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Let’s Start from the Kernel Trick
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Kernel Learning

Different kernel functions defines a different implicit
mapping (linear kernel, RBF kernel, etc.)

How to find an appropriate kernel?

This leads to the kernel learning task.

Definition

Kernel Learning works by embedding data from the input
space to a Hilbert space, and then searching for relations
among the embedded data points to maximize a performance
measure.
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Semi-supervised Kernel Learning

We design a kernel using both:

the label information of labeled data

the unlabeled data
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Spectral Kernel Learning

Given an input kernel K , a spectral kernel is obtained by
adjusting the spectra of K

K̄ =
n∑

i=1

g(µi)φiφ
T
i , (1)

where g(·) is a transformation function of the spectra of a
kernel matrix, < µi , φi > is the i-th eigenvalue and eigenvector.
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Typical Approaches in Spectral Kernel Learning

Diffusion kernels, [Kondor and Lafferty, 02]

Regularization on graphs, [Smola and Kondor, 03]

Non-parametric spectral kernel learning, [Zhu et al., 03]

Fast decay spectral kernel, [Hoi et al., 06]
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The Property and Limitation in Previous Approaches

Property

Distances on the graph can give a useful, more global,
sense of similarity between objects

Limitation

The kernel designing process does not involve the bias or
the decision boundary of a kernel-based learning algorithm
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Why the Bias is Important?

Different kernel methods try to utilize different prior knowledge
in order to derive the separating hyperplane

SVM maximizes the margin between two classes of data in
the kernel induced feature space

Kernel Fisher Discriminant Analysis (KFDA) maximizes the
between-class covariance while minimizes the within-class
covariance

Minimax Probability Machine (MPM) finds a hyperplane in
the feature space, which minimizes the maximum
Mahalanobis distances to two classes
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Our Supplement to Spectral Kernel Methods

This motivates us to design spectral kernel learning algorithms:

Keep the properties of spectral kernels

Incorporate the decision boundary of a kernel-based
classifier
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Our Contributions

We generalize the previous work in spectral kernel learning
to a spectral kernel learning framework

We incorporate the decision boundary of a classifier into
the spectral kernel learning process
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An Illustration
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Figure: The decision boundaries on Relevance and Twocircles .
The black (dark) line – regular RBF

The magenta (doted) line – spectral kernel optimizing the kernel target alignment [Hoi et al., 06]

The cyan (dashed) line – proposed spectral kernel attained by maximizing the margin
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The Framework

Theoretical foundation

Semi-supervised spectral kernel learning framework

Maximum-margin based spectral kernel learning
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Spectral Kernel Design Rule

We consider the following regularized linear prediction method
on the Reproducing Kernel Hilbert Space (RKHS) H:

f̂ = arg inf
f∈H

1
`

∑̀
i=1

L(h(x i), yi) + r ||h||2H, (2)

where r is a regularization coefficient, ` is the number of
labeled data points, and L is a loss function.
Based on Representer Theorem, we have

f̂ = arg inf
f∈Rn

1
`

∑̀
i=1

L(fi , yi) + rf T K−1f . (3)
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Spectral Kernel Design Rule

The previous formulation is equivalent to a supervised
learning model.

A way of unsupervised kernel design is to replace the
kernel matrix K with K̄ , i.e.,

K̄ =
n∑

i=1

g(µi)φiφ
T
i . (4)
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Spectral Kernel Design Rule

Depending on different forms of g(·), different kernel matrices
can be learned.

Table: Semi-supervised kernels achieved by different spectral
transformation.

g(µ) Kernels

g(µ) = exp(−σ2

2 µ) the diffusion kernel
g(µ) = 1

µ+ε
the Gaussian field kernel

g(µ) = µi , µi ≤ µi+1, i = 1, . . . , n − 1 the order-constrained spectral kernel
g(µ) = µi , µi ≥ wµi+1, i = 1, . . . , q − 1 the fast-decay spectral kernel
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Optimization Criteria

There are several performance measure for kernel learning:

Kernel Target Alignment

Soft Margin

Fisher Discriminant Ratio

Others
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Kernel Target Alignment

The empirical alignment of a kernel κ1 with a kernel κ2 with
respect to the sample X is the quantity:

ωA(X , κ1, κ2) =
〈K1, K2〉F√

〈K1, K1〉F 〈K2, K2〉F
, (5)

where Ki is the kernel matrix for the sample X using the kernel
function κi and 〈·, ·〉F is the Frobenius inner product between
two matrices, i.e., 〈K1, K2〉F =

∑n
i,j=1 κ1(x1, x2)κ2(x1, x2).
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Soft Margin

Given a labeled sample Xl , the hyperplane (w∗, b∗) that solves
the optimization problem

min
w,b

〈w, w〉+ C
l∑

i=1

ξi (6)

s. t. yi(〈w,Φ(x i) + b〉) ≥ 1 − ξi , i = 1, . . . , l ,

ξi ≥ 0,

realizes the maximal margin classifier with geometric margin
γ = 1/||w∗||2, assuming it exists.
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Spectral Kernel Learning Framework

We summarize the spectral kernel learning framework

max
g(µ)

ω(K̄ ) (7)

s. t. K̄ =
n∑

i=1

g(µi)φiφ
T
i ,

where ω(K̄ ) is a generalized performance measure, such as
the kernel target alignment, the soft margin, etc.
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Spectral Kernel Learning Framework

According to [Hoi et al., 06], a fast spectral decay rate benefits
the kernel design. Adjusting the spectral decay rate, we have

max
µ

ω(K̄ ) (8)

s. t. K̄ =

q∑
i=1

µiφiφ
T
i ,

trace(K̄ ) = δ,

µi ≥ 0,

µi ≥ wµi+1, i = 1, . . . , q − 1,

where w ≥ 1 specifies the spectral decay rate and q specifies
the number of eigen-pairs selected.
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Maximum Margin Based Spectral Kernel Learning

By maximizing the margin between two classes, we have the
following semi-supervised learning problem:

max
µ,α

2αT e − αT G(K̄ tr )α (9)

s. t. K̄ =
d∑

i=1

µiφiφ
T
i , trace(K̄ ) = δ,

αT y = 0, 0 ≤ αj ≤ C, j = 1, . . . , n,

µi ≥ 0, i = 1, . . . , q µi ≥ wµi+1, i = 1, . . . , q − 1,

where G(K̄ tr ) = D(y)K̄ tr D(y), D(y) is the diagonal matrix of the
label vector y.
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Maximum Margin Based Spectral Kernel Learning

We note each rank-one kernel matrix as K̄i = φiφ
T
i . Following

[Lanckriet et al., 04], we have:

max
α,µ

2αT e − δρ (10)

s. t. δ = µT t, µi ≥ 0, i = 1, . . . , q

ρ ≥ 1
ti
αT G(K̄ tr

i )α, 1 ≤ i ≤ q,

αT y = 0, 0 ≤ αj ≤ C, j = 1, . . . , n,

µi ≥ wµi+1, i = 1, . . . , q − 1,

where t = {t1, t2, . . . , tq} is the trace vector of Ki , i.e.,
trace(K̄i) = ti .
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Experiment Setup

Data sets:
Two toy data sets
Four UCI data sets

Comparison methods:
Standard linear kernel and RBF kernel
Order-constrained spectral kernel (abbreviated as “order”)
Fast-decay spectral kernel optimizing the kernel alignment
(noted as “KA”)

Procedure:
20 random trials
10-fold cross-validation
Training data size from 10 to 30
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Toy Data Sets

Table: Experimental results on two synthetic data sets (%).

Algorithm Relevance Twocircles
RBF 81.52±4.63 78.74±5.02
KA 91.27±4.57 84.10±4.44
MM 93.15±3.49 94.98±3.13
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UCI Data Sets

Table: Classification performance of different kernels

Training Standard Kernels Semi-supervised Kernels
Size Linear RBF Order KA (Linear) KA (RBF) MM (Linear) MM (RBF)

Ionosphere (%)
10 71.51±2.12 66.56±2.04 62.31±3.92 74.36±2.47 70.24±4.99 74.45±2.54 69.56±2.26
20 77.50±1.20 71.37±2.48 63.64±2.71 78.75±1.89 76.62±3.12 78.83±1.74 77.55±3.04
30 80.23±0.90 77.82±2.52 63.52±2.44 81.21±1.17 80.51±2.80 81.47±1.08 82.59±0.96

Banana (%)
10 53.69±1.69 55.63±2.07 50.22±0.94 53.87±1.34 62.68±2.18 53.95±1.54 64.92±2.26
20 55.30±1.86 58.73±2.39 50.44±0.93 54.74±1.63 66.18±2.46 55.14±1.76 69.88±1.87
30 56.07±2.43 60.48±1.57 50.73±0.93 55.72±1.55 69.33±1.96 56.24±2.07 74.87±1.33

Sonar (%)
10 63.89±2.25 57.52±1.70 49.96±1.16 64.30±1.88 60.92±2.22 64.14±1.77 61.95±2.44
20 68.72±1.50 65.73±1.71 49.80±0.62 69.17±1.64 67.91±1.87 68.94±1.49 69.18±1.73
30 71.98±1.20 71.20±1.32 49.73±1.09 72.31±1.86 70.90±1.34 73.22±1.61 71.32±1.60

Solar-flare (%)
10 55.92±1.78 56.58±2.53 51.45±1.83 57.75±2.08 57.88±2.23 58.11±1.92 57.95±1.93
20 59.73±1.97 60.44±2.27 51.14±1.56 60.64±1.84 60.87±1.96 60.60±1.68 61.08±1.77
30 61.77±1.44 61.67±1.53 50.85±2.06 62.19±1.01 62.14±1.42 61.95±1.21 61.75±1.11
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Summary

We discuss a semi-supervised spectral kernel learning
framework

To supplement this framework, we incorporate the decision
boundary into the kernel learning process
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Future Work

Extend the semi-supervised kernel learning to multi-way
classification

Apply the proposed method to some applications, such as
text categorization, where the data sets have a cluster
structure
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QA

Thanks for your attention!
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