
Graph Learning-Based Arithmetic Block Identification

Zhuolun He1, Ziyi Wang1, Chen Bai1, Haoyu Yang2, Bei Yu1

1The Chinese University of Hong Kong
2NVIDIA
{zlhe,byu}@cse.cuhk.edu.hk

Nov. 1, 2021



1 Introduction

2 Designing Graph Neural Networks for DAG

3 Netflow for Input-Output Matching

4 Experimental Results

Outline

2/22



Introduction



• Identify arithmetic blocks in gate-level netlists

• Lots of applications

• Functional verification [ICCAD’18, DAC’19]
• Logic optimization [DATE’15]
• Malicious logic detection [IDTC’10,

ISTFA’16, DAC’19]

• In this work, we focus on adder identification

Arithmetic Block Identification

4/22



• Structural methods

• Concentrate on circuit topology
• , Efficient with customized algorithms
• / Often mathematically incomplete

• Functional methods

• Functionally analyze the circuit for potential arithmetic components
• , Accurate and solver-ready
• / Ultra-long runtime

• Machine learning methods

• Alternate solutions to recognition and classification
• , Dedicated to one given unknown functional block
• / Facing significant challenges dealing with large-scale netlists

Related Approaches

5/22



We propose a graph learning-based arithmetic block identification framework

Netlist GNN Fuzzy Match

Our Methodology

6/22



Design Netlist

DAG

Node Embedding

Boundary Prediction

Input-Output Matching

Identified Blocks predicted inputs

predicted outputs

Overall Flow

7/22



Designing Graph Neural
Networks for DAG



• Enable powerful representation learning on graphs

• Follow a neighbor aggregation scheme: node embeddings are computed by
recursively aggregating and transforming embeddings of neighboring nodes

a(k)
v = AGGREGATE({h(k−1)

u : u ∈ N (v)}),

h(k)
v = COMBINE(a(k)

v , h(k−1)
v )

• Not customized for any specific task

Question: How to design a better GNN architecture to encode DAGs?

Graph Neural Networks

9/22



• DAGs are directed

• Motivation: encode information from both directions

• Train two GNNs, one for G and one for G>. In other words, one aggregates
information from predecessors and the other from successors.

• Combine the two embeddings as the final embedding.

a

b
v c

hP
v s hS

v

hv = COMBINE(hP
v ,hS

v)

a(0)

b(0)

c(0)

Bidirectional Graph Neural Network

10/22



• DAGs are acyclic

• Motivation: improve GNN efficiency utilizing the acyclic property

• Resembling distributed logic simulation, asynchronous message passing starts from
the leaf nodes of the fanin cone and all the way up to the target node

a

b

ci

p
s

a(0)

b(0)

p(1)

ci(0)

s(2)

(a) Distributed Logic Simulation

a

b

ci

p
s

a(0,1)

b(0,1)

c(0,1)

p(0,1)
s(0,1,2)

(b) Synchronous GNN

a

b

ci

p
s

a(0)

b(0)
p(1)

ci(1)

s(2)

(c) Asynchronous GNN

Asynchronous Graph Neural Network

11/22



We propose two architectural structures
• bidirectional GNN for directed graphs

• asynchronous GNN for acyclic graphs

We combine them in our final architecture, asynchronous bidirectional graph
neural network (ABGNN), which is customized for DAG embedding.

ABGNN for DAG Embedding

12/22



Netflow for Input-Output
Matching



• After identifying adder boundaries, we further want to match the input bits S with
the corresponding output bits T.

• We formulate a maximum flow problem to find the routes between inputs and
outputs

• Add a pseudo source node S∗ and a pseudo sink node T∗ in the graph
• Add edges from S∗ to every node in S, as well as every node in T to T∗
• The newly added edges from S∗ to nodes in S are assigned unit capacity
• The rest edges are assigned capacity of 2

Datapath Extraction with Maximum-Flow Algorithm

14/22



S∗

a0 b0 a1 b1 a2 b2 a3 b3

g0
p0 g1

p1 g2
p2

g3
p3

G0:1 P0:1 G2:3 P2:3

G0:3 P0:3G0:2 P0:2

s0 s1 s2 s3

T∗

A Brent-Kung Adder Example

15/22



Experimental Results



• Developed the graph object detection framework in Python

• Libraries: DGL, PyTorch, networkx

• Refer to EPFL logic synthesis libraries when implementing baseline methods

• Dataset: open-source RISC-V CPU designs

• BOOM for training
• Rocket for testing
• Netlists generated by Chisel, synthesized with Synopsys Design Compiler
• Synthesize various adder architectures for each design

Setup

17/22



Case
TETC’13 DATE’15 DATE’19 Ours

Input Output Time(s) Input Output Time(s) Input Output Time(s) Input Output Time(s)

Brent Kung 0.826 0.672 302.0 0.554 0.493 13.4 0.875±0.022 0.820±0.013 11.6±3.9 0.950±0.000 0.954±0.020 10.2±1.8
Cond-sum 0.825 0.598 380.6 0.770 0.787 14.6 0.808±0.013 0.744±0.020 13.0±3.7 0.949±0.000 0.866±0.014 10.9±0.6

Hybrid 0.815 0.389 597.2 0.179 0.042 15.4 0.820±0.032 0.699±0.026 15.1±5.1 0.947±0.000 0.957±0.018 12.0±0.7
Kogge-Stone 0.823 0.648 525.2 0.755 0.783 15.8 0.763±0.015 0.810±0.011 13.2±3.5 0.944±0.000 0.961±0.010 11.0±0.9

Ling 0.803 0.456 315.6 0.249 0.022 16.5 0.874±0.013 0.653±0.074 16.3±5.5 0.954±0.000 0.944±0.015 13.2±0.9
Sklansky 0.823 0.626 467.4 0.484 0.483 14.7 0.864±0.017 0.845±0.017 14.1±3.7 0.960±0.000 0.938±0.010 11.9±0.5

Average 0.819 0.565 431.3 0.499 0.435 15.1 0.834±0.019 0.761±0.027 13.9±4.2 0.951±0.000 0.937±0.015 11.5±0.9

• Our proposed method greatly outperforms prior works on all the testcases

Comparison with Baseline Methods

18/22



• We evaluate our proposed ABGNN with several state-of-the-art Graph Neural
Networks, including GAT, GIN, and GraphSAGE

• Our model achieves the best performance on all the cases with much higher recall
and F1 scores, showing its superiority on DAG representation learning

• Up to 6.2% Recall gain

• Up to 9.5% F1 score gain

Comparison with State-of-the-Art GNNs

19/22



• Asynchronous GNN reduces runtime with no accuracy degradation:

Task Model Recall F1-score Runtime (ms)

Input asynchronous 0.951±0.000 0.956±0.000 122.1
synchronous 0.943±0.003 0.951±0.002 152.2

Output asynchronous 0.937±0.015 0.940±0.012 77.6
synchronous 0.933±0.012 0.937±0.009 94.6

• Bidirectional GNN improves performance:

Task Model Recall F1-score

Input bidirectional 0.951±0.000 0.956±0.000
unidirectional 0.933±0.002 0.935±0.002

Output bidirectional 0.937±0.015 0.940±0.012
unidirectional 0.891±0.001 0.829±0.011

Ablation Study

20/22



• Identifying arithmetic blocks is a vital procedure for various tasks

• In this paper, we proposed:

• a graph learning-based framework for efficient arithmetic block recognition
• a specialized GNN for DAG representation learning
• a network flow approach to match input and output wires predicted by the

GNN model

• We conducted comprehensive experiments on open-source RISC-V CPU designs to
evaluate our methods

Conclusion

21/22



THANK YOU!


	Introduction
	Designing Graph Neural Networks for DAG
	Netflow for Input-Output Matching
	Experimental Results

