A Unified Framework for Layout Pattern Analysis with Deep Causal Estimation

Ran Chen¹, Shoubo Hu², Zhitang Chen², Shengyu Zhu², Bei Yu¹, Pengyun Li³, Cheng Chen³, Yu Huang³, Jianye Hao²

¹The Chinese University of Hong Kong ²Huawei Noah's Ark Lab ³HiSilicon

Nov. 1, 2021

1 Background

2 Previous works & Our framework

3 Algorithm

- By analyzing multiple layout-aware diagnosis reports to identify the underlying systematic defect distribution.
- Identify the root cause¹ in short time is important. LPA reduces the cycle time of physical failure analysis (PFA) from months to days.

Image of Open/Bridge defects.

¹Root cause: most critical systematic defect issue that has maximum impact on yield.

Layout-aware diagnosis results

- Physical call-outs provide valuable information for yield analysis².
- Reduced suspect area accelerates failure analysis.

²Source:https://resources.sw.siemens.com/en-US/fact-sheet-tessent-yieldinsight-factsheet 4/23

Challenge: Dealing with diagnosis uncertainty

- It is not clear how diagnosis report generated. (black box)
- Diagnosis results have ambiguity.
 - Multiple suspect patterns ($10^2 \sim 10^4$ clips in one report).
 - Difficult to use raw diagnosis results to produce an accurate defect distribution or select best die for failure analysis.
- E.g. Multiple suspects in one netlist.

1	100 9 0 OPEN/DOM both/n_6930 #potential_open_segments=1, #total_segments=1, #potential_bridge_aggressors=3, #total_neighbors=22 suspect score fail_match pass_mismackt type value location layout_layer critical_area								
	1.1 1.2	100 96	9 9	0	DOM OPEN	aggr both	/n_4643 Bl	()Metal3 ()Metal1 ()Vial ()Metal2 ()Via2 ()Metal3	4.85E+06 4.82E+04 5.79E+04 2.56E+05 9.87E+04 4.44E+05
2	100 #potent suspect	9 ial_ope score 100	0 m_segment fail_mat 9	OPEN/I s=1, #total_se ch pass_mismate 0	CELL both	otential_t value both	207A67923/Y P pridge_aggres location la	xI2x1 ssors=0, #to ayout_layer	al_neighbors=15 ritical_area

③ A 'supervised' learning task with a mass of noise.

• The objective of LPA in this work is to identify true root cause(s) of systematic defect by analyzing a dataset consisting of *m* diagnosis reports $R = \{r^e\}_{e=1}^m$ and layout snippets of potential root causes in these reports.

• Each report *r*^{*e*} consists of several independent symptoms (i.e., defects), whose possible causes are also given along with several important properties (e.g., ID, score, etc.).

Table: Notation on Diagnosis Report Features.

Feature	Description
rule_id	ID of the rule of the violation
Si	The score of suspect <i>i</i> reported in the diagnosis report
h_i	DFM hits of suspect <i>i</i>
v_i	DFM violations of suspect <i>i</i>
$\langle x_i, y_i \rangle$	Location of suspect <i>i</i> in designs
M1	Layer name of suspect
OPEN	Defect category

- Upper[ITC'12]³ [ETS'17]⁴: No consideration on root cause layout patterns which largely restricts their applicability to real tasks.
- Lower[TCAD'15]⁵, [ITC'10]⁶: Resolution is limited, a failure analysis expert's judgment is required to pick a single layout snippet for each cluster.

³Brady Benware et al. (2012). "Determining a failure root cause distribution from a population of layout-aware scan diagnosis results". In: *IEEE Design & Test of Computers* 29.1, pp. 8–18.

⁴Wu-Tung Cheng, Yue Tian, and Sudhakar M Reddy (2017). "Volume diagnosis data mining". In: 2017 22nd IEEE European Test Symposium (ETS). IEEE, pp. 1–10.

⁵Wing Chiu Jason Tam and Ronald D Shawn Blanton (2015). "LASIC: Layout analysis for systematic IC-defect identification using clustering". In: *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems* 34.8, pp. 1278–1290.

⁶Wing Chiu Tam, Osei Poku, and Ronald D Blanton (2010). "Systematic defect identification through layout snippet clustering". In: 2010 IEEE International Test Conference. IEEE, pp. 1–10.

An overview of the framework.

• We propose a unified solution to volume diagnosis-based root causes layout pattern identification task. Both pattern clustering and root cause identification are taken into consideration. Our framework can identify the critical root causes and provide high-resolution clustered snippets for further analysis.

• Maximize the similarity between latent features of a pattern and its augmented version and simultaneously minimize the similarity between latent features of inputs correspond to different original patterns.

- Contrastive learning based clustering
 - Equivalent snippets share the unique latent code.
 - Converting *n* snippets into latent codes and perform conventional *k*-mean algorithm on the latent codes. Return distance matrix $\mathbf{D} \in \mathbb{R}^{n \times k}$.

© Improvement on resolution: equivalent snippets (shift, rotation and mirror) are clustered in same group.

• Distance matrix **D** to membership matrix **P**.

$$[\mathbf{P}]_{j,i} = \frac{\exp\left(-\mathbf{D}_{j,i}/\tau\right)}{\sum_{i'} \exp\left(-\mathbf{D}_{j,i'}/\tau\right)},\tag{1}$$

- The layout snippets closer to the cluster center have higher probabilities.
- Compression: from an image to a point.

A Demo on Deep Layout Snippet Clustering.

- HUAWEI
- Build the Structural Causal Model (SCM) between candidate layout patterns and root cause(s).
- Use Average Causal Effect (ACE) estimation to identify true root cause(s) from a large amount of potential root causes using diagnosis reports and the results of layout pattern matching.

Left: The defect SCM for Layout Pattern Analysis without intervention. Right: Apply intervention on cluster *i*.

⁶J. Pearl, Causality. Cambridge university press, 2009

This ACE can be estimated as:

$$ACE_{do(x_i)}^{y} = |\mathbb{E}[y|do(x_i = 0)] - \mathbb{E}[y|do(x_i = 1)]|.$$
(2)

• The ACE of *x_i* on *y* characterizes the causal effect of the presence of layout pattern *x_i* on the systematic defect.

Left: The defect SCM for Layout Pattern Analysis without intervention. Right: Apply intervention on cluster *i*.

⁶We assume that the true root cause has the most significant ACE on the systematic defect. 14/23

15/23

- An Multilayer Perceptron (MLP) to characterize the causal relationship between candidate layout patterns and systematic defect.
- Neural network attribution [ICML2019]⁷ is used to speed up the inference:

$$\mathbb{E}[y|do(x_{i}=0)] \approx f'(\mu_{i0}) + \frac{1}{2} \operatorname{tr}(\nabla^{2} f'(\mu_{i0}) \mathbb{E}[(l_{in}-\mu_{i0})(l_{in}-\mu_{i0})^{T}|do(x_{i}=0)]),$$
(3)

⁷Aditya Chattopadhyay et al. (2019). "Neural network attributions: A causal perspective". In: *International Conference on Machine Learning*. PMLR, pp. 981–990.

- We adopt *defect injection* [ITC'12]¹ experiments to evaluate the performance of our framework.
- Three scenarios are conducted
 - Single root cause.
 - 2 Single root cause with random injection noise.
 - 8 Multiple root causes with noise.
- Inference on single NVIDIA V100 GPU.
- A diagnosis statistical approach is presented as the baseline.

	Size($\mu m imes \mu m$)	#Layers	#Gates
Case 1	8881×9328	5	9337
Case 2	429 imes 384	9	1560k
Case 3	8033 imes 7822	6	9278k

Table: Layout Design Information.

¹Brady Benware et al. (2012). "Determining a failure root cause distribution from a population of layout-aware scan diagnosis results". In: *IEEE Design & Test of Computers* 29.1, pp. 8–18. 16/23

• Scenario 1: single root cause.

Dataset	Baseline	Commercial Tool	Ours
Case 1	25.00	98.53	100.00
Case 2	55.88	92.52	98.04
Case 3	58.06	98.92	98.92
Average	46.31	96.66	98.99

Table: Accuracy(%) on Noise-free Datasets.

• Scenario 2: single root cause with random injection noise.

Noise(%)	Baseline	Commercial Tool	Ours
80	19.57	84.11	97.83
70	37.62	92.52	95.05
60	44.55	94.39	98.02
50	49.02	94.39	96.08
40	50.98	93.45	95.10
30	51.96	93.45	93.14
20	58.82	92.52	95.10
10	55.88	93.46	98.04
Average	46.05	92.29	96.05

Table: Accuracy(%) on Noisy Case 2 Datasets.

Results

• Scenario 3: multiple root causes with noise.

Proportion	Commer	cial Tool	Ours	
(r1%-r2%-r3%-noise%)	Case 2	Case 3	Case 2	Case 3
30-30-30-10	85	70	87	81
40-20-20-20	66	24	73	74
40-30-20-10	81	70	79	75
40-30-30-00	88	82	83	78
50-20-20-10	77	58	76	58
50-30-20-00	84	82	84	79
60-20-20-00	75	71	79	50
20-20-20-40	63	8	81	49
30-20-20-30	63	18	83	58
30-30-20-20	78	36	84	75
Average	76	52	81	68

Table: Accuracy(%) on Mixture Datasets.

Results

Accuracy of identifying 1, 2, and 3 true root causes in top-3 layout patterns on mixture datasets.

Results

ARI of conducting layout pattern matching using raw layout snippets and embeddings.

• We get ×8.4 speedup on average at inference.

THANK YOU!