


algorithm relies only on the structure of the global graph, it
is likely leading to topic drift. Considering the refinement
is determined by the subgraph structure, the refined score
of d1, eventually, will be the same as d3 and d5, while the
score of d2 will be equal to that of d4. However, initial rank-
ing scores provide primary information between documents
and the query, which should be utilized to enhance the re-
finement. With the initial ranking scores, a straightforward
method [32] is to combine those two parts linearly, and the
result may be as follows: d1 ranks higher than d3, then d5;
d2 ranks on top of d4. We may argue that the linear combi-
nation does not make full use of the information as it treats
each of them individually.

Another problem with such approaches is about the graph
construction. Traditionally, the graph is either constructed
by explicit link structures [25, 19], such as hyperlinks of
web pages, citations of research papers, or inferred from the
content information as a nearest-neighbor graph [20], (i.e.,
affinity graph in [32]). However, to the best of our knowl-
edge, none of the algorithms models the graph using both
content and link information. In fact the link structures, no
matter explicit or implicit link information, provide insight
about the properties of the documents as well as the content
information. From this point of view, both content informa-
tion and link structure should be taken into consideration
for graph construction.

In this paper, we propose a novel unified framework to
model the re-ranking algorithm, by regularizing the smooth-
ness of ranking scores over the graph with a regularizer on
the initial ranking scores. The intuition behind the model
is the global consistency over the graph: similar documents
are likely to have the same ranking scores with respect to a
query. In other words, if the neighbors of a document are
highly relevant to a query, this document is most likely to be
relevant to the query; otherwise, if none of the neighbors of a
document is relevant to the query, the document is unlikely
to be relevant to the query. In addition, the refined ranking
scores should be at least somewhat relevant to the initial
ranking scores, which, in our framework, are constrained by
a regularizer on the initial ranking scores. For instance, in
Fig. 1(b), the initial ranking scores and the structure of the
subgraph will be considered in a unified framework. Then
the scores of d1, d3 and d5 will be enhanced by each other,
while those of d2 and d4 will be decreased. Finally, one
reasonable final decreasing ranking is d1, d3, d2, d5, d4. The
re-ranking algorithm discussed in this paper is not specific
to documents and may arise in other entities.

Moreover, we simultaneously incorporate the textual con-
tent with other link information in a latent space graph. To
achieve this goal, we learn a latent feature xi for each doc-
ument by assuming that the content information shares the
same latent space with the link information, then a latent
space graph is built based on the latent feature X. The
advantage of this approach is that it integrates content and
link information in a single joint graph, which provides com-
plemental information for better performance.

To illustrate our methodology, we apply the framework
to literature retrieval and expert finding applications on
DBLP bibliography [1] data. We compare the proposed
method with the initial language model method and an-
other PageRank-style re-ranking method. Also, we evaluate
the proposed method with varying graphs. Experimental
results show that the improvement in our proposed method

is consistent and promising.
The main contribution of this paper is to propose a joint

regularization framework to model the re-ranking algorithm,
which aims to improve the precision, especially the very top
returned results. The key to refining the results is the global
consistency over the graph, which leverages the graph-based
model for the query-dependent ranking problems. Another
contribution of this paper is that our approach simultane-
ously combines the content with other link information in a
latent space graph, which is validated to make an improve-
ment compared to the traditional tf.idf (term frequency-
inverse document frequency) space.

The rest of this paper is organized as follows. We briefly
summarize related work on re-ranking model and learning
latent space in Section 2. In Section 3 we present the reg-
ularization framework of our approach. Section 4 describes
the details of how to build the latent space graph. Next,
in Section 5, we specify the statistical language model as
base ranker for information retrieval, then show a case study
about expert finding. We describe the experimental setup
and report a series of experiments to evaluate their effec-
tiveness in Section 6 and Section 7. Section 8 presents our
conclusions and future work.

2. RELATED WORK
With the advance of machine learning, graph-based mod-

els have been widely and successively used in information re-
trieval and data mining. Examples include link analysis [25,
19], semi-supervised learning [36, 33], learning to rank [28,
4, 3, 8], text classification and clustering, and document re-
ranking [32, 20, 21] problems, etc.

A family of work on the structural re-ranking paradigm
over a graph was proposed to refine the initial ranking scores
by some generalization of PageRank [25] and HITS [19].
Kurland and Lee performed re-ranking based on centrality
within graphs, through PageRank-inspired algorithm [20]
and HITS-style cluster-based approach [21]. Zhang et al.
[32] proposed a similar method to improve Web search re-
sults based on a linear combination of results from text
search and authority ranking. However, the linear combi-
nation does not make full use of the information as it treats
each of them individually.

In addition, PopRank [24] is developed to extend PageR-
ank models to integrate heterogenous relationships between
objects. Another approach suggested by Minkov et al. [23]
has been used to improve an initial ranking on graph walks
in entity-relation networks. Very recently, Qin et al. [28]
use relational objects to enhance learning to rank with pa-
rameterized regularization models. Diaz [15] use score reg-
ularization to adjust ad-hoc retrieval scores from an initial
retrieval. But those two methods do not consider multiple
relationships between objects. Jin et al. [18] present a differ-
ent approach for ranking refinement, which utilize the base
ranker and feedbacks from users to learning a better ranking
function under a supervised learning framework. We pro-
pose a different method, by regularizing the smoothness of
ranking scores over the latent graph, along with a regularizer
on the initial ranking scores. Our regularization framework
can be viewed as a non-linear combination of both parts
using an unsupervised learning method.

This work is related to existing works in machine learning,
especially graph-based semi-supervised learning [36, 33, 29].
The regularization framework we proposed is closely related



to graph Laplacians [36, 33, 29], which usually assume label
smoothness over the graph. Mei et al. [22] extend the graph
harmonic function [36] to multiple classes. However, our
work is different from theirs, as their tasks are mainly used
in query-independent settings (i.e., semi-supervised classifi-
cation, topic modeling), while we focus on query-dependent
ranking problems.

To learn a latent space graph, this work is also related to
the family of latent semantic indexing, including the basic
models such as Latent Semantic Analysis (LSA) [13] and
Probabilistic Latent Semantic Indexing (pLSI) [17]. The
key idea of LSA [13] is to map documents to a relatively
low dimensional latent space, while pLSI [17] extends LSA
by adding a sounder probabilistic model. Cohn and Hof-
mann [11] propose pLSI+PHITS to construct the latent
space by combining content with link information, using
content analysis based on pLSI and link analysis based on
PHITS [10]. Recently, Zhu et al. [35] propose another ap-
proach that aims to exploits both the content and link infor-
mation, by using a joint factorization on the document-term
matrix and the link adjacency matrix. Soon later, Zhou et
al. [34] combine links with co-link patterns to learn a low-
dimensional latent space by using the Laplacian on directed
graph. Since the latent space has been well studied, we share
the idea of the joint factorization [35] to learn the latent fea-
ture, and the difference is that we leverage the latent feature
for building a latent space graph.

The concrete application, expert finding, introduced in
Section 5, has been well studied based on TREC2005 and
TREC2006 [9, 6, 26, 16]. Balog et al. [6] propose a query-
dependent approach which directly models the knowledge
of an expert from associated documents, and the statistical
language model [27, 30, 31] is utilized to measure the rel-
evance between documents with a query. In this work, we
chose statistical language model as our base ranker, but our
approach is performed in a real world academic field based
on DBLP bibliography data, which differs from the previous
methods.

3. GRAPH-BASED RE-RANKING MODEL
In this section, we propose a novel and general frame-

work to model the re-ranking algorithm, by regularizing the
smoothness of ranking scores over the graph, along with a
regularizer on the initial ranking scores.

3.1 Problem Definition
Let D = (d1, d2, ..., dn) denote the set of documents to

be retrieved, where each document di is represented by a
feature vector xi ∈ Rm. Let G(V, E) be a connected graph,
where nodes V corresponding to the n documents, and edges
E corresponding to the explicit or implicit links between
documents. We assume an n × n symmetric weight matrix
W on the edges of the graph is given, which wij corresponds
to the weight between di and dj , and D is a diagonal matrix
with entries Dii =

∑
j wij .

Given a query q, a set of documents Dinit are retrieved by
a standard information retrieval model (base ranker). Gen-
erally, we are highly interested in the top returned docu-
ments. However, the base ranker tends to be imperfect.
The goal of our re-ranking model is to re-order an initially-
retrieved document set Dinit so as to improve precision at
the very top ranks of the final results.

3.2 Regularization Framework
Inspired by the graph-based semi-supervised methods, we

propose a new framework to model the re-ranking algorithm.
The intuition behind the model is the global consistency:
similar documents are most likely to have similar ranking
scores with respect to a query. In addition, the initial rank-
ing scores provides invaluable information, which should also
be considered in the framework. Formally, we formulate a
cost function R(F, q, G) in a joint regularization framework
similar to [33] as follows,

R(F, q, G) =
1

2

n∑
i,j=1

wij ‖ f(di, q)√
Dii

− f(dj , q)√
Djj

‖2

+ µ

n∑
i=1

‖ f(di, q)− f0(di, q) ‖2, (1)

where µ > 0 is the regularization parameter, f0(di, q) is
the initial ranking score of the document di with respect to
query q, and f(di, q) is the refined ranking score. Let F
and F 0 denote the refined and initial ranking score vector
respectively. Intuitively, the first term of the cost function
defines the global consistency of the refined ranking scores
over the graph, while the second term defines the constraint
to fit the initial ranking scores, and the trade-off between
each other can be controlled by the parameter µ.

The final ranking score vector is

F ∗ = arg min
F∈R+n

R(F, q, G). (2)

After differentiating and simplifying [33, 36], a closed-form
solution can be derived,

F ∗ = µβ(I − µαS)−1F 0,

S = D− 1
2 WD− 1

2 ,
µα = 1

1+µ
, and µβ = µ

1+µ
,

(3)

where I is an identity matrix. Note that µα ranges from 0
to 1, and µα + µβ = 1. In this paper, we consider the nor-
malized Laplacian in [33], and S is symmetric and positive-
semidefinite. Details about how to calculate the matrix W
and S will be introduced in Section 4. Given the initial
ranking scores F 0 and the matrix S, we can compute the
refined ranking scores F ∗ directly.

For the large-scale information retrieval, the matrix S is
usually very large but sparse, which can be loaded in a rel-
atively small storage space. However, the inverse matrix
(I − µαS)−1 will be very dense, and may need a huge space
to save it. To balance the storage space and the computation
time of the inverse matrix, we suggest to approximate the
Eq. 3 in a specific subgraph with a submatrix Ŝ, which con-
sists of the top-n documents according to the initial ranking
scores F̂ 0. It can be found that the top ranking scores are
usually far greater than the very low ranking scores. The-
oretically, if the ranking scores after n are close to 0, the
following approximate solution is equivalent to Eq. 3,

F̂ ∗ = (I − µαŜ)−1F̂ 0. (4)

In this equation, we eliminate the parameter µβ as it does
not change the ranking. Accordingly, it needs to calculate
the inverse matrix (I − µαŜ)−1 online. Fortunately, the
matrix is usually very sparse, then the complexity time of
the sparse matrix inversion can be reduced to be linear with



the number of nonzero matrix elements. In our experiments,
we extract the top 5,000 documents for approximation.

To point out the difference between Eq. 1 and other similar
functions in [33, 36, 22], our framework is more general as it
deals with a query-dependent function f(di, q), while other
methods are mainly used in query-independent settings, in-
cluding semi-supervised classification and clustering.

3.3 Connection with Other Methods
The parameter µα can be set from 0 to 1 to control the

balance between the initial ranking scores and the global
consistency over the graph. It is easy to show that if µα → 0
(µ → +∞), the regularization Eq. 1 puts almost all weight
on the second term, and the objective function boils down
to the initial base ranker baseline. Minimizing R(F, q, G)
will give us the ranking scores which best fit initial ranking
scores. When µα → 1 (µ → 0), the regularization Eq. 1
puts almost all weight on the first term, and this objective
function boils down to a variation of PageRank-based model.
Minimizing R(F, q, G) will give us the ranking scores which
best fit the global consistency over the graph.

4. LEARNING A LATENT SPACE GRAPH
With the development of the World Wide Web, documents

are not isolated textual content, while they are intercon-
nected via complex (explicit or implicit) link information.
The objective of this section is to simultaneously incorpo-
rate the content with link information (or entity relational
data) in a latent space graph.

In the following subsections, we first introduce the ba-
sic latent semantic indexing algorithm about how to learn
a latent feature, and then introduce the joint factorization
which combines the content with link information in a la-
tent space. Finally, we briefly describe how to calculate the
weight matrix W according to the feature.

4.1 Latent Semantic Analysis
As mentioned in the related work, the key idea of LSA [13]

is to map documents to vector space of reduced dimensional-
ity, the latent semantic space. Suppose we have a document-
term matrix C ∈ Rn×m, it is a sparse matrix whose rows
represent documents, and whose columns represent terms,
where m is the number of terms. Singular vector decompo-
sition (SVD) is performed on the matrix as follows:

C = UΣV T ,

where U and V are orthogonal matrices UT U = V T V = I
and the diagonal matrix Σ contains the singular values of C.
By thresholding all but the largest k singular values in Σ to
zero (= Σ̂), the LSA approximation of C can be obtained

by Ĉ = UΣ̂V T ≈ UΣV T = C. The matrix X = UΣ̂ (X ∈
Rn×k) defines a new representation, with each row being the
k-dimensional feature vector of a document.

This can be reformulated as an optimization problem which
aims to approximate matrix C by XV T ,

min
X,V

‖ C −XV T ‖2F +γ ‖ V ‖2F , (5)

where V is an m × k matrix, ‖ . ‖F is the Frobenius norm,
and γ is a small positive number. In the end, the i-th row
vector of X can be thought as the latent feature vector of
document di. Empirical studies [13] in document indexing
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Figure 2: A sample with multiple bipartite graphs.

shows that it works reasonably well when the dimension k
is chosen to be 100-200 dimensions.

4.2 Embedding Content and Relational Data
Let us take the papers as an example. Besides the con-

tent, a paper is written by the authors. The relationship be-
tween papers and authors can be represented by a document-
author bipartite graph, and the content of papers can be rep-
resented by a document-term bipartite graph. Fig. 2 shows
a sample with multiple bipartite graphs. Moreover, a paper
may be published in a conference/journal, and associated
with other papers by citations. Similarly we can combine
those relational data into the graph. For simplicity, we only
consider the content information with the authorship infor-
mation in this section. But this method can be easily ex-
tended to combine other relational data.

Now let us consider the combination of the content with
the authorship information showed in Fig. 2. Given the
document-author bipartite graph, it can be described by a
matrix A ∈ Rn×l, and it is also a sparse matrix whose rows
correspond to documents, and whose columns correspond to
authors, where l is the number of authors. For each row of
the matrix A, it means the document is authored by which
authors. To combine the content and authorship informa-
tion, it assumes they share the same latent space X which
can approximate the content as the latent space for the au-
thorship. Like the latent semantic indexing (LSI), we can
use XV T

A to approximate matrix A. Finally, we share the
idea of joint factorization [35] to exploit them into a unified
optimization problem,

J(X, VC , VA) = ‖ C −XV T
C ‖2F +γ ‖ VC ‖2F

+ λ
(
‖ A−XV T

A ‖2F +γ ‖ VA ‖2F
)

, (6)

where λ is the parameter for the combination, VC is an n×k
matrix, and VA is an l × k matrix.

The joint optimization illustrated above can be solved us-
ing standard Conjugate Gradient (CG) method. The gradi-
ent for the object function J are as follows,

∂J

∂VC
=

(
VCXT X − CT X

)
+ γVC ,

∂J

∂VA
= λ

(
VAXT X −AT X + γVC

)
,

∂J

∂X
=

(
XV T

C VC − CVC

)
+ λ

(
XV T

A VA −AVA

)
.

The new representation X is ensured to capture both the



content matrix C and the authorship matrix A. In this
paper, we set the parameter γ = 0.1 and λ = 0.5 based on
the empirical studies for the collection.

4.3 Build Latent Space Graph
After X is calculated, we can construct the adjacency

graph using K nearest neighbors (KNN). In this paper, we
chose a heat kernel to define the edge weight wij as follows,

wij = exp−‖xi−xj‖2/2σ2
, (7)

where σ is a parameter for the heat kernel. So a latent
space graph G is defined using the latent feature X, where
the nodes denote documents and the edges E are weighted
by W . After normalization, we can get the matrix S =

D− 1
2 WD− 1

2 . This process is executed offline, and then we
save the matrix S for our re-ranking model.

5. A CASE STUDY
To illustrate our proposed re-ranking framework, in this

paper we use statistic language model as the base ranker for
information retrieval, and specify the applications in litera-
ture retrieval and expert finding. In this section we intro-
duce the statistic language model and expert finding briefly,
then show the overall algorithm of our framework.

5.1 Statistic Language Model
Using language models for information retrieval has been

studied extensively in recent years [27, 30, 31]. To determine
the probability of a query given a document, we infer a doc-
ument model θd for each document in a collection. With
query q as input, retrieved documents are ranked based on
the probability that the document’s language model would
generate the terms of the query, p(q|θd). The ranking func-
tion f0(d, q) can be written as

f0(d, q) = p(q|θd) =
∏
t∈q

p(t|θd)n(t,q), (8)

where p(t|θd) is the maximum likelihood estimation of the
term t in a document d, and n(t, q) is the number of times
that term t occurs in query q. The likelihood of a query
q consisting of a number of terms t for a document d un-
der a language model with Jelinek-Mercer smoothing [31] is
p(t|θd) = 0.5p(t|d) + 0.5p(t). With the language model, we
calculate the initial ranking scores of the documents with
respect to a query.

5.2 Literature Retrieval and Expert Finding
Literature retrieval is a quite popular task in the academic

field, and there are some well-known search engines, such as
Google Scholar1, CiteSeer2, Libra3, etc. Based on the litera-
ture retrieval, we address a high-level information retrieval,
named as expert finding. The task of expert finding is to
come up with a ranked list of experts with relevant exper-
tise in a given query topic. For instance, given a query“data
mining”, it aims to find experts who have expertise in the
research field “data mining”, and return “Jiawei Han, etc.”
as the experts. This task is performed in a real world aca-
demic field based on DBLP bibliography [1], which makes it
possible to recommend experts in the academic world.
1http://scholar.google.com/
2http://citeseer.ist.psu.edu/
3http://libra.msra.cn/

In scientific research, the publications of a researcher could
be viewed as representative of his expertise [14]. This makes
the assumption that authors of a paper have expertise in the
topics of their papers. Although many instances exist for
which well recognized researchers have published only a few
manuscripts, influential researchers generally publish many
manuscripts in their field. Intuitively, their expertise could
thus be deduced based on the overall aggregation of their
publications, which is formulated as follows:

P (ca, q) =
∑

d∈Dca

1

nd
f(d, q), (9)

where d ∈ Dca means the paper d is written by the expert
candidate ca, and nd is the number of authors in the pa-
per d. Therefore, the expert finding problem basically relies
on retrieving the relevant papers. We utilize the re-ranking
model to refine the ranking scores of papers, and then ag-
gregate the refined scores to re-rank the experts.

Algorithm 1 Graph-based Re-ranking Algorithm

Offline: Learning the latent space graph

Input :

{
C ∈ Rn×m : content matrix
A ∈ Rn×l : authorship matrix

Perform:

1. Learn the latent feature X
X ← J(X, VC , VA);

2. Construct the adjacency graph W and normalize to S

wij = exp−‖xi−xj‖2/2σ2
.

Output: Return the latent space graph S.

Online: Expert finding application
Input: Given a query q,
Perform:

1. Calculate the initial ranking scores F 0 based on the
language model
f0(d, q) =

∏
t∈q p(t|θd)n(t,q);

2. Extract the top-ranked documents as a subset D̂, the

corresponding ranking scores F̂ 0 and the subgraph Ŝ;

3. Re-rank with the subgraph to approximate

F̂ ∗ = (I − µαŜ)−1F̂ 0;

4. Aggregate the expertise P (ca, q) for authors.

Output: Return the ranked experts {ca1, ca2, ..., cak}

5.3 The Overall Algorithm
By unifying the graph-based re-ranking model and the

latent space graph in Section 3 and 4, we summarize the
proposed algorithm in Algorithm 1. In the algorithm, note
that we first perform preprocessing (including doing tok-
enization, stopping and stemming) in a collection to get the
content matrix C and authorship matrix A. After that, it
can be divided into an online part with an offline part. In
the offline algorithm, we learn the latent space X, and build
the graph S. In the online algorithm, we calculate the initial
ranking scores using the language model, perform re-ranking



model, and aggregate the expertise for authors.
We have implemented a research prototype search en-

gine, named as ExpertFinding4, to test our approach. The
Lucene.Net5 package is used for the implementation the sys-
tem. To implement the re-ranking algorithm, we employ a
sparse matrix package, i.e., CSparse [12], to solve the sparse
matrix inversion efficiently. To deploy the efficient imple-
mentations of our scheme, all of the other algorithms used
in the study are programmed in the C# language. For these
experiments, the system indexes the collection and does to-
kenization, stopping and stemming in the usual way. We
have implemented both standard tf.idf weighting as well the
language modeling approach. The testing hardware environ-
ment is on a Windows workstation with 3.0GHz CPU and
1GB physical memory.

6. EXPERIMENTAL SETUP
In the following experiments we compare our proposed

framework with other methods on the application of expert
finding through an empirical evaluation. In this section we
define the experimental setup, while the evaluation results
are presented in Section 7.

We have defined the following task: given a query and a
set of expert candidates, the system has to retrieve a list of
experts who have expertise in the given area. In our evalu-
ation we set this up as a ranking problem, i.e., the system
retrieves a list of experts where the experts are ranked by the
scores. In the rest of this section, we introduce the DBLP
collection, the assessments and evaluation metrics.

6.1 DBLP Collection
As of November 2007, DBLP XML records contain over

955,000 articles related to Computer Science, originally pub-
lished in conferences, journals, books etc., adding up to
414.5MB. Although DBLP is a good starting point for ob-
taining expert candidates and publications, one limitation is
that each DBLP record provides the paper title without the
abstract and index terms. Generally, the abstract and index
terms are useful to represent the paper for estimating the
probability of a query given the paper. As it is very hard to
obtain the whole metadata (the abstracts and index terms
of publications) for all the DBLP records, thus the Google
Scholar is used for data supplement: we use the title as the
query to search in Google Scholar and select the top 10 re-
turned records which are most relevant to the query title;
next, these records combined with the title are viewed as
the new representation of the publication d. The metadata
(HTML pages) crawled from Google Scholar is up to 20GB
for all DBLP records. This process is done by a crawler and
a parser automatically.

In this paper, we create our testing data set (15-CONF)
from a subset of the DBLP records. We first extract all the
papers published at fifteen different conferences, including
KDD, SIGIR, WWW, CIKM, ICML, NIPS, IJCAI, AAAI,
COLT, SIGMOD, PODS, VLDB, ICDE, CVPR, and ICCV.
For each paper, we utilize the new representation (described
above) of the paper d to construct the paper-term matrix
C as the collection, and extract all its authors to construct
the paper-author matrix A. Note that the matrix C is ob-
tained using standard tf.idf weighting after doing tokeniza-

4http://www.expertfinding.net/
5http://incubator.apache.org/lucene.net/

Table 1: Statistics of the 15-CONF collection

Property #of entities

paper 31437
author 30901
term 16938

Table 2: Benchmark dataset of 16 queries

Query #Expert
boosting 47
information retrieval 17
information extraction 20
intelligent agents 27
machine learning 42
ontology alignment 33
planning 30
privacy preservation 18
reinforcement learning 16
semantic web 44
sensor RFID data management 13
skyline 12
stream 16
support vector machine 22
semi-supervised learning 21
kernel method 22

tion, stopping and stemming in the usual way. The total
number of papers after this process is 31437, the number of
authors is 30901, and the number of terms is 16938. The
statistics of the collection are shown in Table 1.

6.2 Assessments
It is difficult to evaluate the quality of query/expert rele-

vance rankings due to the scarcity of data that can be exam-
ined publicly. The ground truth is manually created through
the method of pooled relevance judgments together with
human judgments. For each query, the top authors from
the computer science bibliography search engines (such as
Google Scholar, CiteSeer, Libra, Rexa6, and ArnetMiner7)
and the committees of the top conferences in the topic were
taken to construct the pool. Some researchers were then
asked to assess each of the recommended candidates in con-
text of the query. To help them in their task, those re-
searchers were presented with publications and a descrip-
tion relating to each author. They could access and find
additional content directly on a search engine when needed.

Such a benchmark dataset with expert lists (for expert
finding) can be found in [2]. The data set contains 7 query
topics and 7 expert lists. The assessments were carried out
mainly in terms of how many publications he/she has pub-
lished, how many publications are related to the given query,
how many top conference papers he/she has published, and
what distinguished awards he/she has been awarded. Four
grade scores (3, 2, 1, and 0) were assigned respectively repre-
senting top expert, expert, marginal expert, and not expert.

6http://rexa.info/
7http://www.arnetminer.org/



Finally, the judgment scores (at levels 3 and 2) were av-
eraged to construct the final ground truth. We extended
this data set to contain 16 query topics and 16 expert lists.
Table 2 shows the details of the dataset.

6.3 Evaluation Metrics
For the evaluation of the task, we adopted three metrics,

which capture the performance at different aspects:

Precision at rank n (P@n) Precision at rank n measures
the relevance of the top n results of the retrieved list
with respect to a given query topic. We report the
precision P@5, P@10, P@20.

P@n =
#relevant candidates in top n results

n

Mean Average Precision (MAP) For a single query, av-
erage precision (AP) is defined as the average of the
P@n values for all relevant documents.

AP =

∑N
n=1(P@n ∗ rel(n))

R

where n is the rank, N the number retrieved, and
rel(n) a binary function indicating the relevance of a
given rank. MAP is the mean value of the average
precisions computed for several queries.

Bpref Bpref [7] is the score function of the number of non-
relevant candidates.

bpref =
1

R

N∑
r=1

(1− #n ranked higher than r

R
)

where r is a relevant candidate and n is a member of
the first R candidates judged non-relevant as retrieved
by the system.

7. EVALUATION RESULTS
The presentation of the evaluation results is organized in

the following three subsections. First the experiments are
performed to compare the proposed method with two other
methods in Section 7.1, and our method achieves the best
results. Then we examine the performance of the proposed
algorithm with different parameter µα in Section 7.2, which
shows the robustness of the regularization framework. Fi-
nally, we investigate the effect of the graph construction by
varying the dimensionality (kd) and the number of nearest
neighbors (knn) in Section 7.3, which shows the effectiveness
of the latent feature.

7.1 Expert Finding Analysis
We consider the question whether our proposed method

can boost the performance using the regularization frame-
work on expert finding. We compare the expert finding
task using our graph-based re-ranking model (GBRM ) with
two other models: one is the baseline using statistical lan-
guage model, which is described in Section 5; another is a
PageRank-style re-ranking model (PRRM ) by linear com-
bination of the global PageRank-style score and the initial
ranking score [32]. We chose to compare with the PRRM
method to see whether the linear combination of the two
parts can effectively improve the performance.

Table 3: Experimental results of the baseline,
PRRM and our GBRM methods (%). Best scores
are in boldface

P@5 P@10 P@20 MAP bpref

Baseline 71.25 68.12 55.62 43.72 48.61
PRRM 73.75 65.63 51.56 39.94 44.85
GBRM 80.00 73.13 56.87 45.83 50.70

Table 3 lists the evaluation results of three different meth-
ods on the test collection. We are able to see that our pro-
posed method outperforms both the baseline and PRRM
methods in all the metrics from P@5 to bpref, especially
the very top precision: for the precision P@5, our GBRM
achieves 80%, which is about 9% higher than the baseline
and 6% higher than the PRRM. For the PRRM method,
it beats the baseline on the very top precision (P@5), but
underperforms the baseline on other metrics. In addition,
we notice that the performance of the PRRM method is
degraded when more weight is put on the PageRank-style
scores (currently the weight of PageRank-style scores is 0.1,
while that of the initial ranking scores is 0.9). From this
observation, the method to combine two parts linearly may
not improve the performance since both parts are used in-
dividually. However, the improvement made in our unified
regularization framework is promising.

To get an insight into the details of the results, we com-
pare with the experimental results of the three methods
on each query. Fig. 3 shows the detailed results of these
methods on 16 queries. From the detailed experimental re-
sults, we can see that our GBRM method outperforms the
baseline and PRRM method in most of the cases. On the
other hand, there are few cases that our method does not
make an improvement when the performance of the baseline
is almost very well, for example, the query “reinforcement
learning” and “support vector machine”. We also found that
the performance (MAP) in some queries, for instance, the
query “ontology alignment” and “semantic web”, is not good
enough. This is because most of the data (papers/authors)
corresponding to those queries are uncovered in the collec-
tion. From the figure, we can observe the improvement of
our method is more consistent when compared to the PRRM
method, which may get degradation severely (as shown in
the query “semi-supervised learning”) in some cases. As a
result, our method achieved the best results.

7.2 Effect of Parameter µα

In this subsection, the effect of parameter µα is studied
and evaluated. As mentioned in Section 3.2, the parameter
µα is used to control the balance between the global consis-
tency and the initial ranking scores in the unified regulariza-
tion framework, and it ranges from 0 to 1. When µα → 0,
the regularization framework boils down to the initial base-
line. If µα → 1, the regularization framework discards the
initial ranking scores, and only takes into account the global
consistency on the graph according to Eq. 1.

To examine the robustness of the proposed regularization
framework, we evaluate the performance of our proposed
method with ten different values (from 0.1 to 0.99). Fig. 4 il-
lustrates the experimental results for different parameter µα.
In this figure, the solid curve denotes our GBRM method,
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Figure 3: Experimental results of three methods on each query.

Table 4: Experimental results with different dimen-
sionality (%). Best scores are in boldface

P@5 P@10 P@20 MAP bpref

TFIDF 77.50 70.63 57.50 44.70 49.52
kd = 20 72.50 71.88 58.13 45.36 50.44
kd = 50 77.50 71.88 57.50 45.77 50.86
kd = 100 80.00 73.13 56.88 45.84 50.70

and the dashed line denotes the baseline. We can see that
when incorporating the global consistency in the framework
(µα > 0), the performance is improved compared to the
baseline, especially in the very top precision (P@5). With
the increase of µα, the performance becomes better until it
puts too weight on the term of global consistency (µα → 1).
As shown in Fig. 4, when the parameter µα is equal to 0.99,
the performance of our GBRM method becomes worse than
the initial baseline due to the overweighted global consis-
tency. This observation matches the theoretical analysis of
the proposed regularization framework, which leads us to
believe that it is useful to incorporate global consistency
over the graph. Moreover, the regularization framework is
relatively robust and may achieve the best results when the
parameter µα is set to be 0.5-0.7. The parameter µα used
in Section 7.1 is set to be 0.7.

Table 5: Experimental results with different number
of nearest neighbors (%)

P@5 P@10 P@20 MAP bpref Time

knn = 5 78.75 71.88 56.88 45.03 49.85 0.98s
knn = 10 80.00 73.13 56.88 45.84 50.70 2.11s
knn = 20 80.00 71.88 57.19 45.80 50.60 5.53s
knn = 30 78.75 71.88 56.88 45.88 50.65 9.06s
knn = 40 78.75 71.88 56.56 45.33 50.13 13.21s

7.3 Effect of Graph Construction
In the previous subsections, we have shown the graph-

based re-ranking model can improve the performance over
the initial baseline. We now consider the graph construction
with different settings. The objective is to investigate the
effect of graph construction. We perform the experiments
on the latent space graph with different settings for graph
construction: 1) different dimensionality (kd) of the latent
feature, 2) different number of nearest neighbors (knn).

We utilize the joint optimization (Eq. 6) to learn a low-
dimensional feature, then build the graph using the new fea-
ture as shown in Section 4. In Table 4, we show the per-
formance for different dimensionality kd of the feature xi,
which is used to calculate the weight wij . It occurs that
the overall performances (MAP and bpref) become higher
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Figure 4: The effect of varying the parameter µα.

for greater kd. We believe this is because the higher di-
mensional space can better capture the similarities in the
original feature space. In the table, the first row TFIDF
is performed on the original tf.idf feature. In contrast, the
latent feature with 50 dimensions achieves promising results
than the original tf.idf feature, which shows the effectiveness
of the latent feature.

In Table 5, we show the performance for different set-
tings of knn, which is used to construct the adjacent matrix
(graph). The last column in Table 5 denotes the average pro-
cessing time for retrieving the top 1,000 experts in response
to each query. The processing time increases (nearly)linearly
with the increase of knn. This is because larger knn makes
the graph denser, which will result in higher computational
complexity in solving the Eq. 4. Comparing to the perfor-
mance, we observe that it tends to degrade a little with
increasing knn. In spite of this, all of those results outper-
form the baseline. In other experiments, we set kd = 100
and knn = 10 which give the best results.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have described a novel and general frame-

work which is used to model the re-ranking algorithm, by
regularizing the smoothness of ranking scores over the graph,
along with a regularizer on the initial ranking scores. The
key to refining the results is the global consistency over the
graph, which leverages the graph-based model for the query-
dependent ranking problem. Empirical studies on the appli-
cation of expert finding show the improvement in our pro-
posed approach is promising. For future work, we plan to
build larger query set for evaluation and pursue other ap-
plications of the proposed framework. In addition, we may
extend our framework to consider the diversity of the re-

trieved results.
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