GTuner: Tuning DNN Computations on GPU via Graph Attention Network

Qi Sun1, Xinyun Zhang1, Hao Geng2, Yuxuan Zhao1, Yang Bai1, Haisheng Zheng3, Bei Yu1

1The Chinese University of Hong Kong 2ShanghaiTech University 3SmartMore

{qsun,byu}@cse.cuhk.edu.hk

July 14, 2022
Background
Learning-based Learning System

Frameworks

High-level data flow graph and optimizations

Hardware aware Search Space of Optimized Tensor Programs

Machine Learning based Program Optimizer

Hardware

• TVM
Some Concepts

- Computational graph
- Subgraph
Some Concepts

- Computational graph
- Subgraph

- Graph Optimization
 - Operation fusion
 - Constant folding
 - Data layout transformation
 - ...

\[\text{Conv-3} \rightarrow \text{Conv-3} \rightarrow \text{Max-Pool} \]

\[\text{Conv-3} \rightarrow \text{ReLU} \rightarrow \text{Conv-3} \]

\[\text{Conv-1} \rightarrow \text{Fire} \rightarrow \text{Conv-1} \rightarrow \text{Conv-1} \rightarrow \text{Conv-3} \]

\[\text{Concat} \]
Some Concepts

- Sketch: each subgraph has many sketches (templates)
- Annotation: each sketch has many annotations (groups of parameter values)
• Sketch: each subgraph has many sketches (templates)

• Annotation: each sketch has many annotations (groups of parameter values)

```python
Generated Kernel Code Sketch:
[Placeholder: A, B
  for i.0 in range(None):
    for j.0 in range(None):
      for ic.2 in range(None):
        for jc.2 in range(None):
          for k.0 in range(None):
            for k.1 in range(None):
              for i.3 in range(None):
                for j.3 in range(None):
                  C = ... ]

Annotation 1:
[Placeholder: A, B
  for i.0 in range(32):
    for j.0 in range(64):
      for ic.2 in range(16):
        for jc.2 in range(4):
          for k.1 in range(16):
            for ... i.3 in range(None):
              for j.3 in range(None):
                C = ... ]

Annotation 2:
[Placeholder: A, B
  for i.0 in range(2):
    for j.0 in range(1024):
      for ic.2 in range(32):
        for jc.2 in range(2):
          for k.0 in range(2):
            for k.1 in range(8):
              for k.2 in range(4):
                for i.3 in range(4):
                  for j.3 in range(4):
                    C = ... ]
```
• Sketch: each subgraph has many sketches (templates)

• Annotation: each sketch has many annotations (groups of parameter values)

<table>
<thead>
<tr>
<th>Generated Kernel Code Sketch:</th>
<th>Annotation 1:</th>
<th>Annotation 2:</th>
</tr>
</thead>
<tbody>
<tr>
<td>for i.0 in range(32):</td>
<td>for i.0 in range(32):</td>
<td>for i.0 in range(2):</td>
</tr>
<tr>
<td>for j.0 in range(64):</td>
<td>for j.0 in range(64):</td>
<td>for j.0 in range(1024):</td>
</tr>
<tr>
<td>for ic.2 in range(16):</td>
<td>for ic.2 in range(16):</td>
<td>for ic.2 in range(32):</td>
</tr>
<tr>
<td>for jc.2 in range(4):</td>
<td>for jc.2 in range(4):</td>
<td>for jc.2 in range(2):</td>
</tr>
<tr>
<td>for k.0 in range(2):</td>
<td>for k.0 in range(2):</td>
<td>for k.0 in range(2):</td>
</tr>
<tr>
<td>for k.1 in range(16):</td>
<td>for k.1 in range(16):</td>
<td>for k.1 in range(2):</td>
</tr>
<tr>
<td>for k.2 in range(2):</td>
<td>for k.2 in range(2):</td>
<td>for k.2 in range(4):</td>
</tr>
<tr>
<td>for i.3 in range(2):</td>
<td>for i.3 in range(2):</td>
<td>for i.3 in range(4):</td>
</tr>
<tr>
<td>for j.3 in range(2):</td>
<td>for j.3 in range(2):</td>
<td>for j.3 in range(4):</td>
</tr>
<tr>
<td>C = ...]</td>
<td>C = ...]</td>
<td>C = ...]</td>
</tr>
</tbody>
</table>

• Target: the optimization target is to find the optimal annotations for each subgraph in the deep learning model
Deep Learning Deployment Methods for GPU

Previous Arts

- **Expression**: e
- **Schedule Space**: S_e
- **Exploration Module**
 - History data D
 - Update e, s
 - Experiment feedback
- **Code Generator**: $x = g(e, s)$
- **Hardware Environment**: $f(x)$
- **Cost Model**: $\hat{f}(x)$
- **Objective Function**
Previous Arts

- AutoTVM (Chen et al. 2018)
Previous Arts

- AutoTVM (Chen et al. 2018)
- CHAMELEON: reinforcement learning + adaptive sampling (Ahn et al. 2020)
Previous Arts

- AutoTVM (Chen et al. 2018)
- CHAMELEON: reinforcement learning + adaptive sampling (Ahn et al. 2020)
- GGA: guided genetic algorithm (Mu et al. 2020)
Deep Learning Deployment Methods for GPU

Previous Arts

- AutoTVM (Chen et al. 2018)
- CHAMELEON: reinforcement learning + adaptive sampling (Ahn et al. 2020)
- GGA: guided genetic algorithm (Mu et al. 2020)
- DGP-TL: deep Gaussian process + transfer learning (Q. Sun et al. 2021)
Deep Learning Deployment Methods for GPU

Previous Arts

- AutoTVM (Chen et al. 2018)
- CHAMELEON: reinforcement learning + adaptive sampling (Ahn et al. 2020)
- GGA: guided genetic algorithm (Mu et al. 2020)
- DGP-TL: deep Gaussian process + transfer learning (Q. Sun et al. 2021)
- Ansor: program sampler, sketch, annotation (Zheng et al. 2020)
The *structural* information is not used

- **Structural features**: node types, node connectivities, graph topology
- **Rely only on statistical features**
- **Unable to identify task information and distinguish different tasks**
Challenges

The **structural** information is not used

- Structural features: node types, node connectivities, graph topology
- Rely only on *statistical* features
- Unable to identify task information and distinguish different tasks

The complicated relationships between the features are not considered

- Feature items in the statistical feature vectors are treated equally, despite their physical meanings and relationships
 - XGBoost
 - MLP
 - …
Details of GTuner
• Extract structural and statistical features for the annotations
• Graph attention network (GAT): graph neural network, and multi-head self-attention
• Graph optimization
 • represent subgraphs as Intermediate Representations (IRs)
- Directed Acyclic Graph (DAG) analyzer
 - analyze the IRs to construct the optimized subgraphs
• Generate and sample codes
• Extract structural and statistical features
• Performance learning via Graph Attention Network (GAT)
• Genetic-based iterative optimization

DNN Model

Graph Optimization

Intermediate Representations (IR)

DAG Parser & Analyzer

Kernel Code Sketches

Sample Code Annotations

Optimized Computational Subgraphs

Generated Kernel Code Sketch 1: [Placeholder: A, B]

Generated Kernel Code Sketch 2: [Placeholder: A, B]

GTuner Flow

Genetic Algo. Optimizer

Optimal Code

Extract Code Statistical Features

Extract Graph Structural Features (GNN)

MHSA

MLP

GPU
Graph Attention Network (GAT)

- Define a graph neural network to extract the structural features.
• Define a graph neural network to extract the structural features.
• Use structural features to enhance statistical features.
• The concatenated features are the inputs to the multi-head self-attention.
Graph Network Module

- Graph Neural Network (Morris et al. 2019)

\[
x_i^k = W_1^{k-1} x_i^{k-1} + W_2^{k-1} \sum_{v_t \in N(v_i)} x_t^{k-1},
\]
Multi-head Attention (Vaswani et al. 2017)

Multi-head Attention

Scaled Dot-Product Attention:

$$\text{Attn}(Q, K, V) = \text{softmax} \left(\frac{QK^T}{\sqrt{d_k}} \right) V$$

$$H_i = \text{Attn}(QW_Qi, KW_Ki, VW_Vi), \quad \text{MHA}(Q, K, V) = \text{Concat}(H_1, H_2, \cdots, H_h)W_O$$
Multi-head Attention (Vaswani et al. 2017)

- scaled dot-product attention:
 \[\text{Attn}(Q, K, V) = \text{softmax} \left(\frac{QK^T}{\sqrt{d_k}} \right) V \]
Multi-head Attention (Vaswani et al. 2017)

- scaled dot-product attention:
\[
\text{Attn}(Q, K, V) = \text{softmax} \left(\frac{QK^T}{\sqrt{d_k}} \right) V
\]

\[
H_i = \text{Attn} \left(QW_{iQ}, KW_{iK}, VW_{iV} \right),
\]
Multi-head Attention (Vaswani et al. 2017)

- scaled dot-product attention:
 \[\text{Attn}(Q, K, V) = \text{softmax} \left(\frac{QK^T}{\sqrt{d_k}} \right) V \]

\[H_i = \text{Attn} \left(QW_i^Q, KW_i^K, VW_i^V \right), \]

\[\text{MHA}(Q, K, V) = \text{Concat}(H_1, H_2, \cdots, H_h)W^O \]
Multi-head Self-attention Module

- Input vector x with length l
- Reshape: x^R with shape $h \times \frac{l}{h}$
- Number of heads: h
- x^R is used as Q, K, and V

Self-attention

$$\text{SelfAttn} \left(x^R W^Q_i, x^R W^K_i, x^R W^V_i \right)$$
Experimental Results
Experimental Settings

- Platform
 - Nvidia GeForce RTX 3090 (Ampere architecture, SM86)
 - CUDA Driver 11.4, PyTorch 1.10, and TVM 0.8-dev
Experimental Settings

- **Platform**
 - Nvidia GeForce RTX 3090 (Ampere architecture, SM86)
 - CUDA Driver 11.4, PyTorch 1.10, and TVM 0.8-dev
- **Training set:** about 170000 annotations (collected from Inception-V3 and VGG-11)
Experimental Settings

• Platform
 • Nvidia GeForce RTX 3090 (Ampere architecture, SM86)
 • CUDA Driver 11.4, PyTorch 1.10, and TVM 0.8-dev

• Training set: about 170000 annotations (collected from Inception-V3 and VGG-11)

• Model structure:
 • two WL-GCN layers
 • a mean pooling layer
 • a concatenation layer
 • a fully-connected layer (512)
 • a four-head multi-head self-attention layer
 • an MLP module (output dimensions: 200-100-20-1)
• Spectral graph convolution (SpecGCN, Kipf and Welling 2017)
 • a first-order approximation of localized spectral filters on the graphs
 • learn filters to represent the nodes in the Fourier domain

Experiments – Ablation Studies on Graph Neural Network

<table>
<thead>
<tr>
<th>Method</th>
<th>Latency (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ResNet-18</td>
<td>1.073</td>
</tr>
<tr>
<td>Ansor GTuner</td>
<td>0.923</td>
</tr>
<tr>
<td>SpecGCN</td>
<td>1.016</td>
</tr>
<tr>
<td>MaskGAT</td>
<td>1.105</td>
</tr>
<tr>
<td>GraphSAGE</td>
<td>1.168</td>
</tr>
</tbody>
</table>
Experiments – Ablation Studies on Graph Neural Network

• Spectral graph convolution (SpecGCN, Kipf and Welling 2017)
 • a first-order approximation of localized spectral filters on the graphs
 • learn filters to represent the nodes in the Fourier domain

• masked attention convolution (MaskGAT, Veličković et al. 2018)
 • introduces the attention-based architecture to compute the hidden
 representations of the nodes by using masks during information aggregation
Experiments – Ablation Studies on Graph Neural Network

• Spectral graph convolution (SpecGCN, Kipf and Welling 2017)
 • a first-order approximation of localized spectral filters on the graphs
 • learn filters to represent the nodes in the Fourier domain

• masked attention convolution (MaskGAT, Veličković et al. 2018)
 • introduces the attention-based architecture to compute the hidden representations of the nodes by using masks during information aggregation

• GraphSAGE (Hamilton, Ying, and Leskovec 2017)
 • generates embeddings by sampling and aggregating features from a node’s local neighborhood to improve the generalization abilities to unseen nodes
• Spectral graph convolution (SpecGCN, Kipf and Welling 2017)
 • a first-order approximation of localized spectral filters on the graphs
 • learn filters to represent the nodes in the Fourier domain

• masked attention convolution (MaskGAT, Veličković et al. 2018)
 • introduces the attention-based architecture to compute the hidden
 representations of the nodes by using masks during information aggregation

• GraphSAGE (Hamilton, Ying, and Leskovec 2017)
 • generates embeddings by sampling and aggregating features from a node’s local
 neighborhood to improve the generalization abilities to unseen nodes

<table>
<thead>
<tr>
<th></th>
<th>ResNet-18</th>
<th>Ansor</th>
<th>GTuner</th>
<th>SpecGCN</th>
<th>MaskGAT</th>
<th>GraphSAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latency (ms)</td>
<td>1.073</td>
<td>0.923</td>
<td>1.016</td>
<td>1.105</td>
<td>1.168</td>
<td></td>
</tr>
</tbody>
</table>
Experiments – Ablation Studies on Model Structure

- GNN + MHSA
- MHSA
- GNN + MLP

Table: Performance without GNN or MHSA

<table>
<thead>
<tr>
<th>ResNet-18</th>
<th>MHSA</th>
<th>GNN + MLP</th>
<th>GTuner (GNN + MHSA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latency (ms)</td>
<td>0.963</td>
<td>1.121</td>
<td>0.923</td>
</tr>
</tbody>
</table>
Trials of the genetic-based optimization

- Trials Per Subgraph
- Latency (ms)
- Ansor
- GTuner

- Trials Per Subgraph
- Ratios of Latency (%)
- Ansor
- GTuner

- Subgraphs
- Latency (ms)
- Ansor

- Subgraphs
- GFLOPS (%)
- GTuner

Ablation Studies – ResNet-18
Ablation Studies – ResNet-18

Trials of the genetic-based optimization

Performance of Subgraphs
Table: End-to-end Model Inference Latency (ms)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ResNet-18</td>
<td>27.180</td>
<td>4.119</td>
<td>1.056</td>
<td>1.073</td>
<td>0.963</td>
<td>0.923 (13.98%)</td>
</tr>
<tr>
<td>ResNet-34</td>
<td>48.988</td>
<td>5.929</td>
<td>1.180</td>
<td>0.968</td>
<td>0.907</td>
<td>0.872 (9.92%)</td>
</tr>
<tr>
<td>SqueezeNet</td>
<td>16.658</td>
<td>3.648</td>
<td>0.311</td>
<td>0.207</td>
<td>0.201</td>
<td>0.197 (4.83%)</td>
</tr>
<tr>
<td>MobileNet</td>
<td>30.324</td>
<td>6.972</td>
<td>0.513</td>
<td>0.242</td>
<td>0.252</td>
<td>0.227 (6.20%)</td>
</tr>
</tbody>
</table>

* Ratios are performance improvements compared with Ansor.
End-to-end Performance

Table: End-to-end Model Inference Latency (ms)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ResNet-18</td>
<td>27.180</td>
<td>4.119</td>
<td>1.056</td>
<td>1.073</td>
<td>0.963</td>
<td>0.923 (13.98%)</td>
</tr>
<tr>
<td>ResNet-34</td>
<td>48.988</td>
<td>5.929</td>
<td>1.180</td>
<td>0.968</td>
<td>0.907</td>
<td>0.872 (9.92%)</td>
</tr>
<tr>
<td>SqueezeNet</td>
<td>16.658</td>
<td>3.648</td>
<td>0.311</td>
<td>0.207</td>
<td>0.201</td>
<td>0.197 (4.83%)</td>
</tr>
<tr>
<td>MobileNet</td>
<td>30.324</td>
<td>6.972</td>
<td>0.513</td>
<td>0.242</td>
<td>0.252</td>
<td>0.227 (6.20%)</td>
</tr>
</tbody>
</table>

+ Ratios are performance improvements compared with Ansor.

Table: Time Costs (minutes) of the Optimization Processes

<table>
<thead>
<tr>
<th>Model</th>
<th>AutoTVM</th>
<th>Ansor</th>
<th>MHSA</th>
<th>GTuner</th>
</tr>
</thead>
<tbody>
<tr>
<td>ResNet-18</td>
<td>65.22</td>
<td>45.57</td>
<td>45.95</td>
<td>46.94</td>
</tr>
<tr>
<td>ResNet-34</td>
<td>54.86</td>
<td>46.66</td>
<td>48.89</td>
<td>50.71</td>
</tr>
<tr>
<td>SqueezeNet</td>
<td>63.90</td>
<td>43.53</td>
<td>44.40</td>
<td>45.91</td>
</tr>
<tr>
<td>MobileNet</td>
<td>61.60</td>
<td>42.88</td>
<td>43.80</td>
<td>44.20</td>
</tr>
</tbody>
</table>

THANK YOU!