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Re-visit DNN Pruning

R



Im2col (Image2Column) Convolution

! Filters: n x ¢ x k x k

(1 y s

>< p—

X e Rdx(kzc) W ¢ R(kEC)Xn Y € Rdxn

¢ Transform convolution to matrix multiplication

¢ Unified calculation for both convolution and fully-connected layers
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Compression Approach 1: Sparsity

>< p—

X e Rax (k*c) S e R(*e)xn Y € Rdxn

Sparse DNN

* Sparsification: weight pruning;
¢ Compression: compressed sparse format for storage;

® Potential acceleration: sparse matrix multiplication algorithm.
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Exploring the Granularity of Sparsity that is
Hardware-friendly

4 types of pruning granularity

irregular sparsity regular sparsity  more regular sparsity

= =
=
o]

E i >= ” . :>
Han et al, NIPS'15 Molchanov et al, ICLR1

fully-dense
model

=i
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Compression Approach 2: Low-Rank

X X —

X e R*0) UeRFOT VR Y € RiXn

Low-rank DNN

¢ Low-rank approximation: matrix decomposition or tensor decomposition.

¢ Compression and acceleration: less storage required and less FLOP in computation.
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Overview

@ Singular Value Decomposition (SVD)
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Singular Value Decomposition
(SVD)



Reducing Matrix Dimension

® Gives a decomposition of any matrix into a product of three matrices.

¢ There are strong constraints on the form of each of these matrices

Results in a unique decomposition

From this decomposition, you can choose any number r of intermediate concepts
(latent factors)

In a way that minimizes the reconstruction error
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SVD: Definition

U

A: input data matrix (m x n matrix)

U: left singular vectors (m x r matrix)

3 Singular values (r x r diagonal matrix)

V: right singular vectors (n x r matrix) 10/67



r
A~UXV' = Zaiui ®’01T
i=1

(o] V1 () V2

u U2

® ¢;: scalar
® wu;, v;: vector

¢ If we set 0, = 0, then the gree columns may as well not exist.
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SVD: Properties

Property

It is always possible to decompose a real matrix A into A = UXV '

° U, %, V: unique
e U, V: column orthonormal

°* U'U =L, V'V = I (I: identity matrix)
¢ Columns are orthogonal unit vectors

¢ X: diagonal

¢ Entries (singular values) are non-negative
¢ Sorted in decreasing order (o1 > 07 > ... > 0)

https://www.cs.cornell.edu/courses/cs322/2008sp/stuff/TrefethenBau_Lec4_SVD.pdf
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Example: Users-to-Movies

Consider a matrix. What does SVD do?

T

SciFi

|

t

Romance

:

oo oWk W= Matrix

= O N Uk w = Avatar

oo o wuk wr~ Dune

N O © o o o Family Man

N U © o oo Scmper

second

U

n
) —
) v’

T~

“Concepts”
AKA Latent dimensions
AKA Latent factors

¢ Ratings matrix where each column corresponds to a movie and each row to a user.

¢ First 4 users prefer SciFi, while others prefer Romance.
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Example: Users-to-Movies

§
E oy oo i‘ g—g
<Az
t 1110 0] [ 013 0.02 —0.01 ]
SciFi | 3 3 3 0 0 041  0.07 -0.03
l 4 440 0| _ |05 009 -004 124 0 0
555 00 068  0.11 —0.05 | x 0 95 0
t 020 4 4 015 —0.59 0.65 0 0 13
Romancef 0 0 0 5 5 0.07 -0.73 -0.67
| Lo 10 2 2| | 0.07 —-029 0.32 |

0.56 0.59 0.56 0.09 0.09
x| 012 -0.02 0.12 -0.69 -0.69
0.40 —-0.80 0.40 0.09 0.09

¢ U: “user-to-concept” factor matrix
¢ V: “movie-to-concept” factor matrix
¢ X its diagonal elements: “strength” of each concept
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Example: Users-to-Movies
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¢ U: “user-to-concept” factor matrix

o oo w kW= Matrix

= oM ot w = Avatar

o oo wh wr= Dune

MO © O o o Scmper

second

041
0.55
0.68
0.15
0.07
| 0.07

0.56
x | 0.12

Romance-concept
SciFi-concept

0.0

0.09

0.11
—-0.59
-0.73

-0.29

0.59 0.56
—-0.02 0.12

¢ V: “movie-to-concept” factor matrix

124
X 0
0

0.09

9.5
0

0.09

-0.69 -0.69

¢ X its diagonal elements: “strength” of each concept
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Example: Users-to-Movies

g
y T B¢
E S 2= 28
g g A g S 3 “strength” of
- < = - _ - SciFi-concept
T 111 0 0 0.13 0.02 -0.01
SeiFi | 3 3 3 0 0 0.41 007 —0.03
l 4 4 400 | _ 055 0.09 —0.04 0 0
55 5 0 0 0.68 0.11 —-0.05 | x 0 95 0
1 0 2 0 4 4 0.15 —-0.59 0.65 0 0 1.3
Romance] 0 0 0 5 5 0.07 —-0.73 —-0.67
, Lo 1o 22] [007 -029 032]

0.56 0.59 0.56 0.09 0.09
x| 012 -0.02 0.12 -0.69 -0.69
0.40 —-0.80 0.40 0.09 0.09

¢ U: “user-to-concept” factor matrix
¢ V: “movie-to-concept” factor matrix
¢ X its diagonal elements: “strength” of each concept
14/67



Example: Users-to-Movies

§

.. .2 BT

=28 g7
tT 1.0 0] [ 013 0.02 -0.01
SciFi | 3 0 0 041  0.07 -0.03
l 4 4 0| |055 009 -004
55 5 0 068  0.11 —0.05
t 002 0 4w ] 015 059 065
Romance| 0 0 0 5 5 7 —-0.73 -0.67
| Lo 10 2 2| &);0 <029  0.32
0.56
x| 012 —002 0.12
040 —0.80 0.40

¢ U: “user-to-concept” factor matrix

¢ V: “movie-to-concept” factor matrix

124 0 0

X 0 95 0

0 0 1.3
0.09 0.09
—-0.69 -0.69
0.09 0.09

¢ X its diagonal elements: “strength” of each concept
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SVD: Dimensionality Reduction

o ®
£ ~_
g o
o~ first right
2 L4 e. ® singularvector
o Py [ ]
=
®
®
Vi
[

Movie 1 rating

¢ Instead of using two coordinates (X, y) to describe points
¢ Let’s use only one coordinate

¢ Point’t position is its location along vector v,
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SVD: Dimensionality Reduction

g 013 0.02 —0.01 ]
K on o, > BB 041 007 —0.03
555 E £8 0.55  0.09 —0.04 124 0 0
= zAag 0’ 068 011 —0.05 | x 0 95 0
1110 0] 0.15 —0.59  0.65 0 0 13
SciFi| 3 3 3 0 0 0.07 —0.73 —0.67
l 4.4 40 0| _[007 —020 032]
55 5 00 056 059 0.56 0.9  0.09
o204 4 ] 012 —002 012 —069 —0.69
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Lo 10 2 2|
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SVD: Dimensionality Reduction
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SVD: Dimensionality Reduction

8
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=
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N O © O oo Scmper

second

0.13 0.02 —0.01 Variance on the axis
0.41 0.07 -0.03
0.55 0.09 -0.04 0 0
0.68 0.11 -0.05 | x 0 9.5 0
0.15 -0.59 0.65 0 0 1.3
0.07 —-0.73 -0.67
— | 007 -0.29 0.32 |
[ 056 059 056 0.09 0.09 ]
x | 012 -0.02 0.]12 -0.69 -0.69
| 040 -0.80 0/1110 0.09 0.09 |
[ ]
o
first right

Movie 2 rating

® singular vector
[ ]

Movie 1 rating
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° ® singular vector|
[ ]
[ ]

g . (013 002 —0.01
2o >, &2 041  0.07 —0.03
£ £ 27%F E 055  0.09 —0.04 124 0 0
=Z2Aa g7 068 011 —0.05 | x 0 95 0
t f1 110 0] 015 -0.59 0.65 0 0 13
SeiFi | 3 3 3 00 0.07 —0.73 —0.67
| [44a00) | 0.07 -0.29 0.32 |
555 00 [056 059 056  0.09  0.09
b0 20 44 x [ 012 —002 0J2 —0.69 —0.69
Romance| 0 0 0 5 5 0.40 —0.80 0;10 0.00  0.09
Lo 1o 2 2] - |
2 s
§ \g.. first right
Ag [ ]
g

Movie 1 rating

Q: How to coordinates of the points in the projection axis?
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SVD: Another Interpretation

g
. . 2 BT
E S 2= g8 .
s s 5 £ 58 013 002 -0.01
2 AL 041 007 —0.03
t 11100 0.55  0.09 —0.04 124 0 0
SciFi | 3 3 3 0 0 068 0.11 —0.05 | x 0 95 0
l 4 440 0] _1] 015 —059 065 0 0 13
55 5 00 0.07 —0.73 —0.67
f 02 0 4 4 0.07 —0.29 0.32
Romance| O 0 0O 5 5 - -
v L0 1 0 2 2] 056 0.59 056  0.09  0.09

x| 012 -0.02 0.12 -0.69 -0.69
0.40 —-0.80 0.40 0.09 0.09

Set small singular values to zero

The above example is rank-2 approximation

We could also do rank-1 approximation.

The larger the rank, the more accurate the approximation
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SVD: Another Interpretation
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SVD Reconstruction Error

¢ Reconstruction error is quantified by the Frobenius norm:

M= > M?
if

IA—Bllr=_[> (Aj—By)?
ij
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SVD Reconstruction Error

¢ Reconstruction error is quantified by the Frobenius norm:

M= > M?
if

I|A—B||F = Z(Aij — Bjj)?

‘ q.

Theorem:

The best rank-1 approximation to A is olulvlT , Where o7 is the largest sngular value, u; is
the first left singular vector, and v, is the first right singular vector of A.
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What's a good value for r?

¢ Let the energy of a set of singular values be the sum of their squares.

¢ Pick r so the retained singular values have at least 90% of the total energy
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What's a good value for r?

¢ Let the energy of a set of singular values be the sum of their squares.

¢ Pick r so the retained singular values have at least 90% of the total energy

Example:

¢ With singular values 12.4, 9.5, and 1.3, total energy = 245.7
¢ If we drop 1.3, whose square is only 1.7

* We are left with energy 244, or over 99% of the total
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Please prove: AA" and AT A are with the same eigenvalues.
P g

Proof:

g@fzﬂ%: %
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Overview

® How to Compute SVD?
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How to Compute SVD?



Finding Figenpairs

¢ First we need finding the principal eigenvalue (the largest one)
¢ and the corresponding eigenvector of a symmetric matrix

¢ Note: M is symmetric if M;; = Mj; for all i and j

Method!:
@ Start with any “guess eigenvecor” x
Mxk
@ Constructxy, = ——— fork=0,1,...2
|| M|

@ Stop when consecutive x; show little change

Power iteration: https://en.wikipedia.org/wiki/Power_iteration
2||..|| denotes the Frobenius norm 23/67
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Finding Figenpairs: Example

w3 el
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Finding Figenpairs: Example

== 32
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Finding Figenpairs: Example

Mxy [3 _fos1]
o~ o]V~ [oe]

My,  [223] , —— [053] _
M| — [3.60]/ 17.93 = [0.85] %
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Finding the Principal Eigenvalue

With principal eigenvector x, we can find eigenvalue A by

A =x' Mx

25/67



Finding the Principal Eigenvalue

With principal eigenvector x, we can find eigenvalue A by

A =x' Mx

Prove:

@ We know x - A = Mx if )\ is the eigenvalue
@ Multiply both sides by x" on the left

® Since x'x =1, we have A = x Mx

25/67



Finding the Principal Eigenvalue

With principal eigenvector x, we can find eigenvalue A by

A =x' Mx

Prove:

@ We know x - A = Mx if )\ is the eigenvalue
@ Multiply both sides by x" on the left

® Since x'x =1, we have A = x Mx

Example: if we take x" = [0.53,0.85], then

A = [0,530.85] {1 2} {053

2 3 0.85]:4'25
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Finding More Eigenpairs

@ Eliminate the portion of the matrix M that can be generated by the first eigenpair, A
and x:

Mx =M — \xx'

@ Recursively find the principal eigenpair for Mx
© Eliminate the effect of that pair, and so on

26/67



Finding More Eigenpairs

@ Eliminate the portion of the matrix M that can be generated by the first eigenpair, A
and x:

Mx =M — \xx'

@ Recursively find the principal eigenpair for Mx
© Eliminate the effect of that pair, and so on

Example:

12 0.53 ~0.19 0.09
M = [2 3] —4.25 {0.85] [0.530.85] = [0.09 0'07}
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How to Compute the SVD

@ Start by supposing A = UXV "
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How to Compute the SVD

@ Start by supposing A = UXV "
OAT=Uu=vHT =(vHTsTuT =vu’
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How to Compute the SVD

@ Start by supposing A = UXV "
®AT ==V =) STUT =vsu’
©ATA=VSUTUSVT = VvX2VT

* Note: U is orthonormal, so U " U is an identity matrix

* Note: ¥? is a diagonal matrix whose i-th element is the square of the i-th
element of X
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How to Compute the SVD

@ Start by supposing A = UXV "
QAT =Uu=v)T =(vHTETUu’ =vsu’
®©ATA=VvSuU UsvVT = vs2vT

* Note: U is orthonormal, so U " U is an identity matrix

* Note: ¥? is a diagonal matrix whose i-th element is the square of the i-th
element of X

O ATAV =V2VTV = V3?2

® Note: V is also orthonormal
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How to Compute the SVD

@ Start by supposing A = UXV "
®AT ==V =) STUT =vsu’
©ATA=VSUTUSVT = VvX2VT

* Note: U is orthonormal, so U " U is an identity matrix

* Note: ¥? is a diagonal matrix whose i-th element is the square of the i-th
element of X

O ATAV =VX2VTy = vx?
® Note: V is also orthonormal

© We can find V&X by finding the eigenpairs for AT A
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How to Compute the SVD

@ Start by supposing A = UXV "
®AT ==V =) STUT =vsu’
©ATA=VSUTUSVT = VvX2VT

* Note: U is orthonormal, so U " U is an identity matrix

* Note: ¥? is a diagonal matrix whose i-th element is the square of the i-th
element of X

O ATAV =VX2VTy = vx?
® Note: V is also orthonormal
© We can find V&X by finding the eigenpairs for AT A

® Symmetric argument: AAT givesus U
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How to Compute the SVD

@ Start by supposing A = UXV "
®AT ==V =) STUT =vsu’
©ATA=VSUTUSVT = VvX2VT

* Note: U is orthonormal, so U " U is an identity matrix

* Note: ¥? is a diagonal matrix whose i-th element is the square of the i-th
element of X

O ATAV=VEVTV =V32
® Note: V is also orthonormal
@ We can find V&X by finding the eigenpairs for ATA

0@ Symmetric arcument: AA" gives us U
y g g
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Example:

Calculate SVD of matrix A =
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Example:

Calculate SVD of matrix A =

Solution:

ATA = [

55
55

g@fzﬂ%: %
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Example:

Calculate SVD of matrix A =

Solution:
T. |55
4 4= [5 5

w il ==
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Example:

1 1
Calculate SVD of matrix A = (2 2].
0 0
Solution:
T. |55
A'A= [5 5
1/v2 1/v2
01 = , 02 =
1/v2 _1/V2
— A1 = v] AT Av; = 10; therefore o1 = /A1 = V10
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Example:

1 1
Calculate SVD of matrix A = (2 2].
0 0
Solution:
55
ATA =
a=[

) (48

— A1 = v] AT Av; = 10; therefore o1 = /A1 = V10

— X\ = v, AT Av, = 0; therefore 0y = /23 = 0
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Example:

1 1
Calculate SVD of matrix A = (2 2].

0 0
Solution:

o

5 5

N L

= 11wl

— A =7, TATAv; = 10; therefore o7 =

—>)\7_:

A=UxV' = |2/\/5

0

_1/\@
VAL = V10

v, AT Avy = 0; therefore oy = /Ay =0

1/v/5 0

0 O
0O 1L 0 O

1/vV2 —1/v2

1/\6 _2/\@ 0] [\/m 0] |:1/ﬁ 1/ﬁ:|
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SVD: Complexity

To compute the full SVD using specialized methods:
* O(nm?) or O(n*m) (whichever is less)
But:
¢ Less work, if we just want singular values
¢ Or if we want the first k singular vectors
¢ Or if the matrix is sparse
Implemented in linear algebra packages link
e LINPACK, Matlab, SPlus, Mathematica, ...
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Overview

O Applications to DNN Decomposition
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Applications to DNN
Decomposition



Low Rank Approximation for Conv?

This CVPR2015 paper is the Open Access version, provided by the Computer Vision Foundation.
The authoritative version of this paper is available in IEEE Xplore.

Efficient and Accurate Approximations of Nonlinear Convolutional Networks

Xiangyu Zhang'*  Jianhua Zou' Xiang Ming!* Kaiming He? Jian Sun?
Xi’an Jiaotong University “Microsoft Research

3Xiangyu Zhang et al. (2015). “Efficient and accurate approximations of nonlinear convolutional
networks”. In: Proc. CVPR, pp. 1984-1992. 31/67



Low Rank Approximation for Conv

* Layer responses lie in a low- w

rank subspace j/'@\\ ar
. i e
* Decompose a convolutional @) <W;//
layer with d filters with filter \@/
sizek X k X cto

* Alayer with d’ filters (k X k X ¢)

W!
* Alayer with d filter (1 x 1 x d’) Z”ﬁ\‘
b

(b)

S —— S

¢ channels d' channels d channels

Zhang et al Efficient and Accurate Approximations of Nonlinear Convolutional Networks CVPR’15 32/67




Low Rank Approximation for Conv

| speedup | rank sel. | Convl

Conv2 Conv3

Conv4 Conv5

Conv6 Conv7 | err. % |

2% no 32 110 199 219 219 219 219 1.18
2% yes 32 83 182 211 239 237 253 0.93
2.4x no 32 96 174 191 191 191 191 1.77
2.4 yes 32 74 162 187 207 205 219 1.35
3% no 32 /7] 139 153 153 153 153 2.56
3% yes 32 62 138 149 166 162 167 2.34
4% no 32 57 104 115 115 115 115 4.32
4% yes 32 50 112 114 122 117 119 4.20
5x% no 32 46 83 92 92 92 92 653
5% yes 32 41 94 93 98 92 90 6.47

Zhang et al Efficient and Accurate Approximations of Nonlinear Convolutional Networks CVPR’15
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Published as a conference paper at ICLR 2016

CONVOLUTIONAL NEURAL NETWORKS WITH LOw-
RANK REGULARIZATION

Cheng Tai', Tong Xiao?, Yi Zhang®, Xiaogang Wang?, Weinan E!

!The Program in Applied and Computational Mathematics, Princeton University

2Department of Electronic Engineering, The Chinese University of Hong Kong

3Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor
{chengt,weinan}@math.princeton.edu; yeezhangQumich.edu

{xiaotong, xgwang}@ee. cuhk.edu.hk

¢ A new algorithm for computing the low-rank tensor decomposition

¢ A new method for training low-rank constrained CNNs from scratch

4Cheng Tai et al. (2016). “Convolutional neural networks with low-rank regularization”. In:
Proc. ICLR.
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Singular Value Decomposition

Pretrained CNN Approximation

* Convolution Calculation
Fal®y) = Yoot et Lyrm1 25 (Y ) We (x =Xy —y)

° W, € Ri*4xC o represent the 7 -th filter.Z € R¥*Y*U be the input feature map.

¢ An approximation of W
K

We=>"Hhp)"
k=1

where K is a hyper-parameter controlling the rank, # € RN*1*@xR ig the horizontal
filter, V € RE*@x1%C g the vertical filter (Notes: H{ and V¢ are both vectors in RY).
Both H and V are learnable parameters.

¢ Then the convolution becomes
& @ T C
Wox 2 = S0, S He ()T + 25 = S e+ (D, v+ 2°)
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Singular Value Decomposition

Complexity Analysis

¢ Standard Convolution Complexity: O(d*NCXY) operations

® Approximation Scheme Complexity
The computational cost associated with the vertical filters is O(dKCXY) and with
horizational fileters is O(dNKXY), a total computational cost is O(dK(N + C)XY)

° IfK< Z‘\i%, acceleration can be achieved

35/67



Singular Value Decomposition

Approximate Parameters H and V
¢ Minimizing the objective function

c K k o\ T 2
Ei(H,V) =2, Wi — 2kt Ha () HP

¢ Theorem: Define the following bijection that maps a tensor to a matrix
T RExdxdxN y REXAN tensor element (iy, iz, i3, i4) maps to (j1,j2) , where

jl = (11 —1)d—|—i2, jz = (14 —1)d+i3
Define W := T[W)]. Let W = UDQT be the singular Value Decomposition (SVD) of
W. Let .
Vi () = Uc—1)a+j v/ Drx
#H3(7) = Quu—nya+jav/Dick

then (74, V) is a solution to minimizing the object function
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Singular Value Decomposition

¢ The proposed parametrization for low-rank regularization.

A A AL

=1

c N c

Left: The original convolutional layer. Right: low-rank constraint convolutional layer with rank-K.
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Singular Value Decomposition

Training Low-rank Constrained CNN From Scratch

¢ The effect of SVD Decomposition
Each convolutional layer is parameterized as the composition of two convolutional
layers,

¢ Exploding and vanishing gradients expecially for large networks

¢ Batch Normalition can handle this problem
(Recall the theory of Batch Normalization)
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Overview

@ Tensor Decomposition
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Tensor Decomposition

R



Introduction to Tensor Decomposition

m// o)
(3)
N N n 73 ﬁ. 2) %"r 2)
3 n —
7 @ }’2 7/ o — o "
-_— H_/
73

n I N7 n e+
{ A I rl{g Vl]{ A nl{|:|ul(1) + |:|u’('1)
TR nl{ 3

(a) Tucker-decomposition (b) CP-decomposition
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Tucker Decomposition®

Published as a conference paper at ICLR 2016

COMPRESSION OF DEEP CONVOLUTIONAL NEURAL
NETWORKS FOR FAST AND LOW POWER MOBILE AP-
PLICATIONS

Yong-Deok Kim', Eunhyeok Park?, Sungjoo Yoo?, Taelim Choi', Lu Yang' & Dongjun Shin'

Software R&D Center, Device Solutions, Samsung Electronics, South Korea
{yd.mlg.kim, tl.choi, lu20l4.yang, d.j.shin}@samsung.com

2Department of Computer Science and Engineering, Seoul National University, South Korea
{canusglow, sungjoo.yoo}@gmail.com

¢ Propose a one-shot whole network compression scheme which consists of simple

three steps: (1) rank selection, (2) low-rank tensor decomposition, and (3) fine-tuning.

¢ Tucker decomposition (Tucker, 1966) with the rank determined by a global analytic
solution of variational Bayesian matrix factorization is applied on each kernel tensor.

*Yong-Deok Kim et al. (2016). “Compression of deep convolutional neural networks for fast and
low power mobile applications”. In: Proc. ICLR.
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Tucker Decomposition

Kernel Tensor Approximation

* Convolution Calculation

D D 5]
yh’,w’,t = Z Z Z ,Ci,j,s,tXhi,w]-,s

i=1 j=1 s=1
hi=MW —1)A+i—Pandwj = (w' —1)A+j—P

where K is a 4-way kernel tensor of size D x D x § x T, § is stride, and P is
zero-padding size

* Tucker Decomposition:The rank-(R;; Ry; R3; R4) Tucker decomposition of 4-way
kernel tensor K has the form:

1 2 3 4
Ici,/',s,t = Erl 1 Zrz 1 ng 1 Zm 1 671,7’2,1‘3,74 ufrz u](yz us( r)3 ut( ri

where C' is a core tensor of size R; x Ry x Rz x Ry and UM, U@, U® | and U® are
factor matrices of sizes D x Ry,D X Ry, S x R3, and T x Ry, respectively.
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Tucker Decomposition

Tucker Decomposition

¢ Every mode does not have to be decomposed(e.g. For example, we do not
decompose mode-1 and mode-2 which are associated with spatial dimensions
because they are already quite small).

¢ Under this variant called Tucker-2 decomposition, the kernel tensor is decomposed
to:

o (3)17(4)
Kz,],s,t - ng il Zm 1 1,j,73,74 Us R ut 4

where C is a core tensor of size D x D x R3 x Ry

¢ With the approximation of kernel, the convolution is as following:

S
(3)
Zh,w,r3 = Z us,rth,w,s

D D Ro

Wy E :E E Ci,j,r3,r4zhz,w,v,r9

i=1 j=1 ro=1
R 43/67
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Tucker Decomposition

¢ Tucker-2 decompositions for speeding-up a convolution

R, R, T

ey it

Figure 3: Tucker-2 decompositions for speeding-up a convolution. Each transparent box corre-
sponds to 3-way tensor X, Z, Z’, and Y in (3-5), with two frontal sides corresponding to spatial
dimensions. Arrows represent linear mappings and illustrate how scalar values on the right are com-
puted. Yellow tube, red box, and blue tube correspond to 1 x 1, D x D, and 1 x 1 convolution in
(3), (4), and (5) respectively.

¢ Complexity Analysis

_ D?ST _ D?STH'W’
M = g A4 E = semw ok W TR AW

M represents the compression ratio, E represents the speed-up ratio 14/67



Tucker Decomposition

Rank Selection With Global Analytic VBMF

* Motivation: The rank-(R3; R4) control the trade-off between performance (memory,
speed, energy) improvement and accuracy loss.

* Method: variational Bayesian atrix factorization®

¢ Advantages: VBMF can automatically find noise variance, rank and even provide
theoretical condition for perfect rank recovery

%Shinichi Nakajima et al. (2013). “Global analytic solution of fully-observed variational Bayesian
matrix factorization”. In: Journal of Machine Learning Research 14.Jan, pp. 1-37. 45/67



Tucker Decomposition

¢ One-shot whole network compression scheme

T s » B
J
» » s > »
FC 8b
< Back-propagation |

Three parts: (1) rank selection with VBMF; (2) Tucker decomposition on kernel tensor; (3)
fine-tuning of entire network.

-
aQ
%0
o

¢ Notes:Tucker-2 decomposition is applied from the second convolutional layer to the
first fully connected layers, and Tucker-1 decomposition to the other layers.
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CP-Decomposition’

Published as a conference paper at ICLR 2015

SPEEDING-UP CONVOLUTIONAL NEURAL NETWORKS
USING FINE-TUNED CP-DECOMPOSITION

Vadim Lebedev'2, Yaroslav Ganin', Maksim Rakhuba!?, Ivan Oseledets'*, and Victor Lempitsky’
!'Skolkovo Institute of Science and Technology (Skoltech), Moscow, Russia
2Yandex, Moscow, Russia

3Moscow Institute of Physics and Technology, Moscow Region, Russia
“Institute of Numerical Mathematics RAS, Moscow, Russia

¢ Take a convolutional layer and decompose its kernel using CP-decomposition

¢ Fine-tune the entire network using backpropagation.

’Vadim Lebedev et al. (2015). “Speeding-up convolutional neural networks using fine-tuned
CP-decomposition”. In: Proc. ICLR. 47/67



CP Decomposition

Advantages

¢ Ease of the decomposition implementation
¢ Ease of the CNN implementation
¢ Ease of fine-tuning

¢ Efficiency
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CP-Decomposition

Principle
¢ A low-rank decomposition of a matrix A of size n x m with rank R is given by
Alhf) = S A0 AzGn, i=Ton, j=Tm

¢ For a d-dimensional array A of size n; X - - - x ny a CP-decomposition has the
following form

Ali,... ig) = S5 A1 (i1,7) ... Aa (ig, 7)
where the minimal possible R is called canonical rank.

* Profit we need to store only (17 + - - - + 14) R elements instead of the whole tensor
with n1 ... n; elements.

Notes:
¢ There is no finite algorithm for determining canonical rank of a tensor when d > 2
¢ Non-linear least squares (NLS) method minimizes the L2-norm of the approximation

residual (for a user-defined fixed R) using Gauss-Newton optimization. 49/67



CP-Decomposition

Kernel Tensor Approximation

¢ Convolution Calculation
V(x,y,t) = it s Sl s Yo K(i = x+6,j —y + 6,5, HU(i.j,5)

® K(-,,-,-)is a4D kernel tensor of size d x d x S x T d is the spatial dimensions, S is
input channels, T is output channels, while ¢ denotes "half-width" (d —1)/2

¢ Kernel Approximation
K(i,j,s,8) = Sop K¥(i — x + 6, 1)KV (j — y + 6,)K*(s, r)K! (£, 7)

* where K*(-,-),KY(-,-),K*(+, ), K'(-, -) are the four components of the composition
representing 2D tensors (matrices) of sizes d X R,d x R,S x R, and T x R respectively.
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CP-Decomposition

Convolution Approximation

¢ Substitue the Kernel Approx to Conv

x+6 y+é
V(x,y,t) ZKttr (Z K*(i—x+46,r) (Z K'(j—y+d,r) (ZKssr (i,],s) >>)
j=

i=x—0 y—0

¢ Step by Step Calculation

u (i, j, r) ZK(sr (i,],s)

y+5

W(,y,r) =Y K(—y+6nUGij1)
j=y—¢
x+6

U™ (x,y,r) = Z K*(i—x+6,7)U"(i,y,7)

i=x—§

R
V(x,y,t) = Z K (t, ) U™ (x,y,7)
=t 51/67



CP-Decomposition

Complexity Comparison:

S T

(a) Full convolution (b) Two-component decomposition (1] aderberg et al.L ‘2014aj)
R R
S T

(c) CP-decomposition
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Overview

O Matrix Regression Approach
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Matrix Regression Approach

=
P



Matrix Approximation or Matrix Regression?

>< p—

X e Réx (k*¢) W e R(*:7)xn Y ¢ RdXxn

* Matrix approximation: W ~ W’

* Matrix regression: Y =W - X~ W' - X
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Non-linearity Approximation

3
2 | N . .
® Activation unit: ReLU
Ly | ¢ Error more sensitive to positive response;
0 ‘ . * Enlarge the solution space.
2 0 2 8 P
ReLU

N N
mvivn;‘ IWX; - il mvivn; Ir(WX;) = Yill
1= 1=

¢ X: input feature map

* Y: output feature map
55/67



Proposed Unified Structure®

X MXE:

ReLU -

X =

¢ Simultaneous low-rank approximation and network sparsification;
¢ Non-linearity is taken into account.

¢ Acceleration is achieved with structured sparsity.

%Yuzhe Ma et al. (2019). “A Unified Approximation Framework for Non-Linear Deep Neural
Networks”. In: Proc. ICTAL 56/67



Formulation

Given a pre-trained network, the goal is to minimize the reconstruction error of
the response in each layer after activation, using sparse component and low-rank
component.

N
min z; 1Y; = r((A+ B)X))|| ,
i=

s.t. ||Allp <8,
rank(B) < L.

¢ X: input feature map

* Y: output feature map

Not easy to solve: [y minimization and rank minimization are NI’-hard.
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Relaxation

N

min Y [|Y; — r((A +B)X)|[F + M1 [Allp; + A2 B,
=1

¢ The [y constraint is relaxed by I, 1 norm such that the zero elements in A appear
column-wise;

¢ The rank constraint on B is relaxed by nuclear norm of B, which is the sum of the
singular values;

¢ Apply alternating direction method of multipliers (ADMM) to solve it;

58/67



Alternating Direction Method of Multipliers (ADMM)

Reference: https://www.stat.cmu.edu/~ryantibs/convexopt/lectures/admm.pdf 59/67


https://www.stat.cmu.edu/~ryantibs/convexopt/lectures/admm.pdf

Alternating Direction Method of Multipliers (ADMM)

Reformulating the problem with an auxiliary variable M,

N

. 2
min Y = r(MX)F + M [|A ]l + A2 B
T =1

st. A+ B=M.

Then the augmented Lagrangian function is

Lt(A7BaM7A)
N ¢ )
= > 1Y = r(MX)|7 + M |4l + X2 [BIl, + (A, A+ B —M) + 5 1A+ B — M|,
i=1
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Alternating Direction Method of Multipliers (ADMM)

Iteratively solve with following rules. All of them can be solved efficiently.

( 2

. t A
Agy1 = argmin A\ [|All,; + 5 HA + B, — M + Tk ,
A F
t Ay l]?
By 1 = argmin )\ZHB”*"‘E HB + Ag1 — Mg+ — 1.
B F

N
. t
M =argmin Y [|Y; — r(MX))[[f + (Ax, Ags1 + Besr — M) + 5 1Akt + Bryr — Mz,
Mo
( A1 =Ax + HAkt1 + B — M)
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SOlVing 12’1 -norm

: t Ak 2
min \q ||Al,; + 5 [|[A+ B — M+ —
A ) 2 ' ;
Closed Form Update Rule’
A
A =proxa, . (My—Bi = =5),
C= M — B — %7
I[C]..ill, — 3 ‘ A
— e L€ B39 if [|[C illy > —;
At = 4 LT, (Gt TNl > =
0, otherwise.

°G. Liu et al., “Robust recovery of subspace structures by low-rank representation”, TPAMI, 2013. 62/67



Solving nuclear norm

: t A
min A |B||, + = ||B+ Akr1 — M+ —
B 2 tllp
Closed Form Update Rule™
A
Bk+1 = pI‘OX¥H'”*(Mk — Ak+1 — Tk),
A
D =M — A — =
A2

Bii1 = UD», (X)V, where D, (X) = diag({(ci — T)+})

10J-F. Cai et al., “A singular value thresholding algorithm for matrix completion”, SIOPT, 2010.
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Comparison on CIFAR-10 dataset

Model ‘ Method ‘ Accuracy | ‘ CR ‘ Speed-up

Original 0.00% 1.00 1.00

VGG-16 | ICLR’171 0.06% 2.70 1.80

Ours 0.40% 444 2.20

Original 0.00% 1.00 1.00

NIN | ICLR’16!2 1.43% 1.54 1.50
IJCAT'18"3 1.43% 1.45 -

Ours 0.41% 2.77 1.70

"Hao Li et al. (2017). “Pruning filters for efficient convnets”. In: Proc. ICLR.

12Cheng Tai et al. (2016). “Convolutional neural networks with low-rank regularization”. In:

Proc. ICLR.

3Shiva Prasad Kasiviswanathan, Nina Narodytska, and Hongxia Jin (2018). “Network
Approximation using Tensor Sketching”. In: Proc. I[CAI, pp. 2319-2325.



Preliminary Results

— Non-linear —— Linear
S 18 4f ]
Q. Q.
) o L
= o 2 N
R 05) 1 A
: 5 ! R\ |
0 [
&) | | | é 0 | I F
04 0.6 0.8 1 04 06 038 1
Compression Rate Compression Rate
(a) (b)
Comparison of reconstructing linear response and non-linear response: (a) layer conv2-1; (b) layer

conv3-1.
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Approximation Example

1000

1500

Approximated filters of conv3-1. Blue dots have non-zero values. Low-rank filter B with rank 136
is decomposed into UV, both of which have rank 136. (a) Matrix U; (b) Matrix V. (c) Column-wise
sparse filter A.
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Comparison on ImageNet dataset

Model | Method | Top-5Accu.l | CR | Speed-up

Original 0.00% 1.00 1.00

ICLR16' 0.37% 5.00 1.82

AlexNet | 1) pr1g15 1.70% 546 | 181
CVPR’1816 1.43% 1.50 -

Ours 1.27% 5.56 1.10

Original 0.00% 1.00 1.00

GoogleNet ICLR’16'0 0.42% 2.84 1.20

ICLR’16'! 0.24% 1.28 1.23
CVPR’18!2 0.21% 1.50 -

Ours 0.00% 2.87 1.35

14Cheng Tai et al. (2016). “Convolutional neural networks with low-rank regularization”. In:
Proc. ICLR.
>Yong-Deok Kim et al. (2016). “Compression of deep convolutional neural networks for fast and
low power mobile applications”. In: Proc. ICLR.
1®Ruichi Yu et al. (2018). “NISP: Pruning networks using neuron importance score propagation”.
In: Proc. CVPR, pp. 9194-9203. 67/67
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