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Deeper and Larger Networks

Modern Deep CNN: 5 — 1000 Layers
A

\

Low-Level High-Level
Features > - ﬂ Features ->E—>Classes
== ;

1-3 Layers

Researchers design deeper and larger networks to ensure model performance.

© VGG-16, 16 parameter layers
© VGG-19, 19 parameter layers

© GoogLeNet, 22 parameter layers
® ResNet : -18, -34, -50, -101, -152 layers
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Memory and Computations
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¢ The size of the blob is proportional to the number of network parameters.
¢ More than millions of parameters and billions of operations.

¢ Challenges in memory and energy, finally affect the performance.
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Overview

@ Sparse Regression

(3] Pruning
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Sparse Regression
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Linear Regression

Input
® y=(y1,...,yn) " : N samples to measure performance
o X = (xM, ... xMN)T: N parameters, where x() = (xgi), . 7x,f,i))T is parameter vector

for sample y;

Output
e B=(p,0,-.., 5,,)T: linear regression model coefficients, s.t. y ~ X3
1 1 1
] [ ]
V2| o xg) xg) xlg,) B2
N ng) xéN) x,(,N) By
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Challenges in Linear Regression

X7 Xy e X
M) @ N: sample #

X= "1 2. TP p: parameter #
MIUENO RN

¢ Time consuming to run simulation or measure — sample# N is limited

If N < parameter# p, — no unique solutions

Overfitting problem

Should reduce parameter#
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Local Analysis

O, %+ Axgy - xg) —foxg, -, %K)

S =
Axi

* © Computationally efficient

* © Only take into account local variation around nominal value
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Least Squares

minly - X8 - B=X'X)"'XTy

® Global view

© Too complicated model after analysis

© Need large simulation size (N > p)

© Otherrwise X " X may be singular (difficult to invert)
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Please prove:

ngnny—XﬁH% - B=X"X)"XxTy
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Vector Norms

Definition

lell, = O lail”)'?
i
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Vector Norms

Definition

lell, = O lail”)'?

i

¢ L-0 norm: ||x||p = number of non-zero values

* L-1norm: [|x||; = Y, ||

o L2 norm: |xf|2 = /3, |62 = \/x% F2 22
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Vector Norms

Definition

lell, = O lail”)'?

i

L-0 norm: ||x||p = number of non-zero values

L-1 norm: ||x|l1 = >, |xi]

L-2 norm: ||x|l, = />, [xi|* = \/x% +x3 4+ 2

L-infinity norm: ||x||oc = max; |x;]
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Which of the following is LO?

A.x1+x2+x3
B. max({x1, x2, x3}
C.Ix1l + Ix21 + Ix31

D. none of them

g@fzﬂ%: %

13/40



lo-Norm Regularization

minimize |y — Xg|,
subjectto  ||Bllo < A

® Global view
© NP-hard

Orthogonal matching pursuit (OMP): iterative heuristics

© Computational expensive
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Why we dont use L0 as regularization term?

A. complicated inference
B. no direct gradient obtained
C. none of above

D. both of above
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Ridge Regression

p
argmin ||y — XI5+ A > |3
B

j=1
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Ridge Regression

p
argmin ||y — XI5+ A > |3
B

j=1

- B=X'X+M)"'X"y

16/40



p
arg min |y — XB[3 + A > )
B

Jj=1

® “{; penalty” (Lasso)
¢ B optimally solved by Coordinate Descent [Friedman+,AOAS'07]

® \: nonnegative regularization parameter
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Which of the following regularization term can introduce sparsity?

A. L1

B.L2

C. both of them
D. None of them
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Which regularization is used to reduce the over fit problem?

A. L1

B.L2

C. both of them
D. None of them
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FIGURE 3.11. Estimation picture for the lasso (left) and ridge regression
(right). Shown are contours of the error and constraint functions. The solid blue
areas are the constraint regions |B1| + |B2| < t and B% + B3 < t2, respectively,
while the red ellipses are the contours of the least squares error function.
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Can we introduce a more sparse regularization term? Why

For example, |x|'/2 4 |y['/2.
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Provide closed-form solution to single variable Lasso problem:

1
mxinL(x) = E(x —w)? + x|

g@fzﬂ%: %
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Visualization For Single Variable Lasso

—— LASSO A
Ridge
Least Square

Note: Lasso solution

e Ifx>0,thenw—-A>0w>A) 2x=w-—A\
e Ifx<0,thenw+ A< 0(w< —A) >x=w+ A

* x =0, others
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Coordinate Descent

¢ The idea behind coordinate descent is, simply, to optimize a target function with
respect to a single parameter at a time, iteratively cycling through all parameters
until convergence is reached

¢ Coordinate descent is particularly suitable for problems, like the lasso, that have a
simple closed form solution in a single dimension but lack one in higher dimensions
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Coordinate Descent (cont.)

@ Let us consider minimizing @ with respect to j3;, while
temporarily treating the other regression coefficients 3_; as
fixed:

n

Q(B418_;) = on Z(yi - injﬁk — z;;8;)* + \|B;| + Constant

1
"o k#£j

o Let

Tij = Yi — Z zinBr
kA

n

~ —1 ~

Z;="n E TijTi5,
i=1

where {7;;}7_, are the partial residuals with respect to the ;"
predictor, and Z; is the OLS estimator based on {7;;,z;;}7,
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Coordinate Descent (cont.)

@ We have already solved the problem of finding a
one-dimensional lasso solution; letting 3; denote the

minimizer of Q(ﬁjl,Z:J_j)v
Bj = S(z|\)

@ This suggests the following algorithm:
repeat
forj = 1?27"'7p
5 =n"t 0wy + B
B« 510
i T — (EJ(-SH) — EJ(-S))xij for all <.

until convergence
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Group Lasso

® We denote X as being composed of ] groups X1, X>,...,X]
© XB = }_; XjB;, where §; represents the coefficients belonging to the jth group

arg;nin ly — X85 + Z Al Byl
i

= arggnin”y— E XiB;|; + E :)‘f||57||
j j
Example:
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Pruning



Im2col (Image2Column) Convolution

! Filters: n x ¢ x k x k

(1 y s

>< p—

X e Rdx(kzc) W ¢ R(kEC)Xn Y € Rdxn

¢ Transform convolution to matrix multiplication

¢ Unified calculation for both convolution and fully-connected layers
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Matrix Approximation or Matrix Regression?

>< p—

X e Rdx(kzc) W e R(*:7o)xn Y € RdXxn

Which is better?

* Matrix approximation: W ~ W’

® Matrix regression: Y =W -X~ W’ - X
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Compression Approach 1: Random Sparsity

X p—
|

X e RAx (K%¢) S e R(k*e)xn Y c Rxn

Sparse DNN

® Sparsification: weight pruning;
® Compression: compressed sparse format for storage;

 Potential acceleration: sparse matrix multiplication algorithm.
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Compression Approach 2: Structured Sparsity

>< p—

X e Rdx(kzc) S e R(kzc)xn Y ¢ Ran

Structured Sparse DNN

e Potential acceleration: GEMM or directed convolution.
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Exploring the Granularity of Sparsity that is
Hardware-friendly

4 types of pruning granularity

irregular sparsity regular sparsity  more regular sparsity

= =
=
o]

E i >= ” . :>
Han et al, NIPS'15 Molchanov et al, ICLR1

fully-dense
model

=i
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Structured Sparsity Learning’

Random sparsity, theoretical Speedup # practical Speedup

1 EIQuadro K600
-‘g ETesla K40c

5 CIGTX Titan

@© -O-Sparsity

0

convl conv2 conv3d conv4 convS

Forwarding speedups of AlexNet on GPU platforms and the sparsity. Baseline is
GEMM of cuBLAS. The sparse matrixes are stored in the format of Compressed
Sparse Row (CSR) and accelerated by cuSPARSE.

Hardcoding nonzero weights in source
code in B. Liu, etc., CVPR 2015

Software customization

Irregular Poor No or
Random egula -
) memory cache trivial
sparsity .
access locality speedup

Hardware customization

Customizing an EIE chip accelerator
for compressed DNN in S. Han ISCA
2017

'Wei Wen et al. (2016). “Learning structured sparsity in deep neural networks”. In: Proc. NIPS,
pp. 2074-2082. 34/40



Structured Sparsity Learning

Structural Sparsity

L EIQuadro K600
= ETesla K40c
5 CIGTX Titan
@© -O-Sparsity

0

convd  convs

convl conv2 conv3
Forwarding speedups of AlexNet on GPU platforms and the sparsity. Baseline is
GEMM of cuBLAS. The sparse matrixes are stored in the format of Compressed

Sparse Row (CSR) and accelerated by cuSPARSE.

Higher speedup with

Regular Good
gtr:rcsti;lred memory cache Grea(tj software or hardware
P Y access locality speedup customization
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Structural Sparsity Learning — Some Examples

Dense matrix to block sparse matrix

0201 02[-06[01]04a]-01]06 02 | -0.6 2011 06
04 (-03[04]01]02[-04[01]05 04|04 01|05
l—'\

07 [-01[-03]01]05[-01]05]01[— |07 01 05| 0.1
0106 |-05]03|-04|-02]03]06 01106 03106

Removing 2D filters in convolution (2D-filter-wise sparsity)

3D filter =
stacked 2D filters
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Structural Sparsity Learning — Some Examples

Removing rows/columns in GEMM (row /column-wise sparsity)

feature map Non-structured sparsity
conv2_1: weight sparsity (col:8.7% row:19.5% elem:94.6%)

60 7 X
£ =
=
P £
filter 2 o
- 2  Structured sparsity
Weight matrix 8 conv2_1: weight sparsity (col:75.2% row:21.9% elem:91.5%)
h TR wmEE
GEneral Matrix Matrix Multiplication ' 5.17X speedup
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Structured Sparsity Learning

Group Lasso Regularization
® Ep(W) is the loss on data.

¢ R(-) is non-structured regularization applying on every weight, .g., f,-norm.

® Rq(-) is the structured sparsity regularization for G groups on each layer:

G
Rg(w) = > [w®l5.
g=1

* Here || - | is group lasso, or [w® || = Zl'z(f)‘ (wfg))z, where |w(®)| is the number of

weights in w(®).
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Structural Sparsity Learning

Group Lasso Regularization

Learned structured sparsity is determined by the way of splitting groups.

Penalize unimportant

filters and channels Learn filter shapes Learn the depth of layers
channel-wise W(fl) shortcut
. TN
T |
i \ +—>
) “shape-wise
\ 0}

Lepmysky

...... depth-wise W

L
E(W) = Ep(W) + A R(W) + Ag Y Rg(W®)
=1
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Channel Pruning?

B c i
5 w
—
| A -
g c Ky
C n ‘

nonlinear nonlinear

We aim to reduce the width of feature map B, while minimizing the
reconstruction error on feature map C. Our optimization algorithm performs
within the dotted box, which does not involve nonlinearity. This figure
illustrates the situation that two channels are pruned for feature map B. Thus
corresponding channels of filters W can be removed. Furthermore, even
though not directly optimized by our algorithm, the corresponding filters in
the previous layer can also be removed (marked by dotted filters). c, n:
number of channels for feature maps B and C, k;, X k,,: kernel size.

%Yihui He, Xiangyu Zhang, and Jian Sun (2017). “Channel Pruning for Accelerating Very Deep
Neural Networks”. In: Proc. [CCV. 40/40



Channel Pruning?

Formally, to prune a feature map with ¢ channels, we consider applying

n X ¢ X ky X k,, convolutional filters W on N X ¢ X kj, X k,, input volumes X
sampled from this feature map, which produces N x n output matrix Y. Here,
N is the number of samples, 7 is the number of output channels, and &, k,, are
the kernel size. For simple representation, bias term is not included in our
formulation. To prune the input channels from c to desired ¢’ (0 < ¢’ < ¢),
while minimizing reconstruction error, we formulate our problem as follow:

1
arg min ——
Gw 2N M

2
F

c
Y- Z BXiW; T
i—1

subject to || 8|, < ¢’

||-||  is Frobenius norm. Xj is N x kk,, matrix sliced from ith channel of

input volumes X, i = 1, ...,c. W;j is n X kk,, filter weights sliced from ith

channel of W. 3 is coefficient vector of length ¢ for channel selection, and §;

is ith entry of 3. Notice that, if 8; = 0, X; will be no longer useful, which
map. W; could also be removed.

%Yihui He, Xiangyu Zhang, and Jian Sun (2017). “Channel Pruning for Accelerating Very Deep
Neural Networks”. In: Proc. [CCV. 40/40



Channel Pruning?

Solving this £y minimization problem in Eqn. 1 is NP-hard. we relax the ¢, to
£ regularization:

2

c
gmin oy Y- BXWiT|| + A8l
’ i=1 F

subject to |[BHfE=’, Vi Wil p = 1

A is a penalty coefficient. By increasing A, there will be more zero terms in 3
and one can get higher speed-up ratio. We also add a constrain Vi |Wij| , = 1

to this formulation, which avoids trivial solution. Now we solve this problem

in two folds. First, we fix W, solve 3 for channel selection. Second, we fix 3,
solve W to reconstruct error.

@

%Yihui He, Xiangyu Zhang, and Jian Sun (2017). “Channel Pruning for Accelerating Very Deep
Neural Networks”. In: Proc. [CCV. 40/40
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Channel Pruning?

(i) The subproblem of 3: In this case, W is fixed. We solve 3 for channel
selection.

lASS o

) = arg;nm + A8l

ZB,

3

subj c

Here Z; = X;W; ' (size N x n). We will ignore ith channels if 3; = 0.

(ii) The subproblem of W: In this case, 3 is fixed. We utilize the selected
channels to minimize reconstruction error. We can find optimized solution by
least squares:

2
argmin”Y—X’(W’)T” )
W/ F
Here X' = [51X1 £Xs ... BiX ... BcX¢] (size N X ckpky). W' is n X ckpk,
reshaped W, W = [W; W3 ... W; ... W,]. After obtained result W', it is
reshaped back to W. Then we assign 5; < S; || Wil , Wi < Wi/ [|Wi 5.

Constrain Vi ||Wj|| . = 1 satisfies.

%Yihui He, Xiangyu Zhang, and Jian Sun (2017). “Channel Pruning for Accelerating Very Deep
Neural Networks”. In: Proc. [CCV. 40/40
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