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Suppose we have a database containing sensitive information (e.g. students’ grades, patients’
medical records) and we want to enable an outside user to query this database, while preserving
the “privacy” of the data. Let’s start with an example. Here is a database of students and their
CSCI 5520 grades:

name gender grade

Aisha female fail
Benny male pass
Erica female fail
Fabio male fail
Johan male fail
Ming male pass
Orhan male pass
Vijay male pass
Vuk male pass
Yoshi male pass

Assume that the names and genders are public and the grades are private. Eve now asks us to
provide her with the following information:

1. How many students passed the course?

2. Did Orhan pass the course?

3. How many female students failed the course?

We would like to provide Eve with the information she wants, but we don’t really want her to know
the individual grades of students in the class. If we tell her that 6 of students passed the class in
response to her first question, she would be getting information about the group as a whole, but
she couldn’t tell much about how any of the individual students did in the class. But we may refuse
to answer her second question as it concerns the privacy of a specific participant in the database.
How about the third question? In this specific instance, if we told her that 2 female students failed
the course, she would be able to deduce Aisha’s and Erica’s grades, violating individual privacy.

Hospitals commonly release their medical data to researchers who want to do various statistical
analyses (e.g. are cancer rates unusually high among patients that are at least 200cm tall). To
protect patients’ privacy it is common to remove identifying information like names and ID numbers.
However, based on the remaining data and some prior knowledge it is often possible to recover
unintended information about individuals, especially if one has access to several databases.

Database privacy studies to what extent one can provide useful answers to certain types of users’
queries, while preserving the database participants’ privacy. There are very few settings in which
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one can provide completely accurate answers and fully preserve the privacy of the users. For
example, after finding out that the failure rate of CSCI 5520 is 40%, Eve may conclude that the
CSCI 5520 students are a bad lot and change her previously favorable opinion of Orhan.

We can achieve some interesting tradeoffs between the utility of query answers and the privacy of
database participants by allowing randomized and approximate answers. Let’s go back to the above
example. When Eve asks a query q, instead of giving her the true answer A, consider the following
mechanism that answers by A + N , where N is a random variable with the following probability
mass function:
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That is, if the actual answer to query q is A, we answer a exactly with probability 25%, we answer
within the range A ± 1 with probability 55%, we answer within A ± 2 with probability 73%, and
so on. This answer may still be useful for Eve as she finds out an approximation to her query.

On the other hand, when Eve asks ”How many female students failed the course” and we happen
to answer 1, Eve may have trouble telling whether the true answer to her query was 0, 1, or 2.
Suppose that before she made her query, Eve believed that each student fails the class independently
with probability 40%. How did the information that she found affect her belief that Aisha failed
the class? Let AF and EF denote the events that Aisha and Erica failed the class, respectively.
Working over the probability space induced by Eve’s prior’s beliefs and the randomness of the
mechanism we obtain:

Pr[AF | A+N = 1] =
Pr[A+N = 1 | AF ] Pr[AF ]

Pr[A+N = 1]

where

Pr[A+N = 1 | AF,EF ] = Pr[N = −1] = 0.15

Pr[A+N = 1 | AF,EF ] = Pr[N = 0] = 0.25

Pr[A+N = 1 | AF,EF ] = Pr[N = 0] = 0.25

Pr[A+N = 1 | AF,EF ] = Pr[N = 1] = 0.15.

By averaging, we obtain

Pr[A+N = 1 | AF ] = 0.4 · 0.15 + 0.6 · 0.25 = 0.21

Pr[A+N = 1] = 0.42 · 0.15 + 0.4 · 0.6 · 0.25 + 0.6 · 0.4 · 0.25 + 0.62 · 0.15 = 0.198



3

and so

Pr[AF | A+N = 1] =
0.21 · 0.4

0.198
= 0.43.

Therefore Eve’s belief in the event “Aisha failed the class” changed only from 40% to 43% after
observing the answer to the query.

1 Definitions of privacy

Let’s try to come up with a definitional framework that captures the above intuition. Given a
database x and a query q, we want to design a (possibly randomized) answering mechanism M(x)
for q with the following properties:

• Utility: The value M(x) is a good approximation to the actual answer that one would obtain
when q is queried from x.

• Privacy: Seeing the answer M(x) does not change one’s beliefs about any specific row of x
by much.

In a probabilistic (Bayesian) model of beliefs, the notion of privacy should capture the intuition
that Eve’s prior distribution Xi on any specific row i in the database was not much affected after
seeing the mechanism’s answer. However, Eve’s prior view of the database does not only include
the i-th row, but also all the other rows. If, say, Eve mistakenly believed that all of the CSCI 5520
students failed the course, and upon consulting the mechanism was surprised to find out that most
of them actually passed, this would drastically change her belief that, in particular, Aisha failed.
We want to disallow such distorted priors in our definition of privacy.

To achieve this, we will require that Eve’s prior view of the database is accurate on all rows except
(possibly) on the i-th row. In other words, we think of a mental experiment in which all the rows of
the database have except for the i-th row are revealed to Eve. Then Eve comes up with an arbitrary
prior distribution Xi about the i-th row. (For example, if after viewing the rest of the database,
Eve believes that Aisha passed with probability 75%, then X1 would assign 75% probability to the
entry (Aisha, female, pass) and 25% probability to the entry (Aisha, female, fail).) After seeing the
answer of the mechanism M , Eve’s beliefs about the i-th row may change. Our privacy definition
will require that Eve’s posterior distribution Xi conditioned on seeing a given answer should not
be very different from her prior distribution.

Formally, we think of each row in a database as taking values in some finite domain D. For instance,
D could consist of all triples of the form (name, gender, grade). Let’s fix the number n of rows in
the database. A database x is an element of the power set Dn. A query is a function q from Dn to
some set of values.

To begin with, let us take a special type of query that captures the above examples, as well as many
other settings of interest. The counting query qP associated to predicate P : D → {true, false} is
an integer-valued query given by the formula

qP (x) = number of rows i such that P (xi) is true.
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For example, the queries “How many students passed”, “Did Orhan pass”, and “How many female
students passed” are all counting queries for the grades table.

A mechanism for query q is a possibly randomized algorithm that on input a database x outputs an
answer M(x). If M is randomized, then for every fixed x, M(x) is a random variable. Intuitively,
the mechanism M(x) should be useful if the mechanism’s answer M(x) is typically close to the
actual answer q(x). I do not know of a definition of utility that captures all settings of interest so
I won’t attempt to give one. For numerical queries, one natural measure of utility could be the
inverse of the standard deviation

utility(M) =
1

maxx

√
E[(M(x)− q(x))2]

.

Let us now define privacy. Following the intuition we suggested, we want to say that for any row i
and any prior distribution Xi on the contents of this row, the posterior distribution Xi conditioned
on observing the mechanism’s answer “looks like” the prior distribution. Here is a fairly strong
quantitative definition that captures this:

Definition 1. We say mechanism M over Dn is ε-semantically private if for every i ∈ [n], every
distribution X over databases in which all rows but the i-th are fixed, every predicate P over D,
and every possible output y of M(X),

e−ε Pr[P (Xi)] ≤ Pr[P (Xi) |M(X) = y] ≤ eε Pr[P (Xi)]

where Xi is the i-th row of X.

To make sense of this definition, let us look at the extreme setting in which ε = 0. Then the
posterior and prior probabilities on the i-th row must be the same, so observing the answer of
the mechanism does not reveal any additional information about any specific row of the database.
Although such a mechanism is extremely private, it is not useful at all: The value M(X) does not
teach us anything about the database. However, if we set ε to a small number like 0.05, then the
probabilities would still be similar (recall that when ε is small, eε is about 1 + ε), but now M(X)
might contain useful information.

One way to make ensure that the answer of the mechanism does not affect by much Eve’s beliefs
about any specific row of the database is to make the answer of the mechanism essentially inde-
pendent of the contents of that row. This requirement is formalized by the notion of differential
privacy:

Definition 2. We say mechanism M is ε-differentially private if for every pair of databases x, x′

that differ only in one row, and every possible answer y of M ,

Pr[M(x) = y] ≤ eε Pr[M(x′) = y]. (1)

Again, let’s look at the extreme setting ε = 0 so eε = 1. Then we must have Pr[M(x) = y] ≤
Pr[M(x′) = y]. By switching the roles of x and x′ we obtain the same inequality in the other
direction, and therefore it must be that Pr[M(x) = y] = Pr[M(x′) = y]. Since we require that this
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equality holds for all y, it must be that M(x) and M(x′) are identically distributed. This can only
happen if M is independent of the database, in which case it is not useful. By setting ε to a small
nonzero value, we can hope to get some tradeoff between the mechanism’s utility and its privacy.

By switching the role of x and x′ as we just did, we can replace (1) by the stronger condition

e−ε Pr[M(x′) = y] ≤ Pr[M(x) = y] ≤ Pr[M(x′) = y].

Differential privacy is easier to work with than semantic privacy. To verify that a mechanism is
differentially private, we do not need to worry about prior and posterior beliefs at all, but merely
need to show that the mechanism does not “distinguish” much between pairs of databases that
differ in a single row.1 Fortunately, differential privacy implies semantic privacy.

Theorem 3. If M is ε-differentially private, then M is ε-semantically private.

Proof. Assume M is ε-differentially private. Then for every pair of databases x, x′ that differ in
the i-th row and every value y,

e−ε Pr[M(x′) = y] ≤ Pr[M(x) = y] ≤ eε Pr[M(x′) = y].

Here, the probabilities are taken over the randomness of the mechanism. Fix x and let X be an
arbitrary distribution over those x′ that differ from x in at most the i-th row. By averaging these
inequalities, we get that

e−ε Pr[M(X) = y] ≤ Pr[M(x) = y] ≤ eε Pr[M(X) = y].

where now the probabilities are taken also over X. By Bayes’ rule,

Pr[X = x |M(X) = y] =
Pr[M(x) = y]

Pr[M(X) = y]
· Pr[X = x]

for every possible answer y of M(X). Combining the last two formulas, we get that

e−ε Pr[X = x] ≤ Pr[X = x |M(X) = y] ≤ eε Pr[X = x].

These inequalities hold for all possible databases x. If we sum over all x such that P (xi) holds, we
obtained the desired consequence

e−ε Pr[P (Xi)] ≤ Pr[P (Xi) |M(X) = y] ≤ eε Pr[P (Xi)].

2 The Laplace mechanism

Inspired by our example, we construct and analyze a differentially private mechanism for counting
queries. The Laplace mechanism with privacy parameter ε > 0 answers a counting query q by
M(x, q) = q(x) +N , where N is chosen from the Laplace distribution Lap(1/ε)

Pr[N = t] =
1

Z
e−ε|t|, t is an integer.

1If you have studied cryptography, you may have some experience with semantic and indistinguishability based
notions of security.
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Here Z =
∑∞

t=−∞ e
−ε|t| is a normalization factor which ensures the above formula describes a

probability distribution over the integers.

We now show that the Laplace mechanism is ε-differentially private for counting queries. Let
x and x′ be databases that differ in exactly one row. Because q is a counting query, we have
|q(x)− q(x′)| ≤ 1. So for every value y,

Pr[M(x) = y] = Pr[q(x) +N = y] = Pr[N = y − q(x)] =
1

Z
e−ε|y−q(x)|

≤ 1

Z
e−ε|y−q(x

′)|+ε = eε · 1

Z
e−ε|y−q(x

′)| = eε Pr[M(x′) = y].

and so M is ε-differentially private.

What about the utility of the Laplace mechanism? If our notion of utility is the inverse of the
standard deviation, we get that the utility of the mechanism is the inverse of the standard deviation
σ of the Laplace distribution Lap(1/ε), which is σ =

√
2/ε. So the utility of this mechanism is

ε/
√

2. The Laplace mechanism illustrates a general phenomenon: The more private we want our
mechanism to be, the less useful it tends to be.

3 The product mechanism

One nice property of differential privacy is that this notion is preserved (or rather, it degrades grace-
fully) if we allow more queries. Given d mechanisms M1, . . . ,Md over Dn, the product mechanism
M on input x outputs the vector of answers (M1(x), . . . ,Md(x)), where each of the mechanisms is
run with independent randomness. This mechanism can be used to answer several queries on the
same database.

Claim 4. Suppose Mi is ε-differentially private for every i. Then M is dε-differentially private.

Proof. Let x and x′ be databases that differ in only one row. By independence,

Pr[M(x) = (y1, . . . , yd)] = Pr[M1(x) = y1] · · ·Pr[Md(x) = yd]

≤ (eε Pr[M1(x
′) = y1]) · · · (eε Pr[Md(x) = yd]) = edε Pr[M(x′) = y]

so M is dε-differentially private.
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