CMSC 5743 .

Efficient Computing of Deep Neural Networks

Mo03: Quantization

Bei Yu
CSE Department, CUHK
byu@cse.cuhk.edu.hk

(Latest update: September 2, 2024)

2024 Fall

These slides contain/adapt materials developed by

¢ Hardware for Machine Learning, Shao Spring 2020 @ UCB
¢ 8-bit Inference with TensorRT

¢ Amir Gholami et al. (2021). “A survey of quantization methods for efficient neural
network inference”. In: arXiv preprint

2/42

Overview

@ Floating Point Number

@ Integer & Fixed-Point Number
® Quantization Overview

@ Quantization — First Example

@ Post Training Quantization (PTQ)

@® Quantization Aware Training (QAT)

3/42

Floating Point Number

P

Floating Point Number

Scientific notation: 6.6254 x 10~%7

A normalized number of certain accuracy (e.g. 6.6254 is called the mantissa)

Scale factors to determine the position of the decimal point (e.g. 10-% indicates
position of decimal point and is called the exponent; the base is implied)

Sign bit

5/42

Normalized Form

¢ Floating Point Numbers can have multiple forms, e.g.

0.232 x 10* =2.32 x 10°
=23.2 x 10%
=2320. x 10°
= 232000. x 102

e Itis desirable for each number to have a unique representation => Normalized Form

* We normalize Mantissa’s in the Range [1..R), where R is the Base, e.g.:

* [1..2) for BINARY
* [1..10) for DECIMAL

6/42

IEEE Standard 754 Single Precision

32-bit, float in C / C++ / Java

32 bits
- L
|s | F | M
Sign of M v
8-bit signed 23-bit
number :
L. exponentin mantissa fraction
0 signifies +
- excess-127
1 signifies —
representation
E'-127
Value represented = *1LM x2
(a) Single precision
0joo0o1o01ro00o0jooro1o - . - 0
—
-87
Value represented = +1.001010 =--- 0 x 2

00101000 > 40

(b) Example of a single-precision number

40-127 =-87

7/42

IEEE Standard 754 Double Precision

64-bit, float in C / C++ / Java

64 bits
N E' M
Sign J ' \
11-bit excess-1023 52-bit
exponent mantissa fraction
E'-1023
Value represented =+1L.M x2

(c) Double precision

8/42

Question:
What is the IEEE single precision number 40C0 00004 in decimal?

9/42

Question:

What is -0.51¢ in IEEE single precision binary floating point format?

10/42

Special Values

Exponents of all 0’s and all 1’s have special meaning

E=0, M=0 represents 0 (sign bit still used so there is +0)

E=0, M#£0 is a denormalized number +0.M x2 '“° (smaller than the smallest
normalized number)

E=All 1’s, M=0 represents £Infinity, depending on Sign
E=All 1’s, M#0 represents Nall

11/42

Ref: IEEE Standard 754 Numbers

® Normalized +/—1.d...d x 2¢xp

® Denormalized +/-0.d...d x 2min_exp - to represent near-zero numbers
e.g. + 0.0000...0000001 x 2-'26 for Single Precision

Format #bits # significant bits macheps # exponent bits exponent range
Single 32 1+23 224 (~1077) 8 2-126 _ 2+127 (~1(£38)
Double 64 1+52 2-53 (~10-16) 1 2-1022 _ 2+1023 (~q() £308)
Double Extended >=80 >=64 <=2-64(~10"19) >=15 2-16382 _ 2+16383 (~q () £4932)
(Double Extended is 80 bits on all Intel machines)
macheps =Machine Epsilon = = 2~ (#significand bits)

&

mach

vV V

normalized denormalized normalized
negative numbers pesitive
numbers numbers

12/42

Inaccurate Floating Point Operations

Example: Find 1st root of a quadratic equation’

—b+/b*—4-a-0)
2-a

Expected: 0.00023025562642476431
Double: 0.00023025562638524986
Float: 0.00024670246057212353

On Sparc processor, Solaris, gee 3.3 (ANSI C) 13/42

Inaccurate Floating Point Operations

Example: Find 1st root of a quadratic equation’

—b+/b*—4-a-0)
2-a

Expected: 0.00023025562642476431
Double: 0.00023025562638524986
Float: 0.00024670246057212353

® Problem is that if c is near zero, Vb2 —4-a-c~b

¢ Rule of thumb: use the highest precision which does not give up too much speed

On Sparc processor, Solaris, gee 3.3 (ANSI C) 13/42

Integer & Fixed-Point Number

Unsigned Binary Representation

Hex Binary | Decimal
0x00000000 | 0...0000 0
0x00000001 | 0...0001 1
0x00000002 | 0...0010 2
0x00000003 | 0...0011 3
0x00000004 | 0...0100 4
0x00000005 | 0...0101 5
0x00000006 | 0...0110 6
0x00000007 | 0...0111 7
0x00000008 | 0...1000 8
0x00000009 | 0...1001 9

OxFFFFFFFC | 1...1100 232._4
OxFFFFFFFD | 1...1101 2%2-3
OXFFFFFFFE | 1...1110 | 232_2
OXFFFFFFFF | 1...1111 232 -1

231280 229 28 22 21 20 bit weight

313029 ... 3 2 1 0 bitposition
111 .. 1111 bit
Ll

17000 0000 -1

L1

2%2 . 1

15/42

Signed Binary Representation

2’sc binary | decimal
2% = 1000 -8
«(2°-1)= 1001 -7
(w10 0] 6
//‘ L1011) -5
complement all the bits/ 1100 4
1101 -3
0101 1on 1110 -2
and add a 1 1111 -1
and add a 1 0000 0
0110 1010 0001 1
0010 2
complement all the bits 0011 3
0100 4
[0101 5
—~C o110) 6
23 1= 0111 7

16/42

Fixed-Point Arithmetic

* Integers with a binary point and a bias
* “slope and bias”:y =s*x + z
* Qm.n: m (# of integer bits) n (# of fractional bits)

s=1,z=0 s=1/4,2=0 s=4,2=0 s=1.5,z=10
EIEIEINN EIEDENEN EICIEIN EE I
0 1.5%0 +10
0 0 1 1 0 0 1 1/4 0 0 1 4 0 0 1 1.5*1+10
0 1 0 2 0 1 0 2/4 0 1 0 8 0 1 0 1.5%2+10
0 1 1 3 0 1 1 3/a 0 1 1 12 0 1 1 1.5*3+10
1 0 0 4 1 0 0 1 1 0 0 16 1 0 0 1.5%4+10
1 0 1 5 1 0 1 5/4 1 0 1 20 1 0 1 15*5+10
1 1 0 6 1 1 0 6/a 1 1 0o 24 1 1 0 15%+10
1 1 1 7 1 1 1 7/ 1 1 1 28 1 1 1 1.5*7+10

17/42

Catastrophic Cancellation

(a — b) is inaccurate whena >> bora << b
Decimal Example 1:
¢ Using 2 significant digits
¢ Compute mean of 5.1 and 5.2 using the formula (a + b) /2:

® a+ b =10 (with 2 significant digits, 10.3 can only be stored as 10)

® 10/2 = 5.0 (the computed mean is less than both numbers!!!)

Decimal Example 2:

¢ Using 8 significant digits to compute sum of three numbers:
e (11111113 + (—11111111)) 4+ 7.5111111 = 9.5111111
° 11111113 + ((—11111111) + 7.5111111) = 10.000000

18/42

Catastrophic Cancellation

Catastrophic cancellation occurs when

[round(x) x round(y)] — round(x x y)
>>€

round(x X y)

19/42

Hardware Implications

Multipliers

Sa Sg

Multiplier Example: C=Ax B

€a €g my mg

me

Floating-point multiplier

Fixed-point multiplier

20/42

Case Study: ICML 20152

Fixed-Point Arithmetic

Number representation{IL,FL)

Integer Fraction
L L

g
IL FL

Word Length WL = IL +FL
Granularity 2 FL

Range [_ZIL—I7 oIL—1 _ 2—FL}
Convert (z, (IL,FL)) =

-2t if o < -2
{QIL—l _9-FL ifg > olL-1 _o-FL

Round(z, (IL,FL)) otherwise

Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In: Proc. ICML,
pp. 1737-1746.

21/42

Case Study: ICML 20152

Fixed-Point Arithmetic

Number representation{IL,FL)

Integer
L

W
IL FL

Fraction
|

Word Length WL = IL +FL

Granularity 2 FL

Range I:_ZIL—I7 oIL—1 _ 2—FL}

Convert (z, (IL,FL)) =
-2t if o < -2
9IL—1 _ 9-FL ifg > olL-1 _o-FL

Round(z, (IL,FL)) otherwise

Multiply-and-ACCumulate

a; bl
(ILy, FLy) 2,FL
L 2721 aibi (IL,, FLy)
i
WL-bit
Convert(z, (IL, IF)) mump'ner
Wide accumulator (48-bits)
(DSP MACC)
z
Convert() |(DSP ROUND)
[TITTTT LTI
IL FL

Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In: Proc. ICML,

pp. 1737-1746.

21/42

Case Study: ICML 20152

Fixed-Point Arithmetic: Rounding Modes

Round-to-nearest

I
I
I I
|z] —€ |z] lz] +€e |z]+2€
I xT]
]
I]
1]
lz] —e |z] lz] +e |z]+2e

Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In: Proc. ICML,
pp. 1737-1746. 21/42

Case Study: ICML 20152

Fixed-Point Arithmetic: Rounding Modes

Round-to-nearest Stochastic rounding

Non-zero probability of rounding to
either |z or |z] + €

I z [:
= :
1 1 !
lz] — € |z lz) +e |z]+2€ E lz] —¢ [z] z]+e |o]+2€
i Round (x, (IL,FL)) =
I x 1 1
| ! : lz] wp. 1 — 2=zl
I 1 | €
! |z +€ wp. @
lz] —e |z] lz] +e |z]+2e !

Unbiased rounding scheme:
expected rounding error is zero

Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In: Proc. ICML,
pp. 1737-1746. 21/42

Case Study: ICML 20

MNIST: Fully-connected DNNs

Training error

0.001

0.0001

Round to nearest, WL = 16

T
,_‘Lower precision

Training epoch

Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In: Proc. ICML,

pp. 1737-1746.

Test error(%)

Round to nearest, WL = 16

1
5 10 15 20 25 30

Training epoch

21/42

Case Study: ICML 20

MNIST: Fully-connected DNNs

Round to nearest, WL = 16 Round to nearest, WL = 16
T T T . T 5
1 0 ,_‘Lower precision 45
5 s ¢
5§ 0 S e € 35
o | "Sefese, T E S 3
£ o001 4 2
@ . 2 25 b
= \ E ool i
0.001) 8
1.5
0.0001 1 L L L L L
5 10 15 20 25 30 0 5 10 15 20 25 30
Training epoch Training epoch

= For small fractional lengths (FL < 12), a large majority of weight updates are
rounded to zero when using the round-to-nearest scheme.

= Convergence slows down

= For FL <12, there is a noticeable degradation in the classification accuracy
12

2Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In: Proc. ICML,
pp. 1737-1746.

21/42

MNIST: Fully-connected DNNs

Stochastic rounding, WL = 16 Stochastic rounding, WL = 16
T T T T 4 I T T T T
FL 8 —o— FL8 —o—
T FL10 —o— 7 35 FL10 —o— A
4 FL14 —o— FL14 —o—
0.1 & Float 3 Hl Float B

Training error
Test error(%)

1
5 10 15 20 25 30 0 5 10 15 20 25 30
Training epoch Training epoch

= Stochastic rounding preserves gradient information (statistically)
= No degradation in convergence properties

= Test error nearly equal to that obtained using 32-bit floats

13

2Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In: Proc. ICML,

pp. 1737-1746.

21/42

Case Study: ICML 20152

FPGA prototyping: GEMM with stochastic rounding

| 8GB DDR3 SO-DIMM | Input FIFOs:Matrix B
k3 =" xn
AXI Interface to Top JPtiae Systolic
DDR3 Controller o -
1 i T T N !
READ | [WRITE [systolic Array s :
(SA) of Computation = 1
J Multiple-and- N & | BT mace] ™ mace] T 1
) ACCumulate* 3w Y T
Cache [L2-to-SAf¥ (MACC) units g : i MACCunits i)
(BRAM) T i i (nxnarray) : I
-~ 3 *,
Xilinx Kintex K325T FPGA Tl g 1 [osp =5 1
ca2s S| N e oy — i
Communication 1
45 R ——
Top-level controller and memory hierarchy Wavefront systolic array for computing
designed to maximize data reuse matrix product AB. Arrows indicate dataflow

21

2Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In: Proc. ICML,
pp. 1737-1746. 21/42

Case Study: ICML 20152

Stochastic rounding

- m :FJutput C FIFOs
o T
o o
DSP DSP
ROUND ROUND

-__.I DSP | | DSP | .

MACC MACC]
DSP DSP | ...

-_ MACC| mpn _IMACC

ZA |
T
H

Local registers

23

2Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In: Proc. ICML,
pp. 1737-1746. 21/42

: ICML 20152

Stochastic rounding

DSP ROUND
m m | Output C FIFOs
3 3 Accumulated result
LTI LTI TTTTTTT]
_'_l
DSP DSP)
ROUND ROUND LSBs to be rounded-off

ety

Pseudo-random number
generated using LFSR

-__.I DSP | | DSP | .
MACC MACC]

DSP DSP | ...
MACC| mpn _IMACC

AR

Truncate LSBs, and saturate to
limits if result exceeds range

These operations can be implemented
efficiently using a single DSP unit

Local registers

24

2Suyog Gupta et al. (2015). “Deep learning with limited numerical precision”. In: Proc. ICML,
pp. 1737-1746. 21/42

Quantization Overview

3]
&

Quantization in DNN

Quantization:

Output: §

Filter 1

Q(r) =Int(r/S) — Z

=

VAN
AN

EEE |

Dequantization:

P =S(Q() +2)

Filter 2

)

Filter 3

JA\

Granularity: | Lo :
* Layerwise et x @ ! o |
Filter C Layerwise Channelwise
L4 Groupwise Quantization Quantization

* Channelwise

23/42

Uniform vs. Non-Uniform

| ; ;
P

(a) uniform quantization (b) non-uniform quantization

Real values in the continuous domain r are mapped into discrete

® Lower precision values in the quantized domain Q.

Uniform quantization: distances between quantized values are the same

¢ Non-uniform quantization: distances between quantized values can vary

24/42

Symmetric VS. Asymmetric

0 sz B=15
—127 0 —128 0 127
(@) Symmetric quantization (b) Asymmetric quantization

¢ Symmetric vs. Asymmetric: Z =07?

Fig. (a) Symmetric w. restricted range maps [-127, 127],

Fig. (b) Asymmetric w. full range maps to [-128, 127]

Both for 8-bit quantization case.

25/42

QAT and PTQ

Pre-trained model [Pre-trained model] [Callbratlon data]
Training data $

Quantization [Calibration]
v] v

[Retraining / Finetuning] [Quantization]
v]

[Quantized model] [Quantized model]

QAT PTQ

® quantization-aware training (QAT): model is quantized using training data to adjust
parameters and recover accuracy degradation.

¢ post-training quantization (PTQ): a pre-trained model is calibrated using finetuning
data (e.g., a small subset of training data) to compute the clipping ranges and the
scaling factors.

¢ Key difference: Model parameters fixed /unfixed.

26/42

Simulated quantization vs Integer-Only quantization

FP32 Weight FP32 Activation INT4 Weight INT4 Activation INT4 Weight INT4 Activation
I} i
[Dequantize]
|| E==a |
[Multiplication (FP32)] [Multiplication (FP32)] [Multiplication (INT4)]
| Fra2 | FPa2 1 NT4
[Accumulation (FP32)] [Accumulation (FP32)] [Accumulation (INT32)]
| FPa2 e
J [Requantize] [Requantize]
v
FP32 Activation INT4 Activation INT4 Activation

Left : Full-precision
Middle : Simulated quantization
Right : Integer-only quantization

27/42

Backend Support for Quantization Deployment

Hardware Support

¢ Nvidia GPU: Tensor Core support FP16, Int8 and Int4
¢ Arm: Neon 128-bit SIMD instruction: 4x32bit or 8 x16bit up to 16x8bit
¢ Intel: SSE intrinsics, same as above

* DSP, Al Chip

Some common architectures:

¢ For CPU: Tensorflow Lite, QNNPACK, NCNN
¢ For GPU: TensorRT
¢ Versatile Compiler such TVM.qnn

28/42

Quantization — First Example

=
P

- @z

Linear quantization

Representation:

Tensor Values = FP32 scale factor * int8 array + FP32 bias

...
Do we really need bias?

Two matrices:

A = scale A * QA + bias A
B = scale B * OB + bias B

Let’s multiply those 2 matrices:
A * B = scale A * scale B * QA * QOB +
scale A * QA * bias B +

scale B * OB * bias A +
bias A * bias B

- @z

Do we really need bias?

Two matrices:

A = scale A * QA + biasA
B = scale B * OB + bias B

Let’s multiply those 2 matrices:

A * B = scale A * scale B * QA * QOB +

scale A * OA * hias B +
sga;e_g * OB * bjas_A +

...
Do we really need bias? No!

Two matrices:

A = scale A * QA
B = scale B * QOB

Let’s multiply those 2 matrices:

A * B = scale A * scale B * QA * QOB

- @z

Symmetric linear quantization

Representation:

Tensor Values = FP32 scale factor * int8 array

One FP32 scale factor for the entire int8 tensor

Q: How do we set scale factor?

MINIMUM QUANTIZED VALUE

Integer range is not completely symmetric. E.g. in 8bit, [-128, 127]

If use [-127, 127], s =%

Range is symmetric

1/256 of int8 range is not used. 1/16 of int4 range is not used

If use full range [-128, 127], s = 128

a

Values should be quantized to 128 will be clipped to 127

Asymmetric range may introduce bias

18 <AnviDIA

EXAMPLE OF QUANTIZATION BIAS

05
A=[-22 -11 11 22],B= 8-3 LAB =0
0.5

8bit scale quantization, use [-128, 127]. s

=128/2.2, 55=128/0.5

127
[- —-64 64 127] = —127
127

Dequantize -127 will get -0.00853. A small bias is introduced towards -«

EXAMPLE OF QUANTIZATION BIAS

A=[-22 -11 11 22],B= Igg‘ JAB =0

8-bit scale quantization, use [-127, 127]. s,=127/2.2, sg=127/0.5

127
[-127 —64 64 127]+
127

Dequantize 0 will get 0

MATRIX MULTIPLY EXAMPLE

(Cozs 0ss) * Cos) = Cozs)

MATRIX MULTIPLY EXAMPLE

(Cozs 0ss) * Cos) = Cozs)

8bit quantization

choose [-2, 2] fp range (scale 127/2=63.5) for first matrix and [-1, 1] fp range (scale =
127/1=127) for the second

(57 4+ es) = (Gars)

MATRIX MULTIPLY EXAMPLE

(—1.54 0.22) . (0.35)

—0.65
—0.26 0.65 —0.51 (04 1)

—0.423
8bit quantization

choose [-2, 2] fp range (scale 127/2=63.5) for first matrix and [-1, 1] fp range (scale =
127/1=127) for the second

(57 4+ es) = (Gars)

The result has an overall scale of 63.5* . We can dequantize back to float
(—5222) . _ (—0.648)
—3413 63.5 * —0.423

REQUANTIZE

(Cozs 0ss) * Cos) = Cozs)

8bit quantization

choose [-2, 2] fp range for first matrix and [-1, 1] fp range for the second
(—98 14) " A4) _ (—5222)
—-17 41 —65 —3413
Requantize output to a different quantized representation with fp range [-3, 3]:

_ 127/3 _
(_giﬁ) * 635%127 (—2573)

Post Training Quantization (PTQ)

Greedy Layer-wise Quantization®

¢ For a fixed-point number, it representation is:

bw—1

n=Y Bi-27.2,
i=0

where bw is the bit width and f; is the fractional length which is dynamic for different
layers and feature map sets while static in one layer.

¢ Weight quantization: find the optimal f; for weights:
fi = arg n}inz |Whoat — W(bw, f1)],
1

where W is a weight and W(bw, f;) represents the fixed-point format of W under the
given bw and f;.

*Jiantao Qiu et al. (2016). “Going deeper with embedded fpga platform for convolutional neural
network”. In: Proc. FPGA, pp. 26-35. 31/42

Greedy Layer-wise Quantization

(mputimages) (onvmoder)
T T

¥

Weight quantization phase

Weight dyr!am\c range analysis
* Feature quantization: find the optimal f;
for features:

I Weight quantization configuration |

fi= axgmin 3, — 3 (bw. i), =

Data quantization phase

Fixed-point CNN model Floating-point CNN model
where x* represents the result of a layer L | Lo |
when we denote the computation of a | Lo depor— e] L]

° optimal quantization strateg 3
layerasx™ = A - x. [b [o]
¥ 3
| Layer N | | Layer N |
1
[Weight and data quantization configuration]

32/42

Dynamic-Precision Data Quantization Results

Network

Data Bits 16 16 8 8 8

Weight Bits Single-float 16 8 8 8 8
Data Precision N/A 2= 22 Impossible 2521 Dynamic Dynamic
Weight Precision N/A 215 27 Impossible 27 Dynamic Dynamic

Top-1 Accuracy 68.1% 68.0% 53.0% Impossible 28.2% 66.6% 67.0%

Top-5Accuracy | 88.0% | 87.9% 766% Impossible 49.7% 87.4%
| Network | CaffeNet VGG16-SVD

Data Bits Single-float 16 8 Single-float 16 8
Weight Bits Single-float 16 8 Single-float 16 8or4
Data Precision N/A Dynamic Dynamic N/A Dynamic Dynamic
Weight Precision N/A Dynamic Dynamic N/A Dynamic Dynamic
Top-1 Accuracy 53.9% 53.9% 53.0% 68.0% 64.6% 64.1%
Top-5 Accuracy 77.7% 771% 76.6% 88.0% 86.7% 86.3%

33/42

Industrial Implementations — Nvidia TensorRT

No Saturation Quantization — INT8 Inference

° o saturation: map |max| to 127

-|max| 0.0 ; +|max|
3903036362636 36202

Map the maximum value to 127, with unifrom step length.

Suffer from outliers.

34/42

Industrial Implementations — Nvidia TensorRT

Saturation Quantization — INT8 Inference

above |threshold| to 127

T| 0.0 - +T]
R IR IR R e 22

5398 36 9 300¢ 3¢
-127 0: 127

Set a threshold as the maxiumum value.
Divide the value domain into 2048 groups.

Traverse all the possible thresholds to find the best one with minimum KL

divergence.
35/42

Industrial Implementations — Nvidia TensorRT

Relative Entropy of two encodings

¢ INT8 model encodes the same information as the original FP32 model.
® Minimize the loss of information.

® Loss of information is measured by Kullback-Leibler divergence (a.k.a., relative
entropy or information divergence).

® P, Q - two discrete probability distributions:

N

Di(P|Q) = ZP(xi)log

i=1

P(x;)
Q(x;)

¢ Intuition: KL divergence measures the amount of information lost when
approximating a given encoding.

36/42

Quantization Aware Training

(QAT)

he
s

=
LS

QAT: Weight

Straight Through Estimator (STE)*

¢ Forward integer, Backward floating point

¢ Rounding to nearest

Weigh r Quantized Weight Q
FP) Quantizer (INT)
A || 22 1 2
17 | 36 'l: ﬁ v ,l: 2| 2

STE

01 | -01
2 -1
-0.2 | 0.2
Gradient dL/dr
(FP)

(ol | =)l
1 2
-02 | 0.2
Gradient dL/dQ
(FP)

Ii>
<:| Backward Pass

“Yoshua Bengio, Nicholas Léonard, and Aaron Courville (2013). “Estimating or propagating
gradients through stochastic neurons for conditional computation”. In: arXiv preprint

arXiv:1308.3432.

38/42

Better Gradients

Is Straight-Through Estimator (STE) the best?

¢ Gradient mismatch: the gradients of the weights are not generated using the value of
weights, but rather its quantized value.

¢ Poor gradient: STE fails at investigating better gradients for quantization training.

39/42

QAT: Activation

PArameterized Clipping acTivation (PACT)’

¢ Relu6 — clipping
¢ threshold — clipping range in quantization

® range upper/lower bound trainable

0, z € (—00,0) y=x y=6
y=PACT(2) =05(|z| — |z —a|+a) =z, z€[0,a)
a, € [o,+o0)

*Jungwook Choi, Zhuo Wang, et al. (2018). “Pact: Parameterized clipping activation for
quantized neural networks”. In: arXiv preprint arXiv:1805.06085. 40/42

PArameterized Clipping acTivation Function (PACT)®

® A new activation quantization scheme in which the activation function has a
parameterized clipping level a.

¢ The clipping level is dynamically adjusted vias stochastic gradient descent
(SGD)-based training with the goal of minimizing the quantization error.

¢ In PACT, the convolutional ReLU activation function in CNN is replaced with:

0, x € (0,0)
fx)=05(x|—|x—a|+a)=< x, x€[0,a)
a, X € [a,+00)

where « limits the dynamic range of activation to [0, «.

6]ungwook Choi, Swagath Venkataramani, et al. (2019). “Accurate and efficient 2-bit quantized
neural networks”. In: Proceedings of Machine Learning and Systens 1. 41/42

PArameterized Clipping acTivation Function (PACT)

¢ The truncated activation output is the linearly quantized to k-bits for the dot-product
computations:
2k 1 e
=round (y- ——) - =——
Yq (y a) 2k _1
* With this new activation function, « is a variable in the loss function, whose value
can be optimized during training.

¢ For back-propagation, gradient % can be computed using STE to estimate %—y; as 1.

y=0.5(x| - |x —a|l + a)
a 9y
Jda

a X a X
PACT activation function and its gradient.

42/42

	Main Talk
	Floating Point Number
	Integer & Fixed-Point Number
	Quantization Overview
	Quantization – First Example
	Post Training Quantization (PTQ)
	Quantization Aware Training (QAT)

