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Abstract. Software reliability is an important metric that quantifies the quality of a software product and is
inversely related to the residual number of faults in the system. Fault removal is a critical process in achieving
desired level of quality before software deployment in the field. Conventional software reliability models assume
that the time to remove a fault is negligible and that the fault removal process is perfect. In this paper we examine
various kinds of fault removal policies, and analyze their effect on the residual number of faults at the end of
the testing process, using a non-homogeneous continuous time Markov chain. The fault removal rate is initially
assumed to be constant, and it is subsequently extended to cover time and state dependencies. We then extend
the non-homogeneous continuous time Markov chain (NHCTMC) framework to include imperfections in the
fault removal process. A method to compute the failure intensity of the software in the presence of explicit fault
removal is also proposed. The fault removal scenarios can be easily incorporated using the state-space view of
the non-homogeneous Poisson process.
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1. Introduction

The residual faults in a software system directly contribute to its failure intensity, caus-
ing software unreliability. Therefore, the problem of quantifying software reliability
can be approached by obtaining the estimates of the residual number of faults in the
software. The number of faults that remain in the code is also an important measure
for the software developer from the point of view of planning maintenance activities.
This is especially true for the developer of a commercial off-the-shelf software ap-
plication that is expected to run on thousands of individual systems. In the case of
such applications, users routinely report the occurrence of a specific failure to the soft-
ware development organization, with the presumption of getting the underlying fault
fixed, so that the failure does not recur. Thus commercial software organizations focus
on the residual number of faults, in addition to reliability as a measure of software
quality (Kenney, 1993).

Most of the black-box software reliability models (Farr, 1996) reported in the
literature assume that a software fault is fixed immediately upon detection, and
no new faults are introduced during the fault removal process. This assumption
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of instantaneous and perfect fault removal is impractical (Defamie et al., 1999;
Wood, 1997), and should be amended in order to present more realistic testing sce-
narios. The time lag between the detection and removal of a fault is not explicitly
accounted for in the traditional software reliability models, as it complicates the sto-
chastic process significantly, making it impossible to obtain closed-form expressions
for various metrics of interest. However, the estimates of the residual number of faults
in the software is influenced not only by the detection process, but also by the time
required to remove the detected faults. Fault removal process thus affects the num-
ber of faults remaining in the software and consequently its reliability, and makes a
direct impact on the quality of a software product. The other stringent assumption is
that of perfect fault removal. Studies have shown that most of the faults encountered
by customers are the ones that are reintroduced during the removal of the faults de-
tected during testing. Thus imperfect fault removal also affects the residual number of
faults in the software, and can at times be a major cause of its unreliability and hence
customer dissatisfaction (Levendel, 1990).

Conventional software reliability growth models (SRGMs) seek to obtain a closed
form analytical solution for various metrics of interest because of which they can-
not incorporate explicit and imperfect fault removal. However, the non-homogeneous
Poisson process (NHPP) that underlies these SRGMs can also be regarded as a non-
homogeneous continuous time Markov chain (NHCTMC), where the evolution of the
process is represented in the form of state transitions. As a result, NHCTMC is often
referred to as the “state-space view” of NHPP. By resorting to a numerical solution of
the NHCTMC, we incorporate explicit and imperfect fault removal into SRGMs. We
also analyze the effect of various fault removal strategies on the residual number of
faults using the NHCTMC framework. We also describe how the framework could be
used to incorporate imperfections in the fault removal process. We propose a method
to compute the failure intensity of the software in the presence of fault removal.

The layout of this paper is as follows: Section 2 provides a brief overview of finite
failure NHPP models. Section 3 presents the state-space view of non-homogeneous
Poisson process, and describes a numerical technique to obtain the solution of a NHPP.
Section 4 describes various fault removal strategies, presents a framework to incorpo-
rate fault removal activities into the finite failure software reliability growth models,
extends the framework to include imperfect fault removal and proposes a method to
compute the failure intensity of the software in the presence of fault removal. Section 5
presents some numerical results. Section 6 concludes the paper.

2. Finite failure NHPP models

This section provides an overview of the finite failure non-homogeneous Poisson
process software reliability models. This class of models is concerned with the num-
ber of faults detected in a given time and hence are also referred to as “fault count
models” (Goel and Okumoto, 1979).

Software failures are assumed to display the behavior of a non-homogeneous Pois-
son process (NHPP), the stochastic process {N(t), t ≥ 0}, with a rate parameter λ(t)

that is time-dependent. The function λ(t) denotes the instantaneous failure intensity.
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Given λ(t), the mean value function m(t) = E[N(t)], where m(t) denotes the ex-
pected number of faults detected by time t , satisfies the relation:

m(t) =
∫ t

0
λ(s) ds (1)

and

λ(t) = dm(t)

dt
. (2)

The random variable N(t) follows a Poisson distribution with parameter m(t), that is,
the probability that N(t) takes a given non-negative integer value n is determined by:

P
{
N(t) = n

} = [m(t)]n · e−m(t)

n! , n = 0, 1, . . . , ∞. (3)

The time domain models which assume the failure process to be a NHPP differ in the
approach they use for determining λ(t) or m(t). The NHPP models can be further
classified into finite failures and infinite failures models. We will be concerned only
with finite failure NHPP models in this paper.

Finite failures NHPP models assume that the expected number of faults detected
during an infinite amount of testing time will be finite and this number is denoted
by a (Farr, 1996). The mean value function m(t) in case of finite failure NHPP models
can be written as (Gokhale et al., 1996):

m(t) = aF(t), (4)

where F(t) is a distribution function.
The failure intensity λ(t) for finite failure NHPP models can be written as:

λ(t) = aF ′(t). (5)

The failure intensity λ(t) can also be written as:

λ(t) = [
a − m(t)

] F(t)

1 − F ′(t)
, (6)

where

h(t) = F(t)

1 − F ′(t)
(7)

is the failure occurrence rate per fault or the hazard rate. Referring to Equation (6),
[a − m(t)] represents the expected number of faults remaining, and hence is a non-
increasing function of testing time. Thus, the nature of the failure intensity is governed
by the nature of the failure occurrence rate per fault (Gokhale and Trivedi, 1999). Pop-
ular finite failure NHPP models can be classified according to the nature of their failure
occurrence rate per fault. The Goel–Okumoto software reliability growth model has a
constant failure occurrence rate per fault (Goel and Okumoto, 1979), the generalized
Goel–Okumoto model can exhibit an increasing or a decreasing failure occurrence rate
per fault (Goel, 1985), the S-shaped model exhibits an increasing failure occurrence
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rate per fault (Yamada et al., 1983), and the log-logistic model exhibits an increas-
ing/decreasing failure occurrence rate per fault (Gokhale and Trivedi, 1998).

3. State-space view of NHPP

The NHPP models described above provide a closed-form analytical expression for
the expected number of faults detected given by the mean value function, m(t). How-
ever, the mean value function m(t) can also be obtained using numerical techniques.
In this section we present a brief overview of homogeneous and non-homogeneous
Poisson process, and describe a method to obtain a solution of the NHPP processes
using numerical techniques.

A discrete state, continuous-time stochastic process {N(t), t ≥ 0} is called a Markov
chain if for any t0 < t1 < · · · < tn < t , the conditional probability mass function of
N(t) for given values of N(t0), N(t1), . . . , N(tn), depends only on N(tn). Mathemat-
ically the above statement can be expressed as (Trivedi, 2001):

P
[
N(t) = x | N(tn) = xn, . . . , N(t0) = x(t0)

]
= P

[
N(t) = x | N(tn) = xn

]
. (8)

Equation (8) is known as the Markov property.
A Markov chain {N(t), t � 0} is said to be time-homogeneous, if the following

property holds:

P
[
N(t) = x | N(tn) = xn

] = P
[
N(t − tn) = x | N(0) = xn

]
. (9)

Equation (9) also known as the property of stationary increments implies that the
next state of the system depends only on the present state and not on the time when
the system entered that state. Thus in case of a homogeneous continuous time Markov
chain (CTMC), the holding time in each state is exponentially distributed.

Markov chains which do not satisfy the property of stationary increments given by
Equation (9) are called as non-homogeneous Markov chains (Kulkarni, 1995). For a
non-homogeneous CTMC, the holding time distribution in state 0 is 1−e−m(t), whereas
the distribution of the holding times in the remaining states is fairly complicated.

A homogeneous Poisson process is a homogeneous continuous time Markov chain,
whereas a non-homogeneous Poisson process is a non-homogeneous continuous time
Markov chain. Figure 1 shows the representation of a non-homogeneous Poisson
process by a non-homogeneous continuous time Markov chain (NHCTMC). In the
figure, the state of the process is given by the number of events observed. When the
NHCTMC is used to model the fault detection process, each event represents fault de-
tection and hence the state of the process is given by the number of faults detected. The
process starts in state 0, since initially at time t = 0 which marks the beginning of the
testing process no faults are detected. Upon the detection of the first fault, the process
transitions to state 1, and the rate governing this transition is the failure intensity func-
tion λ(t). Similarly, upon the detection of the second fault the process transitions to
state 2 and so on. Note that the time origin of a transition rate emanating from any
state is the beginning of system operation (this is called global time) and not from
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the time of entry into that state (the so-called local time). Globally time dependent
transition rates imply a non-homogeneous Markov chain as in the present case whilst
locally time dependent transition rates would imply a semi-Markov process.

The expected number of faults detected given by the mean value function m(t) can
also be computed numerically by solving the Markov chain shown in Figure 1 using
SHARPE (Sahner et al., 1996). SHARPE stands for Symbolic Hierarchical Auto-
mated Reliability and Performance Evaluator, and is a powerful tool that can be used
to solve stochastic models of performance, reliability and performability. SHARPE
was first developed in 1986 for three groups of users, namely, practicing engineers,
researchers in performance and reliability modeling, and students in science and engi-
neering courses. Since then several revisions have been made to SHARPE to fix bugs
and to adopt new requirements. Details of SHARPE can be obtained from (Sahner et
al., 1996). While using SHARPE to solve the chain, two issues need to be resolved.

The first issue is that the chain in Figure 1 has an infinite number of states. In order
to overcome this issue, the chain can be truncated to θ states. Assuming that we are
unlikely find more faults than six times the expected number of faults present in the
beginning, we use:

θ = 6�a�, (10)

where a is the expected number of faults that can be detected given infinite testing
time as in case of Equation (4). The second issue is that SHARPE is designed to
solve homogeneous CTMCs. We get around this problem using the time-stepping
techniques by dividing the time axis uniformly into small sub-intervals, where within
each time sub-interval, the failure intensity, λ(t), can be assumed to be constant. Thus,
within each time sub-interval, the non-homogeneous continuous time Markov chain
reduces to a homogeneous continuous time Markov chain which can then be solved
using SHARPE. This value of λ(t) is used to obtain the state probability vector of
the Markov chain at the end of that time sub-interval. These state probabilities then
form the initial probability vector for the next time sub-interval. Let pi(t) denote the
probability of being in state i at time t . The mean value function, m(t), can then be
computed as:

m(t) =
θ∑

i=0

i · pi(t). (11)

The accuracy of the solution produced by solving the NHCTMC using SHARPE
will be influenced by the length of the time sub-interval used to approximate the value
of the failure intensity function λ(t). In general, the smaller the sub-interval, the better
will be the accuracy. However, as the length of the sub-interval decreases, the compu-
tational cost involved in obtaining a solution increases. Thus, an appropriate choice of
the length of the time sub-interval is a matter of tradeoff between the computational
cost and the desired accuracy of the solution.

We demonstrate the computational equivalence of the mean value function obtained
using the expressions presented in Section 2 (referred henceforth as the closed-form
analytical method) and the numerical solution method, using the NTDS data (Goel
and Okumoto, 1979; Jelinski and Moranda, 1972). The NTDS data is from the U.S.
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Figure 1. Non-homogeneous Markov chain for NHPP models.

Figure 2. Comparison of analytical and numerical mean value functions.

Navy Fleet Computer Programming Center consisting of errors in the development of
software for a real-time, multicomputer complex which forms the core of the Naval
Tactical Data System (NTDS). The NTDS software consisted of 38 different mod-
ules. Each module was supposed to follow three stages: the production (development)
phase, the test phase, and the user phase. The parameters of the four NHPP models de-
scribed above were estimated from the NTDS data using SREPT (Ramani et al., 1998),
and then the mean value function is computed for each of these models by solving the
Markov chain in Figure 1. Figure 2 shows the closed-form mean value function and
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the one obtained using a numerical solution of the non-homogeneous continuous time
Markov chain (NHCTMC) for Goel–Okumoto, generalized Goel–Okumoto, S-shaped,
and log-logistic models, respectively.

As observed from Figure 2, the numerical solution of the mean value function ob-
tained using the state-space view of the non-homogeneous Poisson process gives us a
very good approximation to the analytical solution. In the next section, we describe
how we exploit the flexibility offered by the state-space view to incorporate more re-
alistic features into the NHPP software reliability models, which were initially based
on oversimplifying assumptions in order to ensure mathematical tractability.

4. Fault removal into finite failure NHPP models

In this section we discuss the various fault removal strategies and the incorporation
of explicit fault removal into the finite failure NHPP models. We then extend the
NHCTMC framework with explicit fault removal to include imperfect fault removal.
We also propose a method to compute the failure intensity of the software in the pres-
ence of fault removal.

4.1. Fault removal policies

We assume that the testing process is unaffected by fault removal activity, i.e., testing
continues even during fault removal. The detected faults are queued to be removed.
The fault detection rate λ(n, t) depends on the number of faults detected, or time, or
both. The fault removal rate µ(j, t) also depends on time, or the number of faults
queued to be removed, or both. Thus at time t , if the number of faults detected is
n, and the number of faults pending to be removed is j , then n − j faults have been
removed.1

The fault removal rate, µ(j, t) is assumed to be of the following types:

• Constant: This is the simplest possible situation where the fault removal rate is
independent of the number of faults pending as well as time. The fault removal
process discussed by Kremer (1983), Levendel (1990), Dalal and Mallows (1990),
and Schneidewind (2002; 2003) is of this type. The fault removal rate µ(j, t) in this
case is given by:

µ(j, t) = µ. (12)

• Fault dependent: The fault removal rate could depend on the number of faults pend-
ing to be removed. As the number of faults pending increases, it is likely that more
resources are allocated for fault removal and hence the faults are removed faster,
which reflects as a faster fault removal rate. If j is the number of faults pending, the
fault removal rate µ(j, t) can be given by:

µ(j, t) = j · k, (13)

where the constant k can reflect the portion of resources allocated for fault removal.
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• The fault removal rate could also be time-dependent. Intuitively, the fault removal
rate is lower at the beginning of the testing phase and increases as testing progresses
or as the project deadline approaches. The fault removal rate reaches a constant
value beyond which it cannot increase, and this may be an indicator of budget con-
straints or exhaustion of resources, etc. The time-dependent fault removal rate is
hypothesized to be of the form:

µ(j, t) = α
(
1 − e−βt

)
(14)

for some constants α and β which may reflect resource allocation and scheduling
constraints of a particular project. We refer to this as the time-dependent fault re-
moval rate # 1.

• Fault removal rate could also be time-dependent in the case of latent faults, which
are inherently harder to remove, and can be hypothesized to be:

µ(j, t) = αe−βt . (15)

We refer to this as the time-dependent fault removal rate # 2.
• Time-dependent fault removal rate could also have any other functional form as

dictated by the process of a particular software project.

Fault removal activities can also be delayed to a later point in time in case of some
software development scenarios. Fault removal can be delayed based on the following
two constraints:

• Fault removal can be delayed till a certain number φ of faults are detected and are
pending to be removed.

• Fault removal may be suspended for a certain average amount of time 1/µ1 after the
detection of the fault, or in other words there is an average time lag of 1/µ1 units
between the detection of the fault and the initiation of its removal. Fault removal can
also be delayed for a certain period of time after testing begins, and once initiated it
can proceed as per any of the fault removal policies described above.

The fault removal rate could have any of the forms described above in case of de-
ferred fault removal.

4.2. Incorporating explicit fault removal

The finite failure NHPP models represented as a non-homogeneous continuous time
Markov chain (NHCTMC) in Section 3 are extended in this section to incorporate the
various fault removal strategies described above. The state-space of the NHCTMC
in this case is a tuple (i, j), where i is the number of faults removed and j is the
number of faults detected, and pending to be removed. The faults are removed one at
a time, and thus the detected faults form a queue up to a maximum of θ − i, where i

is the number of faults removed and θ is as given in Equation (10). Figure 3 shows
the NHCTMC with a constant fault removal rate and Figure 4 shows the NHCTMC
with a fault dependent removal rate. Expressions for the expected number of faults
removed, mR(t) and the expected number of faults detected, mD(t), by time t in case
of Figures 3 and 4 are given by Equations (16) and (17), respectively.
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Figure 3. NHCTMC—constant fault removal rate.

Figure 4. NHCTMC—fault dependent removal rate.
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Figure 5. NHCTMC—delayed (fault dependent delay) fault removal rate.

mR(t) =
θ∑

i=0

θ−i∑
j=0

i · pi,j (t), (16)

mD(t) =
θ∑

i=0

θ−i∑
j=0

(i + j) · pi,j (t). (17)

NHCTMC model with delayed fault removal, where the fault removal activities are
delayed until a certain number φ of the faults is removed (fault dependent delay) is
shown in Figure 5. The expected number of faults removed, mR(t), and the expected
number of faults detected, mD(t), in this case are given by Equations (16) and (17),
respectively.

Delayed fault removal, where the fault removal activities are suspended till a certain
time is elapsed after the detection of a fault can be incorporated in the NHCTMC
model using a phase type distribution (Kulkarni, 1995). Figure 6 shows the NHCTMC
where the removal is carried out in two phases. The mean time spent in phase 1 or the
idle phase is given by 1/µ1, and the mean time spent in phase 2 or the phase where
the actual removal activities are carried out is given by 1/µ2. Thus, the mean fault
removal time 1/µ is given by:

1

µ
= 1

µ1
+ 1

µ2
. (18)



ANALYSIS OF SOFTWARE FAULT REMOVAL POLICIES 221

Figure 6. NHCTMC—(time delayed) fault removal rate.

In Figure 6, state (i, j , d) implies that i faults have been removed, j faults have been
detected and are queued for removal, and “d” implies intermediate phase of repair. The
expected number of faults removed, mR(t) and the expected number of faults detected,
mD(t) is given by Equations (19) and (20), respectively.

mR(t) =
θ∑

i=0

θ−i∑
j=0

i · (
pi,j (t) + pi,j,d(t)

)
, (19)

mD(t) =
θ∑

i=0

θ−i∑
j=0

(i + j) · (
pi,j (t) + pi,j,d(t)

)
. (20)

As mentioned earlier in Figures 3–5, i is the number of faults removed and j is
the number of faults detected, and pending to be removed. The NHCTMC transitions
either in the horizontal direction or in the vertical direction depending on whether a
fault is detected or removed. In state (i, j) when a fault is detected the NHCTMC
transitions to state j + 1, since the number of faults pending to be removed increases
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by 1. On the other hand, in state (i, j) if a fault is removed the NHCTMC transitions to
state (i + 1, j − 1). The former transition is governed by the failure intensity function
λ(t), and the latter transition is governed by the fault removal rate. Similar arguments
hold for the transitions shown in Figure 6, except that the state representation is given
by a 3-tuple.

4.3. Incorporating imperfect fault removal

The importance of fault reintroduction has been recognized by several researchers and
a few models have been proposed/extended (Goel and Okumoto, 1979; Gokhale et
al., 1997; Kapure et al., 1992; Kremer, 1983; Levendel, 1990; Ohba and Chou, 1989;
Sumita and Shantikumar, 1986) to incorporate imperfect fault removal. However, most
of these are restricted to either instantaneous fault removal or constant fault removal
rate. We extend the NHCTMC framework described in the previous section to ac-
count for fault reintroduction based on the following assumptions. Whenever a fault
is detected, there are three mutually exclusive possibilities to the corresponding fault
removal effort: reduction in the fault content by 1 with probability p, no change in the
fault content with probability q, and an increase in the fault content by 1 with proba-
bility r . We assume other cases (additional fault removal or fault reintroduction) are
rare and negligible. Thus p + q + r = 1 (Kremer, 1983).

The NHCTMC with imperfect fault removal is shown in Figure 7. In Figure 7, in
state (i, j), when a fault is removed the process transitions to state (i + 1, j − 1) with
rate µ · p representing reduction in fault content by 1, remains in the same state with
rate µ · q representing no change in fault content, and transitions to state (i, j + 1)

with rate µ · r representing an increase in fault content by 1. The fault removal rate
is assumed to be a constant in case of Figure 7. However, imperfect fault removal can
be taken into account in accordance with any of the fault removal strategies described
earlier. Expressions for the expected number of faults removed and detected are given
by Equations (16) and (17), respectively.

4.4. Computation of failure intensity

In this section we describe a method to compute the failure intensity of the software
in the presence of fault removal. Under the idealized assumption of instantaneous
and perfect fault removal, the expected number of faults removed is the same as the
expected number of faults detected. However, if we take into consideration the time
required for removal, the expected number of faults removed at any given time is
less than the expected number of faults detected as seen in Figure 8. Thus at any
time t , λ(n, t), which is the failure intensity of the software based on the assumption
of instantaneous and perfect fault removal, needs to be adjusted in order to reflect the
expected number of faults that have been detected but not yet removed. We calculate
this adjustment as follows: let mR(t) denote the expected number of faults removed
at time t , and mD(t) denote the expected number of faults detected at time t . The
approach consists of computing time tR � t , such that mD(tR) = mR(t), i.e., time tR at
which the expected number of faults detected as well as removed under the assumption
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Figure 7. NHCTMC with imperfect repair.

of instantaneous fault removal is equal to the expected number of faults removed with
explicit fault removal. Whereas the perceived failure intensity at time t , under the
assumption of instantaneous and perfect fault removal is λ(n, t), we postulate that the
actual failure intensity (failure intensity after adjustment), denoted by λ

′
(n, t), can be

approximately given by λ(n, tR), where tR � t . The condition t = tR represents the
situation of instantaneous and perfect fault removal. This can be considered as a “roll-
back” in time, and is like saying that accounting for fault detection and fault removal
separately up to time t is equivalent to instantaneous and perfect fault removal up to
time tR.

We illustrate this approach with the help of an example. Referring to the left plot
in Figure 8, the expected number of faults detected, mD(t), at time t = 200 is 23.16,
while the expected number of faults removed at time t , mR(t) is 17.64. The failure
intensity for this particular example is assumed to be of the Goel–Okumoto model
and is given by λ(n, t) = 34.05 · 0.0057 · e−0.0057·t . The value of tR computed using
these values is 128.1. Thus if the software is released at t = 200, its perceived failure
intensity would be 0.0622, whereas the actual failure intensity after adjustment would
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Figure 8. An example for failure intensity adjustment.

be 0.093. The method discussed here was repeated for every time step dt , and the plot
on the right in Figure 8 shows the perceived as well as the actual failure intensities for
the entire time interval.

5. Numerical results

In this section we demonstrate the utility of the state-space technique to generate fault
detection and fault removal profiles, with the help of some case studies. Without loss of
generality, we use the failure intensity of the Goel–Okumoto model for the case studies
in this section. We estimate the parameters of the failure intensity function of the
Goel–Okumoto model using data set obtained from Charles Stark Draper Laboratories
using CASRE (Lyu and Nikora, 1992). The failure intensity used is given by λ(n, t) =
39.0082 · 0.0037 · e−0.0037·t .

The expected number of faults detected and removed for the various fault removal
policies is shown in Figure 9. Initially, we obtain the expected number of faults de-
tected and removed for various values of constant fault removal rate, µ. The values of
the fault removal rate µ were set to be approximately 100%, 70%, 35% and 17.5% of
the maximum fault detection rate. The expected number of faults removed decreases
as µ decreases, and expectedly so. The cumulative fault removal curve has a form
similar to the cumulative fault detection curve, and as the fault removal rate increases,
the fault removal curve almost follows the fault detection curve. We then obtain the
expected number of faults removed as a function of time, when the fault removal rate
depends on the number of pending faults (Equation (13)). The expected number of
faults removed is directly related to the proportionality constant k in Equation (13).
The fault removal rate in this case does not have a closed form expression but can be
computed by assigning appropriate reward rates to the states of the NHCTMC. As k

increases, the expected number of faults removed increases. The expected number of
faults detected and removed as a function of time for time-dependent fault removal
rate #1 as given by Equation (14) was obtained next. The value of α is held at 0.15,
which is approximately the maximum value of the fault detection rate. The cumula-
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tive fault removal curve in this case is also similar to the cumulative fault detection
curve, and the difference between the expected number of detected and removed faults
depends on the value of β. As β increases, the fault removal rate increases and the
expected number of faults removed increases. The expected number of faults removed
for time-dependent fault removal rate #2 as given in Equation (15) was then obtained.
In this case, as the value of β increases, the fault removal rate decreases and the ex-
pected number of faults removed decreases. The expected number of faults detected
and removed as a function of time for delayed fault removal, where the expected delay
between the detection of the fault and the initiation of its removal is µ1 units, was
obtained next. The expected number of faults removed decreases with increasing µ1.
The expected number of faults detected and removed for delayed fault removal where
fault removal begins only after a certain number of faults φ are accumulated was ob-
tained next, for different values of φ, setting the fault removal rate µ to be 0.1. As φ

increases, the expected number of faults removed decreases.
Figure 9 depicts that for higher values of fault removal rates, the fault removal profile

follows the fault detection profile very closely, and the estimates of the residual number
of faults based on the idealized assumption of instantaneous fault removal are close to
the ones with explicit fault removal. However, as the fault removal rate increases
the fault removal resources could be under utilized. For the sake of illustration, we
measure the utilization of the fault removal resources in case of the constant fault
removal rate. This can be achieved easily by assigning proper rewards to the states
of the NHCTMC. The utilization is shown in Figure 10. As seen from the figure,
for higher values of µ, the utilization is low, and the debugging resources are not
used up to their complete capacity for an extended period of time. This may not be
very cost effective, especially with increasing budget and deadline constraints facing
modern software development organizations. Incorporating explicit fault removal into
the software reliability growth models can thus be used to guide decision making about
the allocation of resources to the crucial, but perhaps the most important activity of
fault removal, so that a maximum number of faults are detected and removed before
the shipment of the software product in a cost effective manner.

Figure 11 shows the expected number of faults removed for different values of p, q

and r , in case of imperfect fault removal. The figure shows that the expected number
of faults removed decreases as the probability of perfect fault removal p decreases.

Figure 12 shows the actual and the perceived failure intensities computed for the
time period from t = 0 to t = 275 using the method explained in Section 4.4. As
can be seen from the figure, the actual failure intensity which accounts for fault re-
moval is higher than the perceived failure intensity which relies on the assumption of
instantaneous repair. Thus if the software were to be released at t = 275 time units its
actual failure intensity would be 0.0633 while its perceived failure intensity would be
0.0522.

The key points observed from the numerical results can be summarized as follows:

• The fault removal profile closely follows the fault detection profile for high values
of fault removal rates. However, for very high fault removal rates the fault removal
resources are severely under utilized which could lead to an inefficient use of the
overall resources.
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Figure 9. Expected number of detected and removed faults for fault removal policies.
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Figure 10. Utilization for constant fault removal rate.

Figure 11. Expected number of faults removed for imperfect fault removal.

• The number of faults removed decreases as the probability of perfect fault removal
decreases. Thus, the residual fault density in the software depends not only on the
fault detection and fault removal rates, but is also affected by the probability of
perfect fault removal.
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Figure 12. Actual and perceived failure intensities.

• The actual failure intensity of the software (taking into account explicit fault re-
moval) is higher than the perceived failure intensity of the software, which does not
consider the effects of fault removal process explicitly. As a result, budget and soft-
ware release time decisions based on the perceived failure intensity rather than the
actual failure intensity may tend to be optimistic.

The NHCTMC framework incorporating explicit and imperfect fault removal could
be used in a variety of ways. At the end of the testing phase it could be used to obtain
an estimate of the residual number of faults in the software. More importantly, it could
be used to obtain a realistic estimate of the optimal testing time, when costs justify the
stop test decision (Gokhale, 2003). The framework could also be used for predictive
or forecasting purposes to analyze the impact of various factors such as the impact
of additional testing, and the impact of delayed or deferred fault removal. For such
analysis, the solution of the model can be obtained for the desired parameter values.
These parameters include the length of the time interval of testing, the fault removal
rate, and the duration of the interval for which fault removal is to be deferred.

6. Conclusions

In this paper we have proposed a framework to account for explicit fault removal along
with fault reintroduction into the finite failure software reliability growth models. This
framework is based on the state-space view of non-homogeneous Poisson processes,
and relies on numerical techniques to obtain the mean value function of the NHPP. An
analysis of different fault removal strategies is also presented. We describe a method
to compute the failure intensity of the software taking into consideration explicit fault
removal, which accounts for the faults which have been detected but not removed.
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Models with explicit fault removal can be used to obtain realistic estimates of the
residual number of faults in the software, as well as the failure intensity of the software
and hence guide decision making about the allocation of resources in order to achieve
timely release of the software.

Note

1. We note that in this case the state of the software is given by a 2-tuple (n, j) where n represents the number
of faults detected and j represents the number of faults pending to be removed. Consequently, the failure rate
should be given by λ(n, j, t) and the debugging rate should be given by µ(n, j, t). However, we assume that
the failure rate is unaffected by the number of faults pending to be removed and hence is independent of j .
Similarly, we assume that the fault removal rate is independent of the number of faults detected, represented
by n. As a result, we use the simplified notation of λ(n, t) to represent the failure rate and µ(j, t) to represent
the fault removal rate.
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