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These slides contain/adapt materials developed by

¢ Ritchie Zhao et al. (2017). “Accelerating binarized convolutional neural networks
with software-programmable FPGAs”. In: Proc. FPGA, pp. 15-24

¢ Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using
binary convolutional neural networks”. In: Proc. ECCV, pp. 525-542
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Motivation

Binary / Ternary Net: Motivation
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Binarized Neural Networks (BNN)

CNN .
Key Differences
24 62 .. 50 9.1 ... 1. Inputs are binarized (-1 or +1)
3318 % |28 0 = [+3 78 2. Weights are binarized (-1 or +1)
q . 0.3 0.8 - . .
- 3. Results are binarized after
Weights batch lizati
Input Map Output Map atch normalization
BNN
Batch Normalization
Xij — U
1 -1 . 1 -3 .. Yij =my+/f 1-1 ..
1 1 * 1-1] |3 -7 7 1 -1
1-1|7 | l
Weights 7. = +1 ify; =0 A7
Input Map (Binary) xij Y |-1 otherwise Output Map
(Binary) (Integer) Binarization (Binary)
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BNN CIFAR-10 Architecture [2]

Feature map 45,45
dimensions
16x16
8x8
4x4
512 10
256 512
128 256
3 128

Number of feature maps 10_24 10_24

» 6 conv layers, 3 dense layers, 3 max pooling layers

» All conv filters are 3x3

» First conv layer takes in floating-point input

» 13.4 Mbits total model size (after hardware optimizations)

[2] M. Courbariaux et al. Binarized Neural Networks: Training Deep Neural Networks with Weights and Activati Cor ined to +1
or -1. arXiv:1602.02830, Feb 2016.
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Advantages of BNN @@@

1. Floating point ops replaced with binary logic ops

| b, | b, [ bux b | b | b, | b, XORb,
0 0 0

+1 +1 +1

+1 -1 ! 0 1 1
-1 +1 =i 1 0 1
=il | =1 +1 1 1 0

- Encode {+1,-1} as {0,1} - multiplies become XORs
- Conv/dense layers do dot products - XOR and popcount
— Operations can map to LUT fabric as opposed to DSPs

2. Binarized weights may reduce total model size
- Fewer bits per weight may be offset by having more weights
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BNN vs CNN Parameter Efficiency

Architecture Param Bits | Param Bits | Error Rate
(Float) (Fixed-Point) ()

ResNet[3] 164 51.9M 13.0M* 11.26
(CIFAR-10)
BNN [2] 9 - 13.4M 11.40

* Assuming each float param can be quantized to 8-bit fixed-point

» Comparison:
- Conservative assumption: ResNet can use 8-bit weights
— BNN is based on VGG (less advanced architecture)
- BNN seems to hold promise!

[2] M. Courbariaux et al. Binarized Neural Networks: Training Deep Neural Networks with Weights and Activati Cor ined to +1
or -1. arXiv:1602.02830, Feb 2016.
[3] K. He, X. Zhang, S. Ren, and J. Sun. Identity Mappi in Deep Residual . ECCV 2016. 9
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Overview

@ Minimize the Quantization Error

@ Improve Network Loss Function

® Reduce the Gradient Error
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Overview

@ Minimize the Quantization Error
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* ‘Operations’ Memory ‘Computat‘ion

R * R ‘+—x‘ 1x ‘ 1x

Binary Weight Networks

XNOR-Networks

"Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525-542. 6/34



* Operations | Memory | Computation
R * R + - X 1x 1x
R * DB + - ~32x ~2x
B * B XNOR ~32x | ~58x

Bit-count

Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525-542.
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*
R ® R ~ R © B
X W X W8
R ~ B
w w8
WB = sign(W)

Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525-542. 6/34



Quantization Error

W2 =sign(W)

W WB
|| - ”m.m

'"Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525-542. 6/34



Optimal Scaling Factor

R ~Qa B
w We

*WB*: : W — WB 2
a arg goin (W — WP}

WB” = sign(W)

1
@ =—|Wla
n

'"Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525-542. 6/34



How to train a CNN with binary filters?

"Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525-542. 6/34



Training Binary Weight Networks

Naive Solution:

1.Train a network with real value parameters
2. Binarize the weight filters

'"Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525-542. 6/34



AlexNet Top-1 (%) ILSVRC2012
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Full Precision Naive

Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525-542.
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R
w R . R
Binarization
we S D

Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525-542.
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R
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Binarization

Person
Dog

"Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525-542. 6/34



Binary Weight Network

Train for binary weights:

1. Randomly initialize W

2. For iter =1 to N R

3. Load a random input image X R ... R
4. WB = sign(W)

5. a= %

6. Forward pass with a, WB

7. Compute loss function C

8. % = Backward pass with a, WB

9. Update W (W =W — g—sv)

'"Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525-542. 6/34



Binary Weight Network

Train for binary weights:

1. Randomly initialize W

2. For iter =1to N

3. Load a random input image X
WB = sign(W)

Forward pass with o, WB
Compute loss function C

oC

5w = Backward pass with a, wB

Update W (W =W — chv)

©0o NSO e

Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525-542.
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Train for binary weights:

1. Randomly initialize W
2. For iter=1to N

3.

© 0 N oSS

w

Binary Weight Network ® = &

Load a random input image X

WB = sign(W)
o = Wla

Forward pass with o, WB

Compute loss function C
oC

5w = Backward pass with a, WwB

Update W (W =W — aaTCV)

Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525-542.
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Binary Weight Network ¥

Train for binary weights:
1. Randomly initialize W
2. For iter =1to N

3.

© 0 Nggy o b

Load a random input image X

WB = sign(W)
o = ln

Forward pass with o, WB

Compute loss function C
oC

5w = Backward pass with a, WwB

Update W (W =W — E?TCV)

Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525-542.
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Binary Weight Network ¥

Train for binary weights:
1. Randomly initialize W
2. For iter =1to N

3.

© o> O &

Load a random input image X

WB = sign(W)
o = 7ln

Forward pass with o, WB

Compute loss function C
oC

5w = Backward pass with a, WwB

Update W (W =W — g—vcv)

Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525-542.
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Train for binary weights:

1. Randomly initialize W
2. Foriter=1to N

3.

OFEN O O e

w

Binary Weight Network ® = &

Load a random input image X
WB = sign(W)

o = Wla
n

Forward pass with o, WB

Compute loss function C

% = Backward pass with a, WwWB R Gw

Update W (W =W — £2) R ..'R

+1
: L
sign(x) > L , G > E [Hinton et al. 2012

Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525-542.
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Train for binary weights:

1. Randomly initialize W
2. Foriter=1to N

3.

B0 N oo b

Binary Weight Network ¥

Load a random input image X
WB = sign(W)
Forward pass with o, WB

Compute loss function C
oC

oW

Update W (W =W — 22)

9C — Backward pass with o, WB R

R

Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525-542.
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AlexNet Top-1 (%) ILSVRC2012
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'"Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525-542.
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Operations| Memory | Computation
R ¥ R + - X 1x 1x
R * B 3] | )
x B XNOR ~32x ~58x
XNOR-Networks Bit-count

"Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary

convolutional neural networks”. In: Proc. ECCV, pp. 525-542.
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Binary Input and Binary Weight (XNOR-
Net)

R
X

'"Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525-542. 6/34



Binary Input and Binary Weight (XNOR-
Net)

R o R ~ po B ©
X W X W
X w L
Y ot Y"

Y~7YBE
Y®" v* = arg min ||[Y — yYB||?
YB v

. e 1
Y =sign(Y) 7" = [[Ylla

/

* i * & 1 1
XPB" =sign(X) WB" =sign(W) | o = N Wi, B = - X[y

'"Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525-542.
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(1) Binarizing Weights

1
R Lwia=a B
W sign(W)
(2) Binarizing Input
Redundant computation in overlapping areas
2l Xiller =By
=M1
Inefficient " \: B
1 =
21 X2ller =B i,
sign(X)
************ > = X = 61
Efficient 201Xl 52 B
(6]
D > K sign(X)
(9
(8) Convolution with XNOR-Bitcount
R * R ~ B B
w sign(W)

Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary

convolutional neural networks”. In: Proc. ECCV, pp. 525-542.

sign(X)
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R ~ B *

sign(X)

ORCORNE DEOIEHS

1. Randomly initialize W
2. Foriter =1to N
3.

Load a random input image X

WB = sign(W)
o = Wl

n

Forward pass with o, WB
Compute loss function C
% = Backward pass with o, WB

Update W (W =W — g_vc\:,)

B
sign(W)

OBG

'"Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525-542.
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AlexNet Top-1 (%) ILSVRC2012
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'"Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525-542.
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v
Conv
W
)
BNorm

A typica’l,bré’ck in CNN

Max-Pooling .-~

Xinformation Loss

/Mult‘iple Maximums

'"Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525-542.
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"Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525-542. 6/34



A

Network Structure in XNOR-Networks

v
BNorm

Conv
W
BNorm

Activ

-1.0 JO¥A -0.5 -0.4 =01 -0.8
-0.3 -0.1 oA -0.8 NOXSKe}

0.3 01 02 07
m-O.Z 03 06 04 08

Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary

convolutional neural networks”. In: Proc. ECCV, pp. 525-542.
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ORORIR RO §E

1. Randomly initialize W
2. For iter =1 to N
3.

Load a random input image X
WEB = sign(W)
a = Wla

n
Forward pass with o, WB
Compute loss function C
ac = Backward pass Wlth a, WB
Update W (W=W — )

sign(X)

* OBG a
sign(W)

ELgl 2

) [} (<} = 2 Ii———

= < o

Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary

convolutional neural networks”. In: Proc. ECCV, pp. 525-542.
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AlexNet Top-1 (%) ILSVRC2012

60 56.8
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'"Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary

convolutional neural networks”. In: Proc. ECCV, pp. 525-542.
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1
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30 | ;
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v 32x Smaller Model

500 MB

= Float

= Binary

ResNet-18

v 58x Less Computation

Speedup by varying channel size
X 65;

Speedup by varying filter size

60x
40x
20x

number of channels

50x
1 32 1024 0x0 10x10 20x20

filter size
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AlexNet Top-1 & 5 (%) ILSVRC2012

90

'"Mohammad Rastegari et al. (2016). “XNOR-NET: Imagenet classification using binary
convolutional neural networks”. In: Proc. ECCV, pp. 525-542. 6/34



Motivation and Intuition

Motivation

¢ Naive methods (Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David
(2015). “Binaryconnect: Training deep neural networks with binary weights during
propagations”. In: Advances in neural information processing systems, pp. 3123-3131,
Matthieu Courbariaux, Itay Hubara, et al. (2016). “Binarized neural networks:
Training deep neural networks with weights and activations constrained to+ 1 or-1”.
In: arXiv preprint arXiv:1602.02830) suffer the accuracy loss

Intuition

¢ Quantized parameter should approximate the full precision parameter as closely as
possible

7/34



DoReFa-net: Training low

bitwidth convolutional neural
networks with low bitwidth
gradients



DoReFa-Net

Contribution

¢ Succeeded in quantizing gradients to numbers with bitwidth less than 8 bits during
the backward pass

¢ Creating DoReFa-Net which has arbitrary bitwidth in weights, activations and
gradients

¢ Explore the the configuration space of bitwidth for weights, activations and gradients
for DoReFa-Net

9/34



DoReFa-Net

Weights Quantization

¢ Weights binarization

10/34



DoReFa-Net

Activations Quantization

¢ Assume the output of the previous layer has passed through a bounded activation
function h, which ensures r € [0, 1]

fk(r) = quantize ()

Gradient Quantization

¢ Gradients are unbounded and may have significantly larger value range than
activations

dr 1 1
W‘FE-FN(]()]— =]

k .
fy(dr) = ngx(|dr|)[quantzzek[ 5
whereo ~ Uniform(—0.5,0.5)

(o
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DoReFa-Net

Read the paper? if you want to learn the specific details of the
algorithm

DOREFA-NET: TRAINING Low BITWIDTH CONVOLU-
TIONAL NEURAL NETWORKS WITH Low BITWIDTH
GRADIENTS

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, Yuheng Zou
Megvii Inc.
{zsc, wyx, nzk, zxy, wenhe, zouyuheng}@megvii.com

2Shuchang Zhou et al. (2016). “Dorefa-net: Training low bitwidth convolutional neural networks
with low bitwidth gradients”. In: arXiv preprint arXiv:1606.06160. 12/34



Towards Accurate Binary
Convolutional Neural Network

R



Contribution

¢ Approximate full-precision weights with the linear combination of multiple binary
weight bases

¢ Introduce multiple binary activations

14/34



Weights Binarization

* Weights tensors in one layer: W € R@X/cincou

B1,Bs,...,By € {—1, +1}w><h><c,vnxco,,t
~ a1B1 + anBy + ... + apmBup
Bi = F,, (W) = sign (W + u;std(W)) i =1,2,...,M

where W = W — mean(W), u; is a shift parameter(e.g. u; = —1 + (i — 1) 327)

« can be calculated via min, J(a) = |[W — Ba/|?

15/34



Forward and Backward

* Forward

* Backward

o _
oW

B17327"' » Bm :Ful(w)asz(W)?'” 7FM’”(W)

solvemin J(a) = |W — Ba* for
a

M
0= Z oy Conv (B, A)
m=1
O (e~ 00 9By \stE O (v~ 90\ = dc
o (S o) % 35 (B = S

16/34



Multiple Binary Activations

* Bounded Activation Function

h(x) € [0,1]
he(x) = clip(x +v,0,1)
where v is a shift parameter

¢ Binarization Function

° AA;, ..

Hy(R) := 2T}, (r)>05 — 1

A1,Az, ..., AN = Hy, (R),Hy, (R), ..., Hyy (R)
R~ [1A1 + BrAr + ... + BNAN

where R is the real-value activation

., Ay is the base to represent the real-valued activations

17/34



¢ ApproxConv is expected to approximate the conventional full-precision convolution
with linear combination of binary convolutions

¢ The right part is the overall block structure of the convolution in ABC-Net.The input
is binarized using different functions H,1,H,2,H,3

Conv(W, R) = Conv <er\n/[:1 B, 25:1 5nAn) = Yo Z;Ij:l amfBy Conv (B, An)

18/34



Read the paper®if you want to learn the specific details of the

algorithm
Towards Accurate Binary Convolutional Neural
Network
Xiaofan Lin Cong Zhao ‘Wei Pan*

DJI Innovations Inc, Shenzhen, China
{xiaofan.lin, cong.zhao, wei.pan}@dji.com

¥Xiaofan Lin, Cong Zhao, and Wei Pan (2017). “Towards accurate binary convolutional neural
network”. In: Advances in Neural Information Processing Systems, pp. 345-353. 19/34



Overview

@ Improve Network Loss Function
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Motivation and Intuition

Motivation

¢ Only focusing on the local layers can hardly promise the exact final output passed
through a series of layers.

¢ Itis highly required that the network training should globally take the binarization
as well as the task-specific objective into account.

Intuition

¢ Finding the desired loss function contribute to
guide the learning of parameter with restriction

20/34



Training binary neural networks
with real-to-binary convolutions

b

=



Real-to-Bin

Contribution

¢ Use an attention matching strategy called “a sequence of teacher-student pairs”, so
that the real-valued network can more closely guide the binary network during
optimization

¢ Use the real-valued activations of the binary network to compute scale factors that
are used to re-scale the activations right after the application of the binary
convolution.

22/34



Real-to-Bin

¢ Proposed Real-to-Bin Block

Binary block

AL

Real block (teacher)

Supervision is injected at the end of each binary block

Loss Term

¢ Compare attention maps between real-valued and binary network

¢ Gradients do not have to travel the whole network and suffer degradation

9 i 12
Loyt = Z] 1 HQ] ” m where @/ = Y, |A)] 23/34



Real-to-Bin

Progressive Teacher-Student

e Stepl
teacher: real-valued network with standard ResNet architecture
student: real-valued network with the same architecture as the binary ResNet-18

¢ Step2

teacher: student network from stepl

student: binary ResNet-18 with binary activations and real-valued weights
¢ Step3

teacher: student network from step2

student: binary ResNet-18 with binary activations and binary weights

24/34



Real-to-Bin

Data-driven Channel Rescaling

¢ To solve limited representation problem

¢ Rely on the full-precision activation signal to predict the scaling factors used to
re-scale the output of the binary convolution channel-wise

AxW = (sign(A) @ sign(W)) ® a ® G (A; Wg)

W
l wowec | GlobalavgPool | 1<1vc

[ sien | [ tnear | 1k

The proposed data-driven channel re-scaling approach.
25/34



Real-to-Bin

Read the paper* if you want to learn the specific details of the
algorithm

TRAINING BINARY NEURAL NETWORKS WITH REAL-
TO-BINARY CONVOLUTIONS

Brais Martinez!, Jing Yang'>", Adrian Bulat'” & Georgios Tzimiropoulos'?
! Samsung AT Research Center, Cambridge, UK

2 Computer Vision Laboratory, The University of Nottingham, UK
{brais.a,adrian.bulat,georgios.t}@samsung.com

*Brais Martinez et al. (2020). “Training binary neural networks with real-to-binary convolutions”.
In: arXiv preprint arXiv:2003.11535. 26/34



Overview

® Reduce the Gradient Error
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Motivation and Intuition

Motivation

¢ Although STE is often adopted to estimate the gradients in BP, there exists obvious
gradient mismatch between the gradient of the binarization function

¢ With the restriction of STE, the parameters outside the range of [—1 : +1] will not be
updated.

27/34



Bi-Real

Bi-real net: Enhancing the performance of 1-bit CNNs with
improved representational capability and advanced training
algorithm

28/34



Bi-Real

Naive Binarization Function

¢ Recall the partial derivative calculation in back propagation
or _ or OAY o OSign(Al) 5. OF(AM)
oAy T oAy OAY T Ay 0AY oAy A}

¢ Sign function is a non-differentiable function, so F is an approximation differentiable
function of Sign function

29/34



Bi-Real

; (Al
oL _ ac 9A)' _ o osign(AY)  op
oAy AL OAl

1, 1, ~ 1, 1,
oA, oA oA," oAy
T Sign(x) Clip(-1,x,1) ApproxSign(x) £\
(:I aSign(x) f dClip(—1,x,1) I JApproxSign(x)
ax dx

2
2 -l 0 1 2 2 -l 0 1 2 2 =l 0 1 2 2 =l 0 1 2
(b) (c)

ax

2 a9 0 1 2 2 -0 1

(a)

Approximation of Sign function

* Naive Approximation F(x) = clip(x, 0, 1), see fig(b)

® More Precious Approximation in Bi-Real, see fig(c)

-1 ifx < -1 .
’ . 242x, if —1<x<0
. 2x + x27 if —1<x<0 OApproxsign(x) T o
— —_—— - <
Ao =) o ipo<a<l e ) AT HOexed

1, otherwise
30/34



Bi-Real

Read the paper® if you want to learn the specific details of the
algorithm

Bi-Real Net: Enhancing the Performance of
1-bit CNNs With Improved Representational
Capability and Advanced Training Algorithm

Zechun Liu' , Baoyuan Wu? , Wenhan Luo?, Xin Yang®*, Wei Liu?, and
Kwang-Ting Cheng’

! Hong Kong University of Science and Technology
2 Tencent Al lab
3 Huazhong University of Science and Technology

°Zechun Liu et al. (2018). “Bi-real net: Enhancing the performance of 1-bit cnns with improved
representational capability and advanced training algorithm”. In: Proceedings of the European
conference on computer vision (ECCV), pp. 722-737. 31/34



Trained ternary quantization

P



Trained Ternary Quantization®

" ©cu
Normalized

Full Precision Weight Full Precision Weight

— Feed Forward «---- Back Propagate Inference Time 6

Overview of the trained ternary quantization procedure.

®Chenzhuo Zhu et al. (2017). “Trained ternary quantization”. In: Proc. ICLR. 33/34



Trained Ternary Quantization®

— res1.0/convi/Wn — res1.0/convi/Wp — res3.2/conv2/Wn — res3.2/conv2/Wp — linear/Wn — linear/Wp

Ternary Weight Value
o

W Negatives B Zeros M Positives M Negatives M Zeros M Positives M Negatives M Zeros WM Positives

100%

75%

25%

0%
50 100 50 100 150

0 50 100 150 0 150 0
Epochs

Ternary Weight
Percentage
o
o
N

Ternary weights value (above) and distribution (below) with iterations for different layers of
ResNet-20 on CIFAR-10.

®Chenzhuo Zhu et al. (2017). “Trained ternary quantization”. In: Proc. ICLR. 33/34



Reading List

¢ Hyeonuk Kim et al. (2017). “A Kernel Decomposition Architecture for Binary-weight
Convolutional Neural Networks”. In: Proc. DAC, 60:1-60:6
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* Dongging Zhang et al. (2018). “Lqg-nets: Learned quantization for highly accurate
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