
CMSC 5743
Efficient Computing of Deep Neural Networks

Implementation 05: CUDA

Bei Yu
CSE Department, CUHK
byu@cse.cuhk.edu.hk

(Latest update: September 2, 2024)

2024 Fall



1 Introduction

2 Programming Model

3 Programming Interface

Overview

2/60



Introduction



The Graphics Processing Unit (GPU)1 provides much higher instruction
throughput and memory bandwidth than the CPU within a similar price and
power envelope. Many applications leverage these higher capabilities to run
faster on the GPU than on the CPU (see GPU Applications). Other computing
devices, like FPGAs, are also very energy efficient, but offer much less
programming flexibility than GPUs.

The Benefits of Using GPUs

4/60



This difference in capabilities between the GPU and the CPU exists because they
are designed with different goals in mind. While the CPU is designed to excel at
executing a sequence of operations, called a thread, as fast as possible and can
execute a few tens of these threads in parallel, the GPU is designed to excel at
executing thousands of them in parallel (amortizing the slower single-thread
performance to achieve greater throughput).

The Benefits of Using GPUs

5/60



The GPU is specialized for highly parallel computations and therefore designed
such that more transistors are devoted to data processing rather than data caching
and flow control. The following figure shows an example distribution of chip
resources for a CPU versus a GPU.

The Benefits of Using GPUs

6/60



The Benefits of Using GPUs

7/60



Devoting more transistors to data processing, for example, floating-point
computations, is beneficial for highly parallel computations; the GPU can hide
memory access latencies with computation, instead of relying on large data caches
and complex flow control to avoid long memory access latencies, both of which
are expensive in terms of transistors.
In general, an application has a mix of parallel parts and sequential parts, so
systems are designed with a mix of GPUs and CPUs in order to maximize overall
performance. Applications with a high degree of parallelism can exploit this
massively parallel nature of the GPU to achieve higher performance than on the
CPU.

The Benefits of Using GPUs

8/60



CUDA, a general purpose parallel computing platform and programming model
that leverages the parallel compute engine in NVIDIA GPUs to solve many
complex computational problems in a more efficient way than on a CPU.
CUDA comes with a software environment that allows developers to use C++ as a
high-level programming language. As illustrated by Figure, other languages,
application programming interfaces, or directives-based approaches are
supported, such as FORTRAN, DirectCompute, OpenACC.

CUDA: A General-Purpose Parallel Computing Platform and
Programming Model

9/60



CUDA: A General-Purpose Parallel Computing Platform and
Programming Model

10/60



The advent of multicore CPUs and manycore GPUs means that mainstream
processor chips are now parallel systems. The challenge is to develop application
software that transparently scales its parallelism to leverage the increasing
number of processor cores, much as 3D graphics applications transparently scale
their parallelism to manycore GPUs with widely varying numbers of cores.
The CUDA parallel programming model is designed to overcome this challenge
while maintaining a low learning curve for programmers familiar with standard
programming languages such as C.
At its core are three key abstractions — a hierarchy of thread groups, shared
memories, and barrier synchronization — that are simply exposed to the
programmer as a minimal set of language extensions.

A Scalable Programming Model

11/60



At its core are three key abstractions — a hierarchy of thread groups, shared
memories, and barrier synchronization — that are simply exposed to the
programmer as a minimal set of language extensions.
These abstractions provide fine-grained data parallelism and thread parallelism,
nested within coarse-grained data parallelism and task parallelism. They guide
the programmer to partition the problem into coarse sub-problems that can be
solved independently in parallel by blocks of threads, and each sub-problem into
finer pieces that can be solved cooperatively in parallel by all threads within the
block.

A Scalable Programming Model

12/60



This decomposition preserves language expressivity by allowing threads to
cooperate when solving each sub-problem, and at the same time enables
automatic scalability. Indeed, each block of threads can be scheduled on any of the
available multiprocessors within a GPU, in any order, concurrently or sequentially,
so that a compiled CUDA program can execute on any number of multiprocessors,
and only the runtime system needs to know the physical multiprocessor count.

A Scalable Programming Model

13/60



This scalable programming model allows the GPU architecture to span a wide
market range by simply scaling the number of multiprocessors and memory
partitions.

A Scalable Programming Model

14/60



For convenience, threadIdx is a 3-component vector, so that threads can be
identified using a one-dimensional, two-dimensional, or three-dimensional thread
index, forming a one-dimensional, two-dimensional, or three-dimensional block
of threads, called a thread block. This provides a natural way to invoke
computation across the elements in a domain such as a vector, matrix, or volume.
The index of a thread and its thread ID relate to each other in a straightforward
way: For a one-dimensional block, they are the same; for a two-dimensional block
of size (Dx, Dy), the thread ID of a thread of index (x, y) is (x + yDx); for a
three-dimensional block of size (Dx,Dy,Dz), the thread ID of a thread of index
(x, y, z) is (x + yDx + zDxDy).

Thread Hierarchy

15/60



As an example, the following code adds two matrices A and B of size NxN and
stores the result into matrix C:

1 // Kernel definition
2 __global__ void MatAdd(float A[N][N], float B[N][N],
3 float C[N][N])
4 {
5 int i = threadIdx.x;
6 int j = threadIdx.y;
7 C[i][j] = A[i][j] + B[i][j];
8 }
9

10 int main()
11 {
12 ...
13 // Kernel invocation with one block of N * N * 1 threads
14 int numBlocks = 1;
15 dim3 threadsPerBlock(N, N);
16 MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
17 ...
18 }

Thread Hierarchy

16/60



Programming Model



This chapter introduces the main concepts behind the CUDA programming model
by outlining how they are exposed in C++.
An extensive description of CUDA C++ is given in Programming Interface.
Full code for the vector addition example used in this lecture.

Programming Model

18/60



CUDA C++ extends C++ by allowing the programmer to define C++ functions,
called kernels, that, when called, are executed N times in parallel by N different
CUDA threads, as opposed to only once like regular C++ functions.
A kernel is defined using the __global__ declaration specifier and the number of
CUDA threads that execute that kernel for a given kernel call is specified using a
new <<< . . . >>> execution configuration syntax (see C++ Language
Extensions). Each thread that executes the kernel is given a unique thread ID that
is accessible within the kernel through built-in variables.

Kernels

19/60



As an illustration, the following sample code, using the built-in variable
threadIdx, adds two vectors A and B of size N and stores the result into vector C:

1 // Kernel definition
2 __global__ void VecAdd(float* A, float* B, float* C)
3 {
4 int i = threadIdx.x;
5 C[i] = A[i] + B[i];
6 }
7

8 int main()
9 {

10 ...
11 // Kernel invocation with N threads
12 VecAdd<<<1, N>>>(A, B, C);
13 ...
14 }

Here, each of the N threads that execute VecAdd() performs one pair-wise
addition.

Kernels

20/60



For convenience, threadIdx is a 3-component vector, so that threads can be
identified using a one-dimensional, two-dimensional, or three-dimensional thread
index, forming a one-dimensional, two-dimensional, or three-dimensional block
of threads, called a thread block. This provides a natural way to invoke
computation across the elements in a domain such as a vector, matrix, or volume.
The index of a thread and its thread ID relate to each other in a straightforward
way: For a one-dimensional block, they are the same; for a two-dimensional block
of size (Dx, Dy), the thread ID of a thread of index (x, y) is (x + yDx); for a
three-dimensional block of size (Dx,Dy,Dz), the thread ID of a thread of index
(x, y, z) is (x + yDx + zDxDy).

Thread Hierarchy

21/60



As an example, the following code adds two matrices A and B of size NxN and
stores the result into matrix C:

1 // Kernel definition
2 __global__ void MatAdd(float A[N][N], float B[N][N],
3 float C[N][N])
4 {
5 int i = threadIdx.x;
6 int j = threadIdx.y;
7 C[i][j] = A[i][j] + B[i][j];
8 }
9

10 int main()
11 {
12 ...
13 // Kernel invocation with one block of N * N * 1 threads
14 int numBlocks = 1;
15 dim3 threadsPerBlock(N, N);
16 MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
17 ...
18 }

Thread Hierarchy

22/60



There is a limit to the number of threads per block, since all threads of a block are
expected to reside on the same streaming multiprocessor core and must share the
limited memory resources of that core. On current GPUs, a thread block may
contain up to 1024 threads.
However, a kernel can be executed by multiple equally-shaped thread blocks, so
that the total number of threads is equal to the number of threads per block times
the number of blocks.

Thread Hierarchy

23/60



Blocks are organized into a one-dimensional, two-dimensional, or
three-dimensional grid of thread blocks. The number of thread blocks in a grid is
usually dictated by the size of the data being processed, which typically exceeds
the number of processors in the system.

Thread Hierarchy

24/60



The number of threads per block and the number of blocks per grid specified in
the <<< . . . >>> syntax can be of type int or dim3. Two-dimensional blocks or
grids can be specified as in the example above.
Each block within the grid can be identified by a one-dimensional,
two-dimensional, or three-dimensional unique index accessible within the kernel
through the built-in blockIdx variable. The dimension of the thread block is
accessible within the kernel through the built-in blockDim variable.

Thread Hierarchy

25/60



Extending the previous MatAdd() example to handle multiple blocks, the code
becomes as follows.

1 // Kernel definition
2 __global__ void MatAdd(float A[N][N], float B[N][N],
3 float C[N][N])
4 {
5 int i = blockIdx.x * blockDim.x + threadIdx.x;
6 int j = blockIdx.y * blockDim.y + threadIdx.y;
7 if (i < N && j < N)
8 C[i][j] = A[i][j] + B[i][j];
9 }

10

11 int main()
12 {
13 ...
14 // Kernel invocation
15 dim3 threadsPerBlock(16, 16);
16 dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y);
17 MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
18 ...
19 }

Thread Hierarchy

26/60



A thread block size of 16×16 (256 threads), although arbitrary in this case, is a
common choice. The grid is created with enough blocks to have one thread per
matrix element as before. For simplicity, this example assumes that the number of
threads per grid in each dimension is evenly divisible by the number of threads
per block in that dimension, although that need not be the case.
Thread blocks are required to execute independently: It must be possible to
execute them in any order, in parallel or in series. This independence requirement
allows thread blocks to be scheduled in any order across any number of cores,
enabling programmers to write code that scales with the number of cores.

Thread Hierarchy

27/60



Threads within a block can cooperate by sharing data through some shared memory
and by synchronizing their execution to coordinate memory accesses. More
precisely, one can specify synchronization points in the kernel by calling the
__syncthreads() intrinsic function; __syncthreads() acts as a barrier at which all
threads in the block must wait before any is allowed to proceed. In addition to
__syncthreads(), the Cooperative Groups API provides a rich set of
thread-synchronization primitives.
For efficient cooperation, the shared memory is expected to be a low-latency
memory near each processor core (much like an L1 cache) and __syncthreads() is
expected to be lightweight.

Thread Hierarchy

28/60



With the introduction of NVIDIA Compute Capability 9.0, the CUDA
programming model introduces an optional level of hierarchy called Thread Block
Clusters that are made up of thread blocks. Similar to how threads in a thread
block are guaranteed to be co-scheduled on a streaming multiprocessor, thread
blocks in a cluster are also guaranteed to be co-scheduled on a GPU Processing
Cluster (GPC) in the GPU.

Thread Block Clusters

29/60



Similar to thread blocks, clusters are also organized into a one-dimension,
two-dimension, or three-dimension as illustrated by the following Figure. The
number of thread blocks in a cluster can be user-defined, and a maximum of 8
thread blocks in a cluster is supported as a portable cluster size in CUDA. Note
that on GPU hardware or MIG configurations which are too small to support 8
multiprocessors the maximum cluster size will be reduced accordingly.

Thread Block Clusters

30/60



A thread block cluster can be enabled in a kernel either using a compiler time
kernel attribute using __cluster_dims__(X,Y,Z) or using the CUDA kernel launch
API cudaLaunchKernelEx. The example below shows how to launch a cluster
using compiler time kernel attribute. The cluster size using kernel attribute is
fixed at compile time and then the kernel can be launched using the classical
<<< . . . >>>. If a kernel uses compile-time cluster size, the cluster size cannot be
modified when launching the kernel.

1 // Kernel definition
2 // Compile time cluster size 2 in X-dimension and 1 in Y and Z dimension
3 __global__ void __cluster_dims__(2, 1, 1) cluster_kernel(float *input, float* output)
4 {
5

6 }
7

8 int main()
9 {

10 float *input, *output;
11 // Kernel invocation with compile time cluster size
12 dim3 threadsPerBlock(16, 16);
13 dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y);
14

15 // The grid dimension is not affected by cluster launch, and is still enumerated
16 // using number of blocks.
17 // The grid dimension must be a multiple of cluster size.
18 cluster_kernel<<<numBlocks, threadsPerBlock>>>(input, output);
19 }

Thread Block Clusters

31/60



A thread block cluster size can also be set at runtime and the kernel can be
launched using the CUDA kernel launch API cudaLaunchKernelEx. The code
example below shows how to launch a cluster kernel using the extensible API.

Thread Block Clusters

32/60



1 // Kernel definition
2 // No compile time attribute attached to the kernel
3 __global__ void cluster_kernel(float *input, float* output)
4 {
5

6 }
7

8 int main()
9 {

10 float *input, *output;
11 dim3 threadsPerBlock(16, 16);
12 dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y);
13 cluster_kernel<<<numBlocks, threadsPerBlock>>>();
14 // Kernel invocation with runtime cluster size
15 {
16 cudaLaunchConfig_t config = {0};
17 // The grid dimension is not affected by cluster launch, and is still enumerated
18 // using number of blocks.
19 // The grid dimension should be a multiple of cluster size.
20 config.gridDim = numBlocks;
21 config.blockDim = threadsPerBlock;
22

23 cudaLaunchAttribute attribute[1];
24 attribute[0].id = cudaLaunchAttributeClusterDimension;
25 attribute[0].val.clusterDim.x = 2; // Cluster size in X-dimension
26 attribute[0].val.clusterDim.y = 1;
27 attribute[0].val.clusterDim.z = 1;
28 config.attrs = attribute;
29 config.numAttrs = 1;
30

31 cudaLaunchKernelEx(&config, cluster_kernel, input, output);
32 }
33 }

Thread Block Clusters

33/60



In GPUs with compute capability 9.0, all the thread blocks in the cluster are
guaranteed to be co-scheduled on a single GPU Processing Cluster (GPC) and
allow thread blocks in the cluster to perform hardware-supported synchronization
using the Cluster Group API cluster.sync(). Cluster group also provides member
functions to query cluster group size in terms of number of threads or number of
blocks using num_threads() and num_blocks() API respectively. The rank of a
thread or block in the cluster group can be queried using dim_threads() and
dim_blocks() API respectively.
Thread blocks that belong to a cluster have access to the Distributed Shared
Memory. Thread blocks in a cluster have the ability to read, write, and perform
atomics to any address in the distributed shared memory. Distributed Shared
Memory gives an example of performing histograms in distributed shared
memory.

Thread Block Clusters

34/60



CUDA threads may access data from multiple memory spaces during their
execution. Each thread has private local memory. Each thread block has shared
memory visible to all threads of the block and with the same lifetime as the block.
Thread blocks in a thread block cluster can perform read, write, and atomics
operations on each other’s shared memory. All threads have access to the same
global memory.
There are also two additional read-only memory spaces accessible by all threads:
the constant and texture memory spaces. The global, constant, and texture
memory spaces are optimized for different memory usages. Texture memory also
offers different addressing modes, as well as data filtering, for some specific data
formats.

Memory Hierarchy

35/60



Memory Hierarchy

36/60



As illustrated by the following figure, the CUDA programming model assumes
that the CUDA threads execute on a physically separate device that operates as a
coprocessor to the host running the C++ program. This is the case, for example,
when the kernels execute on a GPU and the rest of the C++ program executes on a
CPU.

Heterogeneous Programming

37/60



The CUDA programming model also assumes that both the host and the device
maintain their own separate memory spaces in DRAM, referred to as host
memory and device memory, respectively. Therefore, a program manages the
global, constant, and texture memory spaces visible to kernels through calls to the
CUDA runtime. This includes device memory allocation and deallocation as well
as data transfer between host and device memory.
Unified Memory provides managed memory to bridge the host and device
memory spaces. Managed memory is accessible from all CPUs and GPUs in the
system as a single, coherent memory image with a common address space. This
capability enables oversubscription of device memory and can greatly simplify the
task of porting applications by eliminating the need to explicitly mirror data on
host and device. See Unified Memory Programming for an introduction to Unified
Memory.

Heterogeneous Programming

38/60



In the CUDA programming model a thread is the lowest level of abstraction for
doing a computation or a memory operation. Starting with devices based on the
NVIDIA Ampere GPU architecture, the CUDA programming model provides
acceleration to memory operations via the asynchronous programming model.
The asynchronous programming model defines the behavior of asynchronous
operations with respect to CUDA threads.
The asynchronous programming model defines the behavior of Asynchronous
Barrier for synchronization between CUDA threads. The model also explains and
defines how cuda::memcpy_async can be used to move data asynchronously from
global memory while computing in the GPU.

Asynchronous SIMT Programming Model

39/60



An asynchronous operation is defined as an operation that is initiated by a CUDA
thread and is executed asynchronously as-if by another thread. In a well formed
program one or more CUDA threads synchronize with the asynchronous
operation. The CUDA thread that initiated the asynchronous operation is not
required to be among the synchronizing threads.
Such an asynchronous thread (an as-if thread) is always associated with the
CUDA thread that initiated the asynchronous operation. An asynchronous
operation uses a synchronization object to synchronize the completion of the
operation. Such a synchronization object can be explicitly managed by a user (e.g.,
cuda::memcpy_async) or implicitly managed within a library (e.g.,
(cooperative_groups::memcpy_async).

Asynchronous Operations

40/60



These synchronization objects can be used at different thread scopes. A scope
defines the set of threads that may use the synchronization object to synchronize
with the asynchronous operation. The following table defines the thread scopes
available in CUDA C++ and the threads that can be synchronized with each.

Thread Scope Description
cuda::thread_scope::thread_scope_thread Only the CUDA thread which initiated asynchronous operations synchronizes.
cuda::thread_scope::thread_scope_block All or any CUDA threads within the same thread block as the initiating thread synchronizes.
cuda::thread_scope::thread_scope_device All or any CUDA threads in the same GPU device as the initiating thread synchronizes.
cuda::thread_scope::thread_scope_system All or any CUDA or CPU threads in the same system as the initiating thread synchronizes.

These thread scopes are implemented as extensions to standard C++ in the CUDA
Standard C++ library.

Asynchronous Operations

41/60



Programming Interface



CUDA C++ provides a simple path for users familiar with the C++ programming
language to easily write programs for execution by the device.

It consists of a minimal set of extensions to the C++ language and a runtime
library.
The core language extensions have been introduced in Programming Model.
They allow programmers to define a kernel as a C++ function and use some new
syntax to specify the grid and block dimension each time the function is called.

The runtime is introduced in CUDA Runtime. It provides C and C++ functions
that execute on the host to allocate and deallocate device memory, transfer data
between host memory and device memory, manage systems with multiple
devices, etc. A complete description of the runtime can be found in the CUDA
reference manual.

Programming Interface

43/60



Kernels can be written using the CUDA instruction set architecture, called PTX,
which is described in the PTX reference manual. It is however usually more
effective to use a high-level programming language such as C++. In both cases,
kernels must be compiled into binary code by nvcc to execute on the device.
nvcc is a compiler driver that simplifies the process of compiling C++ or PTX
code: It provides simple and familiar command line options and executes them by
invoking the collection of tools that implement the different compilation stages.
This section gives an overview of nvcc workflow and command options. A
complete description can be found in the nvcc user manual.

Compilation with NVCC Compiler

44/60



Source files compiled with nvcc can include a mix of host code (i.e., code that
executes on the host) and device code (i.e., code that executes on the device). The
basic workflow consists in separating device code from host code and then:

• compiling the device code into an assembly form (PTX code) and/or binary form
(cubin object),

• modifying the host code by replacing the <<< . . . >>> syntax introduced in
Kernels by the necessary CUDA runtime function calls to load and launch each
compiled kernel from the PTX code and/or cubin object.

The modified host code is output either as C++ code that is left to be compiled
using another tool or as object code directly by letting nvcc invoke the host
compiler during the last compilation stage.

Compilation Workflow: Offline Compilation

45/60



Any PTX code loaded by an application at runtime is compiled further to binary
code by the device driver. This is called just-in-time compilation. Just-in-time
compilation increases application load time, but allows the application to benefit
from any new compiler improvements coming with each new device driver. It is
also the only way for applications to run on devices that did not exist at the time
the application was compiled.

Compilation Workflow: Just-in-Time Compilation

46/60



When the device driver just-in-time compiles some PTX code for some
application, it automatically caches a copy of the generated binary code in order to
avoid repeating the compilation in subsequent invocations of the application. The
cache - referred to as compute cache - is automatically invalidated when the
device driver is upgraded, so that applications can benefit from the improvements
in the new just-in-time compiler built into the device driver.

As an alternative to using nvcc to compile CUDA C++ device code, NVRTC can be
used to compile CUDA C++ device code to PTX at runtime. NVRTC is a runtime
compilation library for CUDA C++; more information can be found in the NVRTC
User guide.

Compilation Workflow: Just-in-Time Compilation

47/60



Some PTX instructions are only supported on devices of higher compute
capabilities. For example, Warp Shuffle Functions are only supported on devices
of compute capability 5.0 and above. The -arch compiler option specifies the
compute capability that is assumed when compiling C++ to PTX code. So, code
that contains warp shuffle, for example, must be compiled with -arch=compute_30
(or higher).

Which PTX and binary code gets embedded in a CUDA C++ application is
controlled by the -arch and -code compiler options or the -gencode compiler
option as detailed in the nvcc user manual. For example,

1 nvcc x.cu
2 -gencode arch=compute_50,code=sm_50
3 -gencode arch=compute_60,code=sm_60
4 -gencode arch=compute_70,code=\"compute_70,sm_70\"

PTX Compatibility

48/60



The Volta architecture introduces Independent Thread Scheduling which changes
the way threads are scheduled on the GPU. For code relying on specific behavior
of SIMT scheduling in previous architectures, Independent Thread Scheduling
may alter the set of participating threads, leading to incorrect results. To aid
migration while implementing the corrective actions detailed in Independent
Thread Scheduling, Volta developers can opt-in to Pascal’s thread scheduling
with the compiler option combination -arch=compute_60 -code=sm_70.

The nvcc user manual lists various shorthands for the -arch, -code, and -gencode
compiler options. For example, -arch=sm_70 is a shorthand for -arch=compute_70
-code=compute_70,sm_70.

PTX Compatibility

49/60



The front end of the compiler processes CUDA source files according to C++
syntax rules. Full C++ is supported for the host code.

The 64-bit version of nvcc compiles device code in 64-bit mode (i.e., pointers are
64-bit). Device code compiled in 64-bit mode is only supported with host code
compiled in 64-bit mode.

C++ and 64-bit Compatibility

50/60



The runtime is implemented in the cudart library, which is linked to the
application, either statically via cudart.lib or libcudart.a, or dynamically via
cudart.dll or libcudart.so. Applications that require cudart.dll and/or cudart.so
for dynamic linking typically include them as part of the application installation
package. It is only safe to pass the address of CUDA runtime symbols between
components that link to the same instance of the CUDA runtime.

All its entry points are prefixed with cuda.

CUDA Runtime

51/60



There is no explicit initialization function for the runtime; it initializes the first
time a runtime function is called (more specifically any function other than
functions from the error handling and version management sections of the
reference manual). One needs to keep this in mind when timing runtime function
calls and when interpreting the error code from the first call into the runtime.

The runtime creates a CUDA context for each device in the system. This context is
the primary context for this device and is initialized at the first runtime function
which requires an active context on this device. It is shared among all the host
threads of the application. As part of this context creation, the device code is
just-in-time compiled if necessary and loaded into device memory. This all
happens transparently. If needed, for example, for driver API interoperability, the
primary context of a device can be accessed from the driver API.

Initialization of Runtime

52/60



When a host thread calls cudaDeviceReset(), this destroys the primary context of
the device the host thread currently operates on. The next runtime function call
made by any host thread that has this device as current will create a new primary
context for this device.

• The CUDA interfaces use global state that is initialized during host program
initiation and destroyed during host program termination. The CUDA runtime and
driver cannot detect if this state is invalid, so using any of these interfaces (implicitly
or explicitly) during program initiation or termination after main) will result in
undefined behavior.

• As of CUDA 12.0, cudaSetDevice() will now explicitly initialize the runtime after
changing the current device for the host thread. Previous versions of CUDA delayed
runtime initialization on the new device until the first runtime call was made after
cudaSetDevice(). This change means that it is now very important to check the return
value of cudaSetDevice() for initialization errors.

Initialization of Runtime

53/60



As mentioned in Heterogeneous Programming, the CUDA programming model
assumes a system composed of a host and a device, each with their own separate
memory. Kernels operate out of device memory, so the runtime provides functions
to allocate, deallocate, and copy device memory, as well as transfer data between
host memory and device memory.

Device memory can be allocated either as linear memory or as CUDA arrays.

CUDA arrays are opaque memory layouts optimized for texture fetching.

Linear memory is allocated in a single unified address space, which means that
separately allocated entities can reference one another via pointers, for example, in
a binary tree or linked list. The size of the address space depends on the host
system (CPU) and the compute capability of the used GPU.

Device Memory

54/60



Linear memory is typically allocated using cudaMalloc() and freed using
cudaFree() and data transfer between host memory and device memory are
typically done using cudaMemcpy(). In the vector addition code sample of
Kernels, the vectors need to be copied from host memory to device memory:

Device Memory

55/60



1 // Host code
2 int main()
3 {
4 int N = ...;
5 size_t size = N * sizeof(float);
6

7 // Allocate input vectors h_A and h_B in host memory
8 float* h_A = (float*)malloc(size);
9 float* h_B = (float*)malloc(size);

10 float* h_C = (float*)malloc(size);
11

12 // Initialize input vectors
13 ...
14

15 // Allocate vectors in device memory
16 float* d_A;
17 cudaMalloc(&d_A, size);
18 float* d_B;
19 cudaMalloc(&d_B, size);
20 float* d_C;
21 cudaMalloc(&d_C, size);
22

23 // Copy vectors from host memory to device memory
24 cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
25 cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);
26

27 // Invoke kernel
28 int threadsPerBlock = 256;
29 int blocksPerGrid =
30 (N + threadsPerBlock - 1) / threadsPerBlock;
31 VecAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, N);
32

33 // Copy result from device memory to host memory
34 // h_C contains the result in host memory
35 cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);
36

37 // Free device memory
38 cudaFree(d_A);
39 cudaFree(d_B);
40 cudaFree(d_C);
41

42 // Free host memory
43 ...
44 }

Device Memory

56/60



Linear memory can also be allocated through cudaMallocPitch() and
cudaMalloc3D(). These functions are recommended for allocations of 2D or 3D
arrays as it makes sure that the allocation is appropriately padded to meet the
alignment requirements described in Device Memory Accesses, therefore ensuring
best performance when accessing the row addresses or performing copies
between 2D arrays and other regions of device memory (using the
cudaMemcpy2D() and cudaMemcpy3D() functions). The returned pitch (or stride)
must be used to access array elements. The following code sample allocates a
width × height 2D array of floating-point values and shows how to loop over the
array elements in device code:

Device Memory

57/60



1 // Host code
2 int width = 64, height = 64;
3 float* devPtr;
4 size_t pitch;
5 cudaMallocPitch(&devPtr, &pitch,
6 width * sizeof(float), height);
7 MyKernel<<<100, 512>>>(devPtr, pitch, width, height);
8

9 // Device code
10 __global__ void MyKernel(float* devPtr,
11 size_t pitch, int width, int height)
12 {
13 for (int r = 0; r < height; ++r) {
14 float* row = (float*)((char*)devPtr + r * pitch);
15 for (int c = 0; c < width; ++c) {
16 float element = row[c];
17 }
18 }
19 }

Device Memory

58/60



The following code sample allocates a width × height × depth 3D array of
floating-point values and shows how to loop over the array elements in device
code:

1 // Host code
2 int width = 64, height = 64, depth = 64;
3 cudaExtent extent = make_cudaExtent(width * sizeof(float),
4 height, depth);
5 cudaPitchedPtr devPitchedPtr;
6 cudaMalloc3D(&devPitchedPtr, extent);
7 MyKernel<<<100, 512>>>(devPitchedPtr, width, height, depth);
8

9 // Device code
10 __global__ void MyKernel(cudaPitchedPtr devPitchedPtr,
11 int width, int height, int depth)
12 {
13 char* devPtr = devPitchedPtr.ptr;
14 size_t pitch = devPitchedPtr.pitch;
15 size_t slicePitch = pitch * height;
16 for (int z = 0; z < depth; ++z) {
17 char* slice = devPtr + z * slicePitch;
18 for (int y = 0; y < height; ++y) {
19 float* row = (float*)(slice + y * pitch);
20 for (int x = 0; x < width; ++x) {
21 float element = row[x];
22 }
23 }
24 }
25 }

Device Memory

59/60



The reference manual lists all the various functions used to copy memory between
linear memory allocated with cudaMalloc(), linear memory allocated with
cudaMallocPitch() or cudaMalloc3D(), CUDA arrays, and memory allocated for
variables declared in global or constant memory space. The following code
sample illustrates various ways of accessing global variables via the runtime API:

1 __constant__ float constData[256];
2 float data[256];
3 cudaMemcpyToSymbol(constData, data, sizeof(data));
4 cudaMemcpyFromSymbol(data, constData, sizeof(data));
5

6 __device__ float devData;
7 float value = 3.14f;
8 cudaMemcpyToSymbol(devData, &value, sizeof(float));
9

10 __device__ float* devPointer;
11 float* ptr;
12 cudaMalloc(&ptr, 256 * sizeof(float));
13 cudaMemcpyToSymbol(devPointer, &ptr, sizeof(ptr));

cudaGetSymbolAddress() is used to retrieve the address pointing to the memory
allocated for a variable declared in global memory space. The size of the allocated
memory is obtained through cudaGetSymbolSize().

Device Memory

60/60


	Main Talk
	Introduction
	Programming Model
	Programming Interface


