
On Setting up Energy-Efficient Paths

with Transmitter Power Control

in Wireless Sensor Networks

Yangfan Zhou and Michael R. Lyu

Department of Computer Science and Engineering

The Chinese University of Hong Kong

Hong Kong, China

Email: {yfzhou, lyu}@cse.cuhk.edu.hk

Jiangchuan Liu

School of Computing Science

Simon Fraser University

Vancouver, Canada

Email: jcliu@cs.sfu.ca

Abstract— Energy-efficiency is an important design consid-
eration of communication schemes for wireless sensor net-
works (WSNs). In this paper, we investigate the problem of
energy-minimized sensor-to-sink communications with adap-
tive transmitter power settings. We devise a novel network-
and application-aware model for this problem, and present a
Broadcast-On-Update (BOU) solution. However, BOU suffers
from the high overhead due to explosive broadcasting in path
setup. We then show a waiting scheme, BOU-WA, that effectively
mitigates the broadcast explosion. In BOU-WA, the waiting time
before each broadcast is proportional to the probability that a
node could find a more energy-efficient path to the sink. We
provide an efficient approximation algorithm to calculate this
probability. The performance of BOU-WA is evaluated under
diverse network configurations, and the results demonstrate its
superiority in conserving energy.

I. INTRODUCTION

A wireless sensor network (WSN) consists of a number

of in-situ battery-powered sensor nodes, which communicate

through multi-hop paths. A WSN can be employed to collect

the data about physical phenomena of interest [1][2][3]. There

is a large collection of potential applications, including envi-

ronmental monitoring, object tracking, surveillance, etc. [1][4].

Although WSNs have diverse task-specific requirements, many

of them rely on a sensor-to-sink communication scheme to

transfer the information that is collected by the sensors to a

sink node.

In general, the battery in a sensor node is limited and

not rechargeable [5]. Since wireless communications consume

most of the energy in typical WSN applications [6], an energy-

efficient data communication scheme is greatly desired. To be

energy-efficient, the data communication scheme to convey

the desired information on the event of interest through the

established sensor-to-sink paths should cost as low energy as

possible.

One important approach to save communication energy

consumption is to perform transmitter power control (which is

also called topology control). Obviously, setting the wireless

transmitter power of each sensor node in different levels will

result in different network topologies, as the neighboring nodes

that a node can directly reach are determined by the node’s

transmitter power setting.

A topology control scheme enables each node to set its

power level to a minimum value under the constraint that the

packet sent by this node could just reach its intended neigh-

boring node. The energy consumption of data communication

can thus be reduced. Transmitter power control is an important

technique to save the energy consumptions of sensor nodes and

prolong the lifetime of a network.

The prerequisite of transmitter power setting scheme is that

each sensor node can set its own wireless transmitter power

level. This is true in typical sensor node implementations. For

example, the Berkeley Mica Mote [7] provides such program

interfaces.

The notion of transmitter power control (topology control)

has been extensively studied in wireless mobile ad hoc net-

works (MANETs). [8] is a good bibliography in the field.

Although much work is done (e.g., [9][10][11][12][13][14]) on

transmitter power control in MANETs and WSNs, researchers

mostly focus on network connectivity analysis, network life-

time (a network is alive if it is ‘somehow’ connected) analysis.

They usually propose transmitter power setting schemes for

energy-efficient communications between an arbitrary node

pair and for energy-efficient broadcasting and multicasting.

Our objective of transmitter power setting is to achieve

energy-efficient sensor-to-sink data communications. We

model the transmitter power setting problem based on this

consideration and the network and application features of

WSNs. With this analysis and modeling work, we investigate

implementation issues and analyze the proposed schemes to

solve the transmitter power setting problem.

The contributions of our work are twofold. First, transmitter

power setting problem is studied in this paper for achieving

energy-efficient sensor-to-sink data communications. We do

not emphasize to construct an energy-efficient communication

path between an arbitrary node pair. This is the main consid-

eration of the transmitter power setting problem in MANETs,

as the MANET traffic is mainly unicasting peer-to-peer traffic.

Instead, we aim at finding an energy-efficient communication

0-7803-9466-6/05/$20.00 ©2005 IEEE                                                                            MASS 2005



path between an arbitrary node and a given node, i.e., the sink.

This can greatly simplify the complexity of the problem. We

show that this problem is tractable .

Second, we tailor the solution of the problem to adapt

to the features of WSNs. We investigate the implementation

issues for setting up the energy-efficient paths for sensor-to-

sink traffic. Although high node density and large network

scale of WSNs are major challenges for algorithms that set

up each node’s transmitter power level, we provide a low-

overhead algorithm to address the transmitter power setting

problem.

The rest of the paper is organized as follows. In Section II,

we model our transmitter power setting problem according

to the network and application features of WSNs. Section

III investigates the implementation issues and analyzes the

algorithm that solve the transmitter power setting problem.

In Section IV, we present our simulation results. Section V

discusses the related work of this paper. Section VI provides

conclusion remarks and our future directions.

II. TRANSMITTER POWER SETTING FOR

ENERGY-EFFICIENT SENSOR-TO-SINK DATA

COMMUNICATIONS

A. Network, communication, and energy consumption models

The wireless signal fading models investigated in the litera-

ture [15] give the condition that packets transmitted from node

u can be successfully received by the destination node v if

the transmitter power setting of node u satisfies the following

inequation:

Pr(u) ≥ c · (D(u, v))n (1)

Here c is a constant whose value is related to the system

parameters such as the wavelength of the wireless signal,

the antenna gains, and the threshold that a signal can be

successfully detected in the destination node. n is the signal

fading factor whose value is typically in the interval (2, 5) in

an application environment. D(u, v) is defined as the physical

(Euclidian) distance between node u and node v,

D(u, v) = ‖X(v) − X(u)‖, (2)

where X(·) denotes the physical location of a node.

Our work is based on this model: If node u knows the

locations of itself and its one-hop destination node v, the

optimal transmitter power setting for node u to send a packet

to node v is computed as:

Pr(u) = c · (D(u, v))n = c · ‖X(v) − X(u)‖n (3)

We assume that each sensor node can know its approximate

physical location with which we can calculate the transmitter

power setting. The approximate location information is achiev-

able if each sensor node carries a GPS receiver or if some

localization algorithms are employed (e.g., [16]).

We model the network as a graph. Let G(V,E) be the graph

constructed by the sensor nodes in a d-dimensional space

where V is the set of vertices which are the sensor nodes1

and E is the set of edges that are the wireless links connected

by the pairs of the sensor nodes which can communicate with

each other at the maximum power setting Prmax. Denote s

(s ∈ V ) as the sink node which is the final destination of the

sensor-to-sink traffic.

Let P (V ) = {Pr(u): for each u ∈ V } be the transmitter

power setting scheme for the sensor-to-sink communications.

P (V ) should assure that each node can send packets (possibly,

in a multi-hop manner) to the sink s.

Denote edge set E′ as the set of the wireless links under

the transmitter power setting scheme P (V ). Obviously, each

Pr′(u) in P (V ) is not larger than Prmax. Therefore, the graph

G′(V,E′) is the subgraph of G(V,E).
Note that G′(V,E′) is a directed graph. With the transmitter

power setting scheme P (V ), node u can send packets to node

v if Pr(u) satisfies Equation (1) and thus
−→
e′ (u, v) is formed.

But Pr(v) may not necessarily satisfy similar requirements

and thus
−→
e′ (v, u) may not be formed. This consideration

is because the power level of a node’s downstream neigh-

bor is not necessarily larger than that of the node to let

the downstream neighbor respond acknowledgement (ACK)

packets to the node, as hop-by-hop packet ACK mechanism

(i.e., the packet ACK mechanism in MAC layer) is usually

not employed for energy saving. Note that if a hop-by-hop

packet ACK mechanism has to be employed, we can simply

adjust a node’s transmitter power to different levels: One for

sending sensor-to-sink packets to its downstream neighbor; the

other for sending ACK packets to the upstream neighbor. The

technique is trivial and we do not discuss it in the rest of this

paper.

Let
−→
ℓ (u1, s) (where u1 is the source node and s is the

destination node) be the path in G′(V,E′) along u1, u2, ..., ui,

s (u1, u2, ..., ui ∈ V ). Consider the sensor-to-sink traffic path
−→
ℓ . We assume all sensor-to-sink packets are of the same size.

The energy consumption of a sensor-to-sink packet delivery

along this path is modeled as:

i∑

n=1

(γPr(un)) +

i∑

n=2

(γRr(un) + Ps(un))

+γRr(s) + Ps(s), (4)

where γ is a constant related to the packet size, Rr(·) denotes

the receiver power of a node, and Ps(·) denotes the energy

consumption to process this packet. We assume that the energy

consumed to receive and process a packet of each node is the

same. Equation (4) can then be written as:

γ

i∑

n=1

(Pr(un) + β) (5)

where β is a constant related to the power consumed to receive

and process a packet.

We define Equation (5) the path cost of the path
−→
ℓ ,

denoted by ω(
−→
ℓ ). ω(

−→
ℓ ) reflects the energy consumption of

1The terms ‘vertex’ and ‘node’ both refer to a sensor device. In the rest of
this paper, they are used interchangeably.



the communication along the path
−→
ℓ . We define the node

cost of a node u (u ∈ V ) as the minimum value of the path

costs of the known possible paths from node u to the sink

s. We denote η(u) as the node cost of node u. η(u) reflects

the known minimum energy required to transfer a packet from

node u to the sink.

B. Transmitter power setting problem for energy-efficient

sensor-to-sink data communications

Since WSNs are employed to sense and convey the phenom-

enal data of interest, sensor-to-sink traffic dominates the traffic

of the networks. In typical WSN applications, usually traffic

sources are a set of sensor nodes responsible for reporting

the data of some nearby phenomena of interest and the traffic

destination is a given sink.

If no data fusion/aggregation approaches are employed, the

sensor-to-sink traffic of the network is simply many-to-one

traffic. The transmitter power setting scheme for the network,

in this case, should aim to minimize the energy consumption

of the communication between an arbitrary node and a given

sink.

If some data fusion/aggregation approaches are employed,

without loss of generality, the transmitter power setting scheme

for the network should still aim to minimize the energy

consumption of the communication between an arbitrary node

and the given sink. The reasons are as follows.

First, in most application scenarios, we could simply con-

sider the data fusion/aggregation center as the single data

source that is reporting data packet to the sink in the transmit-

ter power setting problem. Usually, the data fusion/aggregation

center should be a sensor node located near the set of

the source sensor nodes sensing and reporting the data on

the physical phenomenon of interest. We can simply leave

the consideration of how to report the data to the data

fusion/aggregation center. Also, as data fusion/aggregation

center consumes more energy than the other source sensor

nodes, in practical applications, to avoid quickly draining the

data fusion/aggregation center node, data fusion/aggregation

center node should be selected in a rotational basis. (Details

on how to select a data fusion/aggregation center and how to

report data to the center are beyond the scope of this paper.)

This means that in a long term point of view, each sensor

node could be voted as the center node. Therefore, minimizing

the energy consumption of the communication between an

arbitrary node to a given sink is desired in this case.

Second, if we cannot consider the data fusion/aggregation

center as the single data source, then for a given set of the

source nodes, the optimal transmitter power setting problem

(i.e., how to minimize the total energy consumptions of the

sensor-to-sink communications) is very hard to solve. It is a

minimum Steiner tree problem [17] which is NP-Hard. An

approximate algorithm is to minimize the energy consumption

of the communication between each source node to the sink.

The packets are fused/aggregated only at the nodes in which

the paths from the source sensor nodes to the sink intersect

[18]. In this case, the transmitter power setting scheme should

still minimize the energy consumption of the communication

between an arbitrary node to a given sink.

Based on the above discussion, to save energy consumption

of the wireless communications, we do not have to consider

how to minimize the sum of the energy consumed for the

communication along a path between any arbitrary node pair.

What we should consider, instead, is how to minimize the en-

ergy consumption of the communication between an arbitrary

node to the sink. This consideration can greatly simplify the

transmitter power setting problem. We model the transmitter

power setting problem for energy-efficient sensor-to-sink data

communications as follows.

Problem 1: Given graph G(V, E) and a sink s (s ∈ V ),

compute P (V ) such that in the resulting subgraph G′(V,E′),
there exists at least one path

−→
ℓ (u, s) from each node u (u ∈

V ) to the sink s and η(u) is minimized. �

Denote cost(e) and cost(−→e ) as the cost functions of edge

e(u, v) and
−→
e′ (u, v) (e ∈ E, e′ ∈ E′, and u, v ∈ V ),

respectively. cost(e) and cost(−→e ) are defined as follows.

cost(e) = cost(−→e ) = γ(c · (D(u, v))n + β) (6)

With the cost function, the shortest path from each node

u (u ∈ V ) to a given node s in the graph G(V,E) can be

found. The solution of Problem 1 is simply setting each node’s

transmitter power to the value with which it can just send

packets to the downstream node along the shortest path.

With the information of the physical location of each node,

D(u, v) in Equation (6) can be calculated and thus cost(e)
can be obtained. Theoretically, the shortest paths can easily

be found, for example, with the Dijkstra algorithm [19].

III. SETTING UP THE TRANSMITTER POWER LEVELS FOR

SENSOR-TO-SINK TRAFFIC

Although a theoretical algorithm to set up the transmitter

power levels for energy-efficient sensor-to-sink data commu-

nications is simply based on the modeling work in Section II,

there are many practical implementation issues in WSNs that

should be carefully considered.

Usually, the scale of WSNs is very large containing hun-

dreds to thousands of sensor nodes. In order to obtain high

reliability, the networks are usually with high density, i.e., the

number of each node’s neighbors is large. Moreover, sensor

nodes are usually deployed in a non-deterministic manner,

which means the location of each node is not known a priori.

It is therefore not feasible for each sensor node to achieve

a global picture of the network (i.e., graph G(V, E) and the

location X(u) of each node u in set V ) because exchanging

the location information of every node is very expensive.

As each of the nodes does not have a global picture of the

whole network, the shortest paths should be constructed with

only localized information. We have to implement a solution

to the problem in a completely distributed way, i.e., each

node u should determine who its downstream neighbor in

the shortest path is with only localized information. Here a

node’s localized information means the information that can

be obtained by a node from its one-hop neighbors (i.e., its

adjacent nodes in graph G(V,E)).



How to find out the downstream neighbor in the shortest

path in an energy-efficient way (i.e., exchange as small number

of packets as possible) is a challenging implementation issue.

We analyze and solve this problem in this section.

A. BOU: the basic algorithm

A direct way to set up the transmitter power level is

broadcasting. Broadcasting is performed by setting the power

level to the maximal value in order to reach all possible one-

hop neighbors. We call the broadcast packets which carry the

information to set up in-network nodes’ transmitter power

level the configuration packets. A configuration packet de-

scribes the location, the identity, and the node cost η of the

node that sends the configuration packet.

The sink first broadcasts a configuration packet. The node

cost of the sink is obviously set to zero. Upon receiving a

configuration packet, an in-network node may update the node

cost of itself and broadcast another configuration packet with

the updated node cost.

Each node that receives a configuration packet computes its

own wireless transmitter power setting with which it can reach

the node where it receives the configuration packet according

to Equation (3). Then the cost of the edge (the wireless link)

from this node to the neighbor is calculated with Equation (6).

The sum of the edge cost and the node cost of this neighbor

is the path cost of the path from the node via this neighbor to

the sink. If the node has not received any configuration packet

before, this path cost is saved as its node cost. Otherwise,

this path cost is compared with the current node cost. If the

current node cost is smaller, the packet is simply dropped.

Otherwise, the node cost is replaced with this path cost and this

updated node cost is encapsulated in a configuration packet

together with the node’s location. The node then broadcasts

the configuration packet.

It is straightforward to show that this process will finally

converge and each node can know the location of its down-

stream neighbor through which the path to the sink is the

shortest path. This process builds up a spanning tree rooted

at the sink that initially sends out a configuration packet with

node cost equal to zero. The path from each node to the sink

in the spanning tree is the shortest path in graph G(V,E)
given the cost function of each edge e (e ∈ E) described

in Equation (6). We call this approach broadcast on update

(BOU) and formulate it in Algorithm 1.

B. Packet implosion of BOU: the challenge

However, as mentioned before, a typical WSN is with high

node density and with large number of nodes. In addition,

the power level needed to communicate with a neighboring

node is linearly related to the nth power of the physical

distance to the neighboring node according to Equation (3).

The BOU approach is surely not efficient. A major challenge

encountered in this distributed implementation is that it might

cause explosive broadcasting in the network. Let us take Figure

1 as an example. Note that to simplify our discussion, we

adopt the ideal free space transmission model [15] (i.e., n = 2
in Equation (6)), and we ignore the energy consumptions of

Algorithm 1 BOU: The basic algorithm

1: input X
/*X is this node’s physical location.*/

2: η ⇐ +∞

/*η is the node cost of this node.*/
3: downstream neighbor ⇐ NULL

/*downstream neighbor is the neighboring node to which this node
sends sensor-to-sink data packets.*/

4: Pr ⇐ 0
/*Pr is the power level setting with which the node sends sensor-to-sink
data packets.*/

5: loop
6: Wait until receiving a configuration packet
7: Y ⇐ The location information obtained from the configuration packet
8: ηneighbor ⇐ The node cost information obtained from the configura-

tion packet
9: Pr′ ⇐ The power level calculated with Equation (3)

10: ω ⇐ ηneighbor + cost(e)
/*cost(e) is the cost of the edge from this node to the neighbor
calculated with Equation (6).*/

11: if ω < η then
12: η ⇐ ω
13: Pr ⇐ Pr′

14: downstream neighbor ⇐ the neighbor that has sent the config-
uration packet

15: Create a configuration packet with the node cost η, the location X
and the identity of this node

16: Broadcast this configuration packet
17: end if
18: end loop

receiving and processing a packet at the node inside area φ,

where area φ is a circular area with diameter AC (AC is the

segment from node A to node C).

C A

B

Area φ

D

Sink S

Fig. 1. A scenario of a network

Suppose node A in Figure 1 broadcasts a configuration

packet. Node B and node C will approximately receive the

packet at the same time. Normally, the processing time of the

packet in node B and node C is almost the same. If node

B and node C both find out that the paths along node A to

the sink are the current shortest path to the sink, node B and

node C will broadcast their configuration packets almost at

the same time with their node costs.

In the next step, node C will receive the configuration

packet from node B and notice that the path cost of the path

through node B to the sink is lower than that of the path

directly through A to the sink (because ‖AB‖2 + ‖BC‖2 <

‖AC‖2). Node C thus has to update its node cost computed

with the node cost received from node B. Therefore, node C

has to broadcast again a configuration packet.

If the network is with high node density and large scale,

similar scenarios would cause severe problems. An in-network

node might have to update its node cost for many times.

Broadcasting has to be performed upon each update of the



node cost. This will cause explosive broadcasting of the

network because the updated information is propagated in a

tree-like manner to all upstream nodes of the nodes which

have updated their node costs and broadcasted their configure

packets.

Such kind of packet explosion should by all means be

avoided to save the energy spent in configuring the transmitter

power settings of the in-network nodes. Moreover, work in

[20] enlightens us and strengthens our motivation to address

this problem. In [20], the authors show that an energy hole

around the sink is very likely to happen if the sink is fixed.

We believe one easy way to avoid such energy hole is that

we change the location of a sink frequently in the network

area. In this case or in other application scenarios, when the

location of the sink is not fixed during the network lifetime,

the process to configure the optimal power setting of each

node needs to be started each time the location of the sink

changes. The efficiency of the implementation of the process

therefore becomes a more critical issue. It is very desirable to

address the aforementioned packet explosion problem.

One way to avoid the broadcast packet explosion problem

is for each node to wait for a given period of time between the

update of its node cost and the broadcasting of a configuration

packet. An important research issue is therefore to determine

this waiting time, which is investigated in the following

subsection.

C. Determining the waiting time before broadcasting

The case that a node broadcasts a configure packet for

more than one times happens only when the node needs

to update its node cost after the first time it broadcasts a

configuration packet. The reason of the update is that the node

receives another configuration packet from a neighbor, which

causes the change of its node cost. Therefore, if the waiting

time before each in-network node broadcasts a configuration

packet can be long enough, the node could have collected the

configuration packet which indicates the actual shortest path

from the node to the sink. It could avoid broadcasting for

another time.

An intuitive solution is that each in-network node waits for

the same period of time. But unfortunately, this idea does not

work and the explosion situation still exists. For example, in

the scenario described in Figure 1, node B and node C waits

for the same time after they receive the packet from A. Node

C will still receive the configuration packet from node B after

it broadcasts the configuration packet with a node cost based

on the node cost of node A. Then node C will update its node

cost and it has to broadcast another configuration packet with

the updated node cost.

We propose that the sophisticated waiting time should be

proportional to the probability that a node will update the node

cost in the future. Suppose that a node receives a configuration

packet announcing a path
−→
ℓ to the sink. It calculates the path

cost ω(
−→
ℓ ) of this path. If ω(

−→
ℓ ) is smaller than the current

node cost (if the node has not received any configuration

packet before, the node cost is set to +∞), the current

node cost is updated to ω(
−→
ℓ ). The node should derive the

probability that there exists another path
−→
ℓ′ to the sink whose

path cost ω(
−→
ℓ′ ) is lower than ω(

−→
ℓ ), and waits for a period of

time that is proportional to this probability. Now the problem

left is how to calculate this probability.

Although a node cannot have a global picture of the

network, if the node deployment scheme of the network is

known, the probability distribution of a node’s location can

be modeled. For example, we can model this distribution

as a uniform distribution if the sensor nodes are deployed

randomly in a uniform way. Furthermore, the location X(u)
of each node u can be regarded as independent and identically

distributed random variable if the deployment scheme of each

in-network node is identical and independent of the others.

In our following discussions, we regard X(u) as independent

and identically distributed random variable with probability

density function Px(X).
The problem of computing the probability that a node will

update the node cost in the future is formulated as follows.

Problem 2: Given

• A graph G(V, E), a sink s (s ∈ V ), and the cost function

of an edge of the graph described in Equation (6);

• The probability density function Px(X) of the location

of each node u (u ∈ V ) where X is the possible physical

location;

• The deterministic location x of a node m (m ∈ V , m �=
s) and the deterministic location y of the sink s;

• The cost ω(
−→
ℓ ) of a path

−→
ℓ from node m to the sink s;

Compute the probability ρ that there exists a path
−→
ℓ′ from the

node m to the sink s other than
−→
ℓ such that the cost of

−→
ℓ′ ,

ω(
−→
ℓ′ ), satisfies ω(

−→
ℓ′ ) < ω(

−→
ℓ ).�

With the solution of Problem 2, an improvement of BOU

is to update line 16 of Algorithm 1 to Algorithm 2. We call

this improved approach BOU-W (wait before broadcast, on

update).

Algorithm 2 The broadcast scheme in BOU-W

1: If there is another configuration packet which is scheduled to be broad-
casted, cancel it.

2: Calculate the probability ρ that there exists another path to the sink of
which the path cost is smaller than ω

3: T = α · ρ
4: Schedule that the configuration packet will be broadcasted in T seconds.

Here α is a constant whose value can be determined

empirically.

Now we discuss the solution to Problem 2. Obviously, this

problem is equivalent to computing the probability that the

known path
−→
ℓ is not the shortest path from the node m to the

sink s. Therefore, in order to solve the problem, we should

know the probability distribution of the node cost of a given

node. However, it is very difficult to derive this probability

distribution mathematically. But, we can perform Monte Carlo

method to find this probability distribution. We discuss this

approach in the following example.

Consider a network that contains 30 sensor nodes and a sink.

The sensor nodes are deployed uniformly in a 30m × 30m

square and the sink is at the center of the square.



We fix the physical distance between one sensor node

(denoted by node m) and the sink. This distance is denoted

by d. Then we randomly generate the locations of the other

29 sensor nodes in a uniform way for h times and thus we get

h graphs. For each graph, we perform the Dijkstra algorithm

to find the shortest path from node m to the sink given the

edge cost described in Equation (6) and record the node cost

η(m). Thus we get h results of η(m). Let each number of

series Ni(i = 1, 2, ...) be the number of results which is in

interval (0, i ·τ ], where τ is a constant. Obviously, if h is large

enough and τ is small enough, Ni/h reflects the probability

distribution of η(m).
We gradually change the distance d with a step size equal

to δ and perform the above process. In this way, we can get

the probability distributions of η(m) with different distances

between node m and the sink. Figure 2 shows part of the

results of the statistical data, in which δ is 3, h is 105, and τ

is 5. The probabilities is calculated with Ni/h.
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Fig. 2. The estimated probability distribution of node cost

With the statistical data achieved in the above approach,

Problem 2 can be solved approximately. For example, when

ω(
−→
ℓ ) = 105 and the distance ‖x−y‖ is 13, the probability ρ

is 0.82, which is approximately estimated with simple linear

interpolation technique according to the data shown in Figure

2.

Note that the above approach to achieve the solution of

Problem 2 requires only localized information. The cost ω(
−→
ℓ )

can be calculated as the sum of the node cost of the neighbor

from which the node receives a configuration packet and the

cost of edge between the node and the neighbor according to

Equation (6). The location of the sink can be found in the

configuration packet and the statistical data can be achieved

with emulations before the sensor nodes are deployed and

saved in the memory of each sensor node. The complexity

to calculate the waiting time is negligible if we employ

the statistical estimation approach discussed above to solve

Problem 2.

D. BOU-WA: an approximate approach

In subsection III-C, we discuss how to determine the waiting

time before a node broadcasts a configuration packet on the

update of its node cost. However, the mathematical solution

of Problem 2 is not easy to be derived. Although Monte Carlo

method helps to find approximate solutions, when the node

deployment scheme cannot be well modeled, the statistical

data cannot be achieved with emulations. Moreover, to obtain

high accuracy, the above numerical solution of the Problem 2

requires that τ and δ are small. This means that huge volume

of statistical data should be saved in a sensor node, which

might not be practical due to the hardware constraint of the

sensor node implementation [7]. In this subsection, we provide

an approximate solution to determine the waiting time.

Let’s still take Figure 1 as an example. For simplicity, we

consider the space is 2-dimensional and we adopt the ideal

free space transmission model [15] (i.e., n=2 in Equation

(6)). We ignore the energy consumed to receive and process

a packet. Note that in actual application case, we can employ

a more sophisticated model and without loss of generality,

the approach proposed in our following discussions is still

applicable.

We denote {C,A, ..., S} as the path from node C via node

A and some other nodes to the sink S. If there exists a node

B in the area φ, surely the path {C,B,A, ..., S} is shorter

than the path {C,A, ..., S} because

(‖X(A) − X(C)‖)2 > (‖X(A) − X(B)‖)2

+(‖X(B) − X(C)‖)2, (7)

as node B is within the circular area with diameter AC

Note that there may exist another node D outside the

area φ such that {C,D, ..., S} is shorter than the path

{C,B,A, ..., S}. But we can simply consider the probability

that node B exists as the probability that a better path than the

path {C,A, ..., S} exists as an approximation, although this

probability is smaller than the actual probability that a better

path than the path {C,A, ..., S} exists.

If we determine the waiting time according to this approxi-

mate probability (i.e., the probability that node B exists), then

we are waiting a shorter period of time than the BOU-W

scheme. Therefore, the risk that the node will update its routing

information and broadcast again is larger. In our simulation

study, we will show that this risk is manageable and the

approximation works well.

We name the scheme that adopts the waiting time based

on this approximation the BOU-WA (BOU-W with approxi-

mation) scheme. BOU-WA is an improvement of BOU by up-

dating line 16 of the BOU mechanism described in Algorithm

1 to Algorithm 3.

Algorithm 3 The broadcast scheme in BOU-WA

1: If there is another configuration packet which is scheduled to be broad-
casted, cancel it.

2: Calculate the probability ρ′ that there exists a node u such that the path
cost of the path from this node to the sink, immediately via the node u
and then immediately via the one that sends this node the configuration
packet, is smaller than ω

3: T = α · ρ′

4: Schedule that the configuration packet will be broadcasted in T seconds.

Suppose the deployed node number is k and the deployment

area is ϕ. Assume the nodes are deployed uniformly in area



ϕ. The probability ρ′ that there exists at least one node in area

φ is as follow.

ρ′ = 1 − (1 −
φ

ϕ
)(k−2), (8)

The complexity to calculate the waiting time in this scheme

is negligible as a node only has to solve ρ′ in Equation

(8). Also, this scheme requires no message exchange among

sensor nodes. As k and ϕ are known before node deployment,

they can be programmed into the node beforehand. φ can be

calculated according to X(A), X(C) and the cost function

described in Equation (6). In this example that adopts the ideal

free space transmission model, it is as follows.

φ = π · (
‖X(A) − X(C)‖

2
)2 (9)

Our simulation work in Section IV will compare this

approximate probability, i.e., ρ′, and the probability that a

better path exists, i.e., ρ, which is obtained with the Monte

Carlo method. How BOU-WA performs with different network

scales will also be investigated.

IV. SIMULATION RESULTS

We program the BOU scheme and the BOU-WA scheme

with NS-2 [21] and study the performance of these schemes

with simulations.

TABLE I

THE SETTING OF THE SIMULATION NETWORK

Area of sensor field 100m*100m

MAC IEEE 802.11 without
Protocol CTS/RTS and ACK

Transmitter Power 0.660W

Receiver Power 0.395W

Wireless Communication Model Free Space

Packet length 36 bytes

In our simulation work, we first investigate the improvement

of BOU-WA with different values of α (α is used to calculate

the waiting time described in Algorithm 3 in the BOU-WA

scheme) comparing with the BOU scheme in terms of energy

consumption overhead to set up the transmitter power level

of each in-network sensor node. The converging times of

these schemes are also compared. Different network scales

(i.e., different node numbers of a network) are adopted in the

simulations to show the scalability of these schemes.

To study how the BOU-WA scheme could approach the

BOU-W scheme, we also investigate the differences between

the probability ρ′ calculated with Equation (8) and the actual

probability ρ estimated with the Monte Carlo method.

Detailed settings of the simulation network are shown in

Table I.

A. The comparisons of BOU and BOU-WA

In the network described in Table I, we randomly deploy

k + 1 nodes in a uniform manner. We randomly select a node

as the sink node and the other k nodes as the in-network
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sensor nodes. Let the sink node initiate the algorithms (i.e.,

it broadcasts the first configuration packet with a node cost

equal to zero). We set k as 10, 20, 30, 40, 50, 60, 80, 100

and 150. For each setting of k, we set the constant α as 0.05,

0.1, 0.2, 0.4, 0.8 (the waiting time before broadcasting is α ·ρ′

seconds in the BOU-WA scheme). For each setting of k, we

run the simulations of the BOU scheme for 1000 times and

for each setting of k and α, we also run the simulations of

the BOU-WA scheme for 1000 times. We average the results

of all the simulation runs in each setting.

The total number of broadcasts in setting up the transmitter

power levels and the energy consumption overhead of BOU

and BOU-WA are shown in Figure 3 and Figure 4. It can

be found that BOU-WA greatly improves the BOU scheme,

especially when the number of nodes is large. Moreover, the

greater α is, the better the BOU-WA scheme performs. But

when α is large (i.e., α = 0.2, 0.4 or 0.8), different values of α

do not have much different effects on the energy consumption

overhead of BOU-WA.

The counter-effect of BOU-WA comparing to BOU is that

BOU-WA might require larger converging time. The converg-

ing times of the BOU and BOU-WA are shown in Figure 5.

These simulation results show that the greater α is, the longer

the converging time of BOU-WA scheme is. Note that when

α is less than 0.2, BOU-WA has a smaller converging time

than BOU. This is because the number of broadcasts in BOU-
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WA is much smaller than that that in BOU. As a result, the

load of the wireless channel is lighter in case that BOU-WA is

employed. Therefore, if a node wants to send a packet, it waits

for less time until the channel is free in case that BOU-WA

is employed.

These results show that BOU-WA, with a good parameter

α, can perform much better than BOU.

B. The approximation of BOU-WA

To study the estimation error of ρ′ in BOU-WA, we employ

the Monte Carlo method to calculate ρ.

In the network described in Table I, we randomly deploy

k nodes in a uniform manner and we place the sink at the

corner of the square. We then randomly select two nodes in

the network. One is a node that sends out a configuration

packet, denoted by node s; and the other is a node that receives

the configuration packet, denoted by r. With the BOU-WA

scheme, ρ′ is calculated. We change the locations of the other

nodes, except the sink, randomly for 10000 times and count

the number of instances t in which node s is not the adjacent

neighbor of node r along the shortest path from node r to

the sink when the algorithm converges. t/10000 is regarded

as the probability ρ that a better path exists than the path

{r, s, ..., sink}.

We perform the above process for 10000 times and the

differences between ρ′ and ρ are averaged. The average error

can be regarded as the probability estimation error of the BOU-

WA scheme.

We set k as 10, 20, 30, 40, 50, 80 and 100. We achieve the

estimation error with the above method. The results are shown

in Figure 6.

It can be seen that the estimation error is small. More-

over, the higher the node number is, the better accuracy the

estimation achieves. It is worth to mention that finding a

more accurate estimation is not necessary, because the average

packet number that an in-network node should broadcast in

the BOU-WA scheme is already close to the lower bound 1.

Figure 7 shows the average broadcast number of a node when

we set α = 0.8 in the BOU-WA scheme. The lower bound

is 1 because each node obviously has to broadcast at lease

once. This means that the room to further improve BOU-WA

is already very small.
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V. RELATED WORK

Research on many aspects of energy-efficient sensor-to-sink

data communication has been conducted in the literature. In

the work on data routing, directed diffusion [22] introduces

the data-centric notion. It proposes that sensor-to-sink packets

could be pre-processed at in-network nodes with data fusion

and data aggregation techniques in order to reduce the total

number of packets needed to convey the event information.

Many other data communication schemes for WSNs have been

proposed [23][24][25][26][27], all of which are striving to

achieve energy efficiency, while maintaining other properties

of the communication such as reliability or information fi-

delity. [28] is a good survey of these research issues.

In addition, traffic congestion will cause high packet loss

rates, which result in low energy efficiency. To this end,

mechanisms for detecting and even avoiding congestion have

been studied [29][30]. In our recent work [31], we propose

that the source reporting rates should be determined by the

communication cost (which could be implemented to reflect

the wireless communication conditions) and the importance of

each source node (the metric that reflects how much informa-

tion the source could provide on the event of interest) so that

the communication scheme can effectively avoid congestion

and provide reliable data transport.

The problem of broadcast storm has been extensively stud-

ied in multi-hop wireless networks. A series of solutions (e.g.,



[32]) have been proposed to mitigate the storm. However, their

focus is on how to efficiently send a packet to every node in

a network without much duplication. In our work, we reduce

the number of broadcasts which is performed by each node

to report its node cost to its one-hop neighbors for setting up

energy-efficient paths.

VI. CONCLUSION REMARKS AND FUTURE WORK

This paper has examined the problem of transmitter power

control for energy-efficient sensor-to-sink communications.

We have modeled this problem based on the network and

application features of WSNs. An intuitive implementation

to solve this problem, namely BOU, has been presented. We

have identified the broadcast explosion problem in BOU, and

then improved BOU by allowing a waiting period before each

broadcasting. We have shown that the waiting time should

be proportional to the probability that a node would find

a more energy-efficient path to the sink, and presented an

efficient approximate algorithm to calculate the probability.

Simulations have been designed to evaluate BOU and BOU-

WA. The results have validated the effectiveness of BOU-WA;

specifically, it can set up energy-efficient paths for sensor-to-

sink traffic with low overhead in a reasonable converging time.

There are many possible future directions for this work.

We are particular interested in integrating our algorithm with

existing data fusion/aggregation schemes. We also interested

in practical implementations, and we expect more issues can

be identified in this process.

ACKNOWLEDGEMENT

The work described in this paper was substantially sup-

ported by two grants, RGC Project No. CUHK4205/04E and

UGC Project No. AoE/E-01/99, of the Hong Kong Special

Administrative Region, China. J. Liu’s work is supported in

part by a Canadian NSERC Discovery Grant 288325, an

NSERC Research Tools and Instruments (RTI) Grant 613276,

and an SFU President’s Research Grant.

REFERENCES

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a survey,” Computer Networks, vol. 38, no. 4, pp. 393–
422, April 2002.

[2] D. Estrin, D. Culler, and K. Pister, “Connecting the physical world with
pervasive networks,” IEEE Pervasive Computing, vol. 1, no. 1, January-
March 2002.

[3] G. Pottie and W. Kaiser, “Wireless integrated network sensors,” Com-

munications of ACM, vol. 43, no. 5, May 2000.
[4] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson,

“Wireless sensor networks for habitat monitoring,” in Proc. of the ACM

International Workshop on Wireless Sensor Networks and Applications,
2002.

[5] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next century
challenges: Scalable coordination in sensor networks,” in Proc. of the

5th MobiCom, Seattle, Washington, August 1999.
[6] L. Doherty, B. Warneke, B. Boser, and K. Pister, “Energy and perfor-

mance considerations for smart dust,” International Journal of Parallel

and Distributed Systems and Networks, vol. 4, no. 3, pp. 121–133, 2001.
[7] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,

“System architecture directions for networked sensors,” in Proc. of the

9th International Conference on Architectural Support for Programming

Languages and Operating Systems, 2002.
[8] P. Santi, “A bibliography on topology control in ad hoc networks,” Sep

2003, http://www.imc.pi.cnr.it/ ˜santi/papers/biblioTC.ps.

[9] H. Balakrishnan, R. Morris, K. Jamieson, and B. Chen, “Span: An
energy effcient coordination algorithm for topology maintenance for in
ad hoc wireless networks,” in Proc. of the 7th MobiCom, Rome, Italy,
July 2001.

[10] R. Ramanathan and R. Rosales-Hain, “Topology control of multihop
wireless networks using transmit power adjustment,” in Proc. of the

19th IEEE Infocom, Tel Aviv, Israel, March 2002.
[11] V. Rodoplu and T. Meng, “Minimum energy mobile wireless networks,”

IEEE Journal of Selected Areas in Communications, vol. 17, no. 8, pp.
1333–1344, 1999.

[12] P. Santi, “The critical transmitting range for connectivity in mobile ad
hoc networks,” IEEE Transactions on Mobile Computing, vol. 4, no. 3,
May-June 2005.

[13] P. Santi, D. Blough, and F. Vainstein, “A probabilistic analysis for the
range assignment problem in ad hoc networks,” in Proc. of MobiHoc

2001, Long Beach, October 2001, pp. 212–220.
[14] R. Wattenhofer, P. Bahl, L. Li, and Y. Wang, “Distributed topology

control for power efficient operation in multihop wireless ad hoc
networks,” in Proc. of the 20th IEEE Infocom, April 2001.

[15] T. Rappaport, Wireless Communications: Principles and Practices (2nd

Edition). Upper Saddle River: Prentice Hall, 2002.
[16] N. Bulusu, J. Heidemann, and D. Estrin, “Gps-less low-cost outdoor

localization for very small devices,” IEEE Personal Communication,
October 2000.

[17] M. Goemans and D. Williamson, “A general approximation technique
for constrained forest problems,” SIAM J. Comp., vol. 24, pp. 296–317,
1995.

[18] B. Krishnamachari, D. Estrin, and S. Wicker, “Modelling data-centric
routing in wireless sensor networks,” in Proc. of the 21st IEEE Infocom,
New York, 2002.

[19] A. Gibbons, Algorithmic Graph Theory. Cambridge University Press,
1985.

[20] J. Li and P. Mohapatra, “An analytical model for the energy hole problem
in many-to-one sensor networks,” in Proc. of the IEEE Vehicular

Technology Conference (To Appear), Dallas, Texas, Fall 2005.
[21] K. Fall and K. Varadhan, The ns manual, Dec. 2003,

http://www.isi.edu/nsnam/ns.
[22] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion: A

scalable and robust communication paradigm for sensor networks,” in
Proc. of the 6th MobiCom, Boston, Massachusetts, August 2000.

[23] D. Braginsky and D. Estrin, “Rumor routing algorithm for sensor
networks,” in Proc. of the First Workshop on Sensor Networks and

Applications, Atlanta, GA, October 2002.
[24] M. Chu, H. Haussecker, and F. Zhao, “Scalable information-driven

sensor querying and routing for ad hoc heterogeneous sensor networks,”
International Journal of High Performance Computing Applications,
vol. 16, no. 3, August 2002.

[25] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin, “Highly-resilient,
energy-efficient multipath routing in wireless sensor networks,” ACM

Mobile Computing and Communications Review (MC2R), vol. 1, no. 2,
pp. 295–298, January 2002.

[26] C. Schurgers and M. Srivastava, “Energy efficient routing in wireless
sensor networks,” in Proc. of the 2001 MILCOM, vol. 1, 2001.

[27] R. Shah and J. Rabaey, “Energy aware routing for low energy ad hoc
sensor networks,” in Proc. of the IEEE Wireless Communications and

Networking Conference, Orlando, FL, March 2002.
[28] K. Akkaya and M. Younis, “A survey on routing protocols for wireless

sensor networks,” Elsevier Ad Hoc Network Journal, vol. 2, no. 3, pp.
325–349, 2005.

[29] Y. Sankarasubramaniam, O. Akan, and I. Akyildiz, “Esrt: Event to sink
reliable transport in wireless sensor networks,” in Proc. of the 4th ACM

International Symposium on Mobile Ad Hoc Networking and Computing,
June 2003.

[30] C. Wan, S. Eisenman, and A. Campbell, “Coda: Congestion detection
and avoidance in sensor networks,” in Proc. of the the 1st ACM

Conference on Embedded Networked Sensor Systems, Los Angeles, CA,
November 2003.

[31] Y. Zhou, M. Lyu, J. Liu, and H. Wang, “Port: A price-oriented reli-
able transport protocol for wireless sensor networks,” in Proc. of the

16th International Symposium on Software Reliability Engineering (To

Appear), Chicago, IL, November 2005.
[32] Y. Tseng, S. Ni, Y. Chen, and J. Sheu, “The broadcast storm problem

in a mobile ad hoc network,” Wireless Networks, vol. 8, no. 2/3, pp.
153–167, March 2002.




