Introduction	Related Work	DiffusionRank	Experiments	Conclusion

DiffusionRank: A Possible Penicillin for Web Spamming

Haixuan Yang, Irwin King, and Michael R. Lyu

Department of Computer Science & Engineering The Chinese University of Hong Kong

SIGIR2007, Amsterdam, Netherlands July 25, 2007

Haixuan Yang, Irwin King, and Michael R. Lyu DiffusionRank: A Possible Penicillin for Web Spamming < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction •000	Related Work	DiffusionRank	Experiments	Conclusion O
Spam, Spam, Spam Ever	rywhere			
State of th	e Web			

Web is easily manipulated for commercial gains

- About 70% of all pages in the .biz domain are spam [Alexandros Ntoulas et al., 2006]
- About 35% of the pages in the .us domain belong to spam category [Alexandros Ntoulas et al., 2006]
- Web spamming techniques
 - Link Stuffing
 - Keyword Stuffing
- PageRank becomes the target of many spamming techniques

Introduction •000	Related Work	DiffusionRank	Experiments	Conclusion O
Spam, Spam, Spam Ever	ywhere			
State of th	e Web			

• Web is easily manipulated for commercial gains

- About 70% of all pages in the .biz domain are spam [Alexandros Ntoulas et al., 2006]
- About 35% of the pages in the .us domain belong to spam category [Alexandros Ntoulas et al., 2006]
- Web spamming techniques

Keyword Stuffing

PageRank becomes the target of many spamming techniques

Introduction •000	Related Work	DiffusionRank	Experiments	Conclusion O
Spam, Spam, Spam Ever	ywhere			
State of th	e Web			

- Web is easily manipulated for commercial gains
 - About 70% of all pages in the .biz domain are spam [Alexandros Ntoulas et al., 2006]
 - About 35% of the pages in the .us domain belong to spam category [Alexandros Ntoulas et al., 2006]
- Web spamming techniques
 - Link Stuffing
 - Keyword Stuffing
- PageRank becomes the target of many spamming techniques

Introduction •000	Related Work	DiffusionRank	Experiments	Conclusion O
Spam, Spam, Spam Ever	ywhere			
State of th	e Web			

- Web is easily manipulated for commercial gains
 - About 70% of all pages in the .biz domain are spam [Alexandros Ntoulas et al., 2006]
 - About 35% of the pages in the .us domain belong to spam category [Alexandros Ntoulas et al., 2006]
- Web spamming techniques
 - Link Stuffing
 - Keyword Stuffing

PageRank becomes the target of many spamming techniques

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Introduction •000	Related Work	DiffusionRank	Experiments	Conclusion O
Spam, Spam, Spam Ever	ywhere			
State of th	e Web			

- Web is easily manipulated for commercial gains
 - About 70% of all pages in the .biz domain are spam [Alexandros Ntoulas et al., 2006]
 - About 35% of the pages in the .us domain belong to spam category [Alexandros Ntoulas et al., 2006]
- Web spamming techniques
 - Link Stuffing
 - Keyword Stuffing

PageRank becomes the target of many spamming techniques

<ロ> <同> <同> < 同> < 同>

Introduction •••••	Related Work	DiffusionRank	Experiments	Conclusion O
Spam, Spam, Spam Ever	ywhere			
State of th	e Web			

- Web is easily manipulated for commercial gains
 - About 70% of all pages in the .biz domain are spam [Alexandros Ntoulas et al., 2006]
 - About 35% of the pages in the .us domain belong to spam category [Alexandros Ntoulas et al., 2006]
- Web spamming techniques
 - Link Stuffing
 - Keyword Stuffing

PageRank becomes the target of many spamming techniques

<ロ> <同> <同> < 同> < 同>

SIGIR2007, Amsterdam

Introduction •000	Related Work	DiffusionRank	Experiments	Conclusion O
Spam, Spam, Spam Ever	ywhere			
State of th	e Web			

- Web is easily manipulated for commercial gains
 - About 70% of all pages in the .biz domain are spam [Alexandros Ntoulas et al., 2006]
 - About 35% of the pages in the .us domain belong to spam category [Alexandros Ntoulas et al., 2006]
- Web spamming techniques
 - Link Stuffing
 - Keyword Stuffing
- PageRank becomes the target of many spamming techniques

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Spam, Spam, Spam Everywhere PageRank	Introduction	Related Work	DiffusionRank	Experiments	Conclusion O

 Calculate the importance of a Web page based on the link structure

Recursively defined by the in-coming links

$$x_i = \sum_{(j,i) \in E} a_{i,j} x_j$$
 $a_{ij} = 1/d^+(j)$

SIGIR2007, Amsterdam

Introduction	Related Work	DiffusionRank	Experiments	Conclusion O
Spam, Spam, Spam Every	where			
PageRank				

- Calculate the importance of a Web page based on the link structure
- Recursively defined by the in-coming links

$$\begin{aligned} \mathbf{x}_i &= \sum_{(j,i) \in E} \mathbf{a}_{i,j} \mathbf{x}_j \quad \mathbf{a}_{ij} = 1/d^+(j) \\ \mathbf{x} &= \mathbf{A} \mathbf{x} \qquad \mathbf{x} = [(1-\alpha)\mathbf{g}\mathbf{1}^\top + \alpha \mathbf{A}] \mathbf{x} \end{aligned}$$

Introduction	Related Work	DiffusionRank	Experiments	Conclusion O
Spam, Spam, Spam Every	where			
PageRank				

- Calculate the importance of a Web page based on the link structure
- Recursively defined by the in-coming links

$$\begin{aligned} \mathbf{x}_i &= \sum_{(j,i) \in E} \mathbf{a}_{i,j} \mathbf{x}_j \quad \mathbf{a}_{ij} = 1/d^+(j) \\ \mathbf{x} &= \mathbf{A} \mathbf{x} \qquad \mathbf{x} = [(1-\alpha)\mathbf{g}\mathbf{1}^\top + \alpha \mathbf{A}] \mathbf{x} \end{aligned}$$

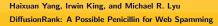
Introduction	Related Work	DiffusionRank	Experiments	Conclusion O
Spam, Spam, Spam Eve PageRank				

- Calculate the importance of a Web page based on the link structure
- Recursively defined by the in-coming links

$$\begin{aligned} x_i &= \sum_{(j,i) \in E} a_{i,j} x_j & a_{ij} &= 1/d^+(j) \\ \mathbf{x} &= \mathbf{A} \mathbf{x} & \mathbf{x} &= [(1-\alpha) \mathbf{g} \mathbf{1}^T + \alpha \mathbf{A}] \mathbf{x} \end{aligned}$$

Incomplete information of the Web structure (previous work)
 Susceptible to Web spamming

◆□ > ◆□ > ◆豆 > ◆豆 >



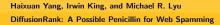
Introduction	Related Work	DiffusionRank	Experiments	Conclusion O
Spam, Spam, Spam Eve PageRank				

- Calculate the importance of a Web page based on the link structure
- Recursively defined by the in-coming links

$$\begin{aligned} x_i &= \sum_{(j,i) \in E} a_{i,j} x_j & a_{ij} &= 1/d^+(j) \\ \mathbf{x} &= \mathbf{A} \mathbf{x} & \mathbf{x} &= [(1-\alpha) \mathbf{g} \mathbf{1}^T + \alpha \mathbf{A}] \mathbf{x} \end{aligned}$$

Incomplete information of the Web structure (previous work)
 Susceptible to Web spamming

イロト イヨト イヨト イヨト



Introduction	Related Work	DiffusionRank	Experiments	Conclusion O
Spam, Spam, Spam Eve PageRank				

- Calculate the importance of a Web page based on the link structure
- Recursively defined by the in-coming links

$$\begin{aligned} x_i &= \sum_{(j,i) \in E} a_{i,j} x_j & a_{ij} &= 1/d^+(j) \\ \mathbf{x} &= \mathbf{A} \mathbf{x} & \mathbf{x} &= [(1-\alpha) \mathbf{g} \mathbf{1}^T + \alpha \mathbf{A}] \mathbf{x} \end{aligned}$$

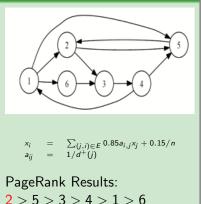
Incomplete information of the Web structure (previous work)

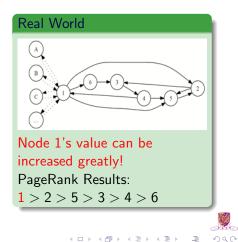
イロト イヨト イヨト イヨト

SIGIR2007, Amsterdam

Susceptible to Web spamming

Perfect World





Haixuan Yang, Irwin King, and Michael R. Lyu DiffusionRank: A Possible Penicillin for Web Spamming

Introduction	Related Work	DiffusionRank	Experiments	Conclusion ○
Spam, Spam, Spam E	verywhere			
Why Spa	mming Is Eas	sy?		

Web is overly democratic-All pages are treated equal

Input independent—For any given non-zero initial input, the iteration will converge to the same stable distribution

Web Spam Is Easy

PageRank can be easily manipulated by having link stuffing!

Haixuan Yang, Irwin King, and Michael R. Lyu DiffusionRank: A Possible Penicillin for Web Spamming

Introduction	Related Work	DiffusionRank	Experiments	Conclusion ○
Spam, Spam, Spam	Everywhere mming Is Eas			
vvny Spa		sy !		

- Web is overly democratic-All pages are treated equal
- Input independent–For any given non-zero initial input, the iteration will converge to the same stable distribution

Web Spam Is Easy

PageRank can be easily manipulated by having link stuffing!

Introduction	Related Work ●○○○	DiffusionRank	Experiments	Conclusion O
Variations of PageRank				
Variations of	of PageRank			

PageRank [L. Page et al., 1998]

- Ranking the Web frontier [N. Eiron et al., 2004]
- Generalize PageRank by damping functions [R. A. Baeza-Yates et al., 2006]
- TrustRank [Z. Gyöngyi et al., 2004]

Introduction	Related Work	DiffusionRank	Experiments	Conclusion ○
Variations of PageRank	c			
Variations	of PageRank	ζ.		

- PageRank [L. Page et al., 1998]
- Ranking the Web frontier [N. Eiron et al., 2004]
- Generalize PageRank by damping functions [R. A. Baeza-Yates et al., 2006]
- TrustRank [Z. Gyöngyi et al., 2004]

Introduction	Related Work	DiffusionRank	Experiments	Conclusion O
Variations of PageRa	ık			
Variations	s of PageRanl	(

- PageRank [L. Page et al., 1998]
- Ranking the Web frontier [N. Eiron et al., 2004]
- Generalize PageRank by damping functions [R. A. Baeza-Yates et al., 2006]
- TrustRank [Z. Gyöngyi et al., 2004]

Introduction	Related Work	DiffusionRank	Experiments	Conclusion O
Variations of PageRa	ık			
Variations	s of PageRanl	(

- PageRank [L. Page et al., 1998]
- Ranking the Web frontier [N. Eiron et al., 2004]
- Generalize PageRank by damping functions [R. A. Baeza-Yates et al., 2006]

◆□▶ ◆□▶ ◆□▶ ◆□▶

SIGIR2007, Amsterdam

TrustRank [Z. Gyöngyi et al., 2004]

Introduction	Related Work ○●○○	DiffusionRank	Experiments	Conclusion O
Variations of PageRank				
TrustRank				

- The seed set is selected according to the inverse PageRank
- The biased PageRank is employed by setting g to be the distribution shared by all the trusted pages found in the first part
- Advantage-can combat Web spam
- Disadvantage--it does not follow the actual users' behaviors by setting a biased g

$$\mathbf{x} = [(1 - \alpha)\mathbf{g}\mathbf{1}^T + \alpha \mathbf{A}]\mathbf{x} \ (1 - \alpha)\mathbf{g}\mathbf{1}^T + \alpha \mathbf{A}$$

SIGIR2007, Amsterdam

Haixuan Yang, Irwin King, and Michael R. Lyu

Introduction	Related Work ○●○○	DiffusionRank	Experiments	Conclusion O
Variations of PageRank				
TrustRank				

- The seed set is selected according to the inverse PageRank
- The biased PageRank is employed by setting g to be the distribution shared by all the trusted pages found in the first part
- Advantage-can combat Web spam
- Disadvantage--it does not follow the actual users' behaviors by setting a biased g

$$\mathbf{x} = [(1 - \alpha)\mathbf{g}\mathbf{1}^T + \alpha \mathbf{A}]\mathbf{x} \ (1 - \alpha)\mathbf{g}\mathbf{1}^T + \alpha \mathbf{A}$$

SIGIR2007, Amsterdam

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Haixuan Yang, Irwin King, and Michael R. Lyu

Introduction	Related Work ○●○○	DiffusionRank	Experiments	Conclusion O
Variations of PageRank				
TrustRank				

- The seed set is selected according to the inverse PageRank
- The biased PageRank is employed by setting g to be the distribution shared by all the trusted pages found in the first part
- Advantage-can combat Web spam
- Disadvantage--it does not follow the actual users' behaviors by setting a biased g

$$\mathbf{x} = [(1 - \alpha)\mathbf{g}\mathbf{1}^T + \alpha \mathbf{A}]\mathbf{x} \ (1 - \alpha)\mathbf{g}\mathbf{1}^T + \alpha \mathbf{A}$$

SIGIR2007, Amsterdam

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Haixuan Yang, Irwin King, and Michael R. Lyu

Introduction	Related Work ○●○○	DiffusionRank	Experiments	Conclusion O
Variations of PageRank				
TrustRank				

- The seed set is selected according to the inverse PageRank
- The biased PageRank is employed by setting g to be the distribution shared by all the trusted pages found in the first part
- Advantage—can combat Web spam
- Disadvantage--it does not follow the actual users' behaviors by setting a biased g

$$\mathbf{x} = [(1 - \alpha)\mathbf{g}\mathbf{1}^T + \alpha \mathbf{A}]\mathbf{x} \ (1 - \alpha)\mathbf{g}\mathbf{1}^T + \alpha \mathbf{A}$$

SIGIR2007, Amsterdam

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Haixuan Yang, Irwin King, and Michael R. Lyu

Introduction	Related Work ○●○○	DiffusionRank	Experiments	Conclusion O
Variations of PageRank				
TrustRank				

- Main characteristics
 - The seed set is selected according to the inverse PageRank
 - The biased PageRank is employed by setting g to be the distribution shared by all the trusted pages found in the first part
- Advantage-can combat Web spam
- Disadvantage-it does not follow the actual users' behaviors by setting a biased g

$$\mathbf{x} = [(1 - \alpha)\mathbf{g}\mathbf{1}^T + \alpha \mathbf{A}]\mathbf{x} \ (1 - \alpha)\mathbf{g}\mathbf{1}^T + \alpha \mathbf{A}$$

Haixuan Yang, Irwin King, and Michael R. Lyu

SIGIR2007, Amsterdam

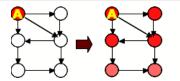
◆ロト ◆聞ト ◆国ト ◆国ト

Introduction	Related Work	DiffusionRank	Experiments	Conclusion O
Variations of PageRank				
Heat Diffus	ion Model			

Assumptions

Pages are not equal

 Different initial temperature distributions will give rise to different temperature distributions after a fixed time period

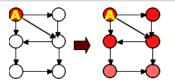


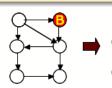
SIGIR2007, Amsterdam

Introduction	Related Work	DiffusionRank	Experiments	Conclusion O
Variations of PageRank				
Heat Diffus	ion Model			

Assumptions

- Pages are not equal
- Different initial temperature distributions will give rise to different temperature distributions after a fixed time period





・ロト ・回 ト ・ ヨト ・

Haixuan Yang, Irwin King, and Michael R. Lyu DiffusionRank: A Possible Penicillin for Web Spamming

Introduction	Related Work ○○○●	DiffusionRank	Experiments	Conclusion O
Variations of PageRar	nk			
Our Cont	ributions			

- Provide a new viewpoint on ranking problems
- Use random graphs
- Theoretically we show that DiffusionRank generalizes PageRank
 - When the thermal conductivity tends to infinity. DiffusionRank becomes PageRank
 - A finite thermal conductivity setting makes DiffusionRank have the effect of anti-span

Introduction	Related Work ○○○●	DiffusionRank	Experiments	Conclusion ○
Variations of PageRa	ink			
Our Con	tributions			

- Provide a new viewpoint on ranking problems
- Use random graphs
- Theoretically we show that DiffusionRank generalizes PageRank
 - When the thermal conductivity tends to infinity. DiffusionRank becomes PageRank.
 - A finite thermal conductivity setting makes DiffusionRank have the effect of anti-spam

Introduction	Related Work	DiffusionRank	Experiments	Conclusion ○
Variations of PageRa	ink			
Our Con	tributions			

- Provide a new viewpoint on ranking problems
- Use random graphs
- Theoretically we show that DiffusionRank generalizes PageRank
 - When the thermal conductivity tends to infinity, DiffusionRank becomes PageRank
 - A finite thermal conductivity setting makes DiffusionRank have the effect of anti-spam

Introduction	Related Work ○○○●	DiffusionRank	Experiments	Conclusion ○
Variations of PageRa	nk			
Our Cont	ributions			

- Provide a new viewpoint on ranking problems
- Use random graphs
- Theoretically we show that DiffusionRank generalizes PageRank
 - When the thermal conductivity tends to infinity, DiffusionRank becomes PageRank
 - A finite thermal conductivity setting makes DiffusionRank have the effect of anti-spam

Introduction	Related Work ○○○●	DiffusionRank	Experiments	Conclusion ○
Variations of PageRa	nk			
Our Cont	ributions			

- Provide a new viewpoint on ranking problems
- Use random graphs
- Theoretically we show that DiffusionRank generalizes PageRank
 - When the thermal conductivity tends to infinity, DiffusionRank becomes PageRank
 - A finite thermal conductivity setting makes DiffusionRank have the effect of anti-spam

Introduction	Related Work ○○○●	DiffusionRank	Experiments	Conclusion ○
Variations of PageRa	nk			
Our Cont	ributions			

- Propose a novel DiffusionRank
 - Provide a new viewpoint on ranking problems
 - Use random graphs
- Theoretically we show that DiffusionRank generalizes PageRank
 - When the thermal conductivity tends to infinity, DiffusionRank becomes PageRank
 - A finite thermal conductivity setting makes DiffusionRank have the effect of anti-spam

Introduction	Related Work	DiffusionRank ●○○○○○	Experiments	Conclusion O
On DiffusionRank				
Diffusion	Rank Defined			

Undirected Graph-the amount of the heat flow from j to i is proportional to the heat difference between i and j

$$\mathbf{f}(1)=e^{\gamma\mathbf{H}}\mathbf{f}(0),$$
 $H_{ij}=\left\{egin{array}{cc} -d(v_j), & j=i,\ 1, & (v_j,v_i)\in E,\ 0, & otherwise. \end{array}
ight.$

Directed Graph-there is extra energy imposed on the link (j, i) such that the heat flow only from j to i if there is no link (i, j)

$$\mathbf{f}(1)=e^{\gamma \mathsf{H}}\mathbf{f}(0), H_{ij}= egin{cases} -1, & j=i,\ 1/d_j, & (v_j,v_i)\in E\ 0, & otherwise. \end{cases}$$

Randomized Directed Graph-the heat flow is proportional to the probability of the link (j, i)

$$\mathbf{f}(1) = e^{\gamma \mathbf{R}} \mathbf{f}(0), R_{ij} = \begin{cases} -1, & j = i, \\ p_{ji}/RD^+(v_j), & otherwise, \\ p_{ji}/R$$

Haixuan Yang, Irwin King, and Michael R. Lyu DiffusionRank: A Possible Penicillin for Web Spamming

Introduction	Related Work	DiffusionRank ●○○○○○	Experiments	Conclusion O
On DiffusionRank				
Diffusion	Rank Defined			

Undirected Graph-the amount of the heat flow from j to i is proportional to the heat difference between i and j

$$\mathbf{f}(1) = e^{\gamma \mathbf{H}} \mathbf{f}(0), H_{ij} = \begin{cases} -d(v_j), & j = i, \\ 1, & (v_j, v_i) \in E, \\ 0, & otherwise. \end{cases}$$

Directed Graph-there is extra energy imposed on the link (j, i) such that the heat flow only from j to i if there is no link (i, j)

$$\mathbf{f}(1)=e^{\gamma\mathbf{H}}\mathbf{f}(0), H_{ij}=\left\{egin{array}{cc} -1, & j=i,\ 1/d_j, & (\mathbf{v}_j,\mathbf{v}_i)\in E,\ 0, & otherwise. \end{array}
ight.$$

Randomized Directed Graph-the heat flow is proportional to the probability of the link (j, i)

$$\mathbf{f}(1) = e^{\gamma \mathbf{R}} \mathbf{f}(0), R_{ij} = \begin{cases} -1, & j = i, \\ p_{ji}/RD^+(v_j), & otherwise. \end{cases}$$

Haixuan Yang, Irwin King, and Michael R. Lyu DiffusionRank: A Possible Penicillin for Web Spamming

Introduction	Related Work	DiffusionRank ●○○○○○	Experiments	Conclusion O
On DiffusionRank				
Diffusion	Rank Defined			

Undirected Graph-the amount of the heat flow from j to i is proportional to the heat difference between i and j

$$\mathbf{f}(1)=e^{\gamma\mathbf{H}}\mathbf{f}(0), H_{ij}= egin{cases} -d(v_j), & j=i,\ 1, & (v_j,v_i)\in E,\ 0, & otherwise. \end{cases}$$

Directed Graph-there is extra energy imposed on the link (j, i) such that the heat flow only from j to i if there is no link (i, j)

$$\mathbf{f}(1)=e^{\gamma\mathbf{H}}\mathbf{f}(0), H_{ij}=\left\{egin{array}{cc} -1, & j=i,\ 1/d_j, & (\mathbf{v}_j,\mathbf{v}_i)\in E,\ 0, & otherwise. \end{array}
ight.$$

Randomized Directed Graph-the heat flow is proportional to the probability of the link (j, i)

$$\mathbf{f}(1) = e^{\gamma \mathbf{R}} \mathbf{f}(0), R_{ij} = \begin{cases} -1, & j = i, \\ p_{ji}/RD^+(v_j), & \text{otherwise.} \end{cases}$$

Haixuan Yang, Irwin King, and Michael R. Lyu

DiffusionRank: A Possible Penicillin for Web Spamming

SIGIR2007, Amsterdam

Introduction	Related Work	DiffusionRank ○●○○○○	Experiments	Conclusion O
On DiffusionRank				
Issues on	DiffusionRank			

$$\mathbf{f}(1) = e^{\gamma \mathbf{R}} \mathbf{f}(0) \qquad \qquad R_{ij} = \begin{cases} -1, & j = i, \\ p_{ji}/RD^+(v_j), & otherwise. \end{cases}$$

$$\mathbf{P} = \alpha \cdot \mathbf{A} + (1 - \alpha) \cdot \mathbf{g} \cdot \mathbf{1}^T \qquad \mathbf{g} = \frac{1}{n} \cdot \mathbf{1}$$

$$\mathbf{R} = -\mathbf{I} + \mathbf{P}$$

Initial temperature f(0) setting:
 Select L trusted pages with highest inverse PageRank score
 The temperatures of these L pages are 1, and 0 for all others

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

SIGIR2007, Amsterdam

Introduction	Related Work	DiffusionRank ○●○○○○	Experiments	Conclusion O
On DiffusionRank				
Issues on	DiffusionRank			

$$\begin{aligned} \mathbf{f}(1) &= e^{\gamma \mathbf{R}} \mathbf{f}(0) & R_{ij} = \begin{cases} -1, & j = i, \\ p_{ji}/RD^+(v_j), & otherwise. \end{cases} \\ \mathbf{P} &= \alpha \cdot \mathbf{A} + (1 - \alpha) \cdot \mathbf{g} \cdot \mathbf{1}^T & \mathbf{g} = \frac{1}{n} \cdot \mathbf{1} \\ \mathbf{R} &= -\mathbf{I} + \mathbf{P} \end{aligned}$$

■ Initial temperature **f**(0) setting:

Select L trusted pages with highest inverse PageRank score

■ The temperatures of these *L* pages are 1, and 0 for all others

◆□> ◆□> ◆臣> ◆臣>

3

SIGIR2007, Amsterdam

Introduction	Related Work	DiffusionRank ○●○○○○	Experiments	Conclusion O
On DiffusionRank				
Issues on	DiffusionRank			

$$\mathbf{f}(1) = e^{\gamma \mathbf{R}} \mathbf{f}(0) \qquad \qquad R_{ij} = \begin{cases} -1, & j = i, \\ p_{ji}/RD^+(v_j), & otherwise. \end{cases}$$

$$\mathbf{P} = \alpha \cdot \mathbf{A} + (1 - \alpha) \cdot \mathbf{g} \cdot \mathbf{1}^T \qquad \mathbf{g} = \frac{1}{n} \cdot \mathbf{1}$$

$$\mathbf{R} = -\mathbf{I} + \mathbf{P}$$

■ Initial temperature **f**(0) setting:

Select L trusted pages with highest inverse PageRank score

■ The temperatures of these *L* pages are 1, and 0 for all others

◆□> ◆□> ◆臣> ◆臣>

3

SIGIR2007, Amsterdam

Introduction	Related Work	DiffusionRank ○●○○○○	Experiments	Conclusion O
On DiffusionRank				
Issues on	DiffusionRank			

$$\mathbf{f}(1) = e^{\gamma \mathbf{R}} \mathbf{f}(0) \qquad \qquad R_{ij} = \begin{cases} -1, & j = i, \\ p_{ji}/RD^+(v_j), & otherwise. \end{cases}$$

$$\mathbf{P} = \alpha \cdot \mathbf{A} + (1 - \alpha) \cdot \mathbf{g} \cdot \mathbf{1}^T \qquad \mathbf{g} = \frac{1}{n} \cdot \mathbf{1}$$

$$\mathbf{R} = -\mathbf{I} + \mathbf{P}$$

- Initial temperature **f**(0) setting:
 - Select L trusted pages with highest inverse PageRank score
 - The temperatures of these L pages are 1, and 0 for all others

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

SIGIR2007, Amsterdam

Introduction	Related Work	DiffusionRank ○○●○○○	Experiments	Conclusion
On DiffusionRank				

- It is not over-democratic-Some pages will be born with a high temperature while others with a low temperature
- It is not input-independent-Different initial temperature distribution will result in a different temperature distribution after a fixed time period
- It models actual users' behaviors-Heat diffusion model is established on a random graph describing actual users' behaviors
- It has the advantage of anti-manipulation

Introduction	Related Work	DiffusionRank ○○●○○○	Experiments	Conclusion O
On DiffusionRank				
<u> </u>				

- It is not over-democratic-Some pages will be born with a high temperature while others with a low temperature
- It is not input-independent-Different initial temperature distribution will result in a different temperature distribution after a fixed time period
- It models actual users' behaviors-Heat diffusion model is established on a random graph describing actual users' behaviors
- It has the advantage of anti-manipulation

Introduction	Related Work	DiffusionRank ○○●○○○	Experiments	Conclusion O
On DiffusionRank				
6		_		

- It is not over-democratic-Some pages will be born with a high temperature while others with a low temperature
- It is not input-independent-Different initial temperature distribution will result in a different temperature distribution after a fixed time period
- It models actual users' behaviors-Heat diffusion model is established on a random graph describing actual users' behaviors

・ロン ・四と ・ヨン

SIGIR2007, Amsterdam

It has the advantage of anti-manipulation

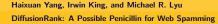
Introduction	Related Work	DiffusionRank ○○●○○○	Experiments	Conclusion O
On DiffusionRank				
C				

- It is not over-democratic-Some pages will be born with a high temperature while others with a low temperature
- It is not input-independent-Different initial temperature distribution will result in a different temperature distribution after a fixed time period
- It models actual users' behaviors-Heat diffusion model is established on a random graph describing actual users' behaviors

◆ロト ◆聞ト ◆国ト ◆国ト

SIGIR2007, Amsterdam

It has the advantage of anti-manipulation



Introduction	Related Work	DiffusionRank ○○○●○○	Experiments	Conclusion O
On DiffusionRank				
Computa	tional Conside	erations		

$$\mathbf{f}(1) = \underbrace{(\mathbf{I} + \frac{\gamma}{N} \mathbf{R})^{N}}_{(\mathbf{I} + \frac{\gamma}{N} \mathbf{R})^{N} \to e^{\gamma \mathbf{R}}} \mathbf{f}(0) \quad \mathbf{f}(1) = e^{\gamma \mathbf{R}} \mathbf{f}(0)$$

$$(\mathbf{I} + \frac{\gamma}{N} \mathbf{R})^{N} \to e^{\gamma \mathbf{R}} \quad \text{when } N \to \infty$$

How to set N?

SIGIR2007, Amsterdam

Introduction	Related Work	DiffusionRank ○○○●○○	Experiments	Conclusion O
On DiffusionRank				
Computa	tional Conside	erations		

$$\mathbf{f}(1) = \underbrace{(\mathbf{I} + \frac{\gamma}{N}\mathbf{R})^{N}}_{(\mathbf{I} + \frac{\gamma}{N}\mathbf{R})^{N} \to e^{\gamma \mathbf{R}}} \mathbf{f}(0) \quad \mathbf{f}(1) = e^{\gamma \mathbf{R}}\mathbf{f}(0)$$
($\mathbf{I} + \frac{\gamma}{N}\mathbf{R})^{N} \to e^{\gamma \mathbf{R}}$ when $N \to \infty$

How to set N?

SIGIR2007, Amsterdam

Introduction	Related Work	DiffusionRank ○○○●○○	Experiments	Conclusion O
On DiffusionRank				
Computa	tional Conside	erations		

$$\begin{aligned} \mathbf{f}(1) &= \underbrace{(\mathbf{I} + \frac{\gamma}{N} \mathbf{R})^{N}}_{(\mathbf{I} + \frac{\gamma}{N} \mathbf{R})^{N} \to e^{\gamma \mathbf{R}}} \mathbf{f}(0) \quad \mathbf{f}(1) = e^{\gamma \mathbf{R}} \mathbf{f}(0) \\ \end{aligned}$$

How to set N?

Introduction	Related Work	DiffusionRank ○○○●○○	Experiments	Conclusion O
On DiffusionRank				
Computat	tional Conside	erations		

$$\begin{aligned} \mathbf{f}(1) &= \underbrace{(\mathbf{I} + \frac{\gamma}{N} \mathbf{R})^{N}}_{(\mathbf{I} + \frac{\gamma}{N} \mathbf{R})^{N} \to e^{\gamma \mathbf{R}}} \mathbf{f}(0) \quad \mathbf{f}(1) = e^{\gamma \mathbf{R}} \mathbf{f}(0) \\ \text{when } N \to \infty \end{aligned}$$

How to set N?

When γ = 1, N ≥ 30, the absolute value of real eigenvalues of (I + ^γ/_N R)^N - e^{γR} are less than 0.01
 When γ = 1, N ≥ 100, they are less than 0.005
 We use N = 100 in the paper

◆□ > ◆□ > ◆目 > ◆目 > ◆□ > ◆□ >

SIGIR2007, Amsterdam

Introduction	Related Work	DiffusionRank ○○○●○○	Experiments	Conclusion O
On DiffusionRank				
Computo	tional Concid	orations		

Computational Considerations

Approximation of the heat kernel e^{γR}

$$\begin{aligned} \mathbf{f}(1) &= \underbrace{(\mathbf{I} + \frac{\gamma}{N} \mathbf{R})^{N}}_{(\mathbf{I} + \frac{\gamma}{N} \mathbf{R})^{N} \to e^{\gamma \mathbf{R}}} \mathbf{f}(0) \quad \mathbf{f}(1) = e^{\gamma \mathbf{R}} \mathbf{f}(0) \\ \text{when } N \to \infty \end{aligned}$$

How to set N?

• When $\gamma = 1, N \ge 30$, the absolute value of real eigenvalues of $(\mathbf{I} + \frac{\gamma}{N} \mathbf{R})^N - e^{\gamma \mathbf{R}}$ are less than 0.01

ヘロト 人間 ト 人造 ト 人造 ト

SIGIR2007, Amsterdam

• When $\gamma = 1, N \ge 100$, they are less than 0.005

• We use N = 100 in the paper

Introduction	Related Work	DiffusionRank ○○○●○○	Experiments	Conclusion O
On DiffusionRank				
Computo	tional Concid	orations		

Computational Considerations

Approximation of the heat kernel e^{γR}

$$\begin{aligned} \mathbf{f}(1) &= \underbrace{(\mathbf{I} + \frac{\gamma}{N} \mathbf{R})^{N}}_{(\mathbf{I} + \frac{\gamma}{N} \mathbf{R})^{N} \to e^{\gamma \mathbf{R}}} \mathbf{f}(0) \quad \mathbf{f}(1) = e^{\gamma \mathbf{R}} \mathbf{f}(0) \\ \text{when } N \to \infty \end{aligned}$$

How to set N?

When γ = 1, N ≥ 30, the absolute value of real eigenvalues of (I + ^γ/_N R)^N − e^{γR} are less than 0.01
 When γ = 1, N ≥ 100, they are less than 0.005

• We use N = 100 in the paper

Haixuan Yang, Irwin King, and Michael R. Lyu DiffusionRank: A Possible Penicillin for Web Spamming

SIGIR2007, Amsterdam

ヘロト 人間 ト 人造 ト 人造 ト

Introduction	Related Work	DiffusionRank ○○○●○○	Experiments	Conclusion O
On DiffusionRank				
Computo	tional Concid	orations		

Computational Considerations

Approximation of the heat kernel e^{γR}

$$\begin{aligned} \mathbf{f}(1) &= \underbrace{(\mathbf{I} + \frac{\gamma}{N} \mathbf{R})^{N}}_{(\mathbf{I} + \frac{\gamma}{N} \mathbf{R})^{N} \to e^{\gamma \mathbf{R}}} \mathbf{f}(0) \quad \mathbf{f}(1) = e^{\gamma \mathbf{R}} \mathbf{f}(0) \\ \text{when } N \to \infty \end{aligned}$$

How to set N?

• When $\gamma = 1, N \ge 30$, the absolute value of real eigenvalues of $(\mathbf{I} + \frac{\gamma}{N}\mathbf{R})^N - e^{\gamma\mathbf{R}}$ are less than 0.01

ヘロト 人間 ト 人造 ト 人造 ト

SIGIR2007, Amsterdam

- When $\gamma = 1, N \ge 100$, they are less than 0.005
- We use N = 100 in the paper

Introduction	Related Work	DiffusionRank ○○○○●○	Experiments	Conclusion O
On DiffusionRank				
Importan	ice of γ			

The Thermal Conductivity, γ

1 $\gamma = 0$

The ranking value is most robust to manipulation since no heat is diffused, but the Web structure is completely ignored

2 $\gamma = \infty$

DiffusionRank becomes PageRank, it can be manipulated easily

3 $\gamma = 1$ DiffusionRank works well in practice

SIGIR2007, Amsterdam

◆ロト ◆聞ト ◆国ト ◆国ト

Introduction	Related Work	DiffusionRank ○○○○●○	Experiments	Conclusion O
On DiffusionRank				
Importan	ice of γ			

The Thermal Conductivity, γ

1 $\gamma = 0$

The ranking value is most robust to manipulation since no heat is diffused, but the Web structure is completely ignored

```
2 \gamma = \infty
```

DiffusionRank becomes PageRank, it can be manipulated easily

 $\gamma=1$ DiffusionRank works well in practic

SIGIR2007, Amsterdam

・ロト ・ 日 ト ・ 日 ト ・ 日 ト ・

Introduction	Related Work	DiffusionRank ○○○○●○	Experiments	Conclusion O
On DiffusionRank				
Importan	ice of γ			

The Thermal Conductivity, γ

 $1 \ \gamma = 0$

The ranking value is most robust to manipulation since no heat is diffused, but the Web structure is completely ignored

2
$$\gamma = \infty$$

DiffusionRank becomes PageRank, it can be manipulated easily

3
$$\gamma = 1$$

DiffusionRank works well in practice

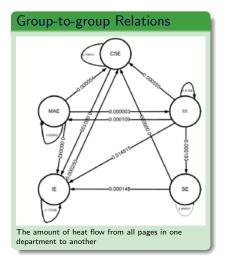
Haixuan Yang, Irwin King, and Michael R. Lyu

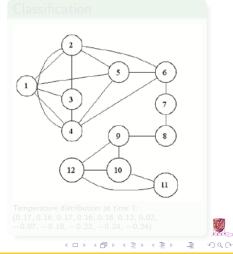
DiffusionRank: A Possible Penicillin for Web Spamming

◆ロト ◆聞ト ◆国ト ◆国ト

Introduction	Related Work	DiffusionRank ○○○○○●	Experiments	Conclusion
On DiffusionRank				

Applications of DiffusionRank

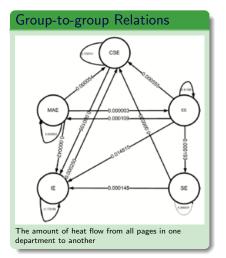


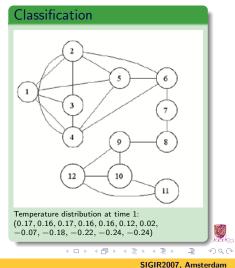


SIGIR2007, Amsterdam

Introduction	Related Work	DiffusionRank ○○○○○●	Experiments	Conclusion O
On DiffusionRank				
A 11				

Applications of DiffusionRank





Introduction	Related Work	DiffusionRank	Experiments •000000	Conclusion O
Experiments				
Experime	ental Set-Up			

Dataset

- A toy graph (6 nodes)
- A middle-size graph (18,542 nodes)
- A large-size graph crawled from CUHK (607,170 nodes)
- Normalize the rank scores: the sum is the number of nodes

Parameter settings

Symbol	Meaning	Setting
N	# iterations	100
γ	thermal conductivity	1 (best)
L	# trusted pages	1
g	random jump distribution	uniformly (w/o a priori)
α	probability following actual links	0.85

Haixuan Yang, Irwin King, and Michael R. Lyu

DiffusionRank: A Possible Penicillin for Web Spamming

SIGIR2007, Amsterdam

◆ロト ◆聞ト ◆国ト ◆国ト

Introduction	Related Work	DiffusionRank	Experiments	Conclusion
Experiments				
Experiment	:1			

- Tendency of DiffusionRank Rank value difference between $\{A_i\}$ and $\{B_i\}$: $\sum |A_i - B_i|$
- Compare with TrustRank and PageRank on variation of rank values

When the number of newly added nodes for manipulation is increased

Compare with TrustRank and PageRank on variation of order difference

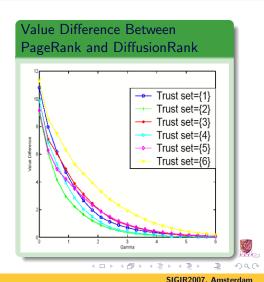
Order difference between $\{A_i\}$ and $\{B_i\}$ is measured by the number of all occurrences of the following cases:

$$egin{aligned} |A_i - A_j| &> 0.1 \,\& \, (A_i - A_j) * (B_i - B_j) < 0 \ |B_i - B_j| &> 0.1 \,\& \, (A_i - A_j) * (B_i - B_j) < 0 \end{aligned}$$

イロト イロト イヨト イヨト

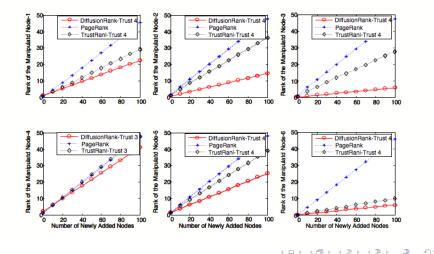
Introduction	Related Work	DiffusionRank	Experiments	Conclusion O
Experiments				
Experim	ont II			

- Inverse PageRank scores:
 - 4 > 3 > 1 > 2 > 6 > 5
- If node 4 has not been manipulated, then node 4 can be trusted, otherwise node 3 should be trusted



Introduction	Related Work	DiffusionRank	Experiments	Conclusion
Experiments				

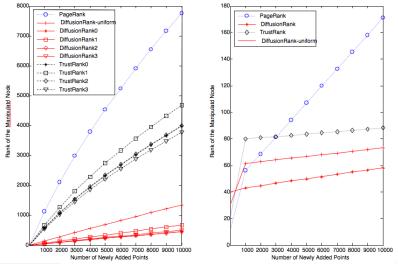
Variation of Rank Values on the Toy DataSet



Haixuan Yang, Irwin King, and Michael R. Lyu DiffusionRank: A Possible Penicillin for Web Spamming SIGIR2007, Amsterdam

Introduction	Related Work	DiffusionRank	Experiments	Conclusion O
Experiments				

Variation of Rank Values on Two Larger Datasets

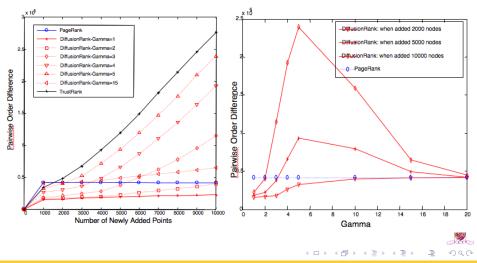


SIGIR2007, Amsterdam

direc-

Introduction	Related Work	DiffusionRank	Experiments	Conclusion ○
Experiments				

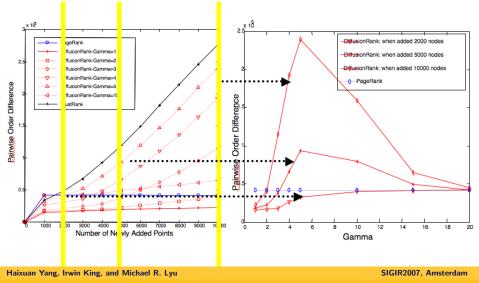
Variation of Order Difference on the Larger Dataset



Haixuan Yang, Irwin King, and Michael R. Lyu DiffusionRank: A Possible Penicillin for Web Spamming SIGIR2007, Amsterdam

Introduction	Related Work	DiffusionRank	Experiments	Conclusion
0000	0000	000000	000000	0
Experiments				

Variation of Order Difference on the Larger Dataset



DiffusionRank: A Possible Penicillin for Web Spamming

Introduction	Related Work	DiffusionRank	Experiments	Conclusion	
0000	0000	000000	0000000	•	
Conclusion and Future Work					

Conclusion

- DiffusionRank combats Web spamming
- **Diffusion** Rank is a generalization of PageRank when $\gamma = \infty$
- DiffusionRank can be employed to detect group-to-group relations
- DiffusionRank can be used for classification

Future Work

Investigate the actual users' behaviors for random jumps, g

イロト イポト イヨト イヨト

San

SIGIR2007, Amsterdam

- What are the optimal values for L
- Commercial applications \$\$

Introduction	Related Work	DiffusionRank	Experiments	Conclusion
0000	0000	000000	0000000	•
Conclusion and Future W	/ork			

Conclusion

- DiffusionRank combats Web spamming
- DiffusionRank is a generalization of PageRank when $\gamma = \infty$
- DiffusionRank can be employed to detect group-to-group relations
- DiffusionRank can be used for classification

Future Work

Investigate the actual users' behaviors for random jumps, g

What are the optimal values for L

Commercial applications \$\$

Haixuan Yang, Irwin King, and Michael R. Lyu DiffusionRank: A Possible Penicillin for Web Spamming SIGIR2007, Amsterdam

San

◆□▶ ◆□▶ ◆□▶ ◆□▶

Introduction	Related Work	DiffusionRank	Experiments	Conclusion
0000	0000	000000	0000000	•
Conclusion and Future W	/ork			

Conclusion

- DiffusionRank combats Web spamming
- DiffusionRank is a generalization of PageRank when $\gamma = \infty$
- DiffusionRank can be employed to detect group-to-group relations
- DiffusionRank can be used for classification

Future Work

Investigate the actual users' behaviors for random jumps, g

What are the optimal values for L

Commercial applications \$\$

Haixuan Yang, Irwin King, and Michael R. Lyu DiffusionRank: A Possible Penicillin for Web Spamming SIGIR2007, Amsterdam

San

◆ロト ◆聞ト ◆国ト ◆国ト

Introduction	Related Work	DiffusionRank	Experiments	Conclusion
0000	0000	000000	0000000	•
Conclusion and Futu	re Work			

Conclusion

- DiffusionRank combats Web spamming
- DiffusionRank is a generalization of PageRank when $\gamma = \infty$
- DiffusionRank can be employed to detect group-to-group relations
- DiffusionRank can be used for classification

Future Work

Investigate the actual users' behaviors for random jumps, g

イロト イヨト イヨト イヨト

SIGIR2007, Amsterdam

What are the optimal values for L

Commercial applications \$\$

Introduction	Related Work	DiffusionRank	Experiments	Conclusion
0000	0000	000000	0000000	•
Conclusion and Futu	re Work			

Conclusion

- DiffusionRank combats Web spamming
- DiffusionRank is a generalization of PageRank when $\gamma = \infty$
- DiffusionRank can be employed to detect group-to-group relations
- DiffusionRank can be used for classification

Future Work

Investigate the actual users' behaviors for random jumps, g

- What are the optimal values for L
- Commercial applications \$\$

Haixuan Yang, Irwin King, and Michael R. Lyu DiffusionRank: A Possible Penicillin for Web Spamming

イロト イボト イヨト イヨ

Introduction	Related Work	DiffusionRank	Experiments	Conclusion
0000	0000	000000	0000000	•
Conclusion and Futu	re Work			

Conclusion

- DiffusionRank combats Web spamming
- DiffusionRank is a generalization of PageRank when $\gamma = \infty$
- DiffusionRank can be employed to detect group-to-group relations
- DiffusionRank can be used for classification

Future Work

Investigate the actual users' behaviors for random jumps, g

イロト イポト イヨト イヨ

SIGIR2007, Amsterdam

- What are the optimal values for L
- Commercial applications \$\$

Introduction	Related Work	DiffusionRank	Experiments	Conclusion
0000	0000	000000	0000000	•
Conclusion and Futu	ıre Work			

Conclusion

- DiffusionRank combats Web spamming
- DiffusionRank is a generalization of PageRank when $\gamma = \infty$
- DiffusionRank can be employed to detect group-to-group relations
- DiffusionRank can be used for classification

Future Work

Investigate the actual users' behaviors for random jumps, g

イロト イボト イヨト イヨ

SIGIR2007, Amsterdam

- What are the optimal values for L
- Commercial applications \$\$