Hotspot Detection via Multi-task Learning and Transformer Encoder

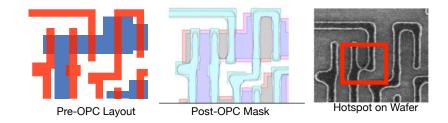
Binwu Zhu¹, Ran Chen¹, Xinyun Zhang¹, Fan Yang², Xuan Zeng², Bei Yu¹, Martin D.F. Wong¹

¹The Chinese University of Hong Kong ²Fudan University {bwzhu, byu}@cse.cuhk.edu.hk

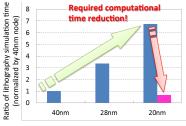
Nov. 1, 2021

2 Method

Lithography Hotspot Detection



- **RET**: OPC, SRAF, MPL
- Still hotspot: low fidelity patterns
- Simulations: extremely CPU intensive



Technology node

• Pattern Matching

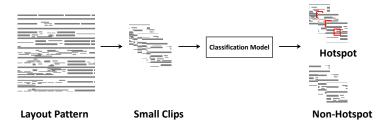
- Characterize the hotspots as explicit patterns and identify the hotspots by matching these patterns.
- **Drawback**: Fast but hard to detect unseen patterns.

Machine Learning

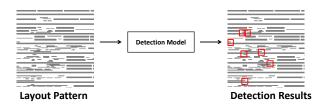
- Build implicit models by learning from existing data, which can detect unseen hotspots.
- A trade-off between accuracy and efficiency.

Two Perspectives of Machine Learning Based Solutions

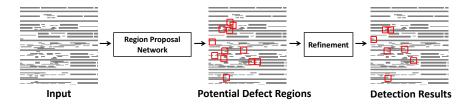
• Classification Perspective



• Detection Perspective



- Methods from classification perspective is still time-consuming.
- R-HSD¹ is from detection perspective but the whole flow requires two stages.



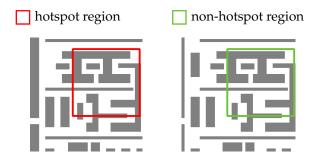
¹Ran Chen et al. (2019). "Faster Region-based Hotspot Detection". In: DAC, pp. 1–6.

- Underlying information, e.g. corner information, has not been utilized in previous work, which is also helpful for detection tasks in some aspects.
- Corner information² contributes to improve the localization accuracy, while center information³ performs better on detecting small targets.

²Hei Law and Jia Deng (2018). "Cornernet: Detecting objects as paired keypoints". In: *ECCV*, pp. 734–750.

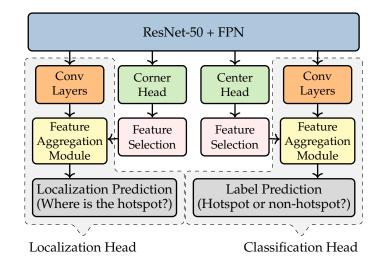
³Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl (2019). "Objects as points". In: *arXiv* preprint arXiv:1904.07850.

• We observe a strange situation where two regions sharing the same layout patterns may have different simulation results.



• CNNs, commonly adopted by previous methods, are infeasible to capture the long-range dependencies due to the locality inductive bias.

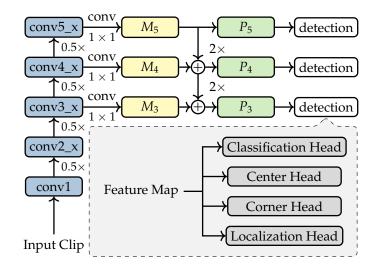
1 Introduction



Backbone – ResNet-50

layer name	ResNet-50	
conv1	7 imes 7, 64, stride 2	Residual Block
conv2_x	$3 \times 3 \text{ max pool, stride } 2$ $\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3 $	256-d 1 × 1, 64
conv3_x	$\left[\begin{array}{c}1\times1,128\\3\times3,128\\1\times1,512\end{array}\right]\times4$	$\begin{array}{c c} & & relu \\ \hline & 3 \times 3, 64 \\ \hline & relu \\ \hline & relu \\ \hline \end{array}$
conv4_x	$\left[\begin{array}{c}1\times1,256\\3\times3,256\\1\times1,1024\end{array}\right]\times6$	
conv5_x	$\left[\begin{array}{c} 1 \times 1,512\\ 3 \times 3,512\\ 1 \times 1,2048 \end{array}\right] \times 3$	↓ relu

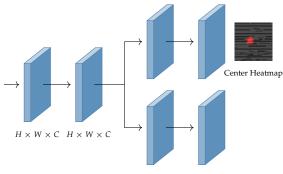
Backbone – FPN



• The width w_k of the feature map $P_k(M_k)$ is equal to $w_i/2^k$, where w_i is the width of the input.

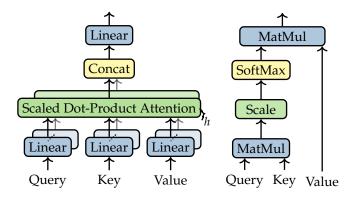
- Define *M* anchors with different sizes and ratios for each pixel of the feature map $F \in \mathbb{R}^{H \times W \times C}$.
- Feature aggregation module is adopted to enhance the feature map.
- The last layer predicts the label of each anchor and output $F_o \in \mathbb{R}^{H \times W \times M}$.

- **Inspiration**: By jointly training the hotspot detector to learn different but related tasks, the knowledge learned from one task can be leveraged by others.
- Center Head Structure



 $H \times W \times C$ $H \times W \times 1$

• Preliminary: Transformer and Multi-Head Attention



- MultiHead($\mathbf{Q}, \mathbf{K}, \mathbf{V}$) = Concat ($\mathbf{H}_1, \dots, \mathbf{H}_h$) \mathbf{W}^O , where $\mathbf{Q}, \mathbf{K}, \mathbf{V} \in \mathbb{R}^{n \times d_m}$
- $\mathbf{H}_i = \operatorname{Attention}\left(\mathbf{Q}\mathbf{W}_i^Q, \mathbf{K}\mathbf{W}_i^K, \mathbf{V}\mathbf{W}_i^V\right) = \operatorname{softmax}\left[\frac{\mathbf{Q}\mathbf{W}_i^Q(\mathbf{K}\mathbf{W}_i^K)^\top}{\sqrt{d_k}}\right]\mathbf{V}\mathbf{W}_i^V.$

- **Objective**: Globally capture the dependencies between different features in the feature map output by the Conv Layers module in Localization and Classification Head (Motivation III).
- **Inspiration**: The Transformer provides a powerful way in modeling all pairwise interactions between any two features.
- But what will happen if we simply adopt Multi-Head Attention by augmenting $f_m \in \mathbb{R}^C$ with other features? The output can be formulated as follows:

$$h_i = \sum_{n=1}^{HW} \frac{\exp(f_m W_i^Q (f_n W_i^K)^\top / \sqrt{C})}{\sum_{n=1}^{HW} \exp(\mathbf{f}_m W_i^Q (f_n W_i^K)^\top / \sqrt{C})} f_n W_i^V$$

• **Drawback**: Expensive computation cost with complexity $\mathcal{O}(HWC^2)$.

- Based on Transformer, we need some methods to **save the computation cost**.
- **Overview**: Leverage the knowledge from the Center Head and Corner Head to **guide the key selection** for the feature map in the Classification Head and Localization Head separately.

 Algorithm 1 Key selection algorithm

 Input: Center Probability Map $C \in \mathbb{R}^{H \times W}$, Feature Map $F_c \in \mathbb{R}^{H \times W \times C}$, Selection Number k;

 Output: Key set F_k ;

 1: $F_k \leftarrow$ Initialized to empty set;

 2: $C' \leftarrow AvgPool(C)$;

 3: $topk_i dax \leftarrow$ the index of the maximum k values in C';

 4: for $i \leftarrow 1, 2, \dots k$ do

 5: $idax \leftarrow topk_i dx_i[i]$;

 6: $f_i \leftarrow$ the feature in the position idx of F_c ;

 7: append feature f_i to key set F_k ;

 8: end for

 9: return Key set F_k with k features.

• $h_i = f_m + \lambda \sum_{n=1}^k \frac{\exp(f_m W_i^{\mathbb{C}}(f_n W_i^{\mathbb{K}})^{\top} / \sqrt{\mathbb{C}})}{\sum_{n=1}^k \exp(f_m W_i^{\mathbb{C}}(f_n W_i^{\mathbb{K}})^{\top} / \sqrt{\mathbb{C}})} f_n W_i^{\mathbb{V}}$. The complexity of the optimized algorithm decreases to $\mathcal{O}(kC^2)$.

1 Introduction

2 Method

- Benchmarks from ICCAD Contest 2016.
- "Accu(%)": Accuracy, the ratio between the number of correctly categorized hotspot clips and the number of real hotspot clips.
- "FA": False Alarm, non-hotspot clips that are classified as hotspots

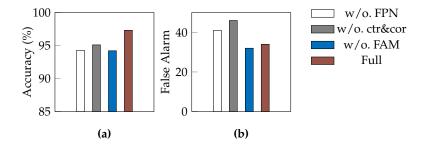
Bench	TCAD'19 ⁴		R-HSD ⁵			Ours			
Dench	Accu(%)	FA	Time(s)	Accu(%)	FA	Time(s)	Accu(%)	FA	Time(s)
case2	77.78	48	60.0	93.02	17	2.0	94.87	6	1.0
case3	91.20	263	265.0	94.5	34	10.0	97.2	26	4.0
case4	100.00	511	428.0	100.0	201	6.0	100	70	6.0
Average Ratio	89.66 0.92	274.00 8.06	251.00 67.84	95.84 0.98	84.00 2.47	6.00 1.62	97.31 1.00	34.00 1.00	3.67 1.00

⁴Haoyu Yang et al. (2019). "Layout hotspot detection with feature tensor generation and deep biased learning". In: *TCAD*. vol. 38. 6. IEEE, pp. 1175–1187.

⁵Ran Chen et al. (2019). "Faster Region-based Hotspot Detection". In: DAC, pp. 1–6.

Ablation Study

- "w/o. FPN": the detector without Feature Pyramid Network
- "w/o. ctr&cor": the detector without Center Head and Corner Head
- "w/o. FAM": the detector trained without Feature Aggregation Module
- "Ful": the proposed detector



THANK YOU!