
CMSC 5743
Efficient Computing of Deep Neural Networks

Implementation 04: Sparse Conv

Bei Yu
CSE Department, CUHK
byu@cse.cuhk.edu.hk

(Latest update: September 2, 2024)

2024 Fall

1 Kernel Sparse Convolution

2 Submanifold Sparse Convolution

3 Sparse Hardware Architecture

Overview

2/43

1 Kernel Sparse Convolution

2 Submanifold Sparse Convolution

3 Sparse Hardware Architecture

Overview

3/43

Kernel Sparse Convolution

• Our DNN may be redundant, and sometimes the filters may be sparse

• Sparsity can be helpful to overcome over-fitting

⇥
<latexit sha1_base64="o/TztkgjxWN4eKNCgAhptEPqjkA=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsrfswYa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSoSCUbRSt9pHEXFTHZQrbs1dgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGeponaLny3unZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieO1nQiUpcsWWi8JUEozJ/HkyFJozlFNLKNPC3krYmGrK0EZUsiF4qy+vk3a95rk1775eadzkcRThDM7hEjy4ggbcQRNawEDCM7zCm/PovDjvzseyteDkM6fwB87nD3ASj44=</latexit><latexit sha1_base64="o/TztkgjxWN4eKNCgAhptEPqjkA=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsrfswYa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSoSCUbRSt9pHEXFTHZQrbs1dgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGeponaLny3unZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieO1nQiUpcsWWi8JUEozJ/HkyFJozlFNLKNPC3krYmGrK0EZUsiF4qy+vk3a95rk1775eadzkcRThDM7hEjy4ggbcQRNawEDCM7zCm/PovDjvzseyteDkM6fwB87nD3ASj44=</latexit><latexit sha1_base64="o/TztkgjxWN4eKNCgAhptEPqjkA=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsrfswYa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSoSCUbRSt9pHEXFTHZQrbs1dgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGeponaLny3unZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieO1nQiUpcsWWi8JUEozJ/HkyFJozlFNLKNPC3krYmGrK0EZUsiF4qy+vk3a95rk1775eadzkcRThDM7hEjy4ggbcQRNawEDCM7zCm/PovDjvzseyteDkM6fwB87nD3ASj44=</latexit><latexit sha1_base64="o/TztkgjxWN4eKNCgAhptEPqjkA=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsrfswYa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSoSCUbRSt9pHEXFTHZQrbs1dgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGeponaLny3unZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieO1nQiUpcsWWi8JUEozJ/HkyFJozlFNLKNPC3krYmGrK0EZUsiF4qy+vk3a95rk1775eadzkcRThDM7hEjy4ggbcQRNawEDCM7zCm/PovDjvzseyteDkM6fwB87nD3ASj44=</latexit> =<latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit>

Sparse Convolution

4/43

*

X
w

Algorithm Sparse Convlution Naive 1

1: for all w[i] do
2: if w[i] = 0 then
3: Continue;
4: end if
5: output feature map Y ← X ×w[i];
6: end for

BAD implementation for Pipeline!

Sparse Convolution: Naive Implementation 1

5/43

*

X
w

Algorithm Sparse Convlution Naive 1

1: for all w[i] do
2: if w[i] = 0 then
3: Continue;
4: end if
5: output feature map Y ← X ×w[i];
6: end for

BAD implementation for Pipeline!

Sparse Convolution: Naive Implementation 1

5/43

• CSR: Good for operation on feature maps

• CSC: Good for operation on filters

• We have better control on filters, thus usually
CSC.

⇥
<latexit sha1_base64="o/TztkgjxWN4eKNCgAhptEPqjkA=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsrfswYa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSoSCUbRSt9pHEXFTHZQrbs1dgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGeponaLny3unZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieO1nQiUpcsWWi8JUEozJ/HkyFJozlFNLKNPC3krYmGrK0EZUsiF4qy+vk3a95rk1775eadzkcRThDM7hEjy4ggbcQRNawEDCM7zCm/PovDjvzseyteDkM6fwB87nD3ASj44=</latexit><latexit sha1_base64="o/TztkgjxWN4eKNCgAhptEPqjkA=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsrfswYa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSoSCUbRSt9pHEXFTHZQrbs1dgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGeponaLny3unZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieO1nQiUpcsWWi8JUEozJ/HkyFJozlFNLKNPC3krYmGrK0EZUsiF4qy+vk3a95rk1775eadzkcRThDM7hEjy4ggbcQRNawEDCM7zCm/PovDjvzseyteDkM6fwB87nD3ASj44=</latexit><latexit sha1_base64="o/TztkgjxWN4eKNCgAhptEPqjkA=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsrfswYa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSoSCUbRSt9pHEXFTHZQrbs1dgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGeponaLny3unZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieO1nQiUpcsWWi8JUEozJ/HkyFJozlFNLKNPC3krYmGrK0EZUsiF4qy+vk3a95rk1775eadzkcRThDM7hEjy4ggbcQRNawEDCM7zCm/PovDjvzseyteDkM6fwB87nD3ASj44=</latexit><latexit sha1_base64="o/TztkgjxWN4eKNCgAhptEPqjkA=">AAAB73icbVA9TwJBEJ3DL8Qv1NJmI5hYkTsaLYk2lpjIRwIXsrfswYa9vXN3zoRc+BM2Fhpj69+x89+4wBUKvmSSl/dmMjMvSKQw6LrfTmFjc2t7p7hb2ts/ODwqH5+0TZxqxlsslrHuBtRwKRRvoUDJu4nmNAok7wST27nfeeLaiFg94DThfkRHSoSCUbRSt9pHEXFTHZQrbs1dgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGeponaLny3unZELqwxJGGtbCslC/T2R0ciYaRTYzoji2Kx6c/E/r5dieO1nQiUpcsWWi8JUEozJ/HkyFJozlFNLKNPC3krYmGrK0EZUsiF4qy+vk3a95rk1775eadzkcRThDM7hEjy4ggbcQRNawEDCM7zCm/PovDjvzseyteDkM6fwB87nD3ASj44=</latexit> =<latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit><latexit sha1_base64="kaDWDxarIbt8b7begmsQdMm2hCQ=">AAAB6nicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsabUyINpYYBUngQvaWOdiwt3fZ3TMhF36CjYXG2PqL7Pw3LnCFgi+Z5OW9mczMCxLBtXHdb6ewtr6xuVXcLu3s7u0flA+P2jpOFcMWi0WsOgHVKLjEluFGYCdRSKNA4GMwvpn5j0+oNI/lg5kk6Ed0KHnIGTVWuq9eVfvliltz5yCrxMtJBXI0++Wv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7WfzU6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDSz7hMUoOSLRaFqSAmJrO/yYArZEZMLKFMcXsrYSOqKDM2nZINwVt+eZW06zXPrXl39UrjOo+jCCdwCufgwQU04Baa0AIGQ3iGV3hzhPPivDsfi9aCk88cwx84nz9Dq40b</latexit>

Sparse Matrix Representation

6/43

wX Y

• BAD implementation for Spatial Locality!

• Poor memory access patterns

Sparse Convolution: Naive Implementation 2

7/43

1

1Jongsoo Park et al. (2017). “Faster CNNs with direct sparse convolutions and guided pruning”.
In: Proc. ICLR.

SOTA 2: Sparse Convolution

8/43

• Sparsity is a desired property for computation acceleration. (cuSPARSE library,
direct sparse convolution, etc.)

• Sometimes not only the filters but also the input feature maps are sparse.

0 2 4 6 8 10 12 14
0

0.3

0.6

0.9

Layer

Sp
ar

si
ty

VGG-19 GoogLeNet AlexNet

Discussion: Sparse-Sparse Convolution

9/43

0
0

0

0

1

1
0

0
0

1 0 0 1 2 2 1 1 2 0 1 1 2 0 1 2

1 0 0 1 2 2 1 1 2 0 1 1 2 0 1 2

1 0 0 0

2 2 1 1

2 0 1 1

2 0 1 2 2
0

0

0
0
0

0 00

1

0

0 1

0 2

0 00

1

0

0 1

0 2

0

0

0

0 0 0 0

0

1 0 0 1 2 2 1 1 2 0 1 1 2 0 1 2

1 0 0 1 2 2 1 1 2 0 1 1 2 0 1 2

(5th, 7th, 11th elements
are none-zero)

Offset=5

5th element

• Efficient programming implementation required; (Improve pipeline efficiency)

• When sparsity(input) = 0.9, sparsity(weight) = 0.8, more than 10× speedup;

• Some other issues:

• How to be compatible with pooling layer?
• Transform between dense & sparse formats

Discussion: Sparse-Sparse Convolution

10/43

1 Kernel Sparse Convolution

2 Submanifold Sparse Convolution

3 Sparse Hardware Architecture

Overview

11/43

Submanifold Sparse Convolution

In real world, we have to handle voxel data sometimes. For example, in point
cloud analysis, 3D voxel data is widely used. A simple example is shown here and
it can be viewed as V ∈ (1,R,R,R).

Voxel Data

12/43

Here is a rabbit with shape V ∈ (1, 64, 64, 64). If using traditional convolution to
extract its feature, the GPU will out of memory very soon because the input
V ∈ (1, 64, 64, 64) can be viewed as an image I ∈ (1, 4096, 64).

Voxel Data

13/43

To overcome this issue, we use 3D sparse convolution for voxel data analysis.
Sparse convolution only calculate the data points where voxel data exists.

Submanifold Sparse Convolution

14/43

In this Lab, we are going to build a sparse convolution from scratch. Here we use
the example input:

where P1 and P2 has pixel value of 1 in 3 channels.

Submanifold Sparse Convolution

15/43

Firstly, we build a hash table to store the input data. Considering the following
case:

conv2D(kernel_size=3, out_channels=2, stride=1, padding=0)

Submanifold Sparse Convolution

16/43

We can build an input table Hin like this:

Submanifold Sparse Convolution

17/43

Then we build an output hash table. Firstly, we generate a Pout table as follow:

Submanifold Sparse Convolution

18/43

Then we build an output hash table. Firstly, we generate a Pout table as follow:

Submanifold Sparse Convolution

18/43

Then we build an output hash table. Firstly, we generate a Pout table as follow:

Submanifold Sparse Convolution

18/43

Then we build an output hash table. Firstly, we generate a Pout table as follow:

Submanifold Sparse Convolution

18/43

Then we build an output hash table. Firstly, we generate a Pout table as follow:

Submanifold Sparse Convolution

18/43

Then we build an output hash table. Firstly, we generate a Pout table as follow:

Submanifold Sparse Convolution

18/43

After applying the same process to P2, we get an output hash table Hout via Pout
merging:

Submanifold Sparse Convolution

19/43

• Next we build up a Rulebook to realize Hin to Hout.

• To build the rule book, we have to build an offset map like this:

(0,0)

(1,0)

(2,0)

(0,1)

(2,1)

P_out

(1,0)

(0,0)

(-1,0)

(1,-1)

(-1,-1)

Offset

(0,-1)(1,1)

Submanifold Sparse Convolution

20/43

Quick Question:
Please write the offset map of P2 by yourself.

Submanifold Sparse Convolution

21/43

After obtaining the offset map, we can finally build up the rule book as follow:

(1,0)

(2,0)

(1,1)

(2,1)

(2,2)

P_out

(1,1)

(0,1)

(1,0)

(0,0)

(0,-1)

Offset

(1,-1)(1,2)

(0,0)

(1,0)

(2,0)

(0,1)

(2,1)

P_out

(1,0)

(0,0)

(-1,0)

(1,-1)

(-1,-1)

Offset

(0,-1)(1,1)

(-1,-1)

(0,-1)

(1,-1)

(-1,0)

(0,0)

(1,0)

(1,1)

(0,1)

0

0

1

0

1

0

0

1

0

1

0

0

Offset count

0

0

1

0

1

0

0

1

0

1

1

1

5

4

7

3

6

2

1

5

0

4

2

1

in out

RuleBook

The rulebook has 4 cloumn. The first column is offset and the second is the count.
The third and fourth columns are the index of Hin and Hout.

Submanifold Sparse Convolution

22/43

Recalling the Hin and Hout, the rulebook is generated as follow:

(1,0)

(2,0)

(1,1)

(2,1)

(2,2)

P_out

(1,1)

(0,1)

(1,0)

(0,0)

(0,-1)

Offset

(1,-1)(1,2)

(0,0)

(1,0)

(2,0)

(0,1)

(2,1)

P_out

(1,0)

(0,0)

(-1,0)

(1,-1)

(-1,-1)

Offset

(0,-1)(1,1)

Recall: (-1,-1) 0

Offset count

0 5

in out

Submanifold Sparse Convolution

23/43

If the offset already exists, we simply add 1 in count:

(1,0)

(2,0)

(1,1)

(2,1)

(2,2)

P_out

(1,1)

(0,1)

(1,0)

(0,0)

(0,-1)

Offset

(1,-1)(1,2)

(0,0)

(1,0)

(2,0)

(0,1)

(2,1)

P_out

(1,0)

(0,0)

(-1,0)

(1,-1)

(-1,-1)

Offset

(0,-1)(1,1)

Recall: (-1,-1) 0

Offset count

0 5

in out

Submanifold Sparse Convolution

24/43

After getting rulebook, we can apply sparse convolution:

(-1,-1)

(0,-1)

(1,-1)

(-1,0)

(0,0)

(1,0)

(1,1)

(0,1)

0

0

1

0

1

0

0

1

0

1

0

0

0

0

1

0

1

0

0

1

0

1

1

1

5

4

7

3

6

2

1

5

0

4

2

1

F1

F4

F7

F2

F5

F8

F3

F6

F9

F1

F4

F7

F2

F5

F8

F3

F6

F9

F1

F4

F7

F2

F5

F8

F3

F6

F9

F1

F4

F7

F2

F5

F8

F3

F6

F9

F1

F4

F7

F2

F5

F8

F3

F6

F9

F1

F4

F7

F2

F5

F8

F3

F6

F9

Conv Kernels with offset = (-1,1) and (0,0) share the same out index 5

1 1 1 X

F1

F1

F1

F1

F1

F1

For P1, the reults is shown above, which is the blue points in 5-th row. Please
practice P2 by yourself

Submanifold Sparse Convolution

25/43

1 Kernel Sparse Convolution

2 Submanifold Sparse Convolution

3 Sparse Hardware Architecture

Overview

26/43

Sparse Hardware Architecture

 42

EIE: Efficient Inference Engine on
Compressed Deep Neural Network

 
Han et al.
ISCA 2016

27/43

Deep Learning Accelerators

• First Wave: Compute (Neu Flow)  

• Second Wave: Memory (Diannao family)  

• Third Wave: Algorithm / Hardware Co-Design (EIE)

 43

Google TPU: “This unit is designed for dense matrices. Sparse
architectural support was omitted for time-to-deploy reasons.
Sparsity will have high priority in future designs”

27/43

Sparse Weight
90% static sparsity

Weight Sharing
4-bit weights

[Han et al. ISCA’16]
EIE: the First DNN Accelerator for  

 Sparse, Compressed Model

Sparse Activation
70% dynamic sparsity

10x less computation

5x less memory footprint

3x less computation

8x less memory footprint

Compression Acceleration Regularization 44

0 * A = 0 W * 0 = 0 2.09, 1.92=> 2

27/43

a⃗
(

0 a1 0 a3
)

× b⃗
PE0

PE1

PE2

PE3

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w0,0w0,1 0 w0,3

0 0 w1,2 0

0 w2,1 0 w2,3

0 0 0 0

0 0 w4,2w4,3

w5,0 0 0 0

0 0 0 w6,3

0 w7,1 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0
b1

−b2
b3

−b4
b5
b6

−b7

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ReLU⇒

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0
b1
0

b3
0

b5
b6
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1

Compression Acceleration Regularization

EIE: Parallelization on Sparsity
[Han et al. ISCA’16]

 45

27/43

a⃗
(

0 a1 0 a3
)

× b⃗
PE0

PE1

PE2

PE3

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w0,0w0,1 0 w0,3

0 0 w1,2 0

0 w2,1 0 w2,3

0 0 0 0

0 0 w4,2w4,3

w5,0 0 0 0

0 0 0 w6,3

0 w7,1 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0
b1

−b2
b3

−b4
b5
b6

−b7

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ReLU⇒

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0
b1
0

b3
0

b5
b6
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Central Control

Compression Acceleration Regularization

EIE: Parallelization on Sparsity
[Han et al. ISCA’16]

 46

27/43

a⃗
(

0 a1 0 a3
)

× b⃗
PE0

PE1

PE2

PE3

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w0,0w0,1 0 w0,3

0 0 w1,2 0

0 w2,1 0 w2,3

0 0 0 0

0 0 w4,2w4,3

w5,0 0 0 0

0 0 0 w6,3

0 w7,1 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0
b1

−b2
b3

−b4
b5
b6

−b7

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ReLU⇒

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b0
b1
0

b3
0

b5
b6
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1

Compression Acceleration Regularization

Dataflow
[Han et al. ISCA’16]

 47

rule of thumb: 
0 * A = 0 W * 0 = 0

27/43

EIE Architecture

EIE: Efficient Inference Engine on Compressed Deep Neural Network

Song Han∗ Xingyu Liu∗ Huizi Mao∗ Jing Pu∗ Ardavan Pedram∗

Mark A. Horowitz∗ William J. Dally∗†

∗Stanford University, †NVIDIA
{songhan,xyl,huizi,jingpu,perdavan,horowitz,dally}@stanford.edu

Abstract—State-of-the-art deep neural networks (DNNs)
have hundreds of millions of connections and are both compu-
tationally and memory intensive, making them difficult to de-
ploy on embedded systems with limited hardware resources and
power budgets. While custom hardware helps the computation,
fetching weights from DRAM is two orders of magnitude more
expensive than ALU operations, and dominates the required
power.

Previously proposed ‘Deep Compression’ makes it possible
to fit large DNNs (AlexNet and VGGNet) fully in on-chip
SRAM. This compression is achieved by pruning the redundant
connections and having multiple connections share the same
weight. We propose an energy efficient inference engine (EIE)
that performs inference on this compressed network model and
accelerates the resulting sparse matrix-vector multiplication
with weight sharing. Going from DRAM to SRAM gives EIE
120× energy saving; Exploiting sparsity saves 10×; Weight
sharing gives 8×; Skipping zero activations from ReLU saves
another 3×. Evaluated on nine DNN benchmarks, EIE is
189× and 13× faster when compared to CPU and GPU
implementations of the same DNN without compression. EIE
has a processing power of 102 GOPS/s working directly on
a compressed network, corresponding to 3 TOPS/s on an
uncompressed network, and processes FC layers of AlexNet at
1.88×104 frames/sec with a power dissipation of only 600mW.
It is 24,000× and 3,400× more energy efficient than a CPU
and GPU respectively. Compared with DaDianNao, EIE has
2.9×, 19× and 3× better throughput, energy efficiency and
area efficiency.

Keywords-Deep Learning; Model Compression; Hardware
Acceleration; Algorithm-Hardware co-Design; ASIC;

I. INTRODUCTION

Neural networks have become ubiquitous in applications
including computer vision [1]–[3], speech recognition [4],
and natural language processing [4]. In 1998, Lecun et
al. classified handwritten digits with less than 1M parame-
ters [5], while in 2012, Krizhevsky et al. won the ImageNet
competition with 60M parameters [1]. Deepface classified
human faces with 120M parameters [6]. Neural Talk [7]
automatically converts image to natural language with 130M
CNN parameters and 100M RNN parameters. Coates et
al. scaled up a network to 10 billion parameters on HPC
systems [8].

Large DNN models are very powerful but consume large
amounts of energy because the model must be stored in
external DRAM, and fetched every time for each image,

4-bit	  
Relative	Index

4-bit	  
Virtual	weight

16-bit		
Real	weight

16-bit	  
Absolute	Index

Encoded	Weight	
Relative	Index	
Sparse	Format	

ALU

Mem

Compressed	
DNN	Model Weight		

Look-up

Index		
Accum

Prediction

Input	
Image

Result

Figure 1. Efficient inference engine that works on the compressed deep
neural network model for machine learning applications.

word, or speech sample. For embedded mobile applications,
these resource demands become prohibitive. Table I shows
the energy cost of basic arithmetic and memory operations
in a 45nm CMOS process [9]. It shows that the total energy
is dominated by the required memory access if there is
no data reuse. The energy cost per fetch ranges from 5pJ
for 32b coefficients in on-chip SRAM to 640pJ for 32b
coefficients in off-chip LPDDR2 DRAM. Large networks do
not fit in on-chip storage and hence require the more costly
DRAM accesses. Running a 1G connection neural network,
for example, at 20Hz would require (20Hz)(1G)(640pJ) =
12.8W just for DRAM accesses, which is well beyond the
power envelope of a typical mobile device.

Previous work has used specialized hardware to accelerate
DNNs [10]–[12]. However, these efforts focus on acceler-
ating dense, uncompressed models - limiting their utility
to small models or to cases where the high energy cost
of external DRAM access can be tolerated. Without model
compression, it is only possible to fit very small neural
networks, such as Lenet-5, in on-chip SRAM [12].

Efficient implementation of convolutional layers in CNN
has been intensively studied, as its data reuse and manipu-
lation is quite suitable for customized hardware [10]–[15].
However, it has been found that fully-connected (FC) layers,
widely used in RNN and LSTMs, are bandwidth limited
on large networks [14]. Unlike CONV layers, there is no
parameter reuse in FC layers. Data batching has become
an efficient solution when training networks on CPUs or
GPUs, however, it is unsuitable for real-time applications
with latency requirements.

Network compression via pruning and weight sharing
[16] makes it possible to fit modern networks such as
AlexNet (60M parameters, 240MB), and VGG-16 (130M
parameters, 520MB) in on-chip SRAM. Processing these

ar
X

iv
:1

60
2.

01
52

8v
2

 [c
s.C

V
]

3
M

ay
 2

01
6

Weight decode

Address Accumulate

[Han et al. ISCA’16]

Compression Acceleration Regularization 48

0 * A = 0 W * 0 = 0 2.09, 1.92=> 2rule of thumb: 27/43

Post Layout Result of EIE

Technology 40 nm

PEs 64

on-chip SRAM 8 MB

Max Model Size 84 Million

Static Sparsity 10x

Dynamic Sparsity 3x

Quantization 4-bit

ALU Width 16-bit

Area 40.8 mm^2

MxV Throughput 81,967 layers/s

Power 586 mW

1. Post layout result
2. Throughput measured on AlexNet FC-7

Compression Acceleration Regularization

[Han et al. ISCA’16]

 49

27/43

1x 1x 1x 1x 1x 1x 1x 1x 1x 1x
2x

5x
1x

9x 10x

1x
2x 3x 2x 3x

14x
25x

14x 24x 22x
10x 9x 15x 9x 15x

56x 94x

21x

210x 135x

16x
34x 33x 25x

48x

0.6x
1.1x

0.5x
1.0x 1.0x

0.3x 0.5x 0.5x 0.5x 0.6x

3x
5x

1x

8x 9x

1x
3x 2x 1x

3x

248x
507x

115x

1018x 618x

92x 63x 98x 60x
189x

0.1x

1x

10x

100x

1000x

Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 NT-We NT-Wd NT-LSTM Geo Mean

Sp
ee
du
p

CPU Dense (Baseline) CPU Compressed GPU Dense GPU Compressed mGPU Dense mGPU Compressed EIE

Figure 6. Speedups of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.

1x 1x 1x 1x 1x 1x 1x 1x 1x 1x
5x

9x
3x

17x 20x

2x
6x 6x 4x 6x7x 12x 7x 10x 10x

5x 6x 6x 5x 7x
26x 37x

10x

78x 61x

8x
25x 14x 15x 23x

10x 15x
7x 13x 14x

5x 8x 7x 7x 9x

37x 59x
18x

101x 102x

14x
39x 25x 20x 36x

34,522x 61,533x
14,826x

119,797x 76,784x

11,828x 9,485x 10,904x 8,053x
24,207x

1x

10x

100x

1000x

10000x

100000x

Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 NT-We NT-Wd NT-LSTM Geo MeanEn
er

gy
 E

ffi
ci

en
cy

CPU Dense (Baseline) CPU Compressed GPU Dense GPU Compressed mGPU Dense mGPU Compressed EIE

Figure 7. Energy efficiency of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.

corner. We placed and routed the PE using the Synopsys IC
compiler (ICC). We used Cacti [25] to get SRAM area and
energy numbers. We annotated the toggle rate from the RTL
simulation to the gate-level netlist, which was dumped to
switching activity interchange format (SAIF), and estimated
the power using Prime-Time PX.

Comparison Baseline. We compare EIE with three dif-
ferent off-the-shelf computing units: CPU, GPU and mobile
GPU.

1) CPU. We use Intel Core i-7 5930k CPU, a Haswell-E
class processor, that has been used in NVIDIA Digits Deep
Learning Dev Box as a CPU baseline. To run the benchmark
on CPU, we used MKL CBLAS GEMV to implement the
original dense model and MKL SPBLAS CSRMV for the
compressed sparse model. CPU socket and DRAM power
are as reported by the pcm-power utility provided by Intel.

2) GPU. We use NVIDIA GeForce GTX Titan X GPU,
a state-of-the-art GPU for deep learning as our baseline
using nvidia-smi utility to report the power. To run
the benchmark, we used cuBLAS GEMV to implement
the original dense layer. For the compressed sparse layer,
we stored the sparse matrix in in CSR format, and used
cuSPARSE CSRMV kernel, which is optimized for sparse
matrix-vector multiplication on GPUs.

3) Mobile GPU. We use NVIDIA Tegra K1 that has
192 CUDA cores as our mobile GPU baseline. We used
cuBLAS GEMV for the original dense model and cuS-
PARSE CSRMV for the compressed sparse model. Tegra K1
doesn’t have software interface to report power consumption,
so we measured the total power consumption with a power-
meter, then assumed 15% AC to DC conversion loss, 85%
regulator efficiency and 15% power consumed by peripheral
components [26], [27] to report the AP+DRAM power for
Tegra K1.

Benchmarks.
We compare the performance on two sets of models:

uncompressed DNN model and the compressed DNN model.

Table III
BENCHMARK FROM STATE-OF-THE-ART DNN MODELS

Layer Size Weight% Act% FLOP% Description

Alex-6 9216, 9% 35.1% 3% Compressed4096
AlexNet [1] forAlex-7 4096, 9% 35.3% 3% large scale image4096
classificationAlex-8 4096, 25% 37.5% 10%1000

VGG-6 25088, 4% 18.3% 1% Compressed4096 VGG-16 [3] for
VGG-7 4096, 4% 37.5% 2% large scale image4096 classification and
VGG-8 4096, 23% 41.1% 9% object detection1000

NT-We 4096, 10% 100% 10% Compressed
600 NeuralTalk [7]

NT-Wd 600, 11% 100% 11% with RNN and
8791 LSTM for

NTLSTM 1201, 10% 100% 11% automatic
2400 image captioning

The uncompressed DNN model is obtained from Caffe
model zoo [28] and NeuralTalk model zoo [7]; The com-
pressed DNN model is produced as described in [16], [23].
The benchmark networks have 9 layers in total obtained
from AlexNet, VGGNet, and NeuralTalk. We use the Image-
Net dataset [29] and the Caffe [28] deep learning framework
as golden model to verify the correctness of the hardware
design.

VI. EXPERIMENTAL RESULT

Figure 5 shows the layout (after place-and-route) of
an EIE processing element. The power/area breakdown is
shown in Table II. We brought the critical path delay down
to 1.15ns by introducing 4 pipeline stages to update one
activation: codebook lookup and address accumulation (in
parallel), output activation read and input activation multiply
(in parallel), shift and add, and output activation write. Ac-
tivation read and write access a local register and activation
bypassing is employed to avoid a pipeline hazard. Using
64 PEs running at 800MHz yields a performance of 102

Speedup on EIE

1x 1x 1x 1x 1x 1x 1x 1x 1x 1x
2x

5x
1x

9x 10x

1x
2x 3x 2x 3x

14x
25x

14x 24x 22x
10x 9x 15x 9x 15x

56x 94x

21x

210x 135x

16x
34x 33x 25x

48x

0.6x
1.1x

0.5x
1.0x 1.0x

0.3x 0.5x 0.5x 0.5x 0.6x

3x
5x

1x

8x 9x

1x
3x 2x 1x

3x

248x
507x

115x

1018x 618x

92x 63x 98x 60x
189x

0.1x

1x

10x

100x

1000x

Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 NT-We NT-Wd NT-LSTM Geo Mean

Sp
ee
du
p

CPU Dense (Baseline) CPU Compressed GPU Dense GPU Compressed mGPU Dense mGPU Compressed EIE

Figure 6. Speedups of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.

1x 1x 1x 1x 1x 1x 1x 1x 1x 1x
5x

9x
3x

17x 20x

2x
6x 6x 4x 6x7x 12x 7x 10x 10x

5x 6x 6x 5x 7x
26x 37x

10x

78x 61x

8x
25x 14x 15x 23x

10x 15x
7x 13x 14x

5x 8x 7x 7x 9x

37x 59x
18x

101x 102x

14x
39x 25x 20x 36x

34,522x 61,533x
14,826x

119,797x 76,784x

11,828x 9,485x 10,904x 8,053x
24,207x

1x

10x

100x

1000x

10000x

100000x

Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 NT-We NT-Wd NT-LSTM Geo MeanEn
er

gy
 E

ffi
ci

en
cy

CPU Dense (Baseline) CPU Compressed GPU Dense GPU Compressed mGPU Dense mGPU Compressed EIE

Figure 7. Energy efficiency of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.

energy numbers. We annotated the toggle rate from the RTL
simulation to the gate-level netlist, which was dumped to
switching activity interchange format (SAIF), and estimated
the power using Prime-Time PX.

Comparison Baseline. We compare EIE with three dif-
ferent off-the-shelf computing units: CPU, GPU and mobile
GPU.

1) CPU. We use Intel Core i-7 5930k CPU, a Haswell-E
class processor, that has been used in NVIDIA Digits Deep
Learning Dev Box as a CPU baseline. To run the benchmark
on CPU, we used MKL CBLAS GEMV to implement the
original dense model and MKL SPBLAS CSRMV for the
compressed sparse model. CPU socket and DRAM power
are as reported by the pcm-power utility provided by Intel.

2) GPU. We use NVIDIA GeForce GTX Titan X GPU,
a state-of-the-art GPU for deep learning as our baseline
using nvidia-smi utility to report the power. To run
the benchmark, we used cuBLAS GEMV to implement
the original dense layer. For the compressed sparse layer,
we stored the sparse matrix in in CSR format, and used
cuSPARSE CSRMV kernel, which is optimized for sparse
matrix-vector multiplication on GPUs.

3) Mobile GPU. We use NVIDIA Tegra K1 that has
192 CUDA cores as our mobile GPU baseline. We used
cuBLAS GEMV for the original dense model and cuS-
PARSE CSRMV for the compressed sparse model. Tegra K1
doesn’t have software interface to report power consumption,
so we measured the total power consumption with a power-
meter, then assumed 15% AC to DC conversion loss, 85%
regulator efficiency and 15% power consumed by peripheral
components [26], [27] to report the AP+DRAM power for
Tegra K1.

Benchmarks. We compare the performance on two sets
of models: uncompressed DNN model and the compressed
DNN model. The uncompressed DNN model is obtained
from Caffe model zoo [28] and NeuralTalk model zoo [7];
The compressed DNN model is produced as described

Table III
BENCHMARK FROM STATE-OF-THE-ART DNN MODELS

Layer Size Weight% Act% FLOP% Description

Alex-6 9216, 9% 35.1% 3% Compressed4096
AlexNet [1] forAlex-7 4096, 9% 35.3% 3% large scale image4096
classificationAlex-8 4096, 25% 37.5% 10%1000

VGG-6 25088, 4% 18.3% 1% Compressed4096 VGG-16 [3] for
VGG-7 4096, 4% 37.5% 2% large scale image4096 classification and
VGG-8 4096, 23% 41.1% 9% object detection1000

NT-We 4096, 10% 100% 10% Compressed
600 NeuralTalk [7]

NT-Wd 600, 11% 100% 11% with RNN and
8791 LSTM for

NTLSTM 1201, 10% 100% 11% automatic
2400 image captioning

in [16], [23]. The benchmark networks have 9 layers in total
obtained from AlexNet, VGGNet, and NeuralTalk. We use
the Image-Net dataset [29] and the Caffe [28] deep learning
framework as golden model to verify the correctness of the
hardware design.

VI. EXPERIMENTAL RESULTS

Figure 5 shows the layout (after place-and-route) of
an EIE processing element. The power/area breakdown is
shown in Table II. We brought the critical path delay down
to 1.15ns by introducing 4 pipeline stages to update one
activation: codebook lookup and address accumulation (in
parallel), output activation read and input activation multiply
(in parallel), shift and add, and output activation write. Ac-
tivation read and write access a local register and activation
bypassing is employed to avoid a pipeline hazard. Using
64 PEs running at 800MHz yields a performance of 102
GOP/s. Considering 10× weight sparsity and 3× activation
sparsity, this requires a dense DNN accelerator 3TOP/s to
have equivalent application throughput.

CPU GPU mGPU EIE

Sparse Matrix Read Unit. The sparse-matrix read unit
uses pointers pj and pj+1 to read the non-zero elements (if
any) of this PE’s slice of column Ij from the sparse-matrix
SRAM. Each entry in the SRAM is 8-bits in length and
contains one 4-bit element of v and one 4-bit element of x.

For efficiency (see Section VI) the PE’s slice of encoded
sparse matrix I is stored in a 64-bit-wide SRAM. Thus eight
entries are fetched on each SRAM read. The high 13 bits
of the current pointer p selects an SRAM row, and the low
3-bits select one of the eight entries in that row. A single
(v, x) entry is provided to the arithmetic unit each cycle.

Arithmetic Unit. The arithmetic unit receives a (v, x)
entry from the sparse matrix read unit and performs the
multiply-accumulate operation bx = bx + v × aj . Index
x is used to index an accumulator array (the destination
activation registers) while v is multiplied by the activation
value at the head of the activation queue. Because v is stored
in 4-bit encoded form, it is first expanded to a 16-bit fixed-
point number via a table look up. A bypass path is provided
to route the output of the adder to its input if the same
accumulator is selected on two adjacent cycles.

Activation Read/Write. The Activation Read/Write Unit
contains two activation register files that accommodate the
source and destination activation values respectively during
a single round of FC layer computation. The source and
destination register files exchange their role for next layer.
Thus no additional data transfer is needed to support multi-
layer feed-forward computation.

Each activation register file holds 64 16-bit activations.
This is sufficient to accommodate 4K activation vectors
across 64 PEs. Longer activation vectors can be accommo-
dated with the 2KB activation SRAM. When the activation
vector has a length greater than 4K, the M×V will be
completed in several batches, where each batch is of length
4K or less. All the local reduction is done in the register
file. The SRAM is read only at the beginning and written at
the end of the batch.

Distributed Leading Non-Zero Detection. Input acti-
vations are hierarchically distributed to each PE. To take
advantage of the input vector sparsity, we use leading non-
zero detection logic to select the first non-zero result. Each
group of 4 PEs does a local leading non-zero detection on
their input activation. The result is sent to a Leading Non-
zero Detection Node (LNZD Node) illustrated in Figure 4.
Each LNZD node finds the next non-zero activation across
its four children and sends this result up the quadtree. The
quadtree is arranged so that wire lengths remain constant as
we add PEs. At the root LNZD Node, the selected non-zero
activation is broadcast back to all the PEs via a separate
wire placed in an H-tree.

Central Control Unit. The Central Control Unit (CCU)
is the root LNZD Node. It communicates with the master,
for example a CPU, and monitors the state of every PE by
setting the control registers. There are two modes in the

SpMat

SpMat

Ptr_Even Ptr_OddArithm
Act_0 Act_1

Figure 5. Layout of one PE in EIE under TSMC 45nm process.

Table II
THE IMPLEMENTATION RESULTS OF ONE PE IN EIE AND THE

BREAKDOWN BY COMPONENT TYPE (LINE 3-7), BY MODULE (LINE
8-13). THE CRITICAL PATH OF EIE IS 1.15 NS

Power (%) Area (%)(mW) (µm2)
Total 9.157 638,024
memory 5.416 (59.15%) 594,786 (93.22%)
clock network 1.874 (20.46%) 866 (0.14%)
register 1.026 (11.20%) 9,465 (1.48%)
combinational 0.841 (9.18%) 8,946 (1.40%)
filler cell 23,961 (3.76%)
Act queue 0.112 (1.23%) 758 (0.12%)
PtrRead 1.807 (19.73%) 121,849 (19.10%)
SpmatRead 4.955 (54.11%) 469,412 (73.57%)
ArithmUnit 1.162 (12.68%) 3,110 (0.49%)
ActRW 1.122 (12.25%) 18,934 (2.97%)
filler cell 23,961 (3.76%)

Central Unit: I/O and Computing. In the I/O mode, all of
the PEs are idle while the activations and weights in every
PE can be accessed by a DMA connected with the Central
Unit. This is one time cost. In the Computing mode, the
CCU repeatedly collects a non-zero value from the LNZD
quadtree and broadcasts this value to all PEs. This process
continues until the input length is exceeded. By setting the
input length and starting address of pointer array, EIE is
instructed to execute different layers.

V. EVALUATION METHODOLOGY

Simulator, RTL and Layout. We implemented a custom
cycle-accurate C++ simulator for the accelerator aimed to
model the RTL behavior of synchronous circuits. Each
hardware module is abstracted as an object that implements
two abstract methods: propagate and update, corresponding
to combination logic and the flip-flop in RTL. The simulator
is used for design space exploration. It also serves as a
checker for RTL verification.

To measure the area, power and critical path delay, we
implemented the RTL of EIE in Verilog. The RTL is verified
against the cycle-accurate simulator. Then we synthesized
EIE using the Synopsys Design Compiler (DC) under the
TSMC 45nm GP standard VT library with worst case PVT
corner. We placed and routed the PE using the Synopsys IC
compiler (ICC). We used Cacti [25] to get SRAM area and

Compression Acceleration Regularization

Geo Mean

[Han et al. ISCA’16]

 50

27/43

CPU GPU mGPUEIE

1x 1x 1x 1x 1x 1x 1x 1x 1x 1x
2x

5x
1x

9x 10x

1x
2x 3x 2x 3x

14x
25x

14x 24x 22x
10x 9x 15x 9x 15x

56x 94x

21x

210x 135x

16x
34x 33x 25x

48x

0.6x
1.1x

0.5x
1.0x 1.0x

0.3x 0.5x 0.5x 0.5x 0.6x

3x
5x

1x

8x 9x

1x
3x 2x 1x

3x

248x
507x

115x

1018x 618x

92x 63x 98x 60x
189x

0.1x

1x

10x

100x

1000x

Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 NT-We NT-Wd NT-LSTM Geo Mean

Sp
ee
du
p

CPU Dense (Baseline) CPU Compressed GPU Dense GPU Compressed mGPU Dense mGPU Compressed EIE

Figure 6. Speedups of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.

1x 1x 1x 1x 1x 1x 1x 1x 1x 1x
5x

9x
3x

17x 20x

2x
6x 6x 4x 6x7x 12x 7x 10x 10x

5x 6x 6x 5x 7x
26x 37x

10x

78x 61x

8x
25x 14x 15x 23x

10x 15x
7x 13x 14x

5x 8x 7x 7x 9x

37x 59x
18x

101x 102x

14x
39x 25x 20x 36x

34,522x 61,533x
14,826x

119,797x 76,784x

11,828x 9,485x 10,904x 8,053x
24,207x

1x

10x

100x

1000x

10000x

100000x

Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 NT-We NT-Wd NT-LSTM Geo MeanEn
er

gy
 E

ffi
ci

en
cy

CPU Dense (Baseline) CPU Compressed GPU Dense GPU Compressed mGPU Dense mGPU Compressed EIE

Figure 7. Energy efficiency of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.

corner. We placed and routed the PE using the Synopsys IC
compiler (ICC). We used Cacti [25] to get SRAM area and
energy numbers. We annotated the toggle rate from the RTL
simulation to the gate-level netlist, which was dumped to
switching activity interchange format (SAIF), and estimated
the power using Prime-Time PX.

Comparison Baseline. We compare EIE with three dif-
ferent off-the-shelf computing units: CPU, GPU and mobile
GPU.

1) CPU. We use Intel Core i-7 5930k CPU, a Haswell-E
class processor, that has been used in NVIDIA Digits Deep
Learning Dev Box as a CPU baseline. To run the benchmark
on CPU, we used MKL CBLAS GEMV to implement the
original dense model and MKL SPBLAS CSRMV for the
compressed sparse model. CPU socket and DRAM power
are as reported by the pcm-power utility provided by Intel.

2) GPU. We use NVIDIA GeForce GTX Titan X GPU,
a state-of-the-art GPU for deep learning as our baseline
using nvidia-smi utility to report the power. To run
the benchmark, we used cuBLAS GEMV to implement
the original dense layer. For the compressed sparse layer,
we stored the sparse matrix in in CSR format, and used
cuSPARSE CSRMV kernel, which is optimized for sparse
matrix-vector multiplication on GPUs.

3) Mobile GPU. We use NVIDIA Tegra K1 that has
192 CUDA cores as our mobile GPU baseline. We used
cuBLAS GEMV for the original dense model and cuS-
PARSE CSRMV for the compressed sparse model. Tegra K1
doesn’t have software interface to report power consumption,
so we measured the total power consumption with a power-
meter, then assumed 15% AC to DC conversion loss, 85%
regulator efficiency and 15% power consumed by peripheral
components [26], [27] to report the AP+DRAM power for
Tegra K1.

Benchmarks.
We compare the performance on two sets of models:

uncompressed DNN model and the compressed DNN model.

Table III
BENCHMARK FROM STATE-OF-THE-ART DNN MODELS

Layer Size Weight% Act% FLOP% Description

Alex-6 9216, 9% 35.1% 3% Compressed4096
AlexNet [1] forAlex-7 4096, 9% 35.3% 3% large scale image4096
classificationAlex-8 4096, 25% 37.5% 10%1000

VGG-6 25088, 4% 18.3% 1% Compressed4096 VGG-16 [3] for
VGG-7 4096, 4% 37.5% 2% large scale image4096 classification and
VGG-8 4096, 23% 41.1% 9% object detection1000

NT-We 4096, 10% 100% 10% Compressed
600 NeuralTalk [7]

NT-Wd 600, 11% 100% 11% with RNN and
8791 LSTM for

NTLSTM 1201, 10% 100% 11% automatic
2400 image captioning

The uncompressed DNN model is obtained from Caffe
model zoo [28] and NeuralTalk model zoo [7]; The com-
pressed DNN model is produced as described in [16], [23].
The benchmark networks have 9 layers in total obtained
from AlexNet, VGGNet, and NeuralTalk. We use the Image-
Net dataset [29] and the Caffe [28] deep learning framework
as golden model to verify the correctness of the hardware
design.

VI. EXPERIMENTAL RESULT

Figure 5 shows the layout (after place-and-route) of
an EIE processing element. The power/area breakdown is
shown in Table II. We brought the critical path delay down
to 1.15ns by introducing 4 pipeline stages to update one
activation: codebook lookup and address accumulation (in
parallel), output activation read and input activation multiply
(in parallel), shift and add, and output activation write. Ac-
tivation read and write access a local register and activation
bypassing is employed to avoid a pipeline hazard. Using
64 PEs running at 800MHz yields a performance of 102

Energy Efficiency on EIE

1x 1x 1x 1x 1x 1x 1x 1x 1x 1x
2x

5x
1x

9x 10x

1x
2x 3x 2x 3x

14x
25x

14x 24x 22x
10x 9x 15x 9x 15x

56x 94x

21x

210x 135x

16x
34x 33x 25x

48x

0.6x
1.1x

0.5x
1.0x 1.0x

0.3x 0.5x 0.5x 0.5x 0.6x

3x
5x

1x

8x 9x

1x
3x 2x 1x

3x

248x
507x

115x

1018x 618x

92x 63x 98x 60x
189x

0.1x

1x

10x

100x

1000x

Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 NT-We NT-Wd NT-LSTM Geo Mean

Sp
ee
du
p

CPU Dense (Baseline) CPU Compressed GPU Dense GPU Compressed mGPU Dense mGPU Compressed EIE

Figure 6. Speedups of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.

1x 1x 1x 1x 1x 1x 1x 1x 1x 1x
5x

9x
3x

17x 20x

2x
6x 6x 4x 6x7x 12x 7x 10x 10x

5x 6x 6x 5x 7x
26x 37x

10x

78x 61x

8x
25x 14x 15x 23x

10x 15x
7x 13x 14x

5x 8x 7x 7x 9x

37x 59x
18x

101x 102x

14x
39x 25x 20x 36x

34,522x 61,533x
14,826x

119,797x 76,784x

11,828x 9,485x 10,904x 8,053x
24,207x

1x

10x

100x

1000x

10000x

100000x

Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 NT-We NT-Wd NT-LSTM Geo MeanEn
er

gy
 E

ffi
ci

en
cy

CPU Dense (Baseline) CPU Compressed GPU Dense GPU Compressed mGPU Dense mGPU Compressed EIE

Figure 7. Energy efficiency of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.

energy numbers. We annotated the toggle rate from the RTL
simulation to the gate-level netlist, which was dumped to
switching activity interchange format (SAIF), and estimated
the power using Prime-Time PX.

Comparison Baseline. We compare EIE with three dif-
ferent off-the-shelf computing units: CPU, GPU and mobile
GPU.

1) CPU. We use Intel Core i-7 5930k CPU, a Haswell-E
class processor, that has been used in NVIDIA Digits Deep
Learning Dev Box as a CPU baseline. To run the benchmark
on CPU, we used MKL CBLAS GEMV to implement the
original dense model and MKL SPBLAS CSRMV for the
compressed sparse model. CPU socket and DRAM power
are as reported by the pcm-power utility provided by Intel.

2) GPU. We use NVIDIA GeForce GTX Titan X GPU,
a state-of-the-art GPU for deep learning as our baseline
using nvidia-smi utility to report the power. To run
the benchmark, we used cuBLAS GEMV to implement
the original dense layer. For the compressed sparse layer,
we stored the sparse matrix in in CSR format, and used
cuSPARSE CSRMV kernel, which is optimized for sparse
matrix-vector multiplication on GPUs.

3) Mobile GPU. We use NVIDIA Tegra K1 that has
192 CUDA cores as our mobile GPU baseline. We used
cuBLAS GEMV for the original dense model and cuS-
PARSE CSRMV for the compressed sparse model. Tegra K1
doesn’t have software interface to report power consumption,
so we measured the total power consumption with a power-
meter, then assumed 15% AC to DC conversion loss, 85%
regulator efficiency and 15% power consumed by peripheral
components [26], [27] to report the AP+DRAM power for
Tegra K1.

Benchmarks. We compare the performance on two sets
of models: uncompressed DNN model and the compressed
DNN model. The uncompressed DNN model is obtained
from Caffe model zoo [28] and NeuralTalk model zoo [7];
The compressed DNN model is produced as described

Table III
BENCHMARK FROM STATE-OF-THE-ART DNN MODELS

Layer Size Weight% Act% FLOP% Description

Alex-6 9216, 9% 35.1% 3% Compressed4096
AlexNet [1] forAlex-7 4096, 9% 35.3% 3% large scale image4096
classificationAlex-8 4096, 25% 37.5% 10%1000

VGG-6 25088, 4% 18.3% 1% Compressed4096 VGG-16 [3] for
VGG-7 4096, 4% 37.5% 2% large scale image4096 classification and
VGG-8 4096, 23% 41.1% 9% object detection1000

NT-We 4096, 10% 100% 10% Compressed
600 NeuralTalk [7]

NT-Wd 600, 11% 100% 11% with RNN and
8791 LSTM for

NTLSTM 1201, 10% 100% 11% automatic
2400 image captioning

in [16], [23]. The benchmark networks have 9 layers in total
obtained from AlexNet, VGGNet, and NeuralTalk. We use
the Image-Net dataset [29] and the Caffe [28] deep learning
framework as golden model to verify the correctness of the
hardware design.

VI. EXPERIMENTAL RESULTS

Figure 5 shows the layout (after place-and-route) of
an EIE processing element. The power/area breakdown is
shown in Table II. We brought the critical path delay down
to 1.15ns by introducing 4 pipeline stages to update one
activation: codebook lookup and address accumulation (in
parallel), output activation read and input activation multiply
(in parallel), shift and add, and output activation write. Ac-
tivation read and write access a local register and activation
bypassing is employed to avoid a pipeline hazard. Using
64 PEs running at 800MHz yields a performance of 102
GOP/s. Considering 10× weight sparsity and 3× activation
sparsity, this requires a dense DNN accelerator 3TOP/s to
have equivalent application throughput.

Sparse Matrix Read Unit. The sparse-matrix read unit
uses pointers pj and pj+1 to read the non-zero elements (if
any) of this PE’s slice of column Ij from the sparse-matrix
SRAM. Each entry in the SRAM is 8-bits in length and
contains one 4-bit element of v and one 4-bit element of x.

For efficiency (see Section VI) the PE’s slice of encoded
sparse matrix I is stored in a 64-bit-wide SRAM. Thus eight
entries are fetched on each SRAM read. The high 13 bits
of the current pointer p selects an SRAM row, and the low
3-bits select one of the eight entries in that row. A single
(v, x) entry is provided to the arithmetic unit each cycle.

Arithmetic Unit. The arithmetic unit receives a (v, x)
entry from the sparse matrix read unit and performs the
multiply-accumulate operation bx = bx + v × aj . Index
x is used to index an accumulator array (the destination
activation registers) while v is multiplied by the activation
value at the head of the activation queue. Because v is stored
in 4-bit encoded form, it is first expanded to a 16-bit fixed-
point number via a table look up. A bypass path is provided
to route the output of the adder to its input if the same
accumulator is selected on two adjacent cycles.

Activation Read/Write. The Activation Read/Write Unit
contains two activation register files that accommodate the
source and destination activation values respectively during
a single round of FC layer computation. The source and
destination register files exchange their role for next layer.
Thus no additional data transfer is needed to support multi-
layer feed-forward computation.

Each activation register file holds 64 16-bit activations.
This is sufficient to accommodate 4K activation vectors
across 64 PEs. Longer activation vectors can be accommo-
dated with the 2KB activation SRAM. When the activation
vector has a length greater than 4K, the M×V will be
completed in several batches, where each batch is of length
4K or less. All the local reduction is done in the register
file. The SRAM is read only at the beginning and written at
the end of the batch.

Distributed Leading Non-Zero Detection. Input acti-
vations are hierarchically distributed to each PE. To take
advantage of the input vector sparsity, we use leading non-
zero detection logic to select the first non-zero result. Each
group of 4 PEs does a local leading non-zero detection on
their input activation. The result is sent to a Leading Non-
zero Detection Node (LNZD Node) illustrated in Figure 4.
Each LNZD node finds the next non-zero activation across
its four children and sends this result up the quadtree. The
quadtree is arranged so that wire lengths remain constant as
we add PEs. At the root LNZD Node, the selected non-zero
activation is broadcast back to all the PEs via a separate
wire placed in an H-tree.

Central Control Unit. The Central Control Unit (CCU)
is the root LNZD Node. It communicates with the master,
for example a CPU, and monitors the state of every PE by
setting the control registers. There are two modes in the

SpMat

SpMat

Ptr_Even Ptr_OddArithm
Act_0 Act_1

Figure 5. Layout of one PE in EIE under TSMC 45nm process.

Table II
THE IMPLEMENTATION RESULTS OF ONE PE IN EIE AND THE

BREAKDOWN BY COMPONENT TYPE (LINE 3-7), BY MODULE (LINE
8-13). THE CRITICAL PATH OF EIE IS 1.15 NS

Power (%) Area (%)(mW) (µm2)
Total 9.157 638,024
memory 5.416 (59.15%) 594,786 (93.22%)
clock network 1.874 (20.46%) 866 (0.14%)
register 1.026 (11.20%) 9,465 (1.48%)
combinational 0.841 (9.18%) 8,946 (1.40%)
filler cell 23,961 (3.76%)
Act queue 0.112 (1.23%) 758 (0.12%)
PtrRead 1.807 (19.73%) 121,849 (19.10%)
SpmatRead 4.955 (54.11%) 469,412 (73.57%)
ArithmUnit 1.162 (12.68%) 3,110 (0.49%)
ActRW 1.122 (12.25%) 18,934 (2.97%)
filler cell 23,961 (3.76%)

Central Unit: I/O and Computing. In the I/O mode, all of
the PEs are idle while the activations and weights in every
PE can be accessed by a DMA connected with the Central
Unit. This is one time cost. In the Computing mode, the
CCU repeatedly collects a non-zero value from the LNZD
quadtree and broadcasts this value to all PEs. This process
continues until the input length is exceeded. By setting the
input length and starting address of pointer array, EIE is
instructed to execute different layers.

V. EVALUATION METHODOLOGY

Simulator, RTL and Layout. We implemented a custom
cycle-accurate C++ simulator for the accelerator aimed to
model the RTL behavior of synchronous circuits. Each
hardware module is abstracted as an object that implements
two abstract methods: propagate and update, corresponding
to combination logic and the flip-flop in RTL. The simulator
is used for design space exploration. It also serves as a
checker for RTL verification.

To measure the area, power and critical path delay, we
implemented the RTL of EIE in Verilog. The RTL is verified
against the cycle-accurate simulator. Then we synthesized
EIE using the Synopsys Design Compiler (DC) under the
TSMC 45nm GP standard VT library with worst case PVT
corner. We placed and routed the PE using the Synopsys IC
compiler (ICC). We used Cacti [25] to get SRAM area and

Compression Acceleration Regularization

Geo Mean

[Han et al. ISCA’16]

 51

27/43

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

Core-i7 5930k  
22nm  
CPU

TitanX 
28nm  
GPU

Tegra K1  
28nm 
mGPU

A-Eye  
28nm  
FPGA

DaDianNao  
28nm 
ASIC

TrueNorth  
28nm 
ASIC

EIE 
45nm 
ASIC  

64PEs

EIE 
28nm 
ASIC  

256PEs

Throughput (Layers/s in log scale)

Comparison: Throughput

Compression Acceleration Regularization

CPU

GPU

mGPU
FPGA

ASIC

ASIC

ASIC
ASIC

EIE

[Han et al. ISCA’16]

 52

27/43

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

Core-i7 5930k  
22nm  
CPU

TitanX 
28nm  
GPU

Tegra K1  
28nm 
mGPU

A-Eye  
28nm  
FPGA

DaDianNao  
28nm 
ASIC

TrueNorth  
28nm 
ASIC

EIE 
45nm 
ASIC  

64PEs

EIE 
28nm 
ASIC  

256PEs

Energy Efficiency (Layers/J in log scale)

Comparison: Energy Efficiency

Compression Acceleration Regularization

CPU

GPU mGPU
FPGA

ASIC ASIC

ASIC ASIC

EIE

[Han et al. ISCA’16]

 53

27/43

Indexing Module (IM) for sparse data

1
0
0
0
1
0
0
0

Indexing

0
1
1
1
0
1
1
0

n0
n1
n2
n3
n4
n5
n6
n7

Indexing

input neuronsconnections connections

n0
n4

n1
n2
n3
n5

n6

PE #0 PE #1

Fig. 9. The functionality of IM module.

IM. The IM is the key component of our accelerator, and it
is used for indexing needed neurons of sparse neural networks
with different levels of sparsity. Instead of distributing an
indexing module to each PE, we design a centralized indexing
module in the BC and only transfer the indexed neurons to
PEs, which can significantly reduce the bandwidth requirement
between the neural buffer and PEs because the number of data
after indexing is much smaller in sparse networks. In Figure 9,
different input neurons are selected for different PEs based on
stored connections. For PE #0, only two neurons, i.e., n0 and
n4, are selected from all 8 neurons for computation on PEs.

To implement the indexing module, we investigate two
commonly-used indexing options, i.e., direct indexing and step
indexing. The direct indexing approach uses a binary string
with one bit per synapse, indicating whether the corresponding
synapse exists, i.e., “1” for existence and “0” for absence. The
step indexing approach further indexes the binary string of
direct indexing by using distances between existed synapses
(“1”s in the binary string), i.e., each element in the index table
indicates the distance between two existed synapses.

Although there exists other indexing methods, such as
Compressed Sparse Row (CSR), Coordinate list (COO), and
Compressed Sparse Column (CSC), direct indexing and step
indexing are relatively easy to implement from the perspective
of hardware design. For example, well used CSR/CSC need
two arrays to store indexes for sparse matrix which will
be costly for storage in the context of sparse NNs whose
sparsity are usually larger than 5% (see Table I). Besides,
CSR/CSR are indexing row and column of matrix while
our deliberated design scheduling in accelerator is indexing
multiple neurons and synapses one-dimensionally in parallel.
Thus we investigate direct indexing and step indexing for
implementing high efficient indexing module.

In direct indexing, neurons are selected from all input
neurons directly based on existed connections (i.e., 1s) in the
binary string. The binary string of a sparse network example is
shown in Figure 10(a). We also present the potential hardware
implementation in Figure 10(b). The indexing process can be
elaborated as follows. First we add each bit in the original
binary string to obtain an accumulated string, and each element
in the accumulated string indicates the location of correspond-
ing connection. After enforcing the “AND” operation between

0110

++++

0
210

n0 n2n1 n3 n4 n5 n6 n7

MUX

0

1010

++++

3322
&

4

Indication

Input neurons

Indexing results

1

0

0
1

1

1
0

2210 4332

0210 4030

n2n1 n5 n7

Input neurons

Output
neuron

(a) (b)

Fig. 10. (a) A sparse network example with the direct indexing. (b) Hardware
implementation of direct indexing.

the accumulated string and the original string, the indexes of
each connected neuron can be obtained.

n1n2n5n7

2311
1

1

3

2

++++0 521

n0

n2
n1

n3
n4
n5
n6
n7MUX

2
3
1
1

Distance

Input neurons

indexing results

Input Neuron

Output
Neuron

8521

(a) (b)

Fig. 11. (a) A sparse network example with the step indexing. (b) Hardware
implementation of the step indexing.

In step indexing, neurons are selected based on the distances
between input neurons with existed synapses. We present the
same network example with step indexing in Figure 11(a)
and the potential hardware implementation in Figure 11(b).
The indexing process can be detailed as follow. First, we add
the numbers in the index table (e.g., “1132” in Figure 11(b))
sequentially to get the indexes of inputs neurons which have
connections with the current output neuron. Then, such indexes
are used for addressing the corresponding input neurons.
Compared against the direct indexing, the indexes in step
indexing are integer numbers whose widths depend on the
sparsity of NNs.

We implement the above two indexing approaches in RTL
and compare corresponding hardware costs in terms of area
and power with synthesized results in Figure 12. Note that
indexes are computed in parallel for both implementations. By
selecting 16 data from an array with a length varying from 32
to 512 (i.e., sparsity varying from 50% to 3.12%) in one cycle,
we observe that the costs are increasing with the sparsity.

• IM is used for indexing needed neurons of sparse networks with different levels of
sparsities.

• A centralized IM is designed in the buffer controller and only transfer the indexed
neurons to processing engines.

2Shijin Zhang et al. (2016). “Cambricon-x: An accelerator for sparse neural networks”. In:
Proc. MICRO. IEEE, pp. 1–12.

Weight Sparsity2

28/43

Direct indexing and hardware implementation

1
0
0
0
1
0
0
0

Indexing

0
1
1
1
0
1
1
0

n0
n1
n2
n3
n4
n5
n6
n7

Indexing

input neuronsconnections connections

n0
n4

n1
n2
n3
n5

n6

PE #0 PE #1

Fig. 9. The functionality of IM module.

IM. The IM is the key component of our accelerator, and it
is used for indexing needed neurons of sparse neural networks
with different levels of sparsity. Instead of distributing an
indexing module to each PE, we design a centralized indexing
module in the BC and only transfer the indexed neurons to
PEs, which can significantly reduce the bandwidth requirement
between the neural buffer and PEs because the number of data
after indexing is much smaller in sparse networks. In Figure 9,
different input neurons are selected for different PEs based on
stored connections. For PE #0, only two neurons, i.e., n0 and
n4, are selected from all 8 neurons for computation on PEs.

To implement the indexing module, we investigate two
commonly-used indexing options, i.e., direct indexing and step
indexing. The direct indexing approach uses a binary string
with one bit per synapse, indicating whether the corresponding
synapse exists, i.e., “1” for existence and “0” for absence. The
step indexing approach further indexes the binary string of
direct indexing by using distances between existed synapses
(“1”s in the binary string), i.e., each element in the index table
indicates the distance between two existed synapses.

Although there exists other indexing methods, such as
Compressed Sparse Row (CSR), Coordinate list (COO), and
Compressed Sparse Column (CSC), direct indexing and step
indexing are relatively easy to implement from the perspective
of hardware design. For example, well used CSR/CSC need
two arrays to store indexes for sparse matrix which will
be costly for storage in the context of sparse NNs whose
sparsity are usually larger than 5% (see Table I). Besides,
CSR/CSR are indexing row and column of matrix while
our deliberated design scheduling in accelerator is indexing
multiple neurons and synapses one-dimensionally in parallel.
Thus we investigate direct indexing and step indexing for
implementing high efficient indexing module.

In direct indexing, neurons are selected from all input
neurons directly based on existed connections (i.e., 1s) in the
binary string. The binary string of a sparse network example is
shown in Figure 10(a). We also present the potential hardware
implementation in Figure 10(b). The indexing process can be
elaborated as follows. First we add each bit in the original
binary string to obtain an accumulated string, and each element
in the accumulated string indicates the location of correspond-
ing connection. After enforcing the “AND” operation between

0110

++++

0
210

n0 n2n1 n3 n4 n5 n6 n7

MUX

0

1010

++++

3322
&

4

Indication

Input neurons

Indexing results

1

0

0
1

1

1
0

2210 4332

0210 4030

n2n1 n5 n7

Input neurons

Output
neuron

(a) (b)

Fig. 10. (a) A sparse network example with the direct indexing. (b) Hardware
implementation of direct indexing.

the accumulated string and the original string, the indexes of
each connected neuron can be obtained.

n1n2n5n7

2311
1

1

3

2

++++0 521

n0

n2
n1

n3
n4
n5
n6
n7MUX

2
3
1
1

Distance

Input neurons

indexing results

Input Neuron

Output
Neuron

8521

(a) (b)

Fig. 11. (a) A sparse network example with the step indexing. (b) Hardware
implementation of the step indexing.

In step indexing, neurons are selected based on the distances
between input neurons with existed synapses. We present the
same network example with step indexing in Figure 11(a)
and the potential hardware implementation in Figure 11(b).
The indexing process can be detailed as follow. First, we add
the numbers in the index table (e.g., “1132” in Figure 11(b))
sequentially to get the indexes of inputs neurons which have
connections with the current output neuron. Then, such indexes
are used for addressing the corresponding input neurons.
Compared against the direct indexing, the indexes in step
indexing are integer numbers whose widths depend on the
sparsity of NNs.

We implement the above two indexing approaches in RTL
and compare corresponding hardware costs in terms of area
and power with synthesized results in Figure 12. Note that
indexes are computed in parallel for both implementations. By
selecting 16 data from an array with a length varying from 32
to 512 (i.e., sparsity varying from 50% to 3.12%) in one cycle,
we observe that the costs are increasing with the sparsity.

• Neurons are selected from all input neurons directly based on existed connections in
the binary string.

Weight Sparsity

29/43

Step indexing and hardware implementation

1
0
0
0
1
0
0
0

Indexing

0
1
1
1
0
1
1
0

n0
n1
n2
n3
n4
n5
n6
n7

Indexing

input neuronsconnections connections

n0
n4

n1
n2
n3
n5

n6

PE #0 PE #1

Fig. 9. The functionality of IM module.

IM. The IM is the key component of our accelerator, and it
is used for indexing needed neurons of sparse neural networks
with different levels of sparsity. Instead of distributing an
indexing module to each PE, we design a centralized indexing
module in the BC and only transfer the indexed neurons to
PEs, which can significantly reduce the bandwidth requirement
between the neural buffer and PEs because the number of data
after indexing is much smaller in sparse networks. In Figure 9,
different input neurons are selected for different PEs based on
stored connections. For PE #0, only two neurons, i.e., n0 and
n4, are selected from all 8 neurons for computation on PEs.

To implement the indexing module, we investigate two
commonly-used indexing options, i.e., direct indexing and step
indexing. The direct indexing approach uses a binary string
with one bit per synapse, indicating whether the corresponding
synapse exists, i.e., “1” for existence and “0” for absence. The
step indexing approach further indexes the binary string of
direct indexing by using distances between existed synapses
(“1”s in the binary string), i.e., each element in the index table
indicates the distance between two existed synapses.

Although there exists other indexing methods, such as
Compressed Sparse Row (CSR), Coordinate list (COO), and
Compressed Sparse Column (CSC), direct indexing and step
indexing are relatively easy to implement from the perspective
of hardware design. For example, well used CSR/CSC need
two arrays to store indexes for sparse matrix which will
be costly for storage in the context of sparse NNs whose
sparsity are usually larger than 5% (see Table I). Besides,
CSR/CSR are indexing row and column of matrix while
our deliberated design scheduling in accelerator is indexing
multiple neurons and synapses one-dimensionally in parallel.
Thus we investigate direct indexing and step indexing for
implementing high efficient indexing module.

In direct indexing, neurons are selected from all input
neurons directly based on existed connections (i.e., 1s) in the
binary string. The binary string of a sparse network example is
shown in Figure 10(a). We also present the potential hardware
implementation in Figure 10(b). The indexing process can be
elaborated as follows. First we add each bit in the original
binary string to obtain an accumulated string, and each element
in the accumulated string indicates the location of correspond-
ing connection. After enforcing the “AND” operation between

0110

++++

0
210

n0 n2n1 n3 n4 n5 n6 n7

MUX

0

1010

++++

3322
&

4

Indication

Input neurons

Indexing results

1

0

0
1

1

1
0

2210 4332

0210 4030

n2n1 n5 n7

Input neurons

Output
neuron

(a) (b)

Fig. 10. (a) A sparse network example with the direct indexing. (b) Hardware
implementation of direct indexing.

the accumulated string and the original string, the indexes of
each connected neuron can be obtained.

n1n2n5n7

2311
1

1

3

2
++++0 521

n0

n2
n1

n3
n4
n5
n6
n7MUX

2
3
1
1

Distance

Input neurons

indexing results

Input Neuron

Output
Neuron

8521

(a) (b)

Fig. 11. (a) A sparse network example with the step indexing. (b) Hardware
implementation of the step indexing.

In step indexing, neurons are selected based on the distances
between input neurons with existed synapses. We present the
same network example with step indexing in Figure 11(a)
and the potential hardware implementation in Figure 11(b).
The indexing process can be detailed as follow. First, we add
the numbers in the index table (e.g., “1132” in Figure 11(b))
sequentially to get the indexes of inputs neurons which have
connections with the current output neuron. Then, such indexes
are used for addressing the corresponding input neurons.
Compared against the direct indexing, the indexes in step
indexing are integer numbers whose widths depend on the
sparsity of NNs.

We implement the above two indexing approaches in RTL
and compare corresponding hardware costs in terms of area
and power with synthesized results in Figure 12. Note that
indexes are computed in parallel for both implementations. By
selecting 16 data from an array with a length varying from 32
to 512 (i.e., sparsity varying from 50% to 3.12%) in one cycle,
we observe that the costs are increasing with the sparsity.

• Neurons are selected based on the distances between input neurons with existed
synapses.

Weight Sparsity

30/43

Lots of Runtime Zeroes
Ineffectual zero computations.Lots of Runtime Zeroes

0

0.1

0.2

0.3

0.4

0.5

0.6

Alexnet Google NiN VGG19 VGG_M VGG_S AVG

Fraction of zero neurons in multiplications

16

3Jorge Albericio et al. (2016). “Cnvlutin: Ineffectual-neuron-free deep neural network
computing”. In: ACM SIGARCH Computer Architecture News 44.3, pp. 1–13.

Feature Sparsity3

31/43

DaDianNao4

SB (eDRAM)

NBin

x

x
f

NBout
+

Filter 0

Filter 15
x

x
+ f

16

IP0

IP15

Neuron
Lane 0

Neuron
Lane 15

How to compute DNNs: DaDianNao*

Filter 0

Filter 15
*Chen et al. MICRO 2014

Neurons

4Yunji Chen et al. (2014). “Dadiannao: A machine-learning supercomputer”. In: 2014 47th Annual
IEEE/ACM International Symposium on Microarchitecture. IEEE, pp. 609–622.

Feature Sparsity

32/43

Processing in DaDianNaoProcessing in DaDianNao

2
0

1

⋯

1
1

1

⋯

1
2

0

⋯

0
1

15

⋯⋯⋯

0
3

1

⋯
⋯

⋯⋯⋯⋯
⋯

18

Neuron
Lanes

0
1

15

Synapse
Lanes
Filter 0

0
1

15

Synapse
Lanes

Filter 15

Feature Sparsity

33/43

Processing in DaDianNaoProcessing in DaDianNao

2
0

1

⋯

1
1

1

⋯

1
2

0

⋯

0
1

15

⋯⋯⋯

0
3

1

⋯
⋯

⋯⋯⋯⋯
⋯

18

Neuron
Lanes

0
1

15

Synapse
Lanes
Filter 0

0
1

15

Synapse
Lanes

Filter 15

Feature Sparsity

34/43

Processing in DaDianNaoProcessing in DaDianNao

2
0

1

⋯

1
1

1

⋯

1
2

0

⋯

0
1

15

⋯⋯⋯

0
3

1

⋯
⋯

⋯⋯⋯⋯
⋯

X

X

Multiplication of corresponding
neuron and synapse elements

18

Neuron
Lanes

0
1

15

Synapse
Lanes
Filter 0

0
1

15

Synapse
Lanes

Filter 15

Feature Sparsity

35/43

Processing in DaDianNao

Zero removal.
Zero-skipping in DaDianNao?

0
3

1

⋯

2
0

1

⋯

1
1

1

⋯

1
2

0

⋯ 3

1

⋯

2

⋯

1
1

1

⋯

1
2

1

Zero
removal

⋯⋯⋯ ⋯
⋯⋯⋯⋯

⋯

19

0
1

15

Neuron
Lanes

0
1

15

Synapse
Lanes
Filter 0

0
1

15

Synapse
Lanes

Filter 15

Feature Sparsity

36/43

Processing in DaDianNao

Zero removal.
Zero-skipping in DaDianNao?

0
3

1

⋯

2
0

1

⋯

1
1

1

⋯

1
2

0

⋯ 3

1

⋯

2

⋯

1
1

1

⋯

1
2

1

Zero
removal

⋯⋯⋯ ⋯
⋯⋯⋯⋯

⋯

19

0
1

15

Neuron
Lanes

0
1

15

Synapse
Lanes
Filter 0

0
1

15

Synapse
Lanes

Filter 15

Feature Sparsity

37/43

Processing in DaDianNao

Lanes can not longer operate in lock-step.Zero-skipping in DaDianNao?

0
3

1

⋯

2
0

1

⋯

1
1

1

⋯

1
2

0

⋯ 3

1

⋯

2

⋯

1
1

1

⋯

1
2

1

Zero
removal

⋯⋯⋯ ⋯
⋯⋯⋯⋯

⋯

X

X

Lanes can
not longer
operate in
lock-step!

19

0
1

15

Neuron
Lanes

0
1

15

Synapse
Lanes
Filter 0

0
1

15

Synapse
Lanes

Filter 15

Feature Sparsity

38/43

CNVLUTIN: Decoupling Lanes
CNVLUTIN: Decoupling Lanes

⋯⋯⋯

0
1

15

⋯

⋯

20

Neuron
Lanes

⋯⋯⋯ ⋯

0
1

15

Synapse
Lanes
Filter 0

⋯⋯⋯⋯

0
1

15

Synapse
Lanes

Filter 15

Neuron Lane 0

Synapses
Lane 0

Filter 0
Filter 1 ⋯⋯⋯ ⋯

Filter 15

Synapses
Lane 15

Neuron Lane 15

Filter 0
Filter 1 ⋯⋯⋯ ⋯

Filter 15

⋯

DaDianNao CNVLUTIN

Subunit 0

Subunit 15

Feature Sparsity

39/43

CNVLUTIN: Decoupling LanesCNVLUTIN: Decoupling Lanes

0

11

211

0

Neuron Lane 0

Neuron Lane 15 1

⋯⋯⋯⋯

⋯

⋯⋯⋯⋯
21

123Offsets

Offsets 12 0

⋯
⋯

Synapses
Lane 0

Filter 0

Filter 15

Synapses
Lane 15

Filter 0

Filter 15

Subunit 0

Subunit 15

Feature Sparsity

40/43

CNVLUTIN: Decoupling LanesCNVLUTIN: Decoupling Lanes

11

211Neuron Lane 0

Neuron Lane 15 1

⋯⋯⋯⋯

⋯

⋯⋯⋯⋯
21

123Offsets

Offsets 12 0

⋯
⋯

Synapses
Lane 0

Filter 0

Filter 15

Synapses
Lane 15

Filter 0

Filter 15

Subunit 0

Subunit 15

Feature Sparsity

41/43

CNVLUTIN: Decoupling LanesCnvlutin: Summary

SB
 (e

DR
AM

) Synapse
Lane 15

Synapse
Lane 15

Lane 0
Filter

Lane 15
Filter

x

x

Offsets

Subunit 0

+

NBout

to central
eDRAM

SB
 (e

DR
AM

)

encoder

f

+ f

x

x

Subunit 15

from central
eDRAM

from central
eDRAM

Nbin

Neuron
Lane 0

Neuron
Lane 15

Offsets

Synapse
Lane 0

Synapse
Lane 0

Lane 0
Filter

Nbin

Lane 15
Filter

1-wide Neuron Lanes

16-synapse
Synapse Lanes

Decoupled Neuron Lanes:
 Neuron + coordinate
 Proceed independently

Partitioned SB:
 16-wide accesses
 1 synapse per filter

43

Feature Sparsity

42/43

• Wenlin Chen et al. (2015). “Compressing neural networks with the hashing trick”. In:
Proc. ICML, pp. 2285–2294

• Huizi Mao et al. (2017). “Exploring the granularity of sparsity in convolutional
neural networks”. In: CVPR Workshop, pp. 13–20

• Zhuang Liu et al. (2017). “Learning efficient convolutional networks through
network slimming”. In: Proc. ICCV, pp. 2736–2744

• Chenglong Zhao et al. (June 2019). “Variational convolutional neural network
pruning”. In: Proc. CVPR

• Junru Wu et al. (2018). “Deep k-Means: Re-training and parameter sharing with
harder cluster assignments for compressing deep convolutions”. In: Proc. ICML

Further Discussion: Reading List

43/43

	Main Talk
	Kernel Sparse Convolution
	Submanifold Sparse Convolution
	Sparse Hardware Architecture

