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Abstract 
A character string is an important element in 

programming.  A problem that needs further research is 
how to automatically generate software test data for 
character strings.  This paper presents a novel approach 
for automatic test data generation of program paths 
including character string predicates, and the effectiveness 
of this approach is examined on a number of programs.  
Each element of input variable of a character string is 
determined by using the gradient descent technique to 
perform function minimization so that the test data of 
character string can be dynamically generated. The 
experimental results illustrate that this approach is 
effective. 
 
 
1. Introduction 

 
As an important stage to guarantee software quality 

and reliability, software testing plays an irreplaceable role 
in the process of software development.  Although a large 
number of software testing approaches have been 
developed to detect either data flow or control flow faults 
[1, 2], all current software testing approaches have been 
limited to programs whose predicates can contain Boolean 
variables, relational expressions or binary Boolean 
operators, but not character string variables.  This overly 
reduces software testing approaches for applications in 
practice since character string predicates are widely used 
in programming. 

To test a program, it is necessary to generate test data 
from the input domain of the program under test.  As a 
program input domain is usually too large to be 
exhaustively exercised, the usual way for testing is to 
select a relatively small subset to represent.  Therefore, a 
key issue in software testing is how to generate adequate 
test data from the program input domain to detect as many 
faults as possible with a minimum cost.  Obviously, if test 
data could be automatically generated, the cost of software 
testing would be significantly reduced.  

At present, there are many automatic test data 

generation approaches, such as random test generation [3], 
symbolic execution-based test generation [4, 5], rule-based 
test generation [6], constraint-based test generation [7] and 
dynamic test generation [8, 9, 10].  Each approach has its 
own advantages; however, little attention has been paid to 
the test data generation for programs that contain character 
string predicates. 

In the research reported in this paper, we present a 
novel approach to automatically generate test data for 
program paths that include character string predicates, and 
a corresponding test data generator is developed.  Dynamic 
test data generation is a popular approach for developing 
test data.  It is employed in our test data generation.  In 
essence, the problem of dynamic test data generation can 
be formulated and reduced to a function minimization 
problem [9, 10], and gradient descent is considered as a 
standard function minimization technique [8, 10].  Hence, 
we use gradient descent to perform function minimization 
and determine each character element of input variables so 
that the test data of character string can be dynamically 
generated.  The effectiveness of this approach is examined 
on a number of programs. The experimental results 
illustrate that this approach is effective. 

The remainder of this paper is organized as follows.  
Section 2 reviews related work.  Section 3 describes main 
principle of the automatic test data generation for program 
paths including character string predicates.  Section 4 
gives an example study to indicate that the approach is 
practical.  Finally, conclusion is provided in Section 5. 
 
2.  An overview of related work 

 
This section will briefly review related work with our 

test data generation. 
 
2.1 Predicate-based testing 

 
Predicate testing is a common approach to software 

testing, which requests each predicate in the program 
under test to be checked.  There are a lot of predicate 
testing strategies [11, 12].  However, they demand that 



 

predicates in tested programs must be numerical predicates. 
A numerical predicate is either simple or compound.  A 
simple predicate is a Boolean variable or a relational 
expression while a relational expression is of the 
following form: 

21 EopE ><  
where and  are arithmetic expressions, and 1E 2E >< op

}
is 

one of six relational operators { ,,,,, ≠=≥>≤< .  A 
compound predicate is a Boolean combination (AND, OR) 
of two or more simple predicates.  In other words, these 
predicate testing strategies only allow Boolean variables, 
relational expressions or Boolean operators to appear in a 
predicate, but non-arithmetic expressions, such as 
character strings, are not taken into consideration. This 
overly reduces predicate testing approaches applications in 
practice. 
 
2.2 Test data generation 

 
As mentioned previously, there are many test data 

generation approaches.  The most often used are random 
test data generation, symbolic execution based test data 
generation and dynamic test data generation.   

 
2.2.1 Random test data generation.  Random test data 
generation develops test data at random until a useful input 
is found [3].  It is easy to implement and commonly 
involved in literatures, but randomly generated test data 
have difficulties in satisfying a specific requirement, such 
as domain testing for a predicate border associated with a 
chosen path.  This test requests that ON test point lie on the 
border, OFF test point be placed outside the border, and 
the ON-OFF point pair be very close to each other [13].  In 
such a case, the number of adequate test data may be very 
small compared to the total number of inputs, and the 
probability of selecting an adequate test data randomly can 
be very low.  In fact, random test data generation performs 
poorly, and is generally considered to be ineffective on 
realistic programs [5]. 
 
2.2.2 Symbolic execution based test data generation. 
The basic idea in a symbolic execution system is to allow 
numeric variables to take on symbolic values instead of 
numeric values.  Many existing test data generation 
systems employ symbolic execution technique, in which 
symbols are assigned to input variables and subsequent 
uses of the variables are then expressed in terms of these 
symbols [4, 5].  However, symbolic execution is very 
computational intensive and a number of technical 
problems such as indefinite loops, subprogram calls, array 
references and so on, are met in practice when symbolic 
execution is performed [9, 14].   Moreover, if input 
variables are character string variables, symbolic 
expression becomes more difficult to apply.  For example, 

let us examine the code fragment in a program shown as 
below: 

    
strncpy(v,x,5); 
/* copy initial 5 characters of x to v   */ 
strupr(v); 
/* convert each lowercase character to uppercase */ 
if (strcmp(v, “LEFT”)<0) …; 
/* compare v and “LEFT” lexicographically */ 

 
where v is a character string variable, and x is an input 
variable of character string.  Then, it is difficult to express 
the value of variable v in terms of the symbolic value of 
the input variable x in the predicate that follows.   
 
2.2.3 Dynamic test data generation.  Dynamic test data 
generation is a popular approach for developing test data.  
In this paper, we employ dynamic test data generation to 
derive test data.  During dynamic test data generation, if 
some desired test requirement is not reached, data 
generated in each test execution is used to identify how 
close the test input is in meeting the requirement.  With the 
aid of feedback, test inputs are gradually modified until 
one of them satisfies the requirement.  For example, 
suppose that a program contains the condition statement 

 
If  (y ≤ 38) …. 

 
and the TRUE branch of the predicate should be taken.  
Thus, we must find an input that can make the variable y to 
hold a value smaller than or equal to constant 38 when the 
condition statement is reached.  A simple way to calculate 
the current value of variable y in the predicate is to execute 
the program up to the condition statement and record the 
value of y. 

Each predicate can be transformed to an equivalent 
form: 

 
0relℜ  

 
where ℜ  is a real-value function，referred as a branch 
function, and rel is one of { =<≤ ,, }, which satisfies  

1）positive (or zero if rel is <) when the predicate is 
false,  

2） negative (or zero if rel is = or ≤ ) when the 
predicate is true [10].   

Let  represent the current value of variable 
y for input x when the program is executed up to the 
condition statement.  Then the branch function can be 
expressed as follows: 

)(xycondition

 
38)()( −=ℜ xyx condition  

 
The function is minimal when the TRUE branch is 

taken on the condition statement.  So, the problem of test 

 



 

data generation can be reduced to the problem of function 
minimization.  That is, we need to find an input x that can 
minimize the branch function ℜ [9, 15].   )(x

The techniques usually used to perform function 
minimization are gradient descent [8, 10, 14], genetic 
search [9, 16], and simulated annealing [17].  Some 
systems developed by applying these techniques can 
generate test data for common programs; nevertheless, 
they do not carry out the test data of character strings.  
Thus, existing systems are restricted to programs whose 
predicates are numerical predicates. 

Gradient descent is thought of a standard function 
minimization technique, which performs function 
minimization by only evaluating the branch function 
values.  In general, gradient descent is faster than global 
optimization algorithms such as genetic search [9], and 
often used in dynamic test data generation, e.g., ADTEST 
and TESTGEN system [10, 14].  We also employ gradient 
descent to perform function minimization during our test 
data generation.  A shortcoming of using gradient descent 
techniques is that gradient descent algorithms are likely to 
fail when they meet a local minimum.  That is, branch 
function appears to reach the minimum but it does not.  
However, our gradient descent algorithm is not subject to 
the problem (see Section 3.2) 

Now we review how the function minimization using 
gradient descent works.  Suppose x0 is an original input on 
which the program is executed up to a predicate and the 
FALSE branch of the predicate is taken.  A branch function 
can be constructed for the predicate whose value is 
positive on input x0.  A new input x is created by a small 
amount increment or decrement with respect to x

'

0 on an 
input variable while keeping all other input variables 
constant in order to search a good adjustment direction.  
The program is executed on input x and the branch 
function is evaluated.  If both increase and decrease on the 
input variable do not cause the improvement (decrement) 
of the branch function, another input variable is selected.   

'

When an appropriate direction is found, i.e., the 
program execution also reaches the predicate and the 
branch function is improved, a larger amount adjustment is 
taken in this direction.  Then, the program is executed on 
the new input, and the branch function is evaluated again.  
If the input no longer reaches the predicate, or a constraint 
violation occurs, then an adjustment continues in this 
direction with a smaller amount.  If the branch function is 
not further decreased, the last value of the branch function 
is retained, and a new direction is searched on the previous 
input.  If the positive minimum of the branch function is 
located, an adjustment direction is searched from this 
minimum for another input variable.  The cycle repeats 
either until the branch function becomes negative, meaning 
the input x that minimizes the branch function is found or 
until improvement can not be made for any input variable, 
meaning there is no input that can make the TRUE branch 

of the predicate to be taken.  
 

3. Test data generation based on character 
string predicate 
 

Our goal of the test data generation is to find a program 
input on which a chosen program path will be traversed.  
This problem can be reduced to a sequence of subgoals 
where each subgoal is solved by performing function 
minimization using gradient descent.  The test data 
generation approach is considered as a path-oriented 
testing method, whose major concern is to determine a 
program execution path that is to be followed.  A number 
of path selection strategies have been reported in the 
literature [18, 19].  In this paper we focus on how to 
automatically generate test data for program paths that 
include character string predicates, leaving out the account 
for the test paths selection.  

 
3.1 Character string predicate 

 
A character string predicate consists of at least one 

character string variable and one string comparison 
function such as .  Similar to numerical 
predicates, character string predicates can be simple or 
compound.   A simple character string predicate is of the 
following form 

)(strcmp

0),( 21 opstrstrstrcmp  
where },,{ >=<∈op .  A compound character string 
predicate is a character string predicate that contains at 
least one Boolean operator such as ‘NOT’, ‘AND’ or ‘OR’.   

Dynamic test data generation can be reduced to the 
problem of function minimization.  As a result, we need to 
construct a branch function with respect to a character 
string predicate, and then evaluate the branch function 
value.     

Consequently, we can construct a branch function ℜ  
regarding a character string predicate, e.g., 

, so that its value is positive for initial 
input x

0),( 21 >strstrstrcmp

0.  Namely, let 21 strstr −=ℜ  if str1-str2 is positive 
for input x0; otherwise 12 strstr −=ℜ .  Then, the program 
input is adjusted gradually until ℜ  becomes negative, i.e., 
the required input has been found.  A problem that we 
must solve first is how to compare two character strings as 
well as how to evaluate the branch function ℜ .  So we 
define a function ξ , which maps a character string to a 
nonnegative integer, satisfying the formula: 

]1[][)( 1
1

0

−−
−

=

×=∑ iL
L

i

wistrstrξ   

where str is a character string, L is its length, w is a 
positive weighting factor representing a weighted value 

1−−iL

 



 

imposed upon each character element of the string, and w 
is equal to 128. 

Now we explain in detail how to use gradient descent 
to perform function minimization in order to generate test 
data for a path including character string predicates.  The 
current values of variables in the predicates can be 
calculated or collected by the program instrumentation 
technique.   

We propose a theorem to map a character string to a 
unique nonnegative integer. 
 
Theorem 1: Suppose S is a set of character strings, N is 
a set of nonnegative integers.  Let 

+

)(strξ  is defined in 
Eq.(1).  Then )(strξ is a one-to-one function from S  
to . +N

Let π  be a path in the program under test, x be an 
adjusted input variable, pr denote a character string 
predicate (e.g., ) on 0),( 21 >strstrstrcmp π , and the TRUE 
branch of the predicate should be taken.  Suppose that x0 is 
an initial input (selected randomly or by hand) on which 
the program is executed to the predicate pr along path π .  
However, the FALSE branch of pr is taken instead of the 
TRUE branch.  

By the theorem, a character string can be transformed 
into a unique nonnegative integer.  Therefore, the distance 
between two strings can be defined as below: 
 
Definition: Let L1 and L2 denote the length of string str1 
and str2, respectively.  Suppose , 

where  is the maximum of L
),max( 21 LLL =

)1(,'0'\][1

),max( 21 LL 1 and L2.  Without 
loss of generality, let L  ,2L= −<= Lkkstr . 

By the distance between string str1 and str2, represented by 
, we mean  ), 21 str(strdis

In order to traverse the TRUE branch of pr, a branch 
function with respect to the predicate pr should be 
constructed.  If pr is an inequality predicate, that is, its 
operator is one of { },,, >≥<≤ , we construct a branch 
function 0ℜ  such that .0]0[]0[ 21 ≥− str0 =ℜ str

0

  Then, 
we search an adjustment direction that can improve the 
branch function ℜ  by modifying the 0th character, 

denoted by c , of input variable x, i.e., let  or 

.  If c  results in a better ℜ  value than , 
 replaces ; otherwise, if there is another input 

variable, that input variable is selected.  If there is no other 
input variable, the test data generation fails for the path 

0

c

10 +

c

'
0 = cc

01−0
'
0 = cc
'
0c

'
0 0

0

π .  
For instance, suppose that there is only one input variable 
x in the program under test, and up to the predicate pr, the 
program implements the function: str1 ="2334", str2 
="abc"+x.  In this case, no matter how to adjust the input 
variable x, it is impossible to make the predicate pr true.   

)()(),( 2121 strstrstrstrdis ξξ −=  

1
1

0
2

1
1

0
1 ][][
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−

=

−−
−

=

×−×= ∑∑ iL
L

i

iL
L

i

wistrwistr .   

By the distance between the ith characters of string str1 and 
str2, denoted by d , we imply ),( 21 strstri

)(][][),( 2121 kiistristrstrstrdi <−=  

The distance dis  uniquely determines a 
nonnegative integer, which can be used to evaluate the 
branch function ℜ  with respect to a character string 
predicate.  Then, the next step is to search an appropriate 
direction for a character string variable to improve the 
branch function value.  It is easy to see that 

),( 21 strstr

1−Lw

1
2 )])[ −−× iLwi

21 ]0[]0[ − strstr
1

1
1 ],[max((

−

=
∑
L

i

istr

×

str

 > 

 by the verification of 

theorem 1 (see Appendix).  Since every character element 
of a string is expressed by its ASCII code (an integer), a 
practical way is to construct a branch function 0ℜ for the 
0th character of str1 and str2, i.e., let 

]0[]0[10 strstr −=ℜ 2  so that 00 ≥ℜ .  Then, we search 
an appropriate adjustment direction for the 0th character of 
an input variable, and adjust the character by gradient 
descent until ℜ .  As a result, we can find an input 
that makes the character string predicate to take TRUE 
branch. 

00 <

When a good direction is found, the adjustment amount 
is increased (double) until (1) , (2) 00 <ℜ 0ℜ  is not 

improved, (3) constraint violation occurs, or (4) c  is 
outside of 32 and 127.  In the last three cases, we reduce 
(halve) the amount of adjustment and the corresponding 
input is tried again.  In the first case, we find an input that 
makes the predicate pr to take TRUE branch. 

'
0

If pr is an equality (=) or non-equality (≠) predicates, 
for instance, 

     if L))"",(( 1 ceilingstrstrcmp − , 
we must adjust every character of an input variable to 
make ""1 ceilingstr −= .   In this case, we need to construct 
branch function iℜ  for every unequal character of str1 and 
str2 such that 0>ℜi , ,]1,0[ −∈ Li  .  
Then, we compare the corresponding characters of str

),max( 21 LLL =

1 and 
str2 from positions 0 to L-1.  For example, at position i, if 
the ith character of str1 and str2 is unequal to each other, a 
branch function ][][ 21 istristr −i =

0>

ℜ  is constructed so 
that ℜi .  Similarly for ℜ , we search an adjustment 0

 
3.2 Test data generation based on character string 
predicate  

 

 



 

A shortcoming of using gradient descent to perform 
function minimization is that gradient descent algorithms 
can fail if a local minimum is encountered.  Fortunately, 
our gradient descent algorithm would not encounter the 
problem.  We note that minimizing a branch function is 
very difficult if str1 and str2 are all involved in an adjusted 
input variable.  In most cases, one of them is not 
associated with the adjusted input variable.  Without loss 
of generality, we assume that str2 is not related to the 
adjusted input variable, and ci represents the ith character of 
the adjusted input variable.  Then, at position i, we have 

][][ 21 istristri −=ℜ

)( ic
.  In fact, str  is a function of c][1 i i, 

denoted as ϑ .   has nothing to do with c][2 istr i , so it 
can be thought of as a constant, represented by M.  
Accordingly, the branch function ℜ can be expressed as i

Μ−=ℜ )( ii cϑ .  The relationship of ℜ  and i )( icϑ  is 
shown in Fig.1.  It can be seen that the branch function iℜ  
is a monotonic increasing or decreasing function, i.e., the 
adjustment for each character is not restricted to a 
localized region of iℜ .  The branch function iℜ  can reach 
its minimum so that each character of the adjusted input 
variable is determined in turn.  Therefore, the function 
minimization by using gradient descent does not suffer 
from the local minimum problem.  

direction to improve the branch function ℜ  until i 0≤ℜi

.0>

 
or until one of other three cases hold.  In the case of 

, we obtain two distinct characters C0≤ℜi on and Coff  
such that Con satisfies ℜ  whereas C0≤i off meets ℜi  
The two distinct characters are refined gradually so that 
the distance between them, , is the shortest.  If 

is adjusted to 0, the i
),( 21 strstr

1−

di

id th character of input variable x is 
determined, and the next character, (i+1)th character, is 
considered.  Otherwise, the test data generation fails to 
make the predicate to be TRUE, and the cycle terminates.  
If input variable x ends before < Li , a space character 
is added before its terminating position.  The comparison 
continues until i . 1−= L

π

π

π

i

0≤i

iℜ

i

Suppose that x1 makes the predicate pr to take TRUE 
branch.  Now, either the path  is traversed, or the second 
subgoal must be solved.  In the former case, x1 is the test 
input of path .  In the latter case, we must find a 
program input to satisfy another predicate.  The process is 
repeated until a program input is found on which the path 

is traversed, or the subgoal cannot be solved, i.e., the 
test generation fails to the path.   

The algorithm of test data generation for an equality or 
non-equality character string predicate is shown as follows: 
 
For the ith character of adjusted input variable  

Initialize  ℜ

M
●

)( icϑ

iℜ

ℜ
i = ϑ(c

i ) - M

ℜ i =
 M

 - ϑ
(c i)

32 127

Fig.1  Branch function ℜi
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32 127

Fig.1  Branch function ℜi

Search a good adjustment direction dir 
If (dir is not found) test generation fails, exit 
Else initialize AMOUNT⇐ 1 

AMOUNT ⇐ AMOUNT × 2  
// Enlarge adjustment amount.  //   
Repeat  

ci = ci  dir  AMOUNT 
executing the program under test 
Evaluate  
If (ℜ )  

Obtain distinct characters at position i 
Repeat refining the distinct characters 

 Until di is shortest 
4. Experimental  results If (di=0) 

 ith character is determined 
We describe how to automatically generate test data for 

a path including character string predicate by a Max 
program, shown in Fig.2, which is a variation of the 
program taken from [20].  

Else test generation fails  
Exit 
 Endif 

Else If (ℜ decrease)  
Max program has two input variables.  One is an 

integer variable argc, and the other is character string 
variable argv.  Although the program is made up of only 
dozens of statements, it contains lots of structures, such as 
numerical predicates, character string predicates, 
compound predicates, IF-THEN-ELSE statements and 
FOR loop statements, etc. The current values of variables 
in the predicates can be calculated or collected by the 

AMOUNT ⇐ AMOUNT × 2 
Else AMOUNT ⇐ AMOUNT / 2 
// Lessen adjustment amount. //  
Endif 

Endif 
Until (AMOUNT <initial value) 

Endif 
Endfor 

 



 

program instrumentation technique.  An instrumented 
version of Max program is shown in Fig.3, in which the 
instrumentation statements are shown in italics. 

 
Considering that the FOR loop is executed zero time, 

one time and two times, there are 31 paths in Max program.  
We design 50 program inputs at random, which are used as 
original input to the test data generation for these 31 paths.  
If the test data generation fails for a path on these 50 inputs, 
the path is taken as an infeasible path.   As a result, 16 test 
inputs are generated by the test data generation approach.  
That is to say, 16 out of 31 paths are feasible paths.  

Code coverage has been considered to be an important 
metric for software testing and software reliability 
measurement, and many software product companies 
require 85% coverage to achieve [21,22].  We measure the 
coverage of generated test data using ATAC (Automatic 
Test Analysis for C) tool [23].  The results are show in 
Fig.4.  It is seen that 15 out of 17 P-Uses (88%) are coved, 
and all blocks, decisions and C-Uses have been covered.  
In addition, test data can be developed by using the 
gradual descent approach and the random-number 
approach to perform function minimization.  In the gradual 
descent approach, each character is adjusted, one by one, 
from 32 to 127, while in the random-number approach; 

each character is generated by a random-number generator.   
 

 

record (argc,0,'>',"&&"); 
record('-',**argv, '='); 
if ((argc>0)&&('-'==**argv)) 
{  record(argv[0],"-ceiling", '!'); 
   if (!strcmp(argv[0],"-ceiling")) 
   …; 
 } 
record(argc,0,'=',""); 
if(argc==0) 
…; 
record(argc,0,'>',""); 
for(;argc>0;argc--,argv++) 
{  record(argv[0],result, '>', ""); 
    if (strcmp(argv[0],result)>0) 
      …; 
    record(argc,0,'>',""); 
} 
record(ceiling,result, '-', ""); 
if (strcmp(ceiling,result)<=0)  
       …; 
Fig.3   Instrumented Max program 

int  max(int argc, char ** argv) 
{ 

1      argc--; 
2      argv++; 
3      if ((argc>0)&&('-'==**argv)) 
4      {    if (!strcmp(argv[0],"-ceiling")) 
5          {     strncpy(ceiling,argv[1],BUFSIZE); 
6                 argv++;  argv++;          
7                 argc--;    argc--; 
             } 
             else 
8           {     fprintf("Illegal option %s.\n",argv[0]);
9                  return(2); 
              } 
        } 
10    if(argc==0) 
11    {     fprintf("At least one arguments.\n"); 
12           return(2); 
         } 
13    for(;argc>0;argc--,argv++) 
14    {    if(strcmp(argv[0],result)>0); 
15              strncpy(result,argv[0],BUFSIZE); 
         } 
16     if (strcmp(ceiling,result)<=0)  
17            printf("\n max:%s",ceiling); 
        else 
18            printf("\n max:%s",result); 
19     return(0); 
} 

                  Fig.2   Max program 
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Fig.4   Coverage of the test data 
 
Dynamic test data generation is a heuristic process.  

When a new input is created, the program has to be 
executed again in order to evaluate its branch function.  
Thus, the cost of dynamic test data generation depends 
mainly on the cost of executing the program.  In fact, the 
number of program executions is the evaluation number of 
branch function in the test data generation for a path.  We 
compare the evaluation number of branch function in the 
gradient descent, the gradual descent and the random-
number test data generation approaches under the same 
coverage.  The results are shown in Fig.5.  Obviously, the 
gradient descent test data generation approach is more 
economical than the gradual descent and the random 
approaches.  However, the gradual descent approach is not 
better than the random-number approach. 

 



 

Fig.5   The comparison of evaluation number  
 

5.  Conclusion 
 

The objective of software testing is to detect faults in 
programs.  Nevertheless, all current software testing 
strategies have been limited to programs in which 
character string predicates are not taken into consideration.  
In this paper, we present a test data generation approach 
for program paths including character string predicates. 

To our knowledge, this is the first automatic test data 
generation approach based on character string predicates. 
The preliminary experimental results show that the 
methodology is effective. 

 
Appendix 

This appendix shows the verification of Theorem 1. 
Proof: Suppose Sstrstr ∈21, 21 strstr ≠∧ .  Let L1 and 

L2 denote the length of string str1 and str2, respectively.  
Then, by the definition of )(strξ , we have  
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where w=128. 
Let ).()( 21 strstr ξξχ −=

)( 2str
  Now, we prove 

)( 1str ξξ ≠ , i.e., 0>χ .  Two cases need to be 
discussed: 

(1)  LLL == 21

Without loss of generality, we assume 
  and the (l+1),][][ 21 jstrjstr =

]1[1 ≠+ strlstr

,,,1,0 lj L=
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By the above proposition, we have 
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This completes the proof of the theorem. 
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