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Abstract—Hotspot detection is an essential step in the physical verifica-
tion flow to identify layout patterns that are sensitive to process variations.
Recent advances in machine learning have enabled deep neural networks
(DNNs) to achieve good performance for hotspot detection; however, these
models require a high computational complexity and memory footprint.
To reduce such costs, quantization provides a promising solution by
compressing DNNs into low-bit inference schemes. In this paper, we
propose several quantization algorithms specifically designed for a classic
neural network based hotspot detector while taking into account the
feature distribution of the dataset used. Our experiments show that our
compressed model can achieve competitive results compared with full-
precision models while significantly reducing inference runtime at the
same time.

I. INTRODUCTION

With the semiconductor industry’s rapid development, the tran-
sistor’s feature size shrinks rapidly and the circuit becomes more
complex, which brings about significant challenges to chip manu-
facturing. Despite various advanced Resolution Enhancement Tech-
niques (RETs), designers may still introduce sensitive layout patterns
that lead to manufacturing defects. Therefore, efficient and accurate
hotspot detection during the physical verification stage is crucial to
ensure the printability of layout designs.

Among different kinds of hotspot detection methods, machine
learning based methods with deep neural networks have rapid de-
velopment and have achieved great success. These methods employ
deep neural networks with structures of various sizes and depths. For
example, Yang et al. [1] construct a convolutional neural network with
14 convolution layers and 3 fully connected layers. The network in
Geng et al. [2] employs several inception blocks and attention blocks
as the backbone. Despite the high performance of machine learning
based methods, deep neural networks contain lots of network param-
eters. They take a large memory footprint and require long inference
runtime, especially when thousands of layout patterns are evaluated.
Given the facts above, techniques that can reduce the network size
and accelerate inference are in great demand. By considering input
layout clips as binary images, Jiang et al. [3] employ a binarized
neural network (BNN) to speed up the hotspot detection process.
However, they design a BNN with a special network structure, and it
is hard to utilize the compression technique on other already existing
models.

In this paper, we propose to employ quantization to compress
neural networks, which can flexibly reduce the bit width of the
computing elements in any existing neural network. For example,
it is feasible to reduce the 32-bit precision layer weights and the
intermediate outputs between layers, called activations, to 8-bit inte-
gers. In subsequent sections, we give our formulation of quantization
algorithms and show their efficiency for network compression. We
also propose a quantization initialization algorithm by considering
the feature distribution in hotspot detection tasks, where compact and
convergence-benefited quantized data will be produced. In order to
demonstrate the efficiency of quantization, we adopt the quantization
algorithms on a neural network proposed by a classic hotspot detec-
tion work [4]. It is reasonable to perform the quantization algorithms
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Fig. 1 Hotspot Detection Flow.

on this network because it can be shown that quantization can still
achieve remarkable performance on hotspot detection tasks, even for
a small neural network. We also compare our proposed algorithms
with other classic quantization algorithms, and the results show that
ours can achieve superior performance in hotspot detection.

The contributions of this paper are summarized as follows:
• We come up with efficient bit-level quantization algorithms for

hotspot detectors with or without retraining.
• A quantization initialization algorithm dedicated to hotspot

detection is proposed by considering the feature distribution.
• Experimental results show that our algorithms can preserve

inference accuracy (loss within 1%) while reducing 55.35%
network runtime with an Int8 network.

The structure of this paper is organized as follows. Section II
introduces related literature on hotspot detection and quantization.
Section III recaps basic definitions and gives problem formulation.
Section IV describes the details of our bit-level quantization formula-
tion on the hotspot detector. Section V demonstrates the experimental
results and comparisons with other algorithms, followed by the
conclusion in Section VI.

II. RELATED WORK

A. Hotspot Detection

Typically, there are three kinds of hotspot detection approaches,
including lithography simulation, pattern matching and machine
learning. Lithography simulation is a common method that can
achieve high accuracy, but it is extremely time-consuming to perform
over a whole chip. For pattern matching methods [5]–[8], they
take a collection of hotspot layout patterns and use the collection
to match patterns in new designs to identify the hotspots, which
can speedup the hotspot detection flow and preserve the detection
accuracy as much as possible. However, it is difficult for pattern
matching methods to detect unknown hotspots that are not con-
tained in the collection. Machine learning has achieved remarkable
performance in modern chip manufacturing [1], [2], [4], [9]–[21].
For machine learning methods in hotspot detection, it can learn
the hidden relationship between layout patterns and their defects
characteristics, which enables strong generalization abilities to detect
unknown hotspots.

One critical problem in machine learning based methods is how to
effectively extract features of layout patterns. Zhang et al. [9] propose



an optimized concentric circle sampling (CCS) feature with an online
learning scheme. Yang et al. [4] apply discrete cosine transformation
(DCT) to extract features that are compatible with the emerging
deep learning structure, and a biased learning technique is proposed
to improve hotspot detection accuracy. Geng et al. [2] propose to
jointly perform layout feature embedding and hotspot detection in
an end-to-end manner, where an attention mechanism-based deep
convolutional neural network is proposed. Another problem is about
data augmentation. Yang et al. [1] apply hotspot upsampling and
random-mirror flipping before training the network to relieve the
imbalance issue of the training dataset in hotspot detection. Chen
et al. [10] propose a semi-supervised hotspot detection with a self-
paced multitask learning paradigm, where both data samples with
and without labels are leveraged to improve model accuracy and
generalizability.

Different from classifying the layout patterns, there are also some
region-based methods to detect multiple hotspots in a large region
at a time. Chen et al. [22] utilize joint auto-encoder and inception
module to encode for feature extraction, and a two-stage classification
and regression flow is proposed to locate hotspot regions. Zhu et
al. [23] propose an end-to-end single hotspot detector without refining
potential regions to detect the hotspots in large scales; multiple tasks
are defined to detect the center and corner points of the hotspot
regions.

B. Quantization

Quantization aims to reduce the bit-precision of key network
structures, such as weights and activations, where 32-bit floating-
point is the dominant numerical format for deep learning structures.
The target of quantization is to preserve the accuracy as much as
possible and to reduce the inference runtime [24]–[26].

One option of quantization is to perform post-training quantization
(PTQ), which benefits only the inference of neural networks by taking
a pre-trained network and implementing it in low-bit precision. Post-
traning quantizaiton does not need training and can be data-free
or require a series of calibration inputs. Instead of applying the
Rounding-to-nearest approach, which rounds the weight vector w
to the nearest representable quantization grid value in a fixed-point
grid, Adaround [27] proposes a better weight-rounding mechanism
for post-training quantization by analyzing the loss degradation with
the second-order Taylor series expansion. BRECQ [28] leverages
the basic building blocks in neural networks and reconstructs them
one by one, which has achieved a good balance between cross-
layer dependency and generalization error. Qdrop [29] analyzes the
influence of incorporating activation quantization into weight tuning
and has achieved flatness from a general perspective.

Quantization-aware training (QAT), where weights and activations
are quantized during training, is another important quantization
option. In quantization-aware training, the low-precision networks
can be trained to improve accuracy by inserting some quantization
operations into the neural networks, where high-precision weights
and activations are updated in the backward pass to adapt to the
low-precision weights and activations [30]–[32].

One main issue in QAT is determining a suitable clipping range
or scale factor. PACT [31] learns the activation clipping range during
training for finding the optimal quantization scale. QIL [33] learns the
quantization intervals jointly with the weights by directly minimizing
the task loss of the network. LSQ [32] proposes a novel means to
estimate and scale the task loss gradient at each weight and activation
layer’s quantizer step size, such that it can be learned in conjunction
with other network parameters.

Another important issue in QAT is dealing with the non-
differentiable rounding operator in the backpropagation of the training
process, where approximation methods should be used to address
this problem. A conventional approach is the so-called Straight
Through Estimator (STE) [34]. In DoReFa-Net [30], it ignores the
rounding operator by STE and approximates it with an identity
function. Despite the coarse approximation of STE, which makes no
contribution to updating the latent weights without considering the
quantization conditions, other approaches have also been explored.
In DSQ [35], a series of hyperbolic tangent functions are used to
approach the standard quantization gradually. EWGS [36] adaptively
scales up or down each gradient element and uses the scaled gradient
as the one for the discretizer input to train quantized networks via
backpropagation. OCTAV [37] finds optimal clipping scalars on the
fly by the fast Newton-Raphson method and proposes magnitude-
aware differentiation as a remedy to improve accuracy further.

III. PRELIMINARIES

In this section, some terminology and preliminary knowledge of
layout hotspot detection and quantization are introduced.

A. Hotspot Detection

The process of transferring designed patterns onto silicon wafers
in chip manufacturing is called the lithographic process. However,
this process may involve various variations, and some patterns are
sensitive to these variations and may cause a reduction of manufac-
turing yield as a result of potential open or short circuit failures.
Layout patterns that are sensitive to process variations are defined as
hotspots. A hotspot clip is defined as a clip that includes at least one
hotspot in its core region. The overall flow of hotspot detection is
illustrated in Fig. 1. The following definitions and metrics are used
to evaluate the performance of a hotspot detector in this paper.

Definition 1 (Accuracy). The ratio between the number of correctly
predicted hotspot clips and the number of groundtruth hotspot clips.

Definition 2 (False Alarm). The number of non-hotspot clips that
are predicted as hotspots by the classifier.

It should be noted that the accuracy is also equivalent to the true
positive rate, and the false alarm corresponds to the number of false
positives. In the hotspot detection process, it is important to accurately
identify as many hotspots as possible and not mistakenly identify
non-hotspots as hotspots.

In this paper, we mainly focus on the network runtime for layout
pattern detection, which is one of the important evaluations for
quantized networks.

With the evaluation metrics defined above, we formulate the
hotspot detection problem as follows:

Problem 1 (Hotspot Detection). Given a set of clips consisting of
hotspot and non-hotspot patterns, the objective of hotspot detection
is to train a classifier that can maximize the Accuracy and minimize
the False Alarm and network runtime.

B. Quantization

Consider some neural network F . Typically, the B-bit quantization
is the process to transfer the weights W and activations A of the
neural network F from full-precision to B-bit precision.

Consider some scalar data x, which is also called the latent data.
The quantized data Q(x) is defined as:

Q(x) = clip((r/2B−1) · round(x · 2B−1/r),−r, r), (1)
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Fig. 2 Quantization flow of a convolution layer.

where the data x is first scaled by some algorithm-dependent scale
factor 2B−1/r and mapped into the integer space, with r being the
clipping range in the original float space. Later, it is dequantized back
to the floating point number space by rescaling. It should be noted
that a clipping operation is applied to remove the quantization noise,
which is defined as:

clip(x, l, u) =


l, x < l;
x, l ≤ x ≤ u;
u, x > u.

(2)

In Fig. 2, a detailed flow of quantization on a convolution layer is
illustrated.

The data distribution is an important condition for determining the
scale factor. For unsigned data, such as the data in activations, only
one side of the data needs to be scaled and clipped.

A key problem in quantization-aware training is dealing with
the non-differentiable rounding operator during the backward pass.
Researchers often use a straight-through estimator (STE) [34] to
address this problem. By using STE, the gradient of the rounding
operator is approximated as 1:

∂ round(x)
∂x

= 1, (3)

which results in the fact that the gradient of quantized data is 1 w.r.t
the latent data [38].

In this paper, we consider two schemes of quantization, including
both quantization-aware training and post-training quantization.

IV. ALGORITHMS

In this section, we will introduce the hotspot detection architecture
by Yang et al. [4] and our quantization formulation. For quantization,
we will discuss quantization-aware training and post-training quan-
tization separately in order to give a clear perspective on how they
are implemented.

A. DNN-based Hotspot Detector

We determine to utilize a deep-learning flow for hotspot detection
task based on DAC’17 [4]. The network input is the feature tensor
X ∈ Rn×n×k, which is transformed from the layout clip I ∈ RN×N

with the discrete cosine transform (DCT) and a series of transforma-
tions.

Given X as input, the neural network we will quantize is a
convolutional neural network that contains two convolution stages
for feature extraction and two fully connected (FC) layers for prob-
ability generation, which are demonstrated in Fig. 3. A convolution
stage contains two convolution layers, and each convolution layer is
followed by a ReLU activation function, and a max-pooling layer is
inserted at the end of the stage. The convolution kernel size is 3×3,
and the channel dimension in the two convolution stages are 16 and
32, respectively. Max-pooling layers employ a pooling window shape
of 2× 2. The output feature sizes of two fully connected layers are
250 and 2, respectively.

Conv ReLU Max
PoolingConv ReLU

FC
Layer ReLU FC

Layer
Conv

Stage_1
Conv

Stage_2
Feature 
Tensor Output

Fig. 3 The network structure of DAC’17 [4]. The shaded part denotes
the convolution stage.

In this paper, all the convolution layers and fully connected layers
will be quantized. We follow the classic quantization flow by inserting
a quantizer after the latent data before calculation. As the example of
quantized convolution layer in Fig. 2, latent weights are first inputted
into the quantizer and then convoluted with the input, which can be
the network input X or intermediate quantized activations.

B. Quantization-Aware Training

We propose a bit-level quantization mechanism to accelerate our
hotspot detection flow by quantizing all full-precision operations into
lower-precision alternatives such as FP16 and Int8.

The first approach is to conduct quantization-aware training (QAT)
to retrieve the accuracy drop from quantization. In QAT, the objective
is to update and optimize the latent weights during training with
quantized weights and activations.

The bridge between the latent and quantized data is the scale
factor, defined as s. The approach to determine the scale factor, or
clipping range, is crucial for QAT to deal with the quantization noise,
also called the outliers. In this work, we would like to design an
appropriate determination of scale factor s. Instead of applying the
maximum value or an offline scale factor, we adopt a learnable scale
factor that will be updated together with the network parameters.
Let’s define w ∈ W as a real number in the network weight and B
as the quantization bit-width. Inspired by Esser et al. [32], we define
the number of positive and negative quantization levels LP and LN

respectively, and then the quantization QAT is formulated as follows:

QQAT (w) = s · round(clip(
w

s
,LN , LP )). (4)

The number of positive and negative quantization levels depends
on the quantization bit-width B and the data that is quantized. For
weights, LN = −2B−1 and LP = 2B−1 − 1. For activations, LN =
0 and LP = 2B − 1.

Since the latent weights are stored and updated, and the quantized
weights and activations are used for forward and backward passes,
the back-propagation from quantized weights to latent weights in
the backward pass must go through the rounding operator, which
is, however, non-differentiable. Here we employ the straight through
estimator [34] by passing through the gradient to solve this issue:

∂QQAT (w)

∂w
=

{
1, LN < w < LP ;
0, otherwise.

(5)

When updating the scale factor, we expect a more effective
approximation. Therefore, we employ the method in Esser et al. [32]
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as follows:

∂QQAT (w)

∂s
=


LN ,

w

s
≤ LN ;

−
w

s
+ round(

w

s
), LN <

w

s
< LP ;

LP ,
w

s
≥ LP ,

(6)

where the relative proximity of w to the transition point is proposed to
learn the scale factor s. In this way, the closer s is to the quantization
transition point (where the quantized value changes), the larger the

gradient
∂QQAT (w)

∂s
is given.

When we quantize activations A and update the scale factor of A,
we use the same formulation in Equation (4) and Equation (6) by
replacing the real number w to a real number a ∈ A.

C. Post-Training Quantization

We also propose the algorithm to quantize the hotspot detection
network by post-training quantization to save the effort of retraining.
In PTQ, we pay attention to the strategy of rounding the quantized
values, i.e., either round up or down.

Inspired by Nagel et al. [27], we abandon the rounding-to-nearest
strategy, which is sub-optimal for the entire network or the whole
layer. Given a pre-trained network with the input x and the target
y, let ∆w denote a small perturbation, and L(X,y,w) denote the
task loss; we analyze and approximate the loss degradation caused
by quantization with Taylor series expansions:

E[L(X,y,w+∆w)−L(X,y,w)] ≈ 1

2
∆w⊤ ·H(w) ·∆w, (7)

where w is a flattened version of weight W and H(w) denotes the
expected Hessian of the task loss L w.r.t. w.

Since calculating Hessian for each input data point is time-
consuming, we employ an approximation inspired by Li et al. [28].
The Taylor second-order error can be transformed into final network
outputs. Denote the neural network output as zn, and the stacked
vector of weights in all n layers as θ = vec[w⊤

1 , ...,w⊤
n ]⊤. It can

be proved that:

min
θ̂

∆θ⊤H(θ)∆θ ≈ min
θ̂

E[∆z⊤
n H(zn)∆zn], (8)

where H is the hessian without expectation. Hence we can evaluate
the error according to the change in network outputs with the output
Hessian H(zn). To further improve the performance, we propose the
stage-diagonal Hessian in our network. Assume that a convolution
stage is formed from layer k to layer l, stage-diagonal Hessian
considers the layers inside a stage θ̃ = vec[w⊤

k , ...,w⊤
l ]⊤ and the

intermediate stage output zl. And the two fully connected layers are
still evaluated according to the network outputs. As in Li et al. [28],
we further transform the objective by the diagonal Fisher Information
Matrix (FIM):

min
θ̂

E[∆z⊤
l H(zl)∆zl] = min

θ̂
E[∆z⊤

l diag((
∂L

zl,1
)2, ..., (

∂L

zl,a
)2)∆zl].

(9)
Finally, we formulate the quantization as:

QPTQ(w) = s · clip(⌊w
s
⌋+ h(v), LN , LP ), (10)

where the weights are first rounded by the floor operation and

h(v) = clip(σ(v)(ζ − γ) + γ, 0, 1). (11)

v ∈ V is the variable to optimize and h(v) is the rectified sigmoid
proposed in Louizos et al. [39], where σ(·) is the sigmoid function

and ζ and γ are stretch parameters, fixed to 1.1 and -0.1, respectively.
A regularization term is added to the objective function:

freg(V ) =
∑
i,j

1− |2h(Vi,j)− 1|β , (12)

where a progressively decreasing β makes the h(v) to be either 0 or
1 and hence determinates the weights to be rounded up or down.

Furthermore, we would like to consider the noise caused by
activation quantization. Inspired by Wei et al. [29], we model the
activation noise into a multiplicative form, i.e., â = a · (1 + u).
Therefore, 1 + u(X) is adopted to present the activation noise,
which depends on specific input data point X . Then the objective is
reformulated as follows:

min
ŵ

E[L(w +∆w,X, 1 + u(X))− L(w,X, 1)]. (13)

In order to increase the flatness in as many directions as possible,
we randomly disable and enable the quantization of the activation as
in Wei et al. [29]:

u =

 0, with probability p;
â

a
− 1, with probability 1− p.

(14)

D. Initialization of Scale Factor

Parameter initialization is an important but easily neglected issue
in quantization, where the initialization of the scale factor is most
representative. Fundamentally, better initialization of the learnable
scale factor in QAT is helpful in finding a better local optimum. A
widely used initialization strategy is by statistics, where we denote µ
as the mean and σ as the standard deviation of activations (weights)
in that layer. For LSQ [32], the scale factor slsq is initialized
as 2 ∗ µ|x|/

√
LP . In LSQ+ [40], an improved initialization for

weight scale factor is set as max (|µx − 3σx| , |µx + 3σx|)/2B−1.
By observation, the data distribution of activations in the hotspot
detection task is relatively compact with the binary layout patterns
input, and hence a wide range initialization will be far from the
converged values. Therefore, in this paper, we proposed a more
effective initialization for hotspot detection task:

sours = (µ|x| + 2σ|x|)/2
B−1, (15)

where we directly compute the mean and standard deviation of the
absolute value of activations (weights) in that layer. In this way,
the initialized range can take the negative part of the data into
consideration and will produce convergence-benefited quantized data
when separating most of the outliers. There exists the same problem
of scale initialization in PTQ, where the scale factor almost makes
use of the maximum scale factor or simply employs the same strategy
as QAT. Therefore, our proposed initialization strategy can also be
conducted on PTQ. In experiments, we use the algorithms in previous
sections with our initialization algorithm for both QAT and PTQ.

V. EXPERIMENTS

A. Experimental Setup and Implement Details

We implement the framework of Yang et al. [4] in Python, and
we reproduce it with Pytorch. We test the results on a machine with
CPU type Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz and an
Nvidia GTX 2080 Ti GPU. To be consistent with previous work,
the experiments are conducted on the ICCAD 2012 benchmark [42],
where different benchmarks and a dataset with all the 28nm patterns
merged are evaluated to verify the scalability. The statistics of ICCAD
2012 benchmark are shown in TABLE II. Row ‘Merged’ denotes the
merged benchmark of all the 28nm patterns, i.e. from benchmark2
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TABLE I Experimental Results. ‘FP32’ and ‘FP16’ denote the full-precision and half-precision network, respectively. ‘QAT’ and ‘PTQ’ are
Quantization-Aware Training and Post-Training Quantization, respectively, with the 8-bit precision network.

Benchmark
FP32 [4] FP16 [41] Our QAT Our PTQ

Acc FA Runtime Acc FA Runtime Acc FA Runtime Acc FA Runtime
(%) (%) (ms) (%) (%) (ms) (%) (%) (ms) (%) (%) (ms)

Benchmark1 100.00 33.08

0.56

100.00 33.27

0.34

100.00 33.09

0.25

100.00 33.12

0.25

Benchmark2 98.59 2.76 98.51 2.67 98.59 2.66 98.59 2.78
Benchmark3 98.89 10.57 98.83 10.69 98.88 10.86 98.89 10.66
Benchmark4 90.40 4.19 88.13 3.50 89.78 3.91 89.83 4.12
Benchmark5 97.56 3.52 97.55 3.77 97.56 2.58 97.51 3.48

Merged 97.54 3.17 96.39 3.22 97.46 3.05 97.50 3.14

TABLE II Benchmark Statistics of ICCAD 2012.
Benchmark #Train HS #Train NHS #Test HS #Test NHS

Benchmark1 99 340 226 319
Benchmark2 174 5285 498 4146
Benchmark3 909 4643 1808 3541
Benchmark4 95 4452 177 3386
Benchmark5 26 2716 41 2111

Merged 1204 17096 2524 13184

(a) Hotspots

(b) Non-hotspots

Fig. 4 (a) Hotspots and (b) Non-hotspots in ICCAD 2012 benchmark.

to benchmark5. Columns ‘#Train HS’ and ‘#Train NHS’ list the
total number of hotspots and the total number of non-hotspots in
the training set. Columns ‘#Test HS’ and ‘#Test NHS’ list the total
number of hotspots and the total number of non-hotspots in the testing
set. In Fig. 4, we demonstrate some layout examples of hotspots and
non-hotspots in ICCAD 2012 benchmark. We implement the quanti-
zation algorithms and deploy the quantized neural networks with the
help of a Quantization benchmark named MQBench [41]. The GPU-
accelerated inference and runtime evaluation of quantized neural
networks is conducted on TensorRT, which is a high-performance
deep learning inference engine.

The neural network in Yang et al. [4] consists of four convolution
layers and two fully connected layers. Different from the original
configuration, we insert Batch Normalization (BN) between each
convolution layer and the ReLU activation function, and we also
remove the dropout on the first fully connected layer. In the training
of the full-precision network, we use the Adam optimizer [43] with
an initial learning rate of 0.001 and iteration of 10000. We employ
the cosine learning rate decay [44] to update our learning rate.
For quantization-aware training, we employ the same optimizer and
learning rate scheduler as in full-precision training. The difference
is that we use an initial learning rate of 0.0001 and an iteration of
2000. For post-training quantization, we use 25% of the training set
for calibration.

B. Experimental Results

To evaluate the performance of quantization on hotspot detection,
we apply our proposed algorithms in Section IV to quantize the
neural network of Yang et al. [4] into an 8-bit precision network
on the ICCAD 2012 benchmark. To demonstrate the high efficiency

TABLE III Quantization-Aware Training Results.
Method Accuracy (%) False Alarm (%)

DoReFa [30] 93.62 9.46
PACT [31] 97.06 9.01
DSQ [35] 97.42 4.34
LSQ [32] 96.24 2.86
Our QAT 97.46 3.05

TABLE IV Post-Training Quantization Results.
Method Accuracy (%) False Alarm (%)

AdaRound [27] 97.20 3.16
BRECQ [28] 97.33 3.13
Qdrop [29] 97.41 3.19
Our PTQ 97.50 3.14

of quantization on runtime reduction, we use the inference time of a
batch size of 1000 layout patterns on TensorRT.

The experiment results are listed in TABLE I. ‘FP32’ denotes
the results with the original full-precision network of DAC’17 [4],
while ‘FP16’ denotes the results with a half-precision network
implemented by the default QAT setting of MQBench [41]. ‘QAT’
means quantization-aware training, while ‘PTQ’ means post-training
quantization. Columns ‘Acc (%)’, ‘FA (%)’, ‘Runtime (ms)’ denote
the hotspot detection accuracy rate, false alarm rate, and network
runtime, respectively. The results demonstrate that 8-bit quantiza-
tion can preserve the reduction of accuracy of hotspot detection
within 1% compared to the full-precision model. With well-designed
quantization algorithms, the accuracy of 8-bit quantization can even
be better than a half-precision network. In the meantime, the false
alarm rate of the 8-bit precision network is also maintained in an
acceptable range. The most notable result is the runtime improvement
of the 8-bit precision network, which reduces about 55.35% runtime
compared with the original full-precision network. The results show
that quantization can achieve remarkable runtime reduction even with
the small network structure as in Fig. 3.

We also compare our proposed algorithm with other classic
quantization algorithms. For quantization-aware training, we com-
pare the performance of DoReFa-Net [30], PACT [31], DSQ [35]
and LSQ [32]. For post-training quantization, the algorithms of
AdaRound [27], BRECQ [28] and Qdrop [29] are compared on bit-
8 precision. The results in TABLE III and TABLE IV show that
our algorithms can maintain better accuracy compared with other
algorithms.

Furthermore, sometimes we find that some layers in the neural
networks are sensitive to quantization, and high accuracy degradation
will be caused when these layers are quantized. Therefore, we
may consider keeping the precision of these layers, which is called
mixed-precision quantization. It is an interesting direction for the
quantization of hotspot detection in the future.
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VI. CONCLUSION

Recently, hotspot detection tasks have seen remarkable devel-
opment by utilizing deep learning networks. However, deeper and
deeper networks come with high computational complexity and ex-
pensive memory cost. In this paper, we employ quantization methods
to address this problem by compressing a classic hotspot detection
model. Generally, we propose quantization-aware training and post-
training quantization algorithms and propose a quantization initial-
ization algorithm dedicated to hotspot detection. The experimental
results show that the final quantized model can achieve competitive
performance and can significantly reduce the inference runtime.
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