Machine Learning for Mask Synthesis and
Verification

Haoyu Yang, Yibo Lin and Bei Yu

Abstract The explosion of machine learning and Al techniques have brought great
opportunities of data-assisted optimization for VLSI design automation problems.
Recent studies have demonstrated promising results dealing with lithography com-
pliance issues. In this chapter, we will introduce successful attempts using machine
learning for mask synthesis and verification, including lithograph modeling, hotpsot
detection, mask optimization, and layout pattern generation. We hope this chapter
can motivate future research on Al-assisted DFM solutions.

1 Introduction

Moore’s Law has guided fast and continuous development of VLSI design and man-
ufacturing technologies, which tend to enable the scaling of design feature size to
integrate more components into circuit chips. However, the significant gap between
circuit feature size and lithography systems has brought great manufacturing chal-
lenges.

A classical lithography system consists of mainly five stages that include source,
condenser lens, mask, objective lens, and wafer, as shown in Figure 1. The source
stage ejects ultraviolet light beams toward the condenser lens which collects light
beams that can go towards the mask stage for further imaging. The remaining light
beams that can pass through the mask stage are supposed to leave expected circuit
patterns on the wafer stage. As the manufacturing feature size enters single-digit
nanometer era, diffraction is inevitable when a light beam enters the mask stage.
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Fig. 1: An example of a classical lithography system.

The objective lens tries to collect diffraction information as much as possible for
better transferred image quality. Because of the limited size of the objective lens,
higher order diffraction patterns will be discarded when forming the image on the
wafer that results in a lower pattern fidelity [1]. Typically, to ensure the mask image
can be transferred onto the wafer as accurate as possible, at least the zero and +-1st
diffraction order should be captured by the objective lens. Accordingly, the smallest
design pitch can be defined as Equation (1),
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where p denotes design pitch, A is the wavelength of the light source and NA is the
numerical aperture of the objective lens which determines how much information
can be collected by the objective lens and is given by

D
2f
where n is the index of refraction of the medium, Oy« is the largest half-angle of the
diffraction light that can be collected by the objective lens, D denotes the diameter
of physical aperture seen in front of the objective lens and f represents the focal
length [2].

Although research has pushed higher NA design of lithography systems, diffrac-
tion information loss still causes mismatches between printed patterns on a wafer
and the patterns in the design, which is well known as the lithography proximity ef-
fect. A mainstream solution is called resolution enhancement technique (RET) that
includes multiple patterning lithography (MPL) [3, 4, 5, 6], sub-resolution assist fea-
ture (SRAF) [7, 8, 9] insertion and optical proximity correction (OPC) [10]. MPL
attempts split designs into multiple masks to achieve higher resolution, while SRAF
and OPC aim to compensate for the diffraction information loss in the lithography
procedure. A lithography system is also subject to process condition variations such
as focus and dose, which are likely to deviate from optimal settings. Figure 2 il-

NA = nsin Oy = ()
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lustrates the different effects of process variations with focus and dose variations
resulting in image distortion and contour deviation, respectively. It should be noted
that high-quality RETs also make designs robust to process variations.
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(a) Focus, Low Dose (b) Focus, Normal Dose  (c) Defocus, High Dose

Fig. 2: Lithography contour versus design target under process variations: (a) low
dose at focus produces small contours; (b) normal dose at focus produces regular
contours; (c) high dose at defocus produces larger contours.

Physics and process limitations have therefore posed various challenges on VLSI
design for manufacturing. This chapter focuses on four representative and critical
DFM problems that cover lithography modeling (Section 2), layout hotspot de-
tection (Section 3), mask optimization (Section 4), and layout pattern generation
(Section 5). We will present recent progress and attempts using emerging machine
learning solutions to tackle these challenges.

2 Lithography Modeling

Lithography simulation is critical in modern DFM flows which enable reliable mask
optimization and layout verification (Figure 3). Optical modeling and resist model-
ing are two major steps in the lithography simulation procedure. Optical modeling
maps a mask image to light intensity (aerial image) that is projected on a silicon
wafer. Resist modeling deals with the interaction between light intensity and resist
materials and determines the final shape formed on the silicon wafer.

2.1 Physics in Lithography Modeling

2.1.1 Optical Modeling

Singular value decomposition model is the most popular optical lithography approx-
imation model, which has been widely adopted in mask printability estimation and
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Fig. 3: Lithography simulation with optical and resist model.

optimization [11, 12, 13, 14]. This approximation starts from the Hopkins diffrac-
tion model [15] which is given by

I(m,n) =§"A5, m,n=1,2,..N, 3)

where

5 =M(p,q)expli2n(pm+qn)], i=1,2,...,N°, 4)
where M = F (M) is the mask in Fourier space, §; is the i element of § !, p=i

i
n
coefficients that are optical-related parameters. Taking the singular value decompo-
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where v, € CV” is the k™ eigenvector of A and o is the corresponding eigenvalue.
We can therefore define
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Let by (m,n) = F~'(h(p,q)) and connect Equations (3) to (5), we have
N2

I(m,n) = Z o |hi(m,n) @ M(m,n)|?, 7
=1

! Here s itself is meaningless, and we simply use § to indicate the term is related to frequency
domain.
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where ® denotes the convolution operation and h;’s are usually called the lithogra-
phy kernels. Given a mask M (m,n) in real domain, we can calculate its aerial image
I(m,n) (light intensity projected on resist materials) via Equation (7).

2.1.2 Resist Modeling

Resist models basically aim to perform thresholding on aerial images and obtain
the final resist contour. Constant threshold resist (CTR) model is well accepted in
literature study for its simplicity [16]. Given an aerial image I, the degree of resist
chemical reaction D is given by

D=I(mn)®G, 8)

where G is a Gaussian kernel to simulate chemical reactions. And the final resist
shape Z is defined as

€))

Zimm) = {1, if D(m,n) > Do,
0, otherwise.

The strong assumption in CTR makes the model less reliable when facing compli-

cated designs. Variable-threshold resist model (VTR) is then proposed to execute

more accurate simulation by assigning local patterns with different thresholds. This

is determined by

D = kiImax + ko Imin + k35, (10)

where Inax, Imin and s are max aerial image intensity, min aerial image intensity and
the slope of aerial image profile, respectively.

2.2 Machine Learning Solutions for Lithogrpahy Modeling

Physics shows that rigorous lithography simulations are either computationally ex-
pensive or suffer performance drop. Therefore, various machine learning frame-
works are proposed to meet both runtime and accuracy requirements. As summa-
rized in Table 1, prior arts can be categorized into three aspects: end-to-end models,
optical models, and resist models.

End-to-end models target to complete optical and resist simulation as a whole,
i.e., take the input of a mask and output its corresponding resist patterns. End-to-
end modes are fast for rough lithography estimation, however, lacks the details of
light intensity information. LithoGAN [17] is a very early attempt to use condi-
tional generative adversarial networks (cGAN) for end-to-end modeling. The major
component of LithoGAN is a standard cGAN generator, which takes the input of a
mask with the target shape located in the center of the mask. cGAN can then gener-
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Table 1: Machine Learning Solutions for Lithography Modeling.

Model | Framework | Keywords
End-to-en d| [17] | Conditional GAN; Single Contact Simulation; CNN Alignment
[18] | UNet++; Multi Contact Simulation; Multi-Channel Input; Perceptual Loss
Optical [19] | Conditional GAN; Thin—Thick Mask Modeling
[16] | Aerial Image—Resist Threshold; CNN

[20] |C0ncentrated Circle Sampling; Multi-layer Perceptron; Resist Height Prediction

|

o
Resist |
|

[21] | Aerial Image—Resist Threshold;ResNet;Active Sampling

ate the post-lithography contour of the target shape. The misalignment between the
predicted contour and design location will question the reliability of such a frame-
work. Therefore, a CNN forward path is introduced as an assist component to out-
put target shape coordinates and hence fix the alignment issue for the generated
contours. Very recently, deep lithography simulator (DLS) [18] is proposed as sup-
porting neural networks for full mask optimization. DLS is still a cGAN-backboned
structure. Thanks to its UNet [22] backbone and residual feature layers, DLS is able
to perform lithography contour prediction on multiple shapes within a 4um? tile.
To tackle the alignment issue, DLS splits the input mask image into three-channel
tensors that include SRAF, OPC, and design patterns respectively. Apart from tradi-
tional cGAN training objectives, DLS also introduces perceptual loss for high-level
feature matching, yielding better generation performance. Instead of directly mea-
suring the differences between the generated contours and ground truth contours,
the perceptual loss compares ground truth images and generated images based on
high-level representations from pre-trained convolutional layers.

Optical models deal with aerial image generation. A representative work is
TEMPO [19], a framework that takes inputs of a mask image and a series of 2D
aerial images at different resist heights. The TEMPO will be trained towards gen-
erating aerial images under thick mask consumption through an encoder-decoder
structure following root mean square error.

Resist models try to estimate the interaction between light beams and resist ma-
terials and hence obtain the final resist patterns. Several ML solutions are proposed
to achieve fast and accurate resist modeling. The work of [16] starts to investigate
standard CNN-based resist threshold prediction framework. It accepts aerial images
as input and generates proper thresholds for the corresponding patterns. Another
work [20] deals with resist modeling in a more detailed way. Instead of obtaining
a resist threshold for the given pattern, it tries to predict the remaining resist height
on a given location after the etching process. Given a layout design, the technique
of [20] extracts a series of layout features in terms of a position of interest. These
features will then be fed into a multi-layer perceptron and output predicted resist
height. Although these learning-based frameworks have demonstrated their effec-
tiveness on resist modeling, achieving high accuracy with CNNs requires a large
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Fig. 4: DCGAN-HD generator [18]. Both deep mask generator (DMG) and deep
lithography simulator (DLS) in the paper share the same architecture.

amount of training data, which is often not easy to get at the early stage of process
development. Lin et al. [21] formulate a data-efficient learning problem leveraging
the data from old technology nodes to assist model training at the target node. In
this formulation, they construct CNN models taking an aerial image as input and
outputting the slicing thresholds at the boundary of the target pattern.

2.3 Case Studies

In this section, we will detail two representative works [18] and [21] for machine
learning-based lithography modeling.

2.3.1 Deep Lithography Simulator [18]

The key contributions of the deep lithography simulator [18] are the DCGAN-HD
generator, multi-scale discriminator, and perceptual loss.

DCGANHD Generator. Left part of Figure 4 shows the architecture of a high-
resolution generator, which completes mask-to-wafer mapping from design and
SRAF pattern groups. Previous work [12] and [17] adopt traditional UNet [22] for
lithography related tasks where input features are down-sampled multiple times.
With the decreasing of feature resolution, it is easier for a network to gather high-
level features such as context features while low-level information such as the po-
sition of each shape becomes harder to collect. However, in lithography physics,
low-level information matters more than in the common computer vision tasks. For
example, the shape and relative distance of design or SRAF patterns must remain
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unchanged after the deep mask optimization or deep lithography process. The num-
ber and relative distance of via patterns in an input layout have a crucial influence on
the result. The features of OPC datasets determine the vital importance of the low-
level features. UNet++ [23] is hence proposed for better feature extraction by as-
sembling multiple UNets that have different numbers of downsampling operations.
It redesigns the skip pathways to bridge the semantic gap between the encoder and
decoder feature maps, contributing to the more accurate low-level feature extrac-
tion. The dense skip connections on UNet++ skip pathways improve gradient flow
in high-resolution tasks. Although UNet++ has a better performance than UNet, it
is not qualified to be the generator of DCGAN-HD. For further improvement, the
UNet++ backbone is manipulated with the guidelines suggested in DCGAN [24].

Multi-scale Discriminator. The high-resolution input also imposes a critical
challenge to the discriminator design. A simple discriminator that only has three
convolutional layers with LeakyReLU and Dropout is presented. Since the patterns
in OPC datasets have simple and homogeneous distribution, a deeper discrimina-
tor has a higher risk of over-fitting. Therefore, we simplify the discriminator by
reducing the depth of the neural network. Meanwhile, a dropout layer is attached
after each convolutional layer. We use 3 x 3 convolution kernels in the generator
for parameter-saving purposes and 4 x 4 kernels in the discriminator to increase re-
ceptive fields. However, during training, we find that the simple discriminator fails
to distinguish between the real and the synthesized images when more via patterns
occur in a window. Because when the number of vias reaches 5 or 6 in a window,
the via patterns have a larger impact on each other and the features become more
complicated. Inspired by Wang et al. in pix2pixHD [25], we design multi-scale dis-
criminators. Different from pix2pixHD [25] which uses three discriminators, our
design uses two discriminators that have an identical network structure but operate
at different image scales, which are named D1, D2, as shown in the right part of
Figure 4. Specifically, the discriminators D1, D2 are trained to differentiate real and
synthesized images at the two different scales, 1024x 1024 and 512x512, respec-
tively, which helps the training of the high-resolution model easier. In our tasks,
the multi-scale design also shows its strengths in flexibility. For example, when the
training set has only one via in a window, we can use only D1 to avoid over-fitting
and reduce the training time.

Perceptual Loss. Instead of using per-pixel loss such as L; loss or L, loss, DSL
adopts the perceptual loss which has been proven successful in style transfer [26],
image super-resolution and high-resolution image synthesis [25]. A per-pixel loss
function is used as a metric for understanding differences between input and output
on a pixel level. While the function is valuable for understanding interpolation on
a pixel level, the process has drawbacks. For example, as stated in [26], consider
two identical images offset from each other by one pixel; despite their perceptual
similarity, they would be very different as measured by per-pixel losses. More than
that, previous work [24] shows L, Loss will cause blur on the output image. Differ-
ent from per-pixel loss, perceptual loss function in Equation (11) compares ground
truth image x with generated image X based on high-level representations from pre-
trained convolutional neural networks .
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Fig. 5: The training details of DLS, where the input images are mask-wafer pairs
[18].

L5 (x,%) =Ly, (P(x), P(R)) = Exs [|9(x) — D(3)]1]. (1)

DLS Pipeline. Figure 5 shows the training process of our deep lithography sim-
ulator. As a customized design of cGAN, DLS is trained in an alternative scheme
using paired mask image x and wafer image y obtained from Mentor Calibre. z
indicates randomly initialized images. The objectives of DLS include training the
generator G that produces fake wafer images G(x,z) by learning the feature distri-
bution from x—y pairs and training the discriminators D1, D; to identify the paired
(x, G(x,z)) as fake. This motivates the design of DLS loss function. The first part
of the loss function comes from vanilla GAN that allows the generator and the dis-
criminator interacting with each other in an adversarial way:

L.6an(G,D) = IEx.y [logD(x,y)] + Ex,z[log(l —D(x,G(x,2))]. (12)
Combined with multi-scale discriminators, Equation (12) can be modified as:
Y Lecan (Gprs:Dprs,) = Y. ExyllogDpgs, (x,y)]
k=12 k=12 (13)
+ Ex z[log(1 — Dprs, (x,Gprs(x,2))],
where Dpys, is the kth discriminator of DLS. In DLS design, the perceptual loss is

added to the objective, we denote $ as G(x,z) and loss network @ is a pre-trained
VGGI19 on ImageNet. The perceptual loss is given by:

sty y) =Y Lu (9;(3),9;(9))
j=l...

(14)
= Y Eyslllo;00)—0;3)Ih].

j=1..5
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Table 2: Results of DLS [18].

Generator |Discriminator| Loss |mIoU (%)|pixAcc (%)

UNet (cGAN)| D (cGAN) L, 94.16 97.12
UNet++ D (cGAN) L, 93.98 96.74
G (Our) D (cGAN) Ly 96.23 97.50
G (Our) D (Our) Ly 97.63 98.76
G (Our) D (Our) |Perceptual| 98.68 99.50

where ¢; is the feature representation on j-th layer of the pre-trained VGG19 &. By
combining Equation (13) and Equation (14):

Lps=Y, ﬁcGAN(GDL&DDLsk)+%£f,?”’¢()”5’)- (15)
k=T

Experiments. Since the DLS model is based on the cGAN framework, we set up
an ablation experiment to illustrate the advantages of our generator and discrimina-
tors. The results shown in Table 2 is the average of 6 groups of the validation set.
Firstly, cGAN (used in LithoGAN) provides a baseline mIoU of 94.16% which is far
away from practical application. Then, UNet++ is used to replace the UNet genera-
tor in cGAN for better performance. However, the original UNet++ is not qualified
to be a generator of a cGAN and the mloU is reduced to 93.98% (as shown in Ta-
ble 2).

Following DCGAN, we made some amendments in UNet++ and high-resolution
generator is adopted in our DLS model. After applying our high-resolution genera-
tor, mloU is improved to 97.63%, which outperforms UNet and UNet++ generators
by a large margin when using the same discriminator. The huge gain in mloU im-
plies that our developed high-resolution generator is a strong candidate for DLS.
Next, the newly designed multi-scale discriminators. Results in Table 2 show that
mloU is further boosted to 97.63%.

Lastly, we replace the L; loss with the perceptual loss and the mIoU reaches
98.68%. Additionally, DLS can handle multiple vias in a single clip, which over-
comes the limitation of LithoGAN [17].

2.3.2 Resist Modeling with Transfer Learning and Active Data Selection [21]

The motivation of learning-based resit modeling is to leverage the simulation speed
and accuracy. This comes with dataset efficiency and model design. Lin ef al. [21]
tackles the resist modeling problem with transfer learning and active data selection.
The overall flow is shown in Figure 6.

Transfer Learning. Since the lithography configurations evolve from one gen-
eration to another with the advancement of technology nodes, there is plenty of his-
torical data available for the old generation. If the lithography configurations have
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Fig. 6: The overall flow of resist modeling [21].

no fundamental changes, the knowledge learned from the historical data may still be
applicable to the new configuration, which can eventually help to reduce the amount
of new data required. Transfer learning aims at adapting the knowledge learned from
data in source domains to a target domain. The transferred knowledge will benefit
the learning in the target domain with faster convergence and better generalization.
Suppose the data in the source domain has a distribution P; and that in the target do-
main has a distribution £;. The underlying assumption of transfer learning lies in the
common factors that need to be captured for learning the variations of Py and F;, so
that the knowledge for P; is also useful for A. An intuitive example is that learning
to recognize cats and dogs in the source task helps the recognition of ants and wasps
in the target task, especially when the source task has a significantly larger dataset
than that of the target task. The reason comes from the low-level notions of edges,
shapes, etc., shared by many visual categories. In resist modeling, different lithog-
raphy configurations can be viewed as separate tasks with different distributions.

Typical transfer learning scheme for neural networks fixes the first several layers
of the model trained for another domain and finetune the successive layers with
data from the target domain. The first several layers usually extract general features,
which are considered to be similar between the source and the target domains, while
the successive layers are classifiers or regressors that need to be adjusted. Figure 7
shows an example of the transfer learning scheme. We first train a model with source
domain data and then use the source domain model as the starting point for the
training of the target domain. During the training for the target domain, the first £
layers are fixed, while the rest layers are finetuned. For simplicity, we denote this
scheme as TFy, shortened from “Transfer and Fix”, where k is the parameter for the
number of fixed layers.

Active Data Selection. Although transfer learning is potentially able to improve
the accuracy of the target dataset using knowledge from a source dataset, the se-
lection of representative target data samples may further improve the accuracy. Let
D be the unlabeled dataset in the target domain and s be the set of selected data
samples for label querying, where |s| < k and k is the maximum number of data
samples for querying. For any (x;,y;) € D, x; is the feature, e.g., aerial image, and
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Fig. 7: Transfer learning scheme [21].

yi is the label, e.g., threshold, where y; is unknown for D. Consider a loss function
1(x;,y;;w) parameterized over the hypothesis class (w), e.g., parameters of a learn-
ing algorithm. The objective of active learning is to minimize the average loss of
dataset D with a model trained from s,

1 n
min_— Y 1(x;,yi;Ws), (16)

si|s|<kseD n (=

where n = |D|, and w, represents the parameters of a model trained from s.
Experiments. Table 3 presents the accuracy metrics, i.e., relative threshold RMS
error (€/") and CD RMS error (¢€P), for learning N7,, from various source domain
datasets. Since we consider the data efficiency of different learning schemes, we
focus on the small training dataset for N7;, from 1% to 20%. Situations such as no
source domain data (0), only source domain data from N10 (N10°0%), only source
domain data from N7, (N720%), and combined source domain datasets, are exam-
ined. The fidelity between relative threshold RMS error and CD RMS error is very
consistent, so they share almost the same trends. Transfer learning with any source
domain dataset enables an average improvement of 22% to 38% from that without
knowledge transfer. In small training datasets of N7,, ResNet also achieves around
10% better performance on average than CNN in the transfer learning scheme. At
1% of N7;,, combined source domain datasets have better performance compared
with that of N1070% only, but the benefits vanish with the increase of the N7, dataset.
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Table 3: Relative Threshold RMS Error and CD RMS Error for N7, with Different

Source Domain Datasets

Source

Datasets 0 ‘ N10%% ‘ N7;%% ‘N105°%+N73% N10%% 4 N7)0%
leg,léig CNN ‘ CNN TF, |ResNet TFy| CNN TF, |ResNet TFy| ResNetTF, | ResNet TF,
eth c» gth c» eth c» eth c» eth c» eth cp Sth cp
1038 |a0-3|E |a0|E la0|E lao»|E a0y & |aoy| €
| 1% | 431 |4.67| 2.23 |2.36] 1.88 2.00| 1.55 |1.65] 1.36 |1.45] 1.70 | 183 | 1.63 | 1.75
N7 | 3% | 257 [274] 179 [1.94] 1.57 [1.71] 160 [1.73] 140 [152] 166 | 1.81 | 1.63 | 1.77
b
[10%| 1.95 [2.10] 1.73 |1.87| 1.52 |1.65| 1.54 |1.67| 1.39 |1.50] 1.54 | 1.66 | 1.56 | 1.69
|15%| 1.83 [1.98] 1.60 |1.76] 1.42 [1.56] 1.49 [1.62] 1.32 [1.44] 143 | 1.56 | 145 | 1.58
|20%| 1.67 |1.81] 1.56 |1.70] 1.36 |1.48| 1.47 [1.59] 1.31 |1.42] 138 | 151 | 1.41 | 1.54
ratio | 1.00 [1.00] 0.78 |0.79] 0.68 |0.69] 0.69 [0.70| 0.62 [0.62] 0.69 | 0.69 | 0.69 | 0.70

3 Layout Hotspot Detection

(a) Hotspot Pattern (b) Non-Hotspot Pattern

Fig. 8: Layout design examples that contain hotspots and hotspot-free. (Layout

source [27])

Design-process weak points also known as hotspots cause systematic yield

loss

in semiconductor manufacturing. One of the main goals of DFM is to detect such

hotspots. Traditionally, searching for hotspots heavily relies on lithography

and

manufacturing simulation which are accurate yet time-consuming. Since a layout
design can be treated as an image, popular machine learning techniques in computer
vision can be naturally applied for manufacturability hotspot detection. In this sec-
tion, we will introduce how dedicated classification and object detection techniques

enable fast and accurate hotspot detection frameworks.
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Table 4: Machine Learning Solutions for Hotspot Detection.

Model | Framework | Keywords
[28] | Layout Density; Decision Tree; AdaBoost

Traditional ML| [29] | Concentrated Circle Sampling; Naive Bayes; SmoothBoost
| 301 | Critical Feature Extraction; Multi-kernel SVM
| [31] | Feature Tensor Extraction; CNN; Batch Biased Learning
| 321 | ResNet; Binary Neural Networks

Deep Learning | =155, Multi-task Learning; Transformer
| [34] | Metric Learning; Transformer
| [35] |Object Detection; Mask R-CNN; Hotspot Non-Maximum Suppression
| 361 | Multi-task Learning; CNN

3.1 Machine Learning for Layout Hotspot Detection

Research of machine learning-based hotspot detectors dates back to decades ago
before the exploding of deep learning. This section will introduce the recent progress
of hotspot detection research from traditional machine learning to emerging deep
learning techniques.

Analyzing the layout to reduce lithography hotspots in the early stage is a nec-
essary step in semiconductor manufacturing. Common traditional machine learn-
ing techniques for hotspot detection include SVM [30, 37], decision tree [28] and
Bayes method [29]. [28, 29] are also two representation contributions using en-
semble learning. Feature engineering plays an important role in legacy machine
learning solutions, which convert original designs into complete and discriminating
layout representations. Effective layout features includes layout density [28], Con-
centrated Circle Sampling [29], Critical Dimension [30] and Tangent Space [38].
Layout feature engineering and learning model together contribute to the research
of traditional machine learning on hotspot detection.

Exploding of deep learning techniques has made feature engineering trivial,
where, mostly, layout images can be easily converted to discriminative feature space
via trained convolutional neural networks. [39, 40] are the two earliest works using
CNNe s for lithography hotspot detection, where standard VGG-like CNN structures
are employed for automatic feature learning and label prediction.

Following the pioneering CNN solution on hotspot detection. [31] presented a
feature tensor extraction method to perform representative layout features and got
remarkable speed up with the deep neural network. A batch-biased learning training
algorithm is also proposed to achieve a better trade-off between hotspot detection
accuracy and false-positive penalty. More advanced layout feature-friendly neural
network architectures are investigated to enhance hotspot detection performance.
[32], for the first time, brings the binary neural network to hotspot detection tasks,
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Fig. 9: Feature Tensor generation example (n = 12). The original clip (1200 x 1200
nm?) is divided into 12 x 12 blocks and each block is converted to a 100 x 100 image
representing a 100 x 100 nm? sub region of the original clip. Feature tensor is then
obtained by encoding on first kK DCT coefficients of each block.
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which achieves state-of-the-art results with much smaller neural models and faster
inference time. [34] starts investigating the popular transformer structure that in-
corporates spatial and channel attention in CNN layers. Such methods have been
demonstrated efficient in feature learning. [36] considers the availability of data in
hotspot detection tasks. When there is a limited number of labeled data, the pro-
posed multi-task learning in [36] learns regular classification cross-entropy loss and
an unsupervised contrastive loss to handle the drawbacks of pseudo-label training
flow.

Conventional classification-based solutions have potential challenges due to the
increased design complexity. To tackle this problem, Chen et al. proposed a region-
based hotspot detection framework to detect multiple hotspots on large scales [35].
The framework takes a full/large-scale layout design as the input and performs clas-
sification and regression at the same time to localize the hotspot regions. They report
a 45x speedup compared to the classification-based deep learning model. A trans-
former encoder-based single-stage detection network in [33] can capture the long-
range dependencies between polygons and makes the region-based detector more
robust.

3.2 Case Studies

In this section, we will introduce two representative hotspot detection solutions
based on classification and object detection.

3.2.1 Detecting Lithography Hotspots with Feature Tensor Generation and
Batch-biased Learning [31]

Feature Tensor Generation. The feature tensor extraction method provides a
lower-scale representation of the original clips while keeping the spatial information
of the clips. After feature tensor extraction, each layout image I is converted into a
hyper-image (image with a customized number of channels) F with the following
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properties: (1) size of each channel is much smaller than I and (2) an approximation
of I can be recovered from F.

Spectral analysis of mask patterns for wafer clustering was recently explored in
literature and achieved good clustering performance. Inspired by these research, we
express the sub-region as a finite combination of different frequency components.
The high sparsity of the discrete cosine transform (DCT) makes it preferable over
other frequency representations in terms of spectral feature extraction, and it is con-
sistent with the expected properties of the feature tensor. To sum up, the process of
feature tensor generation contains the following steps.

Step I: Divide each layout clip into n X n sub-regions, then obtain feature repre-
sentations of all sub-regions for multi-level perceptions of layout clips.

Step 2: Convert each sub-region of the layout clip I; ; (i, j = 0,1,...,n—1) into
a frequency domain:

B B

D; j(m,n) = Z Z L j(x,y) cos[%(x—l— %)m] cos|

x=0y=0

aa

1
B y+ 7)"]7

2

where B = % is sub-region size, (x,y) and (m,n) are original layout image and fre-
quency domain indexes respectively. Particularly, the upper-left side of DCT coef-
ficients in each block corresponds to low-frequency components, that contain high-
density information, as depicted in Fig. 9.

Step 3: Flatten D; ;’s into vectors in Zig-Zag form [41] with the larger index being

higher frequency coefficients as follows.
C;; = [D:;(0,0),D; ;(0,1),D; ;(1,0),...,D; j(B,B)]. an
Step 4: Pick the first k < B x B elements of each C ,
C,;,j:C;ij[: k], (]8)

and combine C; j,i,j € {0,1,...,n — 1} with their spatial relationships unchanged.
Finally, the feature tensor is given as follows:

Cii CnCy3...Cyyy
Cr1 Cn Cp3 ... Cyy

, (19)
Cnl Cn2 Cn3 “e Cnn

where F € Rk By reversing the above procedure, an original clip can be recov-
ered from an extracted feature tensor.

The nature of discrete cosine transform ensures that high-frequency coefficients
are near zero. As shown in Fig. 9, large responses only present at the entries with
smaller indexes, i.e. low-frequency regions. Therefore, most information is kept
even when a large number of elements in C}; are dropped. The feature tensor also
has the following advantages when applied in neural networks: (1) Highly com-
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patible with the data packet transference in convolutional neural networks and (2)
forward propagation time is significantly reduced when compared with using an
original layout image as input, because the scale of the neural network is reduced
with the smaller input size.

Batch-biased Learning. Intuitively, a too confident classifier is not necessary to
give a good prediction performance and on the contrary, may induce more training
pressure or even overfitting problems. Therefore, we propose a new learning algo-
rithm to dynamically adjust the learning taget for different instances. We define a
bias function as follows:

— L if1<0.3
— ) 1+exp(BI)’ = ’ 2
e(t) { 0, if1>0.3, (20)

where [ is the training loss of the current instance or batch in terms of the unbiased
ground truth and B is a manually determined hyper-parameter that controls how
much the bias is affected by the loss. Because the training loss of the instance at the
decision boundary is —1og0.5 ~ 0.3, we set the bias function to take effect when
! < 0.3. With the bias function, we can train the neural network in a single-round
mini-batch gradient descent and obtain a better model performance. Because £(/) is
fixed within each training step, no additional computing effort is required for back-
propagation.

The training procedure is summarized as Algorithm 1, where 8 is a hyper-
parameter defined in Equation (20). We initialize the neural network (line 1) and
update the weight until meeting the convergence condition (lines 2—16). Within each
iteration, we first sample the same amount of hotspot and non-hotspot instances to
make sure the training procedure is balanced (lines 3—4); we then calculate the aver-
age loss of non-hotspot instances to obtain the bias level and the biased ground truth
(lines 5-6); the gradients of the hotspot and non-hotspot instances are calculated
separately (lines 8-9); the rest of the steps are the normal weight update through
back-propagation and learning rate decay (lines 11-15).

Experiments. We compare the hotspot detection results with four state-of-the-
art hotspot detectors in TABLE 5. Here “Accu (%)” denotes the hotspot prediction
accuracy and “FA#” represents the number of false positives. “SPIE’15 [28]” is a
traditional machine learning-based hotspot detector that applies the density-based
layout features and the AdaBoost—DecisionTree model. “ICCAD’16 [29]” takes the
lithographic properties into account during feature extraction and adopts the more
robust Smooth Boosting algorithm. “SPIE’17 [42]” is another deep learning solu-
tion for hotspot detection that takes the original layout image as input and contains
more than 20 layers. “SOCC’17 [43]” employs deep neural networks that replace
all pooling layers with strided convolution layers and contain the same number of
layers as SPIE’17.

Overall, the framework performs better than traditional machine learning tech-
niques (SPIE’15 [28] and ICCAD’16 [29]) with at least a 2% advantage for the
detection accuracy (98.88% of BBL v.s. 96.89% of ICCAD’16) on target layouts.
Traditional machine learning models are effective for the benchmarks with regular
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Algorithm 1 Batch Biased-learning

Require: Learning rate A, learning rate decay factor ¢, learning rate decay step k, hotspot label
¥j» non-hotspot label y;, B;
Ensure: Neural network parameters W;
1: Initialize parameters W, y; < [0,1];
2: while not stop condition do
3: Sample m non-hotspot instances {Nj, N, ..., Ny, };

4: Sample m hotspot instances {H;, Hp, ..., H;, };

5: Calculate average loss of non-hotspot samples /, with ground truth [1,0];
6: y;i — [1 7£(ln)7£(ln)];

7: fori+1,2,...mdo

8: Gp,i < backprop(H;);

9: Gni < backprop(N;);

10: end for

11: Calculate gradient G < ﬁ 1 (Ghi+Gni)s
12: Update weight W < W — AG;

13: if j mod k =0 then

14: A+ ad, j+ 0

15: end if

16: end while

Table 5: Performance comparison with state-of-the-art hotspot detectors on target
layouts.

| SPIE'15[28] |ICCAD’16[29]| SOCC'17143] | SPIE'17(42] | BBL+AUG

Benchmarks
|Accu (%) FA# |Accu (%) FA# |Accu (%) FA# |Accu (%) FA# |Accu (%) FA#
ICCAD 8420 2919| 97.70 4497| 9690 1960| 97.70 2703| 98.40 3535
Industry0| 93.63 30 | 9607 1148 9777 100 | 9755 85 | 9936 387
Average | 88.92 1475| 96.89 2823| 9734 1030| 97.63 1394| 98.88 1961
Ratio 0.899 0.752| 0.980 1.439| 0.984 0.525 0987 0.711| 1.000 1.000

patterns (ICCAD and Industry0) with the highest detection accuracy of 97.7%
on the TCCAD and 96.07% on the Industry0 achieved by [29].

3.2.2 Faster Region-based Hotspot Detection [35]

The proposed region-based hotspot detection (R-HSD) neural network, as illustrated
in Figure 10, is composed of three steps: (1) feature extraction, (2) clip proposal net-
work, and (3) refinement. In this section, we will discuss each step in detail. At first
glance, R-HSD problem is similar to the object detection problem, which is a hot
topic in the computer vision domain recently. In object detection problems, objects
with different shapes, types, and patterns are the target to be detected. However,
as we will discuss, there is a gap between hotspot detection and object detection,
e.g. the hotspot pattern features are quite different from the objects in real scenes,
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Fig. 10: The proposed region-based hotspot detection flow.
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Fig. 11: Tensor structure of feature extractor.

thus typical strategies and frameworks utilized in object detection cannot be applied
here directly.

Inception-based Feature Extraction. According to the recent progress of deep
learning-based research in the computer vision region, a deeper neural network can
give a much more robust feature expression and get higher accuracy compared to
a shallow structure as it increases the model complexity. However, it also brings
sacrifice on the speed at both the inference stage and training stage. Another point
we need to be concerned about is that the feature expression of the layout pattern
is monotonous, while the feature space of layout patterns is still in low dimension
after we transform it by the Encoder-Decoder structure. According to these issues,
we propose an Inception-based structure. The following three points are the main
rules of our design:

* Increase the number of filters in width at each stage. For each stage, multiple
filters do the convolution operation with different convolution kernel sizes and
then concatenate them in channel direction as feature fusion.

* Prune the depth of the output channel for each stage.

* Downsample the feature map size in height and width direction.
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Fig. 12: Kernel Work flow of Clip Proposal Network.

With the above rules, the inception structure [44] can take a good balance be-
tween accuracy and time. The blobs shown in Figure 11 are what we apply in our
framework. We construct module A with the operation stride one and four branches.
The aim of module A is to extract multiple features without downsampling the fea-
ture map. The operation stride of each layer in module B is two. This setting makes
the output feature map half of the input and further reduces the operations . We only
use one Module B here, because the feature map size should not be too small, while
the low dimension of feature expression in final layers may bring negative effects to
the final result.

The 1 x 1 convolution kernel with low channel numbers brings the dimension
reduction which controls the number of the parameters and operations. The multiple
branches bring more abundant feature expressions, which give the network ability
to do the kernel selection with no operation penalty.

Clip Proposal Networks. Given the extracted features, a clip proposal network
is developed here to detect potential hotspot clips. For both feature maps and con-
volutional filters, the tensor structures of the clip proposal network are illustrated
in Figure 12. Per preliminary experiments, clips with a single aspect ratio and scale
(e.g. square equal to the ground truth) may lead to poor performance. Therefore, for
each pixel in the feature map, a group of 12 clips with different aspect ratios is gen-
erated. The network is split into two branches: one is for classification and the other
is for regression. In the classification branch, for each clip, a probability of hotspot
and a probability of non-hotspot are calculated through the softmax function. In the
regression branch, the location and the shape of each clip are determined by a vector
[x,y,w, h].
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Refinement Network. After the prediction of the first classification and regres-
sion in the clip proposal network stage, we get a rough prediction on hotspot lo-
calization and filtered region which is classified as non-hotspot. While the greedy
method of clip filtering cannot guarantee all the reserved clips are classified cor-
rectly, the false alarm may be too high. To bring a robust detection with a lower false
alarm, we further construct refinement stage in the whole neural network, which in-
cludes a Region of Interests (Rol) pooling layer, three inception modules, as well
as another classification and regression. The structure of Refinement is shown in
Figure 13.

The coordinates of each clip are the actual location from the original input im-
age. We scale down the coordinates to conform with the spatial extent of the last
feature map before the refinement. In traditional image processing, the most com-
mon ways to resize the image are cropping and warping. The crop method cuts the
pattern boundary to fix the target size which leads to information loss. The warp-
ing will reshape the size which changes the shape of origin features. Here we apply
Region of Interests (Rol) pooling to transform the selected feature region i X w to
a fixed spatial size of H x W (H and W are the hyperparameters, and we use 7 x 7
in this work). For each pooled feature region |h/H x w/W |, the max-pooling is
applied independently. The Rol pooling transforms clips with different sizes into a
fixed size which reserves the whole feature information and makes further hotspot
classification and regression feasible. Figure 14 gives an example of Rol pooling
operations.
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Fig. 15: (a) The first hotspot classification in clip proposal network; (b) The labelled
hotspots are fed into the 2nd hotspot classification in refinement stage to reduce
false alarm.

Besides classification and regression in clip proposal network, here additional
classification and regression are designed to finetune the clip location and give a
more reliable classification result. At this stage, most non-hotspot clips have been
removed, thus the two stages of hotspot classification can efficiently reduce false
alarms. Figure 15 illustrates the flow of the two-stage hotspot classification.

Loss Function. We design a multi-task loss function called Classification and
Regression (C&R) to calibrate our model. As shown in Figure 12 and Figure 13,
C&R is applied both in clip proposal network stage and refinement stage. The input
tensors of the 1st C&R are boxes in Figure 12. W, H, and C are width, height, and
channel respectively. The probability score of the hotspot, non-hotspot and predic-
tion of clip coordinates are grouped in the channel direction. Here x and y are the
coordinates of the hotspot, which means the center of the clip area. w, h are the
width and height of the clip. In the 2nd C&R, the tensor flow of the classification
and regression are the same as [45] using fully-connected layers.

In the task of region-based hotspot detection, 4; is the predicted probability of
clip i being a hotspot, 4! is the groundtruth of clip i. I; = {ly,ly,ly,l;} € R* and
L={1,,1,1,,,1;} € R* are assigned as coordinates of clips with index i representing
the encoded coordinates of the prediction and groundtruth respectively. The encoded
coordinates can be expressed as:

L= (x—xg)/wg, Iy=(y—yg)/hg,
L= —xg)/Wg, l)/, = —Ye)/Wg,
by =log(w/wg), b =1log(h/hy),
1, = log(w' /wy), 1= log(' /),

ey

Variables x,x, and x" are for the prediction of clip, g-clip, and the ground-truth clip
respectively (same as the y, w, and h).
The classification and regression loss function for clips can be expressed as:
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LC&R(hi7li) :aloczh;lloc(lia li) +Zlh0tspot (hl,/’l;>
i i 22)
1 2 2
+ Eﬁ(”TlOC”Z + HThotspot HZ)’

where 3 is a hyperparameter which controls the regularization strength. o, is the
hyperparameter which controls the balance between two tasks. T o and T jrspor are
the weights of the neural network. For elements /;[j] and [j] (j € [1,4]) in I;,1.
respectively, /;,. can be expressed as

oo (G = S G =40D7 AL =G < 1 23)
\L[j] = [[j]| — 0.5, otherwise,

which is a robust L; loss used to avoid the exploding gradients problem at training
stage. lporspor 18 the cross-entropy loss which is calculated as:

lnotspor (i hi) = —(hilogh; + hilog hy). (24)

Experiments. We list the detailed result comparison in Table 6. Column “Bench”
lists three benchmarks used in our experiments. Columns “Acc”, “FA”, “Time” de-
notes hotspot detection accuracy, false alarm count and detection runtime, respec-
tively. Column “TCAD’18” lists the result of a deep learning-based hotspot detec-
tor proposed in [31] that adopts frequency-domain feature extraction and biased
learning strategy. We also implement two baseline frameworks that employ Faster
R-CNN [46] and SSD [47], respectively, which are two classic techniques match-
ing our region-based hotspot detection objectives well. The corresponding results
are listed in columns “Faster R-CNN [46]” and “SSD [47]”. The results show that
our framework gets better hotspot detection accuracy on average with 6.14% im-
provement with ~ 200 less false alarm penalty compared to [31]. Especially, our
framework behaves much better on Case?2 with 93.02% detection accuracy com-
pared to 77.78%, 1.8%, and 71.9% for [31], Faster R-CNN and SSD, respectively.
The advantage of the proposed two-stage classification and regression flow can also
be seen here that [31] achieves similar hotspot detection accuracy compared to our
framework but has extremely large false alarms that will introduce additional. It
should be noted that the detection runtime is much faster than [31] thanks to the
region-based detection scheme. We can also observe that although Faster R-CNN
and SSD are originally designed for large region object detection, they perform
poorly on hotspot detection tasks which reflects the effectiveness and efficiency of
our customized framework.
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Table 6: Comparison with State-of-the-art

Bench | TCAD’18[31] | Faster R-CNN [46] | SSD [47] | Ours
|Acc (%) FA Time (s)|Acc (%) FA Time (s)|Acc (%) FA Time (s)|Acc (%) FA Time (s)
Case2| 77.78 48 60.0 1.8 3 1.0 71.9 519 1.0 93.02 17 2.0
Case3| 91.20 263 265.0 57.1 74 11.0 574 1730 3.0 945 34 10.0
Case4 | 100.00 511 428.0 6.9 69 8.0 77.8 275 2.0 100.00 201 6.0
Average| 89.66 274.0 251.0 219 48.7 6.67 69.0 8413 2.0 95.8 84 6.0
Ratio 1.00 1.00 1.00 024 0.18 0.03 0.87 3.07 0.01 1.07 0.31 0.02

4 Mask Optimization

RETS try to minimize the error when transferring a design onto silicon wafers. Main-
stream solutions vary from lithography source configuration [48, 49], mask pat-
tern optimization [50, 11, 8, 51] to multiple patterning lithography [52, 5]. Among
the above, mask optimization is one of the most critical stages in sign-off flows.
It tweaks the features or contexts of design layout patterns to circumvent side ef-
fects from the lithography proximity effect, which requires frequent interaction with
lithography simulation engines, resulting in significant computation overhead. Also,
mask optimization recipes need to be carefully crafted for good result convergence.

4.1 Machine Learning for Mask Optimization

Mask Optimization involves constrained optimization and mask printability query-
ing. This requires an extensive understanding of lithography physics. The exploding
of machine learning and deep neural networks bring opportunities to learn lithogra-
phy behavior either implicitly or explicitly. We will introduce recent research from
the perspective of SRAF and OPC (as in Table 7).

SRAF Insertion. Sub-resolution assist feature (SRAF) insertion is one represen-
tative strategy among numerous RET techniques. Without printing SRAF patterns
themselves, the small SRAF patterns can transfer light to the positions of target pat-
terns, and therefore SRAFs are able to improve the robustness of the target patterns
under different lithographic variations. [8] is one of the earliest works using ma-
chine learning for SRAF insertion. Given a layout location, the machine learning
model is trained to identify whether the location should include an SRAF or not.
Concentrated circle area sampling is investigated for feature extraction and applied
on legacy machine learning models. [7] improves [8] from the perspective of fea-
ture engineering. A supervised dictionary learning is proposed to further optimize
the concentrated circle area sampling features. However, legacy machine learning
approaches still suffer runtime and accuracy issues. Therefore, GAN-SRAF [51] for
the first time brings conditional generative adversarial networks for SRAF insertion.
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Table 7: Machine Learning Solutions for Mask Optimization.

Task | Framework Kewords

(8]

Concentrated Area Sampling; Decision Tree; Logistic Regression

[7] | Concentrated Area Sampling; Dictionary Learning; SVM
]|

SRAFl
|GAN-SRAF [51 Conditional GAN; Heat Map Encoding
| [53] | Concentrated Area Sampling; EPE Prediction; XGBoost
OPC | [54] |C0ncentrated Area Sampling; Bayes Model; Markov Chain Monte Carlo
| GAN-OPC [55] | Conditional GAN; ILT-guided Training; UNet
| DAMO [18] | Conditional GAN; UNet++; Perceptual Loss
| DevelSet [14] | Conditional GAN; LevelSet; Signed Distance Field

A novel heat map encoding is proposed to address the problem that neural networks
are not talented to generate sharp edges.

OPC. Early attempts using machine learning for OPC regard the entire optimiza-
tion process as a black box. [54] builds up a Bayes model to directly predict the edge
correction level in model-based OPC that can reduce the overall OPC iterations by
a significant amount. Since model-based OPC limits the solution space for mask
optimization, [55, 14] tend to generate initial solutions at the format of coverage
image and levelset field respectively. These initial solutions can then be fed into the
legacy inverse lithography technique (ILT) engine for faster and better optimization
performance.

Machine learning-based OPC solutions all deal with the overhead of lithography
simulation. Instead of reducing iterations and lithography simulator query count,
[53] works on per-iteration lithography query time. It builds a machine learning-
based lithography estimator that predicts EPE at certain OPC control points and
guides edge segment movement. DAMO [18] is also a framework developed for
fast OPC iterations using a deep lithography simulator (DLS). The DLS is able to
backpropagate lithography error gradients back to another neural network for mask
generation.

4.2 Case Studies

We will discuss details of one legacy machine learning solution for SRAF insertion
[7] and the pioneer work using GAN for mask optimization [55].
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Fig. 17: (a) SRAF label; (b) CCAS feature extraction method in machine learning
model-based SRAF generation.

4.2.1 SRAF Insertion with Supervised Dictionary Learning [7]

The overall flow of SRAF insertion is shown in Figure 16, which consists of two
stages: feature extraction and SRAF insertion. In the feature extraction stage, af-
ter feature extraction via concentric circle area sampling (CCAS), we propose
supervised feature revision, namely, mapping features into a discriminative low-
dimension space. Through dictionary training, our dictionary consists of atoms
which are representatives of original features. The original features are sparsely en-
coded over a well-trained dictionary and described as combinations of atoms. Due
to space transformation, the new features (i.e. sparse codes) are more abstract and
discriminative with little important information loss for classification. Therefore,
proposed supervised feature revision is expected to avoid over-fitting of a machine
learning model. In the second stage, based on the predictions inferred by the learn-
ing model, SRAF insertion can be treated as a mathematical optimization problem
accompanied by taking design rules into consideration.

Supervised Feature Revision. With considering concentric propagation of diffracted

light from mask patterns, the recently proposed CCAS [56] layout feature is used in
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Fig. 18: The overview of a dictionary learning model.

the SRAF generation domain. In SRAF insertion, the raw training data set is made
up of layout clips, which include a set of target patterns and model-based SRAFs.
Each layout clip is put on a 2-D grid plane with a specific grid size so that real train-
ing samples can be extracted via the CCAS method at each grid. For every sample,
according to the model-based SRAFs, the corresponding label is either “1” or “0”.
As Figure 17a illustrates, “1” means inserting an SRAF at this grid and “0” vice
versa. Figure 17b shows the feature extraction method in SRAF generation. How-
ever, since adjacent circles contain similar information, the CCAS feature has much
redundancy. In fact, the redundancy will hinder the fitting of a machine learning
model.

With the CCAS feature as input, the dictionary learning model is expected to out-
put the discriminative feature of low-dimension. In the topic of data representation
[57], a self-adaptive dictionary learning model can sparsely and accurately repre-
sent data as linear combinations of atoms (i.e., columns) from a dictionary matrix.
This model reveals the intrinsic characteristics of raw data. In recent arts, sparse
decomposition and dictionary construction are coupled in a self-adaptive dictionary
learning framework. As a result, the framework can be modeled as a constrained op-
timization problem. The joint objective function of a self-adaptive dictionary model
for feature revision problem is proposed as Equation (25):

1 & 2
Igglﬁg{§||Yz—sz||2+lerHp}v 25)

where y, € R" is an input CCAS feature vector, and D = { d; }j‘:l ,d; € R" refers to
the dictionary made up of atoms to encode input features. x; € R® indicates sparse
codes (i.e. sparse decomposition coefficients) with p the type of norm. Meanwhile,
N is the total number of training data vectors in memory. The above equation, il-
lustrated in Figure 18, consists of a series of reconstruction error, ||y, — Dx, ||§, and
the regularization term ||x;|| . In Figure 18, every grid represents a numerical value,
and dark grid of x; indicates zero. It can be seen that the motivation of dictionary
learning is to sparsely encode input CCAS features over a well-trained dictionary.
However, from Equation (25), it is easy to discover that the main optimization
goal is minimizing the reconstruction error in a mean squared sense, which may not
be compatible with the goal of classification. Therefore, we try to explore the super-
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vised information, and then propose our joint objective function as Equation (26).
An assumption has been made in advance that each atom is associated with a partic-
ular label, which is true as each atom is selected to represent a subset of the training
CCAS features ideally from one class (i.e. occupied with an SRAF or not).

S LA e T D
J{TB%NIZI{ZH())[ ,\/&q,) - <\/6A)xt

In Equation (26), & is a hyper-parameter balancing the contribution of each part to
reconstruction error. g, € R* is defined as discriminative sparse code of ¢-th input
feature vector. Hence, A € R**¢ transforms original sparse code x; into discrimina-
tive sparse code. In g,, the non-zero elements indicate that the corresponding atoms
share the same label with z-th input. Given dictionary D, it is obvious that g, has
some fixed types.

To illustrate physical meaning of Equation (26) clearly, we can also rewrite it via
splitting the reconstruction term into two terms within />-norm as (27):

2
tAlxl,). @6
2

131 o
min 5 L (5 1y =Dl + 7 lla, —Axilz +-2 1wl 27
The first term ||y, —Dx,||% is still the reconstruction error term. The second term
llg, — Ax; H% represents discriminative error, which imposes a constraint on the ap-
proximation of g,. As a result, the input CCAS features from the same class share
quite similar representations.

Since the latent supervised information has been used, the label information can
also be directly employed. After adding the prediction error term into initial objec-
tive function Equation (26), we propose our final joint objective function as Equa-
tion (28):

1 ¥ 1 T b i
min —Z{f y,T,\/th,T,\/Bh; —| VoA | x| +Alx],}, (28)
xAD,A,WNtzl 2 \/BW b
2

where A, € R is the label with W € R!*S the related weight vector, and therefore
| — Wx, ||§ refers to the classification error. @ and 3 are hyperparameters that con-
trol the contribution of each term to reconstruction error and balance the trade-off.
So this formulation can produce a good representation of the original CCAS feature.

Online Algorithm. According to our proposed formulation (i.e. Equation (28)),
the joint optimization of both dictionary and sparse codes is non-convex, but the sub-
problem with one variable fixed is convex. Hence, Equation (28) can be divided into
two convex sub-problems. Note that, in a taste of linear algebra, our new input with

al
label information, i.e. (y,T7 Vog,, \/Bh,) in Equation (28), can be still regarded

as the original y, in Equation (25). So is the new merged dictionary consisting of
D, A and W. For simplicity of description and derivation, in following analysis, we
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will use y, referring to (y,—r7 \/&q:, \/E h,) ! and D standing for merged dictionary
with x as the sparse codes.

Two-stage sparse coding and dictionary constructing alternatively perform in it-
erations. Thus, in the ¢-th iteration, the algorithm firstly draws the input sample y, or
a mini-batch over the current dictionary D,_; and obtains the corresponding sparse
codes x;. Then it uses two updated auxiliary matrices, B; and C; to help computing
D,.

The objective function for sparse coding is shown in (29):

A 1
x,:argmmi||y,—D,,1x||%+/l||x||1. 29)
X

If the regularizer adopts lp-norm, solving Equation (29) is NP-hard. Therefore, we
utilize /1-norm as a convex replacement of /p-norm. In fact, Equation (29) is the
classic Lasso problem [58], which can be solved by any Lasso solver.

Two auxiliary matrices B, € R(*t1)%5 and C, € R*** are defined respectively
in (30) and (31):
t—1 1
B, TBt—l + ?}’zxtTa (30)
r—1 1
C, « TCH + ;xtxf. (31)

The objective function for dictionary construction is:

A A |
D,:arglr)mn?Z{E||y,-—Dxi||%+l||x,-||1}. (32)
=1

Algorithm 2 Supervised Online Dictionary Learning (SODL)

Require: Input merged features ¥ < {y,}f;l .y, € RU+5+1) (including original CCAS features,
discriminative sparse code Q < {g, }ﬁ\;l ,q, € R* and label information H < {h,}fv:l Jhe € R).
Ensure: New features X < {x,}" | ,x, € R*, dictionary D {dj}j':l ,d; € RS+,
1: Initialization: Initial merged dictionary Dg,d; € RO5+1) (including initial transforma-
tion matrix Ag € R*** and initial label weight matrix Wy € R1*%), Cy € R*** «- 0, By €
R(ntst+1)xs «0;

2: fort <+ 1toN do

3: Sparse coding y, and obtaining x;; > Equation (29)
4: Update auxiliary variable B; > Equation (30)
5: Update auxiliary variable Cy; > Equation (31)
6: Update dictionary Dy; > Algorithm 3;
7: end for

Algorithm 2 summarizes the algorithm details of the proposed supervised on-
line dictionary learning (SODL) algorithm. We use coordinate descent algorithm as
the solving scheme to Equation (29) (line 3). To accelerate the convergence speed,
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Equation (32) involves the computations of past signals y;,...,y, and the sparse
codes x1,...,x;. One way to efficiently update dictionary is to introduce some suffi-
cient statistics, i.e. B; € Rt (line 4) and C, € R*** (line 5), into Equation (32)
without directly storing the past input data sample y; and corresponding sparse codes
x; for i <t. These two auxiliary variables play important roles in updating atoms,
which summarize the past information from sparse coefficients and input data. We
further exploit block coordinate method with warm start [59] to solve Equation (32)
(line 6). As a result, through some gradient calculations, we bridge the gap between
Equation (32) and sequentially updating atoms based on Equations (33) and (34).

1
et T
1
max ([u]5, 1)
For each atom d;, the updating rule is illustrated in Algorithm 3. In Equa-
tion (33), D;_; is selected as the warm start of D. b; indicates the j-th column
of B;, while ¢; is the j-th column of C;. C[j, j] denotes the j-th element on diag-

onal of C;. Equation (34) is an /;-norm constraint on atoms to prevent atoms from
becoming arbitrarily large (which may lead to arbitrarily small sparse codes).

dj — uj. (34)

Algorithm 3 Rules for Updating Atoms
Require: D,_; + {dj}j':l ,dj € R+
B (b}, by RO,
C {Cj}jzl ,¢; €RY
Ensure: dictionary D, < {dj}j':l dje Rs+1)
1: for j< 1tosdo

2: Update the j-th atom d j; > Equations (33) and (34)
3: end for

SRAF Insertion via ILP. Through SODL model and classifier, the probabilities
of each 2-D grid can be obtained. Based on design rules for the machine learn-
ing model, the label for a grid with a probability less than the threshold is “0”. It
means that the grid will be ignored when doing SRAF insertion. However, in [8], the
scheme to insert SRAFs is a little naive and greedy. Actually, combined with some
relaxed SRAF design rules such as maximum length and width, minimum spacing,
the SRAF insertion can be modeled as an integer linear programming (ILP) prob-
lem. With the ILP model to formulate SRAF insertion, we will obtain a global view
for SRAF generation.

In the objective of the ILP approach, we only consider valid grids whose prob-
abilities are larger than the threshold. The probability of each grid is denoted as
p(i,j), where i and j indicate the index of a grid. For simplicity, we merge the
current small grids into new bigger grids, as shown in Figure 19a. Then we define
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Fig. 19: (a) SRAF grid model construction; (b) SRAF insertion design rule under
the grid model.

c¢(x,y) as the value of each merged grid, where x,y denote the index of merged grid.
The rule to compute c(x,y) is as follows.

c(x,y) = Y jjety P, j),  if 3 p(i, j) > threshold, 35)
’ ~1, if all p(i, j) < threshold.

The motivation behind this approach is twofold. One is to speed up the ILP.
Because we can pre-determine some decision variables whose values are negative.
The other is to keep the consistency of machine learning prediction.

In ILP for SRAF insertion, our real target is to maximize the total probability of
valid grids with feasible SRAF insertion. Accordingly, it manifests to put up with
the objective function, which is to maximize the total value of merged grids. The
ILP formulation is shown in Formula (36).

max Zc(x,y) -a(x,y) (36a)
alxy) Yy
st a(xy)t+ax—1,y—1)<1, Y(x,y), (36b)
a(x,y)+alx—1,y+1) <1, Y(x,y), (36¢)
a(x,y)+a(x+1,y—1) <1, V(x,y), (36d)
a(x,y)+alx+1,y+1) <1, Y(x,y), (36¢)
a(x,y)+a(x,y+1)+a(x,y+2)
+a(x,y+3) <3, Y(x,y), (361)
a(x,y)+alx+1,y)+a(x+2,y)
+a(x+3,y) <3, Y(x,y), (36g)
a(x,y) € {0,1}, Y(x,y). (36h)

Here a(x,y) refers to the insertion situation at the merged grid (x,y). Accord-
ing to the rectangular shape of an SRAF and the spacing rule, the situation of
two adjacent SRAFs on the diagonal is forbidden by Constraints (36b) to (36e);
e.g. Constraint (36b) requires the a(x,y) and the left upper neighbor a(x — 1,y — 1)
cannot be 1 at the same time, otherwise design rule violations can be generated.
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Fig. 20: Result comparison with previous work.

Constraints (36f) to (36g) restrict the maximum length of SRAFs. Figure 19b ac-
tively illustrates these linear constraints coming from design rules.

Experiments. Figure 20 compares the results with a state-of-the-art machine
learning based SRAF insertion tool “ISPD’16” [8]. It can be seen from the figure
that the SODL algorithm outperforms [8] in terms of EPE and PVBand by 3%. This
indicates the predicted SRAFs by the SODL model match the reference results better
than [8]. In other words, the proposed SODL based feature revision can efficiently
improve machine learning model generality.

4.2.2 GAN-OPC [55]

GAN-OPC [55] is the earliest work bringing GAN to OPC problems, which aims to
train a generative network to provide an initial mask for ILT optimization instantly.
The major contributions include customized conditional GAN design and efficient
training flow.

Conditional GAN. As shown in Figure 21, the GAN-OPC framework is back-
boned with conditional GAN structure, which consists of an encode-decoder gener-
ator design and a regular CNN-based discriminator. The objective is therefore given

by,
minmax Bz, . z[1 ~log(D(Z;, G(Z))) +||M" ~ G(Z,)||,]
+ EZ[NZ [10g(D(Z;,M*))], 37

where Z denotes the distribution of target design layouts, G(-) and D(-) represent
the generator and the discriminator in GAN-OPC architecture, Z; denotes the target
design layout and M* is the golden mask for Z;.

Previous analysis shows that the generator and the discriminator have different
objectives, therefore the two sub-networks are trained alternatively, as shown in al-
gorithm 4. In each training iteration, we sample a mini-batch of target images (line
2); Gradients of both the generator and the discriminator are initialized to zero (line
3); A feed forward calculation is performed on each sampled instances (lines 4—
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Fig. 21: The proposed GAN-OPC architecture.

5); The groundtruth mask of each sampled target image is obtained from OPC tools
(line 6); We calculate the loss of the generator and the discriminator on each instance
in the mini-batch (lines 7-8); We obtain the accumulated gradient of losses with re-
spect to neuron parameters (lines 9-10); Finally the generator and the discriminator
are updated by descending their mini-batch gradients (lines 11-12). Note that in Al-
gorithm 4 we convert the min-max problem in Equation (37) into two minimization
problems such that gradient ascending operations are no longer required to update
neuron weights.

Algorithm 4 GAN-OPC Training

1: for number of training iterations do
2: Sample m target clips Z < {Z,1,Z,2,...,Z; n};

3: AW, + 0,AW; < 0;

4: for each Z, € Z do

5: M—G(Z:W,);

6: M* < Groundtruth mask of Z;;

7: Iy + —log(D(Z;,M)) + a||M* — M||3;

8: ly < log(D(Z,,M)) —log(D(Z,,M*));

9: AWg eAWg#Fai‘ifg;AWd <—Awd+;7‘ijg;
10: end for

A
11: W W,——AW W W, — —AW
m m
12: end for
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ILT-guided Pretraining. Although with OPC-oriented techniques, GAN is able
to obtain a fairly good performance and training behavior, it is still a great challenge
to train the complicated GAN model with satisfactory convergence. Observing that
ILT and neural network training stage share similar gradient descent techniques, we
develop an ILT-guided pre-training method to initialize the generator, after which
the alternative mini-batch gradient descent is discussed as a training strategy of
GAN optimization. The main objective in ILT is minimizing the lithography error
through gradient descent.

E=|z 2|3, (38)

where Z; is the target and Z is the wafer image of a given mask. Because mask
and wafer images are regarded as continuously valued matrices in the ILT-based
optimization flow, we apply translated sigmoid functions to make the pixel values
close to either O or 1.

7 1
texpl-ax (I—1)]’
1
Mb_lJrexp(fﬁ xM)’

(39)
(40)

where I, is the binarization threshold, M}, is the incompletely binarized mask, while
o and 3 control the steepness of relaxed images.

Considering the lithography behavior we discussed in Section 2.1.1, we can also
derive the gradient representation as follows,

9E 20 x My (1- M)
(Z-Z)oZo(1-Z)o (My@ H')) @ H+

(Z-2Z2)0Zo(1-2)0 (My,®H))®H"), 41)

where H* is the conjugate matrix of the original lithography kernel H and © is the
operator for element-wise product. In traditional ILT flow, the mask can be opti-
mized by iteratively descending the gradient until £ is below a threshold.

The objective of the mask optimization problem indicates the generator is the
most critical component in GAN. Observing that both ILT and neural network op-
timization share similar gradient descent procedures, we propose a jointed training
algorithm that takes advantage of the ILT engine, as depicted in Figure 22(b). We
initialize the generator with lithography-guided pre-training to make it converge
well in the GAN optimization flow thereafter. The key step of neural network train-
ing is back-propagating the training error from the output layer to the input layer
while neural weights are updated as follows,

W,=W,— %Awg, 42)
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Fig. 22: (a) GAN-OPC training and (b) ILT-guided pre-training.

where AW, is accumulated gradient of a mini-batch of instances and  is the mini-
batch instance count. Because Equation (42) is naturally compatible with ILT, if we
create a link between the generator and ILT engine, the wafer image error can be
back-propagated directly to the generator as presented in Figure 22.

The generator pre-training phase is detailed in Algorithm 5. In each pre-training
iteration, we sample a mini-batch of target layouts (line 2) and initialize the gradi-
ents of the generator AW, to zero (line 3); The mini-batch is fed into the generator
to obtain generated masks (lines 5). Each generated mask is loaded into the lithogra-
phy engine to obtain a wafer image (line 6); The quality of wafer image is estimated
by Equation (38) (lines 7); We calculate the gradient of lithography error E with
JE oM
oM oW,
(line 8) ; Finally, W, is updated following the gradient descent procedure (line 10).

respect to the neural networks parameter W through the chain rule, i.e.,

Algorithm 5 ILT-guided Pre-training

1: for number of pre-training iterations do

2 Sample m target clips Z < {Z;1,Z;5,...,Zm};
3 AW, < 0;

4 for each Z, € Z do

5: M —G(Z;W,);

6: Z <+ LithoSim(M)

7 E|Z-Z:

8

9

JE oM
AW, — AW, +

M ng : > Equation (41)
end for
10: W, W,— —AW,; > Equation (42)
m

11: end for
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Fig. 23: Result comparison with a vanilla ILT engine.

Experiments. In this experiment, we optimize the ten layout masks in ICCAD
2013 contest benchmark [60] and compare the results with previous work. The quan-
titative results are illustrated in Figure 23.

Note that all the GAN-OPC and PGAN-OPC results are refined by an ILT engine
which generates final masks to obtain wafer images. Column “L,” is the squared L,
error between the wafer image and the target image under the nominal condition.
Column “PVB” denotes the process variation band under £ 2% dose error. It is
notable that GAN-OPC significantly reduces squared L, error of wafer images un-
der the nominal condition by 9% and with the ILT-guided pre-training, squared L,
error is slightly improved and PVB is further reduced by 1%. Because we only fo-
cus on the optimization flow under the nominal condition and no PVB factors are
considered, our method only achieves comparable PVB areas.

5 Pattern Generation

VLSI layout patterns provide critical resources in various design for manufacturabil-
ity (DFM) researches, from (1) early technology node development to (2) back-end
design and sign-off flow [61]. The former includes the perfection of design rules,
OPC recipes, lithography models, and so on. The latter covers, but is not limited
to, layout hotspot detection and correction [40, 53, 31, 39, 62, 7, 43]. However,
layout pattern libraries are sometimes not large and diverse enough for DFM re-
search/solutions due to the long logic-to-chip design cycle. Even some test layouts
can be synthesized within a short period, they are usually restricted by certain design
rules and the generated pattern diversity is limited [63, 21].

5.1 Machine Learning for Layout Pattern Generation

The development of generative machine learning techniques offers the opportunities
to generate desired layouts efficiently. Representative works are [64, 65, 66]. DeeP-



Machine Learning for Mask Synthesis and Verification 37

attern [64] presents a transforming convolutional auto-encoder (TCAE) architecture
for 1D pattern generation. TCAE consists of a recognition unit and a generation
unit. The recognition unit is built with stacked convolutional layers that convert
layout pattern topologies into latent vectors that allow perturbation for certain trans-
formations. The generation unit is expected to capture layout spatial information
(e.g. track and wire direction) well and convert latent vectors back to legal pattern
topologies with corresponding deconvolution operations. The work of [65] investi-
gates the possibility of the variational auto-encoder for 2D pattern generation. The
techniques in [66] take the VAE in [65] as the backbone and push the technique to
advanced technology node with transfer learning and channel-wise attention.

5.2 Case Study

5.2.1 DeePattern [64]

Squish Pattern. Squish pattern is a scan line-based representation that each layout
clip is cut into grids aligned at all shape edges, as shown in Figure 24. The squish
pattern representation of a given layout clip consists of a topology matrix T and
two vectors 8, and 8, that contain geometry information in x and y directions. Each
entry of T is either zero or one which indicates shape or space respectively. The
geometric information describes the size of each grid. For example, the pattern in
Figure 24 can be accordingly expressed as in the right side of Figure 24. Here x;s and
y;s are the locations of vertical and horizontal scan lines respectively, and the pattern
complexity is accordingly given by ¢, = 4 and ¢, = 3. Canonically, (xo,yo) is the
coordinate of the bottom left corner of the pattern and x; < x;41,y; < yit+1. Now the
problem becomes generating legal topologies and solving associated 8.s and &,s
that are much easier than directly generating DRC-clean patterns. The advantages
of squish patterns are two-fold: (1) Squish patterns are storage-efficient and support
neural networks and other machine learning models. (2) Squish patterns are natu-
rally compatible with the simplified pattern generation flow that will be discussed
in the following sections.

TCAE for Topology Generation. Here the TCAE architecture aims at efficient
pattern topology T generation. The TCAE is derived from original transforming
auto-encoders (TAEs) [67] which are a group of densely connected auto-encoders
and each individual, referred to as a capsule, is targeting certain image-to-image
transformations. TAEs cannot be directly applied for pattern generation due to the
fact that transformations are restricted by layout design rules and only very simple
pose transformations are supported by original TAEs, which does not satisfy our
pattern generation objectives. Therefore we develop the TCAE architecture for fea-
ture learning and pattern reconstruction, as shown in Figure 25. The detection unit in
TCAE consists of multiple convolutional layers for hierarchical feature extraction,
followed by several densely connected layers as an instantiation of the input pattern
in the latent vector space, as in Equation (43).
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Fig. 25: Architecture of transforming convolutional auto-encoder in (a) training
phase and (b) testing phase.

I=f(T;Wy), (43)

where [ is the latent vector, T represents the input topology and W ¢ contains all the
trainable parameters associated with the recognition unit. The latent vector works
similarly as a group of capsule units with each node being a low-level feature repre-
sentation. We will show each latent vector node contributes to pattern shape globally
or locally in the experiment section.
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The generation unit contains deconvolutional layers [68] that cast the pattern
object from the latent vector space back to the original pattern space, as in Equa-
tion (44).

T = g1+ ALW,), (44)

where Al is the perturbation applied on the latent vector that allows inputs to con-
duct transformations. During training, we force the TCAE to learn an identity map-
ping with the following objectives.

in ||T —T'||5, s.t. Al = 0. 45
Wr?}vr;g\l 2, s (45)

Once the TCAE is trained, we can apply the flow in Figure 25b to generate pattern
topologies from perturbed latent vector space of existing layout patterns. During the
inference phase, we feed a group of squish topologies into the trained recognition
unit that extracts latent vector instantiations of existing topologies. Perturbation on
the latent vector space is expected to expand the existing pattern library with legal
topologies.

The method introduces random perturbations in the latent vectors. We introduce
the concept of feature sensitivity s that statistically defines how easily a legal topol-
ogy can be transformed to illegal when manipulating the latent vector node with
everything else unchanged.

Definition 1 (Feature Sensitivity) Let I = [I) I ... I,] " be the output of the layer
associated with the latent vector space. The sensitivity s; of a latent vector node l; is
defined as the probability of reconstructed pattern being invalid when a perturbation
Al; € [—t,t] is added up on l; with everything else unchanged.

It can be seen from Definition 1 that a larger s; indicates the corresponding latent
vector node /; is more likely to create invalid topologies if a large perturbation is
applied. We, therefore, avoid manipulating such nodes when sampling random per-
turbation vectors from a Gaussian distribution. The s;s are estimated following Al-
gorithm 6, which requires a set of legal topologies and trained TCAE. The sensitivity
of each latent vector node is estimated individually (lines 1-2). We first obtain the
latent vectors of all topologies in 7 and feed them into the reconstruction unit along
with certain perturbations on one latent vector node (lines 3—5). Reconstructed pat-
terns are appended in the corresponding set R; (line 6). The sensitivity of the latent
vector node i is given by the fraction of invalid topologies in R; (line 8).

After we get the estimated sensitivity of all latent vector nodes, we are able
to sample perturbation vectors whose elements are sampled independently from

1
N(0,—). These perturbation vectors will be added up to the latent vectors of ex-
5

l
isting pattern topologies to formulate perturbed latent vectors which will be fed into
the generation unit to construct new topologies. That is, illegal topologies can be
filtered out by checking whether shapes appear at any two adjacent tracks.
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Algorithm 6 Estimating feature sensitivity. 7 = {T,T>,...,Tn} is a set of valid
pattern topologies, f and g are trained recognition unit and generation unit respec-
tively, ¢ determines the perturbation range, and s is the estimated feature sensitivity.

Require: 7, f,g,t.
Ensure: s.
tRi+0Yi=1,2,...,N;

1

2: fori=1,2,...,ndo

3: for L = —t:tdo

4: Al < 0,Al; + A;

5: Ti+g(f(T)+Al);

6: Ri+—Ri+T;

7. end for

8: s; +— fraction of invalid topologies in R;;
9: end for
10: return s.

Table 8: Statistics of generated patterns.

Method |Pattern # Pattern Diversity (H)

Existing Design - 3.101

Industry Tool | 55408 1.642
DCGAN 1 0

TCAE 286898 3.337

Experiments. In the experiment, we make use of the flow above to augment the
pattern space. Pattern library statistics are listed in Table 8. Column “Method” de-
notes the approach used to generate layout patterns, column “Pattern #” denotes the
number of DRC clean patterns that are different from others, and column “Pattern
Diversity” corresponds to the Shannon Entropy of each pattern library in terms of
pattern complexity. Row “TCAE” corresponds to the details of 1M patterns gener-
ated by perturbing the features of 1000 patterns in existing design with Gaussian
noise. “Industry Tool” shows the cataloged results of a test layout generated from a
state-of-the-art industry layout generator. The test layout has similar total chip area
(10000 /.Lmz) as “TCAE” (14807 /.1m2). We also implement a DCGAN [24] that has
similar number of trainable parameters as the TCAE designed in this framework.
1M patterns are generated by feeding random latent vectors in the trained generator
networks. “Existing Design” lists the statistics of a pattern library extracted from an
industry layout.

6 Conclusion

In this chapter, we survey recent progress and challenges of machine learning so-
lutions on a variety of VLSI DFM problems, ranging from lithography modeling,
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lithography hotspot detection, mask optimization to layout generation. These are all
critical phases in VLSI design and sign-off flows and seriously affect chip design
cycles. We hope the investigation of machine learning techniques in these problems
would offer alternate solutions to traditional DFM flows and hence enable faster
design closure. Follow-up researches are necessary to prototype these techniques.
Future directions will include, but are not limited to, problem dedicated learning
model and algorithm design to meet industrial requirements and constraints, effi-
cient machine learning framework plugins to assist traditional design flows, massive
data generation to allow better training convergence and model generality, etc.
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