1. Let \(A \) and \(B \) be arbitrary events. Which of the following is true? If you answer yes, prove it using the axioms of probability. If you answer no, provide a counterexample.

(a) \(P(A|B) + P(A|B^c) = 1 \).

Solution: No. If \(B \) is the event of a fair coin flipping heads and \(A \) is the event of the coin flipping heads or tails then \(P(A|B) = 1 \) and \(P(A|B^c) = 1 \).

(b) \(P(A \cap B|A \cup B) \leq P(A|B) \).

Solution: Yes, because \(P(A \cup B) \geq P(B) \) and so
\[
P(A \cap B|A \cup B) = \frac{P(A \cap B)}{P(A \cup B)} \leq \frac{P(A \cap B)}{P(B)} = P(A|B).
\]

2. \(n \) independent random numbers are sampled uniformly from the interval \([0, 1]\).

(a) If \(n = 10 \), what is the probability that exactly 4 of them are greater than 0.7?

Solution: Let \(N \) be the number of such random numbers greater than 0.7. Then \(N \) is a binomial random variable with \(n = 10 \) samples and success probability \(p = 3 \), so
\[
P(X = 4) = \binom{10}{4} 0.3^4 (1 - 0.3)^{10-4} \approx 0.200.
\]

(b) If \(n = 50 \), use the Central Limit Theorem to estimate the probability that their sum is between 20 and 25 (inclusive).

Solution: Let \(X_i \) denote the value of the \(i \)-th random number \((i = 1, \ldots, n) \). Then \(X_1, \ldots, X_n \) are independent random variables with mean 1/2 and variance 1/12. Let \(X = X_1 + \cdots + X_n \). Then \(\text{E}[X] = 25 \) and \(\text{Var}[X] = 50/12 \). By the Central Limit Theorem, the CDF of \(X \) can be approximated by the CDF of a Normal\((25, \sqrt{50}/12)\) random variable \(\bar{N} \). Normalizing \(\bar{N} = 25 + N \cdot \sqrt{50}/12 \),
\[
P(20 \leq X \leq 25) \approx P(20 \leq \bar{N} \leq 25)
\approx P(20 \leq \bar{N} \leq 25 + N \cdot \sqrt{50}/12 \leq 25)
\approx P(-5/\sqrt{50}/12 \leq N \leq 0)
\approx P(-2.45 \leq N \leq 0)
\approx F_N(0) - F_N(-2.45)
\approx 0.5 - 0.0071
\approx 0.4929.
\]
Companies A and B produce lightbulbs. Their lifetimes are exponential random variables with mean 2 years for company A and 1 year for company B.

(a) A shop sources 3/4 of its lightbulbs from company A and the remaining 1/4 from company B. If a random lightbulb from the shop survived for 2 years, how likely is it to have been produced by company B?

Solution: Let \(X \) be the lifetime of the lightbulb, and \(A \) and \(B \) be the (complementary) events that the respective company produced it. Then \(P(X \geq t | A) = e^{-t/2} \) and \(P(X \geq t | B) = e^{-t} \).

By the total probability theorem,

\[
P(X \geq 2) = P(X \geq 2 | A) P(A) + P(X \geq 2 | B) P(B) = e^{-1} \cdot \frac{3}{4} + e^{-2} \cdot \frac{1}{4} \approx 0.310.
\]

and by Bayes’ rule

\[
P(B | X \geq 2) = \frac{P(X \geq 2 | B) P(B)}{P(X \geq 2)} = \frac{e^{-2} \cdot 1/4}{e^{-1} \cdot 3/4 + e^{-2} \cdot 1/4} \approx 0.109.
\]

(b) What is the probability that a lightbulb produced by company B outlasts one produced by company A? Assume their lifetimes are independent.

Solution: Let \(X \) and \(Y \) be their respective lifetimes. The PDF of \(X \) is \(f_X(x) = \frac{1}{2}e^{-x/2} \). By the total probability theorem,

\[
P(Y > X) = \int_0^\infty P(Y > x | X = x) f_X(x) dx = \int_0^\infty P(Y > x) f_X(x) dx = \int_0^\infty e^{-x} \cdot \frac{1}{2}e^{-x/2} dx = \frac{1}{3}.
\]

Alternative solution: If we divide each year into \(n \) equal intervals and flip independent coins of probabilities 1/2\(n \) and 1/\(n \) for the failure of each bulb in each interval, then \(X \) and \(Y \) are the times of the first failure in the limit as \(n \) goes to infinity. For a fixed \(n \), let \(A_n \) be the event that lightbulb A failed in the interval in which the first lightbulb failure occurred. Then \(A_n \) has the same probability as the event that the first coin came up heads given that at least one did, namely

\[
P(A_n) = \frac{1/2n}{1 - (1 - 1/2n)(1 - 1/n)} = \frac{1/2n}{1/2n + 1/n - (1/2n)(1/n)} = \frac{1}{3 + 1/n}.
\]

As \(n \) tends to infinity, \(P(A_n) \) tends to 1/3 so \(P(Y > X) = 1/3 \).
4. Alice takes T hours to travel to Bob’s house, where T is a random variable with PDF $f_T(t) = \begin{cases} 1/t^2, & \text{when } t \geq 1 \\ 0, & \text{otherwise.} \end{cases}$

(a) Find the CDF (cumulative distribution function) $F_T(t) = P(T \leq t)$.

Solution: $F_T(t)$ is zero when $t < 1$. When $t \geq 1$,

$$F_T(t) = \int_1^t \frac{1}{u^2} \, \text{d}u = -\frac{1}{u}\bigg|_1^t = 1 - \frac{1}{t}.$$

(b) The distance between Alice’s and Bob’s house is one mile so that Alice travels at a speed $V = 1/T$ miles per hour. What is Alice’s expected speed $E[V]$?

Solution: The CDF $F_V(v)$ of V is zero when $v \leq 0$. If $v > 0$,

$$P(V \leq v) = P(1/T \leq v) = P(T \geq 1/v) = 1 - F_T(1/v) = \begin{cases} v, & \text{if } 0 \leq v \leq 1, \\ 1, & \text{if } v \geq 1. \end{cases}$$

This is the CDF of a Uniform(0,1) random variable, so $E[V] = 1/2$.

5. A group of 10 boys and 10 girls is randomly divided into 5 teams A, B, C, D, E with 4 children per team.

(a) What is the probability that all children in team A are of the same gender?

Solution: By the multiplication rule, this probability is $p = 9/19 \cdot 8/18 \cdot 7/17 \approx 0.087$.

(b) Is the probability that all teams are of mixed gender more than 50% or not? Justify your answer.

Solution: It is. Let S be the number of same gender teams. By linearity of expectation, $E[S] = 5p \approx 0.433$. By Markov’s inequality, $P(S \geq 1) \leq E[S]$, so the complementary event $S = 0$ occurs with probability at least $1 - 0.433 > 0.5$.