
Efficient Design Rule Checking with GPU Acceleration
Wei Zhong

DUT
Zhenhua Feng

DUT
Zhuolun He

CUHK
Weimin Wang

DUT
Yuzhe Ma

HKUST(GZ)
Bei Yu
CUHK

Abstract—Design rule checking (DRC) is an essential part of the
chip design flow, which ensures that manufacturing requirements
are conformed to avoid a chip failure. With the rapid increase of
design scales, DRC has been suffering from runtime overhead. To
overcome this challenge, we propose to accelerate DRC algorithms
by harnessing the power of graphics processing units (GPUs).
Specifically, we first explore an efficient data transfer approach for
geometry information of a layout. Then we investigate GPU-based
scanline algorithms to accommodate both intra-polygon checking
and intre-polygon checking based on the characteristics of the
design rules. Experimental results show that the proposed GPU-
accelerated method can substantially outperform a multi-threaded
DRC algorithm using CPU. Compared with the baseline with 24
threads, we can achieve an average speedup of 36× and 201× for
spacing rule checks and enclosing rule checks on a metal layer,
respectively.

I. INTRODUCTION

Design rule checking (DRC) is the process to verify that a
design layout conforms to a set of predefined design rules, which
are established to ensure high manufacturability. These rules
define geometric constraints to meet the physical limitations
of the lithography and manufacturing process. With the rapid
increase in design size, the design rule checking process becomes
inevitably complicated and time-consuming. Many existing DRC
algorithms focus on improving CPU efficiency, while the re-
sulted speedup can be limited due to thread overhead, limited
bandwidth, and CPU cache size. As the complexity of integrated
circuits continues to climb, CPU-based multi-core solutions may
not accommodate the large input layouts.

In this paper, we propose a GPU-accelerated framework to
conduct DRC flow efficiently. Firstly, we customize an efficient
method to transfer the required data from the host (CPU) side
to the device (GPU) side, which addresses the bottleneck of
data transfer resulted from the heterogeneity of the framework.
Then we propose a GPU-based scanline algorithm, which covers
detection within a single polygon as well as between polygons,
in which the scanning and detection steps are parallelized.
We use designs from the OpenROAD [1] project to test our
algorithm and use KLayout [2] as our baseline to test the
effectiveness of our approach.

II. PROPOSED METHOD

Fig. 1 illustrates the overview of our GPU-accelerated design
rule checking flow. The blue block and the white block denote
the computation on CPU and GPU, respectively. We start off
by clipping the input layout into multiple regions. The intercon-
nected polygons in the region should be merged before being
transferred to the GPU. Then data transfer is conducted with
the an efficient transfer method. Note that design rules can be
defined in a single polygon, or between polygons on the same

Merge Contacting Polygons in 
Each Region

Copy Merged Region to GPU

Sort Horizontal And Vertical Edges 
of The Polygon in The Region 

Check Inside 
of Polygon

Scanline to Find The Candidate 
Edge Pairs

Y

Box Overlap Check to Find The 
Conflict Polygon Pairs

Check Out Conflicting Edge Pairs 
among Candidate Edge Pairs

Scanline Between Polygons to 
Find Candidate Edge Pairs

N

Clip Layout into Multiple Regions CPU Execution

GPU Execution

 

Fig. 1 Overview of our GPU-accelerate DRC.

layer, or between polygons on different layers. Consequently,
we develop different scanline strategies to find candidate edges
pairs with potential violation according to different design rules.
Finally, based on the candidate edges pairs, we then check them
to obtain the truly conflicting edges.

A. Data Transfer and Preprocessing

If we launch data transfer in a polygon-based manner, the
overhead would be roughly proportional to the number of
polygons, which is not friendly to the layers containing small
but numerous patterns. Ideally, we hope data transfer time to
be linear in the size of useful geometry contents (i.e., number
of edges in this case). To solve this problem, we resort to an
efficient approach to transfer geometry data of a layout from
CPU to GPU by switching the perspective from polygons to
edges. Firstly, we extract all the edges of the polygons in a
layer and attach an attribute to each edge to indicate which
original polygon it belongs to. In this way, we effectively pack
the original multiple polygons into a single collection of edges
(i.e., a large ‘dummy polygon’). Then we merge these edges
into a matrix. After passing the merged edge matrix into the
GPU, we reassemble the polygons based on the properties of
each edge in the package.

Here, each polygon is represented as a set of consecutive
connected edges, which is difficult to retrieve the position of
the edge in the polygon directly from the edge information.
However, we need to determine where a scanline starts and
what direction the scanline sweeps through based on the position
of the edges in a polygon. We classify polygon edges into



horizontal ones and vertical ones, and sort the edges accordingly
for further process.

B. GPU-based Scanline
In our GPU-accelerate scanline algorithm, according to the
characteristics of design rule checking, we divide the checking
into two scenarios: intra-polygon checking (e.g. width and space)
and inter-polygon checking (e.g. space and enclosing). In the
inter-polygon checking, we propose an overlap checking for
coarse-grained filtering and an improved scanline algorithm for
violation checking.

Scanline Inside Polygon. In the intra-polygon checking, we
process horizontal and vertical edges separately. Compared with
sequential scanline algorithm, we enable multiple scanlines in
parallel. Specifically, for the vertical edges of a polygon, our
algorithm scans from left to right starting from each edge
simultaneously until the distance between the scanned edge and
the starting edge is greater than our preset threshold. For the
horizontal edges of a polygon, the scanning direction is from
bottom to top. Since we have sorted the horizontal and vertical
edges, there will be no duplicate records.

Overlap Checking. For the detection between polygons, we
must know which two polygons are possible to have violations.
Since polygons are generally very irregular, it is very difficult to
directly detect whether it violates the rules with other polygons.
Instead, we first represent each polygon with its bounding box.
Then, if the box in which one polygon is located overlaps with
the box extended by another polygon according to the threshold,
they will form a conflict polygon pair and be recorded.

Scanline Between Polygons. In the inter-polygon checking,
we allocate GPU threads for each conflicting polygon pair. In
each thread we use the boundary range of the simple polygon
to control the check range in the complex one. By scanning
the obtained large polygon range we can get the candidate
conflicting edge pairs that potentially introduce violations.

C. Violation Identification
After the scanline operation, we get a large set of candidate
edges. However, there are many non-conflicting edges that need
to be trimmed in the candidate edge pairs. We propose a
detection strategy using GPU based on the characteristics of
the candidate edge pairs. We assign a GPU thread to each
candidate edge pair. Then in each kernel we will use the distance,
projection, angle and other positional relationships of these two
edges to check if they indeed violate the design rules, which
involves simple operation, e.g. judgment, comparison, etc.

III. EXPERIMENTAL RESULTS

Experimental Setup. We conduct various experiments on a 64-
bit Ubuntu Linux machine with TITAN RTX GPU and 3.5GHz
Intel Core i9-10920X CPU. The compilers include CUDA
NVCC 10.2 and GNU GCC 5.4.0. We use 4096 threads for
all kernel configurations and 1 CPU core for all host operations.
Our baseline is KLayout0.26.6 [2]. The layout benchmarks in
the experiments are generated by OpenROAD project [1] with
default settings. In order to ensure fairness, the parameters and
checking content set by our algorithm are exactly the same as
those in KLayout.

TABLE I Enclosing check in Metal1
Design gcd aes bp be bp

8 CPU threads 33.522 13194.039 58477.239 90250.85
16 CPU threads 34.212 13074.176 51671.131 85792.708
24 CPU threads 34.52 13072.36 49047.536 74497.754

Ours 0.343 27.932 257.056 409.381
Speedup 100.641× 468.01× 190.80× 181.98×
Average 201.1×

TABLE II Enclosing check in Metal2
Design gcd aes bp be bp

8 CPU threads 5.547 1977.047 2859.979 3332.67
16 CPU threads 5.732 1997.85 2435.594 2321.697
24 CPU threads 5.552 1976.503 2320.845 2298.961

Ours 0.291 30.493 132.717 250.022
Speedup 19.08× 64.82× 17.49× 11.21×
Average 22.19×

TABLE III Space check in Metal1
Design gcd aes bp be bp

8 CPU threads 10.99 376.244 5950.007 14865.705
16 CPU threads 11.131 3692.87 4540.09 8833.2
24 CPU threads 10.989 3690.08 4226.62 7565.84

Ours 0.316 19.091 250.799 471.71
Speedup 34.78× 193.29× 16.85× 16.04×
Average 36.71×

TABLE IV Space check in Metal2
Design gcd aes bp be bp

8 CPU threads 6.378 2732.5534 3870.166 5015.233
16 CPU threads 6.168 2703.47 3365.211 3767.176
24 CPU threads 6.174 2666.539 3114.918 3621.914

Ours 0.399 28.591 121.279 238.966
Speedup 15.47× 93.26× 25.68× 15.16×
Average 27.38×

Runtime Performance. Our algorithm can significantly ac-
celerate DRC. We compare the runtime of our algorithm with
the runtime of the DRC in KLayout, where various levels of
parallelism in KLayout are investigated. The DRC rules we use
are extracted according to FreePDK45 [3]. It can be observed
that our algorithm achieves significant speedup over CPU-based
DRC (KLayoutversion). The speedup in the TABLE I to
TABLE IV are calculated by comparing with the runtime using
24 CPU threads. TABLE I and TABLE III show the enclosing
check and space check results of Metal1 and Via2 layers.
TABLE II and TABLE IV show the enclosing check and space
check results of Metal2 and Via2 layers. We can achieve
201× speedup on the enclosing check of the Metal1 layer
and 22× speedup on the enclosing check of the Metal2 layer
compared with the baseline. For the space check of the Metal1
layer, we can improve the speed by an average of 36× compared
to the baseline. And for the space check of the Metal2 layer,
we can improve the efficiency by an average of 27× compared
to the baseline.

REFERENCES

[1] T. Ajayi, V. A. Chhabria, M. Fogaça, S. Hashemi, A. Hosny, A. B. Kahng,
M. Kim, J. Lee, U. Mallappa, M. Neseem et al., “Toward an open-source
digital flow: First learnings from the openroad project,” in Proc. DAC, 2019,
pp. 1–4.

[2] “KLayout,” https://klayout.de/.
[3] “FreePDK45,” https://www.eda.ncsu.edu/.

2

https://klayout.de/
https://www.eda.ncsu.edu/

