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ABSTRACT
Generating legal and diverse layout patterns to establish large pat-

tern libraries is fundamental for many lithography design appli-

cations. Existing pattern generation models typically regard the

pattern generation problem as image generation of layout maps

and learn to model the patterns via capturing pixel-level coher-

ence, which is insufficient to achieve polygon-level modeling, e.g.,

shape and layout of patterns, thus leading to poor generation qual-

ity. In this paper, we regard the pattern generation problem as an

unsupervised sequence generation problem, in order to learn the

pattern design rules by explicitly modeling the shapes of polygons

and the layouts among polygons. Specifically, we first propose a

sequential pattern representation scheme that fully describes the

geometric information of polygons by encoding the 2D layout pat-

terns as sequences of tokens, i.e., vertexes and edges. Then we

train a sequential generative model to capture the long-term depen-

dency among tokens and thus learn the design rules from training

examples. To generate a new pattern in sequence, each token is

generated conditioned on the previously generated tokens that are

from the same polygon or different polygons in the same layout

map. Our framework, termed LayouTransformer, is based on the

Transformer architecture due to its remarkable ability in sequence

modeling. Comprehensive experiments show that our LayouTrans-

former not only generates a large amount of legal patterns but also

maintains high generation diversity, demonstrating its superiority

over existing pattern generative models.

1 INTRODUCTION
Diverse layout patterns of Very-Large-Scale Integration (VLSI) are

of crucial significance for a variety of lithography design appli-

cations, including OPC recipes [1–4], source mask optimization,

layout hotspot detection [5–8], and lithography simulation [9–11].
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Figure 1: Illustration of existing image-based modeling and
our proposed sequential modeling for pattern generation.

In recent years, machine learning is well adopted in various lithog-

raphy design applications, giving rise to the requirement for large-

scale and diverse layout patterns. Building such pattern libraries

is extremely time-consuming due to the long logic-to-chip design

cycle. To overcome this, researchers begin to pay more attention

on synthesizing diverse layout patterns of VLSI.

Early works [12–14] propose simple deterministic methods to

synthesize new patterns. For example, some predefined unit pat-

terns are manually selected to be combined into a new pattern. An-

other simpler method is to rotate or flip exiting patterns to obtain

new patterns. Though effective in some extent, they only achieve

minor augmentation for the original pattern library, and both the

quantity and diversity of the synthesized patterns are limited.

In order to break this limitation, researchers exploit powerful

machine learning methods to model the design process of patterns

through deep neural networks. They regard the pattern generation

problem as image generation of layout maps, each with multiple

polygons. Nevertheless, image-based modeling for layout pattern

generation may suffer from two drawbacks. First, the pixel-level

modeling of pattern geometric information is insufficient to capture

the shapes and layouts of patterns, leading to poor legality of the

generated patterns, as shown in Figure 1 (upper). To alleviate this,

time-consuming post-processing is needed, which smoothes the

noisy patterns based on a Conditional Generative Adversarial Net-

work (CGAN) [15] to reduce the risk of violating DRC rules. Second,

the diversity of patterns generated by existing image-based gener-

ative models is limited. Generative Adversarial Networks (GANs)

https://doi.org/10.1145/3508352.3549350
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[16] suffer from model collapse, which significantly reduces the

diversity of generated patterns. The Convolutional Auto-Encoders

(CAEs) [17] use the squish pattern representation [18] (splitting

a layout map into a topology matrix and two geometry vectors),

and conducts perturbation on the topology matrices of training pat-

terns to generate new diverse patterns. The diversity is still limited,

since the new patterns must have the same geometric vectors as

the existing examples.

In this work, we tackle the pattern generation problem from a

brand new perspective of sequential modeling, which is inspired

by the remarkable progress in natural language processing, e.g.,

GPT [19], BERT [20], and XLNet [21]. These Transformer-based

models show great potential in modeling the complicated gram-

mar rules of language sentences. So, what would happen if we

regard the pattern design rules as a set of grammar rules and build

a pattern generative model taking the advantages of successful lan-

guage generation models? The key to this idea is to design a highly

structured sequential representation that explicitly describes the

shapes and spatial layouts of the patterns, with the design rules

learnt during training. To this end, we propose a novel pattern

sequential representation that converts the 2D layout patterns into

1D sequences. As shown in Figure 1 (lower), each polygon is rep-

resented as a sequence containing the coordinates of the starting

point 𝑉0 (upper-left corner) and the edges {𝐸1, 𝐸2, ...} for walking
through the polygon boundary from𝑉0 in a counterclockwise direc-

tion. The polygons are sorted in ascending order in the sequence

of the layout map according to the starting point. Such sequential

pattern representation is lossless and has high coding efficiency.

Our sequential modeling explicitly encodes the shapes and spatial

layouts of patterns as 1D sequences, which are more friendly for

generative modeling with a Transformer.

Note that the pattern design rules and grammar rules have similar

properties from the sequential modeling perspective. First, language

generation requires the model to capture the long-term dependen-

cies among the words in a sentence, and pattern generation models

need to capture the dependencies among each edge of the patterns.

Second, each token is generated conditioned on the previously gen-

erated ones to maintain continuity of language meaning or polygon

shape, resulting in new legal sequences. Third, when the stop token

is predicted, a sequence is completed, and thus a whole sentence or

a closed polygon is obtained.

We develop our sequential pattern generation framework, termed

LayouTransformer, based on the Transformer [22] architecture,

which is shown to be excellent at sequence modeling and is widely-

used in generating sequences of arbitrary lengths. During training,

LayouTransformer models the dependencies among tokens of pat-

tern sequences and learns the pattern design rules from traning

patterns. After that, LayouTransformer generates a new pattern by

sampling each token from the learnt probability distribution over

the vocabulary (including all possible token values) conditioned on

the previously generated tokens.

Our main contributions are summarized as follows:

• We tackle the challenging pattern generation problem from

a brand new perspective of sequential modeling.

• We propose sequential patterns, a novel, lossless, and highly

structured representation strategy, to explicitly encode the

shape and spatial information of patterns.

Space Width Area

Figure 2: Layout geometry concepts for DRC rules.

• Wedevelop a Transformer-based sequential generativemodel

to learn the pattern design rules and generate new diverse

layouts.

• Comprehensive experiments are conducted to show the supe-

rior performance of our method on pattern legality, diversity,

and validity.

2 RELATEDWORK
Synthesizing diverse layout patterns of VLSI has obtained increas-

ing attention for lithography design applications. [23] applies Gen-

erative Adversarial Networks (GANs) [16] to generate discrete co-

sine transform (DCT) signals, which can be converted to layouts

via the inverse DCT. However, the polygons of synthesized patterns

are irregular, and the complex post-process is required. Moreover,

GANs are notoriously difficult to train in practice due to the insta-

bility of gradient-based mini-max optimization. Besides, GANs also

suffer from model collapse, which seriously limits the diversity of

synthesized patterns.

CAE is an alternative for layout pattern generation. [17] utilizes

convolutional auto-encoder to generate new patterns by adding

perturbation to the latent representations of existing ones. This

work aims to generate uni-direction patterns. To establish diverse,

large, and DRC-clean pattern libraries for complex 2D layouts, [24]

proposes a two-stage training framework for pattern topology gen-

eration and legalization. This work firstly trains a variational convo-

lutional auto-encoder to generate new patterns. Then a CGAN [15]

is designed to make blurry generated patterns smooth to reduces

DRC violation risks. [25] attempts to employ an Adversarial Auto-

Encoder (AAE) [26] to generate IPS (image parameter space) values

of layout patterns, which can be mapped to layout patterns. How-

ever, the polygons of synthesized patterns are irregular, which need

complex post-processing.

3 PATTERN GENERATION PROBLEM
In this section, we describe the fundamental concepts and evalua-

tion metrics for pattern generation. The target of pattern generation

is to synthesize diverse and realistic layout patterns based on a set

of real IC layout patterns.

Layout Design Rules. The generated patterns are required to

follow the layout design rules of actual IC layouts. As depicted

in Figure 2, “Space” measures the distance between two adjacent

polygons, “Width” measures the size of a shape in one direction,

and “Area” represents the area of a polygon. If a layout pattern is

legal, these geometric measurements need to satisfy some given

critical values in the layout design rules.

Pattern Diversity. The diversity of layout patterns is a crucial

evaluation metric for pattern generation. As defined in [17], the

complexity of a layout pattern is represented as (𝑐𝑥 , 𝑐𝑦), where 𝑐𝑥
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and 𝑐𝑦 are the numbers of scan lines subtracted by one along the

𝑥-axis and 𝑦-axis, respectively. Hence, following [17], the pattern

diversity is defined as the Shannon entropy [27] of the distribution

of the pattern complexities as follows:

Definition 1 (Pattern Diversity). Pattern diversity, denoted
by 𝐻 , is the Shannon entropy of the pattern complexity sampled from
the pattern library,

𝐻 = −
∑
𝑖

∑
𝑗

𝑃
(
𝑐𝑥𝑖 , 𝑐𝑦 𝑗

)
log 𝑃

(
𝑐𝑥𝑖 , 𝑐𝑦 𝑗

)
, (1)

where 𝑃
(
𝑐𝑥𝑖 , 𝑐𝑦 𝑗

)
denotes the probability of a pattern with complexity

(𝑐𝑥𝑖 , 𝑐𝑦 𝑗 ) sampled from the library.

According to this definition, the larger the entropy of the pattern

complexity in the pattern library, the more diverse the patterns.

Pattern Validity. Synthesizing realistic layout patterns is an-

other essential target of pattern generation. This implies the gener-

ated patterns should closely resemble the real patterns. To evaluate

how realistic the generated patterns are, [24] defines pattern valid-

ity as follows:

Definition 2 (Pattern Validity). Pattern validity is the ratio
of realistic patterns to total patterns.

Section 6.3 gives a scheme to measure if a generated pattern is

realistic. Based on the above evaluation metrics for pattern gen-

eration, the fundamental framework of pattern generation can be

formulated as follows:

Definition 3 (Pattern Generation). Given a set of real layout
patterns and design rules, pattern generation aims to establish a legal
pattern library such that the pattern diversity and the pattern validity
of the layout patterns in the library are maximized.

4 OVERVIEW OF OUR FRAMEWORK
Learning to generate diverse and legal layout patterns in 2Dmaps is

challenging since it is difficult to capture and follow a lot of design

rules about the geometric shapes and spatial layouts of the patterns.

In this work, to the best of our knowledge, we for the first time

regarding the 2D pattern generation problem as a 1D sequence

generation problem. To achieve this, we design a novel sequential

pattern generation framework that can well capture the pattern

design rules and generate a large variety of new layout patterns.

As shown in Figure 4, given a set of layout examples, we first ex-

tract their sequential pattern representations, where each pattern is

serialized as tokens of the starting point and the directions and off-

sets of edges. Then the extracted sequences are encoded and fed into

a sequential generative model, which is built upon the Transformer

architecture, a successful model in generating well-structured and

grammar-correct sentences, in an auto-regressive manner. Training

with a dataset of serialized patterns, our auto-regressive genera-

tive model can generate new layout patterns which are legal and

diverse.

5 SEQUENTIAL PATTERN GENERATION
Transformers have shown great potential in sequence modeling due

to its remarkable ability in capturing long-term dependencies of se-

quences. As a result, Transformers become a dominant architecture

for natural language processing where the model is required to cap-

ture long sequence features, understand the structure of language,

maintains common grammar rules, and meanwhile enable parallel

training. Inspired by the unprecedented success of Transformer-

based language generation models, e.g., GPT [19], BERT [20], and

XLNet [21], we take advantage of the sequence modeling ability of

the Transformer architecture and design a novel sequence genera-

tion framework for generating layout patterns.

To achieve this, we first propose sequential pattern representa-

tion that converts the 2D layout patterns into 1D sequences, in Sec-

tion 5.1. Then, we formulate the pattern generation problem from

the perspective of sequential modeling (Section 5.2), and design

a sequential pattern generation model based on the Transformer

architecture (Section 5.3). The training and generating procedures

are described in Section 5.4 and Section 5.5, respectively.

5.1 Sequential Pattern Representation
In this subsection, we first give a brief introduction of the recently

proposed squish patterns [18] which is a 2D pattern representation

for generative models. After that, we present our sequential pattern

representation that converts the 2D patterns into 1D sequences.

Squish pattern representation compresses the layout images into

a pattern topology matrix T and two geometric vectors 𝜹𝑥 and 𝜹𝑦 .
As shown in Figure 3(a), the topology T is a binarized matrix where

1 indicates the existence of a polygon and 0 otherwise. The vectors

𝜹𝑥 and 𝜹𝑦 describe the widths and heights of the grids in 𝑥 and 𝑦

axises, respectively. Such compositional representation requires the

layout generation models to generate the topology matrix and the

geometric vectors jointly and meanwhile to maintain the pattern

legalization. This is quite challenging for modern generative mod-

els. Existing layout generation learning models [17, 24] learn to

generate layout typologies with the geometric vectors fixed, which

limits the diversity and flexibility of pattern generation.

In contrast, our proposed sequential patterns represent the lay-

out maps in a more compact and flexible way. As shown in Fig-

ure 3(b), each polygon is represented as a sequence containing the

coordinates of the starting point, and the directions and offsets for

walking through all the edges in turn from the starting point in a

counterclockwise direction. Specifically, each polygon is identified

with a pair [𝑆𝑂𝑃] and [𝐸𝑂𝑃] tokens indicating the start and the

end of the pattern sequence, respectively. The starting point (𝑥0, 𝑦0)
is the upper-left corner of the polygon. We define four directional

tokens to represent the directions of “up”, “down”, “left” and “right”.

Each of the directional tokens is followed by an offset value indi-

cating the length of the edge. The coordinates of the starting point

and the offsets are discretized into the integers in [1, 𝑁 ], with 1

being the minimum distance unit and 𝑁 being the maximum length

of the layout patterns. Multiple polygons are contained within a

pair of tokens [𝑆𝑂𝐵] and [𝐸𝑂𝐵] denoting the head and the tail

of a layout block. In the sequential representation of the layout

block, the polygons are sorted in ascending order according to the

𝑦-coordinate of their upper-left corners. If two polygons have the

same 𝑦-coordinate of their upper-left corners, the one with smaller

𝑥0 comes first. In light of language, we define the vocabulary as a set

of all possible values of the tokens in the pattern sequences. Hence,

the size of vocabulary is equal to 𝑁 + 8 where 8 is the number of
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Figure 3: Overview of the squish pattern representation and our proposed sequential pattern representation.

Real Layout Patterns

Sequential 
Pattern Representation

Sequential Pattern Generation

Train Sequential 
Generative Model

Token Embedding

Sequence Decoding

Sampling

New Layout Patterns

Figure 4: Overview of our LayouTransformer framework.

the tokens including [𝑆𝑂𝑃], [𝐸𝑂𝑃], [𝑆𝑂𝐵], [𝐸𝑂𝐵], “up”, “down”,
“left” and “right”.

5.2 Sequential Modeling of Pattern Generation
Our pattern sequence representation is lossless and preserves the

full geometric information of each polygon and the spatial rela-

tionship among different polygons. The geometric information

implicitly contains the design rules of layout patterns. Hence, learn-

ing how to generate different tokens according to training samples

allows the model to implicitly learn the design rules.

Let 𝒕 = {𝑡1, ..., 𝑡𝐿} = {[𝑆𝑂𝐵], [𝑆𝑂𝑃], 𝑥0, 𝑦0, ..., [𝐸𝑂𝐵]} be the

sequence of a layout map. The design rules of patterns can be

learned by modelling the joint distribution 𝑝 (𝒕) of the sequence
𝒕 = {𝑡1, ..., 𝑡𝐿}. We cast the estimation of the joint distribution 𝑝 (𝒕)
to the autoregressive sequence generation. Based on the chain rule

of probability, the join distribution 𝑝 (𝒕) can be factored into:

𝑝 (𝒕) = 𝑝 (𝑡1, . . . , 𝑡𝐿) =
𝐿∏
𝑖=1

𝑝 (𝑡𝑖 | 𝑡1, . . . , 𝑡𝑖−1) . (2)

This decomposes the density estimation of 𝑝 (𝒕) into next-token pre-

diction (e.g., 𝑡𝑖 ) conditioned on previous tokens (e.g., {𝑡1, 𝑡2, ..., 𝑡𝑖−1}).
Transformer is adopted to learn the above product of conditional

distributions due to its powerful ability of density estimation and

modelling long-range complex dependencies. More specifically, the

Transformer network 𝜃 takes in the conditional sequence of tokens

{𝑡1, . . . , 𝑡𝑖−1} and outputs a categorical distribution over the possi-

ble values of the next token using the softmax function. Based on the

principle of maximum likelihood, we maximize the log-probability

of the true tokens 𝑝 (𝑡𝑖 | 𝑡1, . . . , 𝑡𝑖−1) to train the network 𝜃 .

The network 𝜃 can model the relationships among different 𝑡𝑖
to learn the design rules of layout patterns. For example, regard-

ing the currently generated sequence “[𝑆𝑂𝑃], 𝑥0, 𝑦0,”, our layout

𝑄𝑄 𝐾𝐾 𝑉𝑉

H

MatMul

Scale

Softmax

MatMul

Multi-Head 
Attention

Positional 
Embedding

+

Add & Norm

Feed Forward

Add & Norm

𝑋𝑋Input

Figure 5: Illustration of the Transformer block.

generation model predicts the next token as one of the directional

tokens. This is similar to language generation where each word

is predicted based on the previous words. Moreover, our genera-

tion model is required to correctly predict the ending token and

meanwhile enable the closure of the polygon; i.e., following the

generated directions and offsets, we can finally walk back to the

starting point, and thus the trajectory can form a complete polygon

with horizontal and vertical edges. Likewise, a grammar-correct

sentence needs a correct ending signal and integrity of both the

semantic meaning and linguistic structure.

5.3 Model Architecture
Transformer [28] has been proved excellent at capturing long-term

dependencies among language sentences. The vanilla Transformer

architecture consists of 𝐾 blocks each with a multi-head attention

layer, a fully connected feed forward network, and two normal-

ization and residual add-up layers, as shown in Figure 5. We de-

note the Transformer as a function TF(·): R𝑁×𝑑 → R𝑁×𝑑
which

takes a sequence of token embeddings 𝑿 = {𝒙1, 𝒙2, ..., 𝒙𝑁 }, 𝒙𝑖 ∈
R𝑑 as input, and outputs a sequence of token embeddings �̂� =

{�̂�1, �̂�2, ..., �̂�𝑁 }, �̂�𝑖 ∈ R𝑑 , where each �̂�𝑖 encodes the dependencies
between 𝒙𝑖 and other input tokens. At first, the input token em-

beddings 𝑿 are added with the positional embeddings to encode

the position information of each token. Then, the multi-head at-

tention module learns independent transformations𝑾𝐾
ℎ
,𝑾𝑄

ℎ
and

𝑾𝑉
ℎ
∈ R𝑑×𝑑 at the ℎ-th head and calculates the attention weights

𝑨ℎ between all input tokens. The token embeddings are updated

with the context information from their attended tokens. Finally,



LayouTransformer: Generating Layout Patterns with Transformer via Sequential Pattern Modeling ICCAD ’22, October 30-November 3, 2022, San Diego, CA, USA

𝑆𝑂𝐵 𝑆𝑂𝑃 𝐸𝑂𝑃…

…

𝑆𝑂𝑃 𝑥0 𝐸𝑂𝑃… 𝐸𝑂𝐵

Transformer Block 1

Transformer Block K

…

(a) Training Stage

𝑆𝑂𝐵 𝑆𝑂𝑃 𝑥0 𝑦0

𝑆𝑂𝑃 𝑥0 𝑦0 𝑑1

Transformer

Sampling

…

…

(b) Generating Stage

Extracting

Sequential Patterns 

Training Patterns

Token 

embeddings Generated 

Patterns
1 2

‘SOB’ (Start of Block)

‘SOP’, 0, 0, ‘down’, 267, ‘right’, 291, 

‘up’, 80, ‘left’, 165, ‘up’, 96, ‘right’, 

63, ‘up’, 91, ‘left’, 189, ‘EOP’,

‘SOP’, 457, 0, ‘down’, 267, ‘right’, 

34, ‘up’, 112, ‘right’, 18, ‘up’, 155, 

‘left’, 52, ‘EOP’, 

……
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𝑥0

Figure 6: Training LayouTransformer and token generation.

the resulting token embeddings at all attention heads are concate-

nated and once again projected to input dimension via a learnable

weight matrix 𝑾𝑝 ∈ R(𝐻×𝑑)×𝑑
. For each 𝒙𝑖 ∈ 𝑿 , we obtain the

output embedding �̂�𝑖 as:

𝑨ℎ (𝒙𝑖 , 𝒙 𝑗 ) = softmax((𝑾𝑄

ℎ
𝑿 ) (𝑾𝐾

ℎ
𝑿 )⊤/

√
𝑑), (3)

�̃�𝑖 = concat
𝐻
ℎ=1


𝑁∑
𝑗=1

𝑨ℎ (𝒙𝑖 , 𝒙 𝑗 ) (𝑾𝑉
ℎ
𝑿 )

 , (4)

�̂�𝑖 =𝑾𝑝 �̃�𝑖 . (5)

Beyond the Transformer, our model introduces two extra mecha-

nisms for the sequential pattern generation learning. The first one

is masked self-attention, where each token is only allowed to attend

to the tokens preceding it in the sequence, since the subsequent

tokens are unknown currently during token generation. The second

is segment-level recurrence, which is inspired by recurrent neural

networks and first proposed in Transformer-XL [22]. In practice,

if a sequence is very long, it is divided into several segments in a

fixed length to reduce computation cost. This mechanism enables

the learning of dependencies across segments without disrupting

their coherence. By doing this, our model can well capture the long-

term relationship among sequences of different polygons and even

polygons from different layout maps.

5.4 Training LayouTransformer
Here we present the training process of our sequential pattern

generation model, as shown in Figure 6(a). Given a layout map 𝐼 ,

the patterns on it are first encoded as a sequence 𝒕 = {𝑡1, ..., 𝑡𝐿} =
{[𝑆𝑂𝐵], [𝑆𝑂𝑃], 𝑥0, 𝑦0, ..., [𝐸𝑂𝐵]}. The tokens in the sequence 𝒕 are
tokenized and fed into a learnable word embedding layer 𝑓 (·), re-
sulting in a set of embeddings 𝑺 = {𝒔1, ..., 𝒔𝐿}, 𝒔𝑖 = 𝑓 (𝑡𝑖 ) ∈ R𝑑 .
The word embedding layer aims to learn an embedding for each

token in the vocabulary 𝑉 which contains all possible tokens. Also,

we employ the positional embeddings to encode the relative po-

sitions of the tokens as in [22], obtaining a set of embeddings

𝑬 = {𝒆1, ..., 𝒆𝐿}, 𝒆𝑖 ∈ R𝑑 . Note that the positional embeddings are

crucial to model the shapes and spatial layouts of patterns, since the

relative position information of a token can provide the strong prior

for predicting a token, e.g., the next token of [𝑆𝑂𝐵] must be [𝑆𝑂𝑃].
The model learns to predict each token 𝑡𝑖 based on the previous

tokens {𝑡1, ..., 𝑡𝑖−1}. For example, as shown in Figure 6(a), the token

𝑡𝑖 = 𝑥0 in the sequence 𝒕 is determined based on the given sub-

sequence {[𝑆𝑂𝐵], [𝑆𝑂𝑃]}. First, each of the token embeddings in 𝑺
and the positional embeddings in 𝑬 are added together and fed into

the Transformer model. Then, the model outputs {𝒛1, ..., 𝒛𝑖−1} and
uses the last hidden state 𝒛𝑖−1 to predict token 𝒕𝑖 . This procedure
is represented as:

{�̂�1, ..., �̂�𝑖−1} = {𝒔1 + 𝒆1, ..., 𝒔𝑖−1 + 𝒆𝑖−1}, (6)

{𝒛1, ..., 𝒛𝑖−1} = TF({�̂�1, ..., �̂�𝑖−1}), (7)

where �̂�𝑖 , 𝒛𝑖 ∈ R𝑑 . We use the cross entropy loss between the condi-

tional distribution 𝑝 (𝑡𝑖 | 𝑡1, . . . , 𝑡𝑖−1) and the one-hot distribution

of the target token 𝑡𝑖 to maximize the prediction of 𝑡𝑖 , thus optimiz-

ing the parameters of our model as:

𝑝 (𝑡𝑖 | 𝑡1, . . . , 𝑡𝑖−1) =
exp(𝒛⊤

𝑖−1 𝑓 (𝑡𝑖 ))∑
𝑡 ∈𝑉 exp(𝒛⊤

𝑖−1 𝑓 (𝑡))
. (8)

In the training process, the predictions of different tokens are inde-

pendent, so they can be calculated in parallel, meaning that Lay-

ouTransformer can be trained efficiently.

5.5 Generating New Patterns
After training, our model can generate new patterns in an auto-

regressive manner, i.e., each token is generated based on the preced-

ing generated ones, as shown in Figure 6(b). Given a starting prompt

as input, e.g., “[𝑆𝑂𝐵], [𝑆𝑂𝑃]”, the prompt is first tokenized and en-

coded via the learned word embedding layer, and then fed into the

trained transformer blocks. Based on the output vectors, we can

obtain the categorical distribution 𝑝 (𝑡3 | 𝑡1 = [𝑆𝑂𝐵], 𝑡2 = [𝑆𝑂𝑃])
over the possible values of the next token using the softmax func-

tion. From the distribution, a token 𝑥0 is sampled as the generated

next token, which is then regarded as a input token for predicting

the subsequent token. Then, “[𝑆𝑂𝐵], [𝑆𝑂𝑃], 𝑥0” is fed back into the
model for continuing generation. Repeat the generation process

above until encountering the token [𝐸𝑂𝐵] which indicates the end

of the generation of a layout map.
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Here we employ the Nucleus Sampling [29] as our sampling

strategy to enable generation diversity while maintaining legality.

It selects a smallest possible set of top ranked tokens, such that

the sum of their probabilities is greater than a threshold 𝜖 . The

probability of the rest tokens are set to 0, and the probabilities of

the tokens in the set are re-scaled to ensure the sum of the proba-

bilities to be 1. From the rescaled distribution, we sample a token

for generation. When the model is very certain on few tokens, the

potential candidate set is small, e.g., generating a “[𝑆𝑂𝑃]” regard-
ing a “[𝑆𝑂𝐵]”. Otherwise, there will be many potential candidate

tokens, e.g., generating “𝑥0” regarding a “[𝑆𝑂𝑃]”, sampling from

which will generate diverse polygons in the block.

6 EXPERIMENTS
6.1 Experimental Setup
Dataset:We follow [23] to obtain the dataset of small layout pattern

images with the size of 2048× 2048𝑛𝑚2
by splitting a 160× 400𝜇𝑚2

layout map from ICCAD contest 2014. 80% of the images are ran-

domly selected as the training set while the others serve as the

validation set for model training.

Network Configuration: In our sequential pattern generation

framework, the vocabulary size is 2056, containing 2048 possible

integers of coordinates and offsets, 4 directional tokens (up, down,

left, right), and 4 tokens indicating the start or end of a polygon or

a block. The dimensionality of the word and positional embeddings

are set to 512. Our Transformer architecture has 𝐾 = 6 Blocks,

and each multi-head attention module has 8 attention heads. The

lengths of memory and prediction of our Transformer model are

both set to 512. The dimensionality of the hidden states is also 512,

and the intermediate size of the feed-forward networks is 1024.

Training Details: Our sequential pattern generation is imple-

mented with PyTorch [30]. The training of our model runs for

40K steps, about 42 epochs with batch size 22. We employ the Adam

optimizer with 𝛽1 = 0.9 and 𝛽2 = 0.999. The learning rate is set to

3𝑒 − 4, with a warm-up of 2000 steps and the cosine learning rate

decay. The rates of the residual dropout and attention dropout are

both set to 0.1. The total training procedure takes about four hours

using 8 Nvidia Telsa V100 32GB GPUs.

Table 1: Comparison with recent learning-based methods.

Set/Method

Legal Patterns

Patterns Diversity (H) Patterns Diversity (H)

Real patterns 13869 10.7767 − −
CAE [17] 100000 4.5875 19 3.7871

VCAE [24] 100000 10.9311 2126 9.9775

CAE+LegalGAN [24] 100000 5.8465 3740 5.8142

VCAE+LegalGAN [24] 100000 9.8692 84510 9.8669

LayouTransformer (Ours) 100000 10.532 89726 10.527

6.2 Pattern Diversity and Legality
We generate 100000 patterns from the trained model and evaluate

their diversity and legality. The legality is checked via a toolKlayout
based on the design rules described in Section 3. After that, we

obtain the DRC-clean legal patterns and we further evaluate their

diversity.

We compare our LayouTransformer with several learning-based

baselines. CAE [17] is a vanilla convolutional auto-encoder model.

VCAE [24] is a variational convolutional auto-encoder model. The

LegalGAN [24] model can legalize most of the illegal patterns. In

Table 1, the VCAE baseline achieves larger diversity (10.9311) than

ourmethod (10.532) on the generated patterns. However, most of the

VCAE generated patterns violate the DRC rules (only 2126 patterns

are legal) and cause an invalid larger diversity value. Furthermore,

we can see that the our method obtains the largest number of

DRC-clean patterns (89726 out of 100000) and the best diversity

performance (10.527) on the legal patterns, which demonstrates the

superiority of our sequential pattern generation model. Note that

we do not use LegalGAN to correct illegal patterns. Because our

sequential pattern representation explicitly encodes the complete

geometric information of each polygon and the spatial layout of

multiple polygons, our trained LayouTransformer can well capture

the design rules and generate DRC-clean patterns. The compared

baselines typically use the squish pattern representations and learn

a model to generate the topology map with the geometry fixed,

which limits the diversity of pattern generation in some extent. In

contrast, since LayouTransformer models the distribution of layout

patterns both topologically and geometrically, sampling from it

enables better diversity.

We show some randomly selected examples of the training and

generated patterns in Figure 7 and Figure 8, respectively. From these

examples, we can observe that: 1) different from VCAE, where the

geometry vectors only come from the training patterns, our method

can generate patterns with new geometries that are never seen

in the training set; 2) the complexity of our generated polygons

are consistent with the training samples, without an undesirable

significant style gap between them; 3) when a layout map contains

many complex patterns, they can be well arranged at legal locations

regarding their surrounding patterns.

Table 2: Pattern validity comparison. The 10787 training pat-
terns from the real patterns are used to train the detection
model [23].

Set/Method Legal Patterns

Pattern Validity

𝑇 = 0.6 𝑇 = 0.7 𝑇 = 0.8

Training patterns 10787 0.8998 0.9702 0.9904

CAE+LegalGAN [24] 3740 0.0003 0.0027 0.0167

VCAE+LegalGAN [24] 84510 0.5430 0.7840 0.9057

LayouTransformer (Ours) 89726 0.8416 0.9438 0.9834

6.3 Pattern Validity
In this subsection, we evaluate how realistic the patterns generated

by LayouTransformer are. We adopt the pattern style detection

model proposed by [24] to verify the validity of the patterns.

The key idea of the model is that realistic patterns with a particu-

lar layout style are viewed as normal; otherwise they are anomalous.

Hence, pattern style detection is regarded as anomaly detection

of generated layouts. Specifically, a CGAN [15] is trained to learn

the distribution of normal samples. Since the encoder is trained on

normal samples, it fails to learn anomalous features. The trained

generator is unable to reconstruct an anomalous pattern if it is en-

coded. Hence, we can detect if a given pattern is realistic or not by

the difference of features between the pattern and its reconstructed
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Figure 7: Examples of training patterns ( white regions represent the metal shapes).

Figure 8: Examples of generated patterns ( white regions represent the metal shapes).

one. This difference is defined as the pattern anomaly score. If a

pattern 𝑥 is realistic, the 𝑠𝑐𝑜𝑟𝑒 (𝑥) should satisfy:

𝑠𝑐𝑜𝑟𝑒 (𝑥) < 𝑇, (9)

where 𝑇 is a pre-defined threshold to determine the realism of a

generated pattern.

For fair comparisons, we adopt the same pre-trained pattern

style detection model in [24] to compute the anomaly scores of

layout patterns generated by LayouTransformer. The legal patterns

from the 100000 generated patterns are used to evaluate the pattern

validity. We also cite the numbers of legal patterns (out of 100000)

and the validity values obtained by [24] in Table 2. From this table,

we can see that our LayouTransformer achieves the highest pattern
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Figure 9: Comparison of the polygon shape distributions (in-
dicated by the numbers of polygon vertexes) of the training
set and the generated set.

validity with different thresholds, even approaching the validity of

the real training patterns. The comparison between the training

and generated patterns in Figure 7 and Figure 8 also shows that our

generated patterns have high pattern validity from human’s view.

6.4 Statistical Analysis of the Polygon Shape
Distribution

The diversity of generated layout patterns plays a crucial role in

various lithography design applications. Since the pattern complex-

ity is defined as the number of scan lines subtracted by one along

the x-axis and y-axis, the Shannon entropy of the pattern com-

plexity only measures the difference among layout patterns. If the

generated patterns with the high Shannon entropy of the pattern

complexity are composed of only simple polygons, these generated

patterns cannot improve lithography design applications, because

the generated layout patterns need to have the same complexity of

polygons as the training patterns.

Hence, we further evaluate the diversity of layout patterns gen-

erated by our method by comparing the polygon shape distribution

of the generated patterns with that of the real training patterns.

Specifically, the shape of a polygon is determined by its vertexes.

For simplification, we count the number of vertexes of a polygon

as its shape representation. Figure 9 shows the comparison of the

polygon shape distribution in the training set and the generated

set. We observe that the generated set has a similar distributions of

polygon complexity to the training set. This further demonstrates

the ability of LayouTransformer to generate diverse layout patterns

whose shape distribution follows that of the training samples.

6.5 Generated Anomalous Patterns
Transformer-XL is employed to approximate the true distribution of

the sequences of layout patterns based on the finite length-limited

true sequences. This gives rise to the minor difference between

the approximate distribution and the true distribution although

Transformer-XL can well fit the training data. Since the generated

pattern sequences are randomly sampled from the approximate

distribution, some anomalous patterns are difficult to avoid.

These anomalous patterns can be divided into two categories.

One is that a sequence between a pair [𝑆𝑂𝑃] and [𝐸𝑂𝑃] tokens
cannot form a complete polygon with only horizontal and vertical

Figure 10: Some layout patterns with incomplete polygons.

Figure 11: Examples of partially overlapped polygons.

edges. Figure 10 shows some such patterns. The proportion of this

kind of anomalous patterns in 100000 generated patterns is only

0.48%. These incomplete polygons with only can be easily checked.

Another category is that different polygons in a layout (partially)

overlap spatially as shown in Figure 11. These layout patterns seri-

ously violate the DRC rules. Their proportion in 100000 generated

patterns is 7.9%. If we want to recycle these illegal patterns, the

polygons can be adjusted according to the linear programming

algorithm with the constraints of DRC rules [17]. LegalGAN can

also be designed to reduce the number of overlapping polygons.

These methods will be our further research for improvement. In

this paper, we consider these anomalous patterns as illegal. As re-

ported in Table 1, there are 89726 legal layout patterns out of 100000

generated layout patterns.

7 CONCLUSION
In this work, we make the first attempt at learning the generation

of layout patterns from the perspective of sequential modeling.

To this end, we propose a novel and efficient sequential pattern

representation to explicitly encode the shapes and layouts of pat-

terns. This representation method is lossless, highly structured,

and has high encoding efficiency. Also, we develop LayouTrans-

former based on Transformer which is a powerful architecture for

sequence modeling and achieves great progress in language gener-

ation. LayouTransformer regards the design rules behind the train-

ing patterns as some kind of grammar rules. Compared to existing

learning-based generative methods that typically generate irreg-

ular patterns due to pixel-level modeling, our LayouTransformer

can well capture the long-term dependencies among the vertexes

and edges of polygons as well as the spatial relationships among

different polygons, and generate diverse, realistic and DRC-clean

patterns for lithography design applications. Extensive experiments

show that our LayouTransformer significantly outperforms exist-

ing learning-based methods in terms of pattern diversity, legality,

and validity, demonstrating its superiority.
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