CENG4480 Homework 1 **Due**: Oct. 18, 2020 ## **Q1** (10%) Given the circuit as shown in Figure 1, $R_1=2K\Omega$, $R_f=5K\Omega$, $R_2=2K\Omega$, $R_3=18K\Omega$, $u_i=1V$, please compute output voltage u_o . Figure 1: The circuit. ## **Q2** (10%) Given a non-inverting amplifier as shown in Figure 2, $R_1 = 4R_2$ and $A_0 = 1000$. - 1. Calculate the exact finite gain. - 2. Determine the gain difference if the circuit is expected to have an ideal gain under $A_0=\infty$. Figure 2: Non-inverting Amplifier. Q3 (10%) Given the inverting amplifier as shown in Figure 3, its supply voltage is $\pm 15V$. - 1. Compute and sketch transmission curve between u_i and u_o . - 2. The input signal is given to be $u_i = 5sin\omega t(V)$, sketch the waveform of u_o . Figure 3: Inverting Amplifier. ## **Q4** (10%) As shown in Figure 4, $R_f = 2R_1$, $u_i = -2V$, $R_2 = 5K\Omega$, $R_3 = 2K\Omega$, please compute the output voltage u_o . Figure 4: The circuit. **Q5** (20%) A differential integrator is shown in Figure 5. - 1. Determine the relationship among u_{i1} , u_{i2} and u_o . - 2. If we want $u_o = 0V$ when $u_{i2} = 1V$, determine u_{i1} - 3. When t = 0, $u_{i2} = 1V$, $u_{i1} = 0V$, $u_o = 0V$, determine u_o when t = 10s. **Q6** (10%) Given a low-pass filter as shown in Figure 6. - 1. If $R_1 = 10K\Omega$, $R_2 = 200K\Omega$, determine low-frequency gain $A_u(dB)$; - 2. If cutoff frequency $f_c = 6Hz$, determine C value. **Q7** (20%) Let us consider the Schmitt Trigger shown in Figure 7 1. Due to the manufacturing defects, a parasitic resister R_3 occurs between the output node and ground, calculate the reference voltages. Figure 5: A differential integrator. Figure 6: A low-pass filter. Figure 7: Schmitt Trigger. 2. If the parasitic device is a capacitor C, sketch v_{out} versus v_{in} . Label the key coordinates on the curve. **Q8** (10%) An ADC is used to sample an analog signal. - 1. If the maximum frequency of the analog signal is 10kHz, determine the minimum sampling frequency. - 2. As shown in Figure 8, if the ADC is integrating ADC with 15 bits and clock frequency is 2MHz, determine the maximum conversion frequency. Figure 8: Integrating ADC.