THE CHINESE UNIVERSITY OF HONG KONG Print Course Catalog Details

May 10, 2023 14:19:40 PM

Academic Org: Dept of Computer Sci & Engg - Subject: Computer Science

Course: CSCI3230	Course ID: 002594	Eff Date: 2022-07-01	Crse Status: Active	Apprv. Status: Approved	Course Rev
Fundamentals of Artificial In	telligence 人工智能之基本原理				

This course introduces the basic concepts and techniques of artificial intelligence. Knowledge representation: predicate logic and inference, semantic networks, scripts and frames, and object-oriented representation. Searching: such as A*, hill-climbing, minimax and alpha-beta pruning. Planning: the frame problem and the STRIPS formalism, representation schemes and planning strategies. Neural networks: learning algorithms, neural architecture and applications. Natural language processing. Knowledge acquisition and expert systems: properties, techniques and tools of expert systems

本科介紹人工智能之基本概念及技術。知識表示法: 謂詞邏輯及推論、語義網絡、目標面向的表示法。檢索: 例如A*、攀山、極大極小及α-β 刪節。計劃: 結構問題及 STRIPS形式方法、表示方案及計劃策略。神經網絡: 學習算法、神經體系結構及應用、自然語言處理。知識收集及專家系統: 特性、技術及專家系統工具。

Grade Descriptor:

EXCELLENT – exceptionally good performance and far exceeding expectation in all or most of the course learning outcomes; demonstration of superior understanding of the subject matter, the ability to analyze problems and apply extensive knowledge, and skillful use of concepts and materials to derive proper solutions.

有關等級說明的資料,請參閱英文版本。

В

А

GOOD – good performance in all course learning outcomes and exceeding expectation in some of them; demonstration of good understanding of the subject matter and the ability to use proper concepts and materials to solve most of the problems encountered.

有關等級說明的資料,請參閱英文版本。

С

FAIR - adequate performance and meeting expectation in all course learning outcomes; demonstration of adequate understanding of the subject matter and the ability to solve simple problems.

有關等級說明的資料,請參閱英文版本。

D

MARGINAL – performance barely meets the expectation in the essential course learning outcomes; demonstration of partial understanding of the subject matter and the ability to solve simple problems.

有關等級說明的資料,請參閱英文版本。

F

FAILURE - performance does not meet the expectation in the essential course learning outcomes; demonstration of serious deficiencies and the need to retake the course.

有關等級說明的資料,請參閱英文版本。

Equivalent Offering: Units: Grading Basis: Repeat for Credit: Multiple Enroll: Course Attributes:

3 (Min) / 3 (Max) / 3 (Acad Progress) Graded N N

Topics:

COURSE OUTCOMES

Learning Outcomes:

Students will be able to: 1. Use agents to model AI problems;

2. Use search techniques such as A* to search for optimal solutions for AI problems and to play games;

3. Use various logic to represent knowledge and to do reasoning and build expert systems;

4. Use computer learning techniques to acquire real life knowledge in an appropriate representation model (e.g. decision tree and neural networks);

5. Derive learning rules from first principle;

6. Solve real life problems (e.g.classifications and prediction) by such models;

7. Estimate complexity of AI algorithms and prove theorems by contradiction and other techniques;

8. Use computer vision techniques such edge detection to extract features.

Course Syllabus:

This course introduces the basic concepts and techniques of artificial intelligence. Knowledge representation: predicate logic and inference, semantic

CU_CURR501 Page 3 of 4	THE CHINESE UNIVERSITY OF HONG KONG Print Course Catalog Datails			
	Thin Course Catalog Details	14.19.401101		
	networks, scripts and frames, and object-oriented representation. Searching: such as A*, hill-climbing, minimax and alpha-beta pruning. Pl frame problem and the STRIPS formalism, representation schemes and planning strategies. Neural networks: learning algorithms, neural ar and applications. Natural language processing. Knowledge acquisition and expert systems: properties, techniques and tools of expert system	anning: the chitecture ns.		
Assessment Type:	Essay test or exam: 55%Others: 45%			
Feedback for Evaluation:				
	 Results of assignments and examination; Course evaluation and questionnaire; Reflection of teachers; Question-and-answer sessions during class; Student consultation during office hours or online 			
Required Readings:				
	-			
Recommended Readings:	 "Artificial Intelligence- A Modern Approach" Stuart Russell and Peter Norvig, Prentice Hall, 2003(2nd edition). (main) "Artificial Intelligence" George F. Luger,(5th edition), AddisonWesley, 2005 "Artificial Intelligence" Patrick Henry Winston, AddisonWesley, 1992. "Artificial Intelligence- A Guide to Intelligent Systems",(2nd Edition) Michael Negnevitsky, Addison Wesley, 2005 			
1 05013230	OFFERINGS			
1. 03013230				
	LEC : Size=30; Final Exam=Y; Contact=3 TUT : Size=30; Final Exam=N; Contact=1			
4.000/0000	ENROLMENT REQUIREMENTS			
1. CSCI3230	Enrollment Requirement Group: Not for students who have taken ESTR3108. Prerequisite: CSCI2100 or 2520 or ESTR2102 or equivalent.			
	New Enrollment Requirement(s): Pre-requisite = no change			

CU_CURR501 Page 4 of 4

CAF

eLearning hrs for blended cls 0 No. of micro-modules 0 Research components (UG) 0%

< E N D O F R E P O R T >