Learning

- Fully Convolutional Networks\(^3\)
- Generative Adversarial Networks\(^4\)
- Graph Neural Networks\(^5\)

Observations: prediction only, useless in placement
Problems of Existing Methods

- Observations: **distribution shift** during placement
Solutions

- Congestion-driven Placement with DNN

(a) Congestion-driven Placement with DNN

(b) Congestion-driven Placement with DNN
• Look-ahead via Cell Flow Prediction
Proposed Method
Cell Flow Prediction

- Cell flow measures the motions of the cells
 - \(\mathbf{c}'_{i}(x_{i,j}, y_{i,j}) = (x_{i,j} - x_{i-K,j}, y_{i,j} - y_{i-K,j}) \)
 - \((x_{i,j}, y_{i,j})\) is cell \(j\)'s location at \(i\)-th iteration, \(K\) is the step size
 - Inspired by optical flow

![Diagram of cell flow prediction](image-url)
Grid-cell $b_{k,l}$ contains multiple cells, we need downsampling

- **Sampling:** $c_i(k, l) = s_j c'_i(x_j, y_j), \quad \hat{j} = \arg \max_j s_j, (x_{i,j}, y_{i,j}) \in b_{k,l}$.
- **Averaging:** $c_i(k, l) = \frac{1}{N_{k,l}} \sum_{(x_{i,j}, y_{i,j}) \in b_{k,l}} c'_i(x_{i,j}, y_{i,j})$.
- **Weighted-sum:** $c_i(k, l) = \sum_{(x_{i,j}, y_{i,j}) \in b_{k,l}} \frac{s_j}{N_{k,l}} \times c'_i(x_{i,j}, y_{i,j})$. ✓

Quasi-voxelization

(a) Grid Cell

(b) Diagram
Invariant feature space learning
- Cell flow prediction + invariant feature space learning

![Diagram showing the complete flow process with components like Conv2D, GroupNorm, LeakyReLU, Encoder, Middle Net, Decoder, VAE-like Structure, and Loss Function with Prediction Loss, KL Divergence Loss, and Reconstruction Loss.]
DREAMPlace6 + Look-ahead Congestion Optimization

Experiments
Experimental Settings

- Placement Platform: DREAMPlace\(^7\)
- Baseline: DREAM-Cong\(^8\)
- Congestion Prediction Metrics:

\[
\text{NRMS}(\bar{Y}, Y) = \frac{\|\bar{Y} - Y\|_2}{(Y_{\text{max}} - Y_{\text{min}}) \sqrt{N_Y}},
\]

\[
\text{SSIM}(\bar{Y}, Y) = \frac{(2\mu_\bar{Y}\mu_Y + C_1)(2\sigma_{\bar{Y}, Y} + C_2)}{\left(\mu_\bar{Y}^2 + \mu_Y^2 + C_1\right)\left(\sigma_{\bar{Y}}^2 + \sigma_Y^2 + C_2\right)}.
\]

- Placement Metrics: (Given by Innovus)
 - Wire Length (WL)
 - Worst Congestion Score (WCS)

\(^8\)S. Liu et al., “Global placement with deep learning-enabled explicit routability optimization”, in Proc. DATE, 2021.
Comparison on Congestion Prediction

(a) NRMS

(b) SSIM

- DREAM-Cong
- Look-ahead-only
- Cell-flow
- Cell-flow-KL
Comparison on Congestion Optimization

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>#Cells</th>
<th>#Nets</th>
<th>DREAMPlace</th>
<th>DREAM-Cong</th>
<th>LACO</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>W_{CS_H}</td>
<td>W_{CS_V}</td>
<td>$WL(10^5,\mu m)$</td>
<td>W_{CS_H}</td>
</tr>
<tr>
<td>des_perf_1</td>
<td>113k</td>
<td>113k</td>
<td>0.47</td>
<td>0.40</td>
<td>13.88</td>
<td>0.47</td>
</tr>
<tr>
<td>des_perf_a</td>
<td>109k</td>
<td>110k</td>
<td>2.25</td>
<td>1.67</td>
<td>22.21</td>
<td>1.89</td>
</tr>
<tr>
<td>des_perf_b</td>
<td>113k</td>
<td>113k</td>
<td>0.07</td>
<td>0.27</td>
<td>16.70</td>
<td>0.13</td>
</tr>
<tr>
<td>edit_dist_a</td>
<td>130k</td>
<td>131k</td>
<td>4.05</td>
<td>4.14</td>
<td>53.54</td>
<td>4.30</td>
</tr>
<tr>
<td>fft_1</td>
<td>35k</td>
<td>33k</td>
<td>0.59</td>
<td>0.40</td>
<td>4.96</td>
<td>0.43</td>
</tr>
<tr>
<td>fft_2</td>
<td>35k</td>
<td>33k</td>
<td>0.40</td>
<td>0.78</td>
<td>5.86</td>
<td>0.36</td>
</tr>
<tr>
<td>fft_a</td>
<td>34k</td>
<td>32k</td>
<td>0.55</td>
<td>0.56</td>
<td>10.56</td>
<td>0.83</td>
</tr>
<tr>
<td>matrix_mult_1</td>
<td>160k</td>
<td>159k</td>
<td>0.71</td>
<td>0.53</td>
<td>25.85</td>
<td>0.88</td>
</tr>
<tr>
<td>matrix_mult_2</td>
<td>160k</td>
<td>159k</td>
<td>0.65</td>
<td>0.42</td>
<td>25.71</td>
<td>0.78</td>
</tr>
<tr>
<td>matrix_mult_a</td>
<td>154k</td>
<td>154k</td>
<td>0.47</td>
<td>0.40</td>
<td>36.99</td>
<td>0.44</td>
</tr>
<tr>
<td>matrix_mult_b</td>
<td>151k</td>
<td>152k</td>
<td>8.69</td>
<td>2.65</td>
<td>35.08</td>
<td>8.69</td>
</tr>
<tr>
<td>matrix_mult_c</td>
<td>151k</td>
<td>152k</td>
<td>0.53</td>
<td>0.40</td>
<td>35.42</td>
<td>0.50</td>
</tr>
<tr>
<td>pci_bridge32_a</td>
<td>30k</td>
<td>30k</td>
<td>2.06</td>
<td>0.84</td>
<td>6.12</td>
<td>1.83</td>
</tr>
<tr>
<td>pci_bridge32_b</td>
<td>29k</td>
<td>29k</td>
<td>0.03</td>
<td>0.23</td>
<td>9.77</td>
<td>0.14</td>
</tr>
<tr>
<td>superblue11_a</td>
<td>954k</td>
<td>936k</td>
<td>1.10</td>
<td>25.00</td>
<td>392.78</td>
<td>1.15</td>
</tr>
<tr>
<td>superblue12</td>
<td>1293k</td>
<td>1293k</td>
<td>3.00</td>
<td>3.00</td>
<td>414.10</td>
<td>2.73</td>
</tr>
<tr>
<td>superblue14</td>
<td>634k</td>
<td>620k</td>
<td>1.10</td>
<td>4.17</td>
<td>277.32</td>
<td>1.06</td>
</tr>
<tr>
<td>superblue16_a</td>
<td>698k</td>
<td>697k</td>
<td>0.91</td>
<td>10.75</td>
<td>309.04</td>
<td>1.00</td>
</tr>
<tr>
<td>superblue19</td>
<td>522k</td>
<td>512k</td>
<td>1.70</td>
<td>3.67</td>
<td>201.34</td>
<td>1.30</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td></td>
<td>1.64</td>
<td>3.13</td>
<td>95.47</td>
<td>1.62</td>
</tr>
<tr>
<td>Ratio</td>
<td></td>
<td></td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>0.99</td>
</tr>
</tbody>
</table>

Note: The table provides a comparison of DREAMPlace, DREAM-Cong, and LACO in terms of cells (#Cells), nets (#Nets), and various metrics such as W_{CS_H}, W_{CS_V}, and $WL(10^5\,\mu m)$. The metrics include the area of the cells and nets, as well as the congestion optimization results. The ratios indicate the performance improvement or degradation relative to the baseline.
• Look-ahead, cell flow, invariant feature space learning bring better congestion prediction
• More accurate congestion prediction leads to better congestion optimization
• Up to 8% improvement in the maximum routing overflow
THANK YOU!