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mean Average Precision (mAP)

What is object detection?
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Figure copyright Ross Girshick, 2015.

Reproduced with permission.
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What is object detection?

Classification: What is it?

Class Scores
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Object Detection: What and where?
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The application of object detection?

Face Detection




The application of object detection?

Autonomous driving
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The application of object detection?

Deep Stereo Geometry Network for 3D Object Detection
Yilun Chen, Shu Liu, Xiaoyong Shen, Jiaya Jia




The application of object detection?

Defect Detection




Metrics

v I'P T'P = True positive
Precision = TP + FP
IF+ I'N = True negative
TP FP = False positive
Recall = ——
I'P+ FN

FN = False negative

Fl=1. prec.zs.ton - recall
precision + recall



Metrics

area of overlap
area of union

loU =

Overlap




Rank by confidence
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Precision

Metrics

Interpolated AP
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Object Detection as Classification: Sliding Window

Apply a CNN to many different crops of the
Image, CNN classifies each crop as object
or background

?:]I‘ | -
}... 192 192 128 204 2048 Dog .; N O
97 128 . i el
A AN, 13 13
T =D |3 | o | 1]
Ik ' 27
224 and Max
of 4 pooling
a8

eeeeeeeeee

==~ L Il  Background? YES

888888

3




Object Detection as Classification: Sliding Window

Apply a CNN to many different crops of the
Image, CNN classifies each crop as object
or background
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Object Detection as Classification: Sliding Window

Apply a CNN to many different crops of the
Image, CNN classifies each crop as object
or background
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Object Detection as Classification: Sliding Window

Apply a CNN to many different crops of the
Image, CNN classifies each crop as object
or background
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Object Detection as Classification: Sliding Window

Apply a CNN to many different crops of the
Image, CNN classifies each crop as object
or background
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Problem: Need to apply CNN to huge
number of locations and scales, very
computationally expensive!



Region Proposals

e Find "blobby” image regions that are likely to contain objects
e Relatively fast to run; e.g. Selective Search gives 1000 region
proposals in a few seconds on CPU




Linear Regression for bounding box offsets

R-CNN

I Bbox reg “ SVMs I Classify regions with

IBboxreg \ ‘/ .

ConvN
et

ConvN
et

)’

Input image

SVMs

Forward each
region through
ConvNet

L2 Warped image regions

Regions of Interest

(Rol) from a proposal
method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.



Linear Regressi

on for bounding box offsets

R-CNN
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¢ Training is slow (84h), takes a lot
Forward each of disk space

region th rough ¢ Inference (detection) is slow
e 47s | image with VGG16
ConvNet

L2 Warped image regions

Regions of Interest

(Rol) from a proposal
method (~2k)

Girshick et al, “Rich feature hierarchies for accurate object detection and
semantic segmentation”, CVPR 2014.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.



Fast R-CNN

Linear +

Softmax

softmax Linear

classifier

Interest (Rols)
from a proposal
method

Bounding-box
regressors

Fully-connected layers

“Rol Pooling” layer

Girshick, “Fast R-CNN", ICCV 2015.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.



Fast R-CNN |
. . Multi-task loss
(Training) ' Y

Linear +
softmax

Girshick, “Fast R-CNN”, ICCV 2015.
Figure copyright Ross Girshick, 2015; source. Reproduced with permission.



Fast R-CNN Rol Pooling

Divide projected

Project proposal proposal into 7x7
onto features grid, max-pool Fully-connected
within each cell layers
\
CNN
/
Hi-res input image: Hi-res conv features: Rol conv features:  Fully-connected layers expect
3 X 640 X.480 512 x 20 x 15; 512x 7 x 7 low-res conv features:
with region for region proposal 512X 7 X 7
proposal Projected region
proposal is e.g.
512 x 18 x 8
Girshick, “Fast R-CNN", ICCV 2015.

(varies per proposal)



Fast R-CNN

Test time (seconds)

B Including Region proposals [l Excluding Region Proposals

Training time (Hours)
R-CNN R-CNN

SPP-Net

SPP-Net

Problem;
0.32 +— Runtime dominated
0 15 by regionsproposals!

Fast R-CNN 8.75

Fast R-CNN =

0 25 50 75 100



Feature Maps = features and their locations

Visualizing one response” e s,d,’c" f =R 5
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P
 Location of a feature:

explicitly represents where it is.

* Responses of a feature:
encode what it is, and implicitly
encode finer position information —

oy B

finer position information is
encoded in the channel dimensions
(e.g., bbox regression from
responses at one pixel as in RPN)

:
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Faster R-CNN:

Make CNN do proposals!

Insert Region Proposal '
Network (RPN) to predict Rol pooling

proposals from features

proposeV
Jointly train with 4 losses:

1. RPN classify object / not object Region Proposal Network 2
2. RPN regress box coordinates H
3. Final classification score (object TR T -

classes)
4. Final box coordinates

CNN
4 /

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”, NIPS 2015 = LA —p ==
Figure copyright 2015, Ross Girshick; reproduced with permission



Faster R-CNN

R-CNN Test-Time Speed

R-CNN

SPP-Net

Fast R-CNN

2.3

Faster R-CNN| 0.2

0 15 30 45



Anchor as References
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S X conf : (c1,¢co,--+,¢p)
regressing an anchor box to a ground-truth box (a) Image with GT boxes (b) 8 x 8 feature map (c) 4 x 4 feature map
* Object probability is with reference to anchors, e.g.:
e anchors as positive samples: if loU > 0.7 or loU is max
2k scores 4k coordinates < k anchor boxes
e anchors as negative samples: if loU < 0.3 cls layer \ t reg layer
256-d

t intermediate layer

sliding window

conv feature map




Anchor as References

2k scores 4k coordinates < k anchor boxes
* Translation-invariant anchors: C’“ayer\ ’ reg layer

e the same set of anchors are used at each sliding position 256-d
t intermediate layer

e the same prediction functions (with reference to the sliding
window) are used

e 3 translated object will have a translated prediction

sliding window

conv feature map



Anchor as References

2k scores 4k coordinates <7 k anchor boxes
* Multi-scale/size anchors: clslayer\ ’ reg layer
* multiple anchors are used at each position: e
e.g., 3 scales (1282, 2562, 5122) and 3 aspect ratios (2:1, 1:1, t intermediate layer
1:2) yield 9 anchors

* each anchor has its own prediction function
* single-scale features, multi-scale predictions

sliding window

conv feature map



An(c::hor as References

X

Cy

Anchor
. bx=0'(tx)+CX
: by=0(tty)+cy
+ b=pe"
_ _ t,
: b=p,e

Target

A feature map.



Anchor-Based Two-Stage Detector

Rich feature hierarchies for accurate object detection and semantic segmentation

e https://arxiv.org/abs/1311.2524

Fast R-CNN
e https://arxiv.org/abs/1504.08083

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

e https://arxiv.org/pdf/1506.01497.pdf

Mask RCNN

e https://arxiv.org/pdf/1703.06870.pdf


https://arxiv.org/abs/1311.2524
https://arxiv.org/pdf/1506.01497.pdf
https://arxiv.org/pdf/1703.06870.pdf

Anchor-Based One-Stage Detector




Anchor-Based One-Stage Detector

K: The number of classes
A: The number of anchors

class+box
subnets

class+box
subnets

class+box
subnets

—

subnet

(a) ResNet (b) feature pyramid net (c) class subnet (top) (d) box subnet (bottom)

Backbone: Neck: Head:
Feature Extractor Feature Enhancer Classification and Regression for each anchor



Anchor-Based One-Stage Detector

Extra Feature Layers

Fully Connected

Fully Connected
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Anchor-Based One-Stage Detector

SSD: Single Shot MultiBox Detector

e https://arxiv.org/abs/1512.02325

You Only Look Once: Unified, Real-Time Object Detection

e https://arxiv.org/abs/1506.02640

YOLO9000: Better, Faster, Stronger

e https://arxiv.org/abs/1612.08242

Focal Loss for Dense Object Detection

e https://arxiv.org/pdf/1708.02002.pdf



https://arxiv.org/abs/1512.02325
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1612.08242
https://arxiv.org/pdf/1708.02002.pdf

Two-Stage VS One-Stage Detector

e Two-Stage detector = One-Stage detector + Refine Head

e [here are some training detalls in two-stage detector which makes the two-stage
detector may perform worse than one-stage detector in some scenario. | will leave
this for you to think and discuss after reading the papers.



Anchor-Free One-Stage Detector

e Anchor is an important but sensitive hyper-parameters for detection performance.

e What happens if there is a dog which is much larger than all of the anchors in a
detection algorithm?

o |t will fail to detect!



Anchor-Free One-Stage Detector

(x0, y0)

e Point as references to avoid all hyper-
parameters related to anchor boxes.

e Regression for each point in a feature map

[ ::B—CE(()?:), t™ :y—y(()i),

(x1, y1)



Anchor-Free One-Stage Detector

e Anchor-Based Detector will use loU to assign the positive or negative to an anchor.
 Anchor-Free Detector has other strategy.

e spatial constraint: center (X, y) is considered as a positive sample if it falls into
any ground-truth bounding box.

e scale constraint: Based on max(l*, r*, t*, b*) to assign ground-truth box to
different head.
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Anchor-Free One-Stage Detector

e FCOS: Fully Convolutional One-Stage Object Detection

e https://arxiv.org/pdf/1904.01355.pdf

e CenterNet: Keypoint Triplets for Object Detection

e https://arxiv.org/pdf/1904.08189.pdf

e FoveaBox: Beyond Anchor-based object Detector

e https://arxiv.org/pdf/1904.03797v1.pdf



https://arxiv.org/pdf/1904.01355.pdf
https://arxiv.org/pdf/1904.08189.pdf
https://arxiv.org/pdf/1904.03797v1.pdf

Anchor-Based VS Anchor-Free

e \What is the reference

e Anchor vs Points (or others)

: . - .
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(a) Positive sample (b) RetmmaNet (c) FCOS
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Anchor-Based VS Anchor-Free

e How to assign positive and negative
* |oU(Anchor-based) vs Rules(Anchor-free)

* |t Is nowadays an interesting research topic in
object detection.

 Bridging the Gap between Anchor-based and
Anchor-free Detection via Adaptive Training
Sample Selection. https://arxiv.org/abs/
1912.02424

e FreeAnchor: Learning to Match Anchors for
Visual Object Detection. https://arxiv.org/abs/
1909.02466
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(a) RetinaNet (b) FCOS

Figure 1: Definition of positives (J)) and negatives (fo).
Blue box, red box and red point are ground-truth, anchor
box and anchor point. (a) RetinaNet uses IoU to select posi-
tives (Ji) 1n spatial and scale dimension simultaneously. (b)
FCOS first finds candidate positives (J#) in spatial dimen-
sion, then selects final positives (Jill) in scale dimension.


https://arxiv.org/abs/1912.02424
https://arxiv.org/abs/1912.02424
https://arxiv.org/abs/1909.02466
https://arxiv.org/abs/1909.02466

Object Detection: lots of variable

 Architecture
e two-stage

e faster RCNN ° Takeaways
* Base Network * Mask RCNN e Two-stage is more accurate but
e VGG16 * oOne-stage slower
e ResNet-(18/34/50/101) * Yolo-(vi/v2/v3/v4) e One-stage is faster but not as
e Inception-(v1/v2/v3) * SSD accurate
e MobileNet-(v1/v2/v3) * RetinaNet
e FCOS

e ResNext

e Reference
e anchor
* anchor-free(points)



At last...

e Any question about object detection, please send me an email.

e |f you are interested in computer vision, please feel free to apply for an
internship or a full-time position in SmartMore.

e |f you are interested, drop me an email at: exxon.yan@smartmore.com
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Thanks!



