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Abstract. We present a unifying theory of the Maxi-Min Margin Machine (M4)
that subsumes the Support Vector Machine (SVM), the Minimax Probability Ma-
chine (MPM), and the Linear Discriminant Analysis (LDA). As a unified approach,
M4 combines some merits from these three models. While LDA and MPM focus
on building the decision plane using global information and SVM focuses on con-
structing the decision plane in a local manner, M4 incorporates these two seemingly
different yet complementary characteristics in an integrative framework that achieves
good classification accuracy. We give some historical perspectives on the three mod-
els leading up to the development of M4. We then outline the M4 framework and
perform investigations on various aspects including the mathematical definition, the
geometrical interpretation, the time complexity, and its relationship with other ex-
isting models.

Key words: Classification, Local Learning, Global Learning, Hybrid Learn-
ing, M4, Unified Framework.

1 Introduction

When constructing a classifier, there is a dichotomy in choosing whether to use
local vs. global characteristics of the input data. The framework of using global
characteristics of the data, which we refer to as global learning, enjoys a long
and distinguished history. When studying real-world phenomena, scientists try
to discover the fundamental laws or underlying mathematics that govern these
complex phenomena. Furthermore, in practice, due to incomplete information,
these phenomena are usually described by using probabilistic or statistical
models on sampled data. A common methodology found in these models is to
fit a density on the observed data. With the learned density, people can easily
perform prediction, inference, and marginalization tasks.

One type of global learning is generative learning. By assuming a spe-
cific model on the observed data, e.g., a Gaussian distribution or a mixture



of Gaussian, the phenomena can therefore be described or re-generated. Fig-
ure 1(a) illustrates such an example. In this figure, two classes of data are
plotted as ∗’s for the first class and ◦’s for the other class. The data can thus
be modelled as two different mixtures of Gaussian distributions. By knowing
only the parameters of these distributions, one can then summarize the phe-
nomena. Furthermore, as illustrated in Figure 1(b), one can clearly employ
learned densities to distinguish one class of data from the other class (or sim-
ply know how to separate these two classes). This is the well-known Bayes
optimal decision problem [1, 2].
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Fig. 1. An illustration of distribution-based classification (also known as the Bayes
optimal decision theory). Two Gaussian mixtures are engaged to model the distri-
bution of the two classes of data respectively. The distribution can then be used to
construct the decision plane.

One of the main difficulties found in global learning methodologies is the
model selection problem. More precisely one still needs to select a suitable
and appropriate model and its parameters in order to represent the observed
data. This is still an open and on-going research topic. Some researchers have
argued that it is difficult if not impossible to obtain a general and accurate
global learning. Hence, local learning has recently attracted much interests.

Local learning [3, 4, 5] focuses on capturing only useful local information
from the observed data. Furthermore, recent research progress and empirical
studies demonstrate that the local learning paradigm is superior to global
learning in many classification domains.

Local learning is more task-oriented since it omits an intermediate density
modelling step in classification tasks. It does not aim to estimate a density
from data as in global learning. In fact, it even does not intend to build an ac-
curate model to fit the observed data globally. Therefore, local learning is more
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Fig. 2. (a) An illustration of local learning (also known as the Gabriel Graph clas-
sification). The decision boundary is just determined by some local points indicated
as filled points. (b) An illustration on that local learning cannot grasp data trend.

direct which results in more accurate and efficient performance. For example,
local learning used in learning classifiers from data, tries to employ a subset
of input points around the separating hyperplane, while global learning tries
to describe the overall phenomena utilizing all input points. Figure 2(a) illus-
trates the local learning. In this figure, the decision boundary is constructed
only based on those filled points, while other points make no contributions
to the classification plane (the decision planes are given based on the Gabriel
Graph method [6, 7, 8], one of the local learning methods).

Although local learning appears to contain promising performance, it po-
sitions itself at the opposite extreme end to global learning. Employing only
local information may lose the overall view of data. Local learning does not
grasp the structure of the data, which may prove to be critical for guaran-
teeing better performance. This can be seen in the example as illustrated
in Figure 2(b). In this figure, the decision boundary (also constructed by the
Gabriel Graph classification) is still determined by some local points indicated
as filled points. Clearly, this boundary is myopic in nature and does not take
into account the overall structure of the data. More specifically, the class as-
sociated with ◦’s is obviously more likely to scatter than the class associated
with �’s in the axis indicated as dashed line. Therefore, instead of simply
locating itself in the middle of the filled points, a more promising decision
boundary should lie closer to the filled �’s than the filled ◦’s. A similar exam-
ple can also be seen in Section 2 on a more principled local learning model,
i.e., the current state-of-art-classifier, Support Vector Machines (SVM) [9].
Targeting at unifying this dichotomy, a hybrid learning is introduced in this
chapter.

In summary, there are complementary advantages for both local learning
and global learning. Global learning summarizes the data and provides the



practitioners with knowledge on the structure of data, since with the pre-
cise modeling of phenomena, the observations can be accurately regenerated
and therefore thoroughly studied or analyzed. However, this also presents
difficulties in how to choose a valid model to describe all the information. In
comparison, local learning directly employs part of information critical for the
specifically oriented tasks and does not assume a model for the data. Although
demonstrated to be superior to global learning in various machine learning
tasks, it misses some critical global information. The question here is thus,
can reliable global information, independent of specific model assumptions, be
combined into local learning from data? This question clearly motivates the
development of hybrid learning for which Maxi-Min Margin Machine (M4) is
proposed.
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Fig. 3. The relationship between M4 and other related models.

As will be shown later in this chapter, M4 has built various connections
with both global learning and local learning models. As an overview, Fig-
ure 3 briefly illustrates the relationship between M4 and other models. When
it is globalized, M4 can change into a global learning model, the Minimum
Probability Machine (MPM) model [10]. When some assumptions are made
on the covariance matrices of data, it becomes another global learning model,
the Linear Discriminant Analysis (LDA) [11]. The Support Vector Machine,
one of the local learning models, is also its special case when certain condi-
tions are satisfied. Moreover, when compared with a recently-proposed gen-
eral global learning model, the Minimum Error Minimax Probability Machine
(MEMPM) [12], M4 can derive a very similar special case. Furthermore, a



novel regression model, the Local Support Vector Regression (LSVR) [13] can
also be connected with M4.

The rest of this chapter is organized as follows. In the next section, we
review the background of both global learning and local learning. In particular,
we will provide some historical perspectives on three models, i.e., the Linear
Discriminant Analysis, the Minimax Probability Machine, and the Support
Vector Machine. In Section 3, we introduce M4 in details including its model
definition, the geometrical interpretation, and its links with other models.
Finally, we present remarks to conclude this chapter.

2 Background

In this section, we first review the background of global learning, then followed
by the local learning models with emphasis on the current state-of-the-art
classifier SVM. We then motivate the hybrid learning model, the Maxi-Min
Margin Machine.

2.1 Global Learning

Traditional global learning methods with specific assumptions, i.e., generative
learning, may not always coincide with data. Within the context of global
learning, researchers begin to investigate approaches with no distributional
assumptions. Following this trend, there are non-parametric methods, LDA,
and a recently-proposed competitive model MPM. We will review them one
by one.

In contrast with generative learning, non-parametric learning does not
assume any specific global models before learning. Therefore, no risk will
be taken on possible wrong assumptions on the data. Consequently, non-
parametric learning appears to set a more valid foundation than generative
learning models. One typical non-parametric learning model in the context of
classification is the so-called Parzen Window estimation [14].

The Parzen Window estimation also attempts to estimate a density for the
observed data. However it employs a different way from generative learning.
Parzen window first defines an n-dimensional cell hypercube region RN over
each observation. By defining a window function,

w(u) =

{
1 |uj | ≤ 1/2 j = 1, 2, . . . , n
0 otherwise

, (1)

the density is then estimated as

pN(z) =
1

N

N∑

i=1

1

hN
w(

z − zi

hN
) , (2)



where n is the data dimensionality, zi for 1 ≤ i ≤ N represents N input data
points, and hN is defined as the length of the edge of RN .

From the above, one can observe that Parzen Window puts a local density
over each observation. The final density is then the statistical result of aver-
aging all the local densities. In practice, the window function can actually be
general functions including the most commonly-used Gaussian function.

These non-parametric methods make no underlying assumptions on data
and appear to be more general in real cases. Using no parameters actually
means using many “parameters” so that each parameter would not dominate
other parameters (in the discussed models, the data points can be in fact
considered as the “parameters”). In this way, if one parameter fails to work,
it will not influence the whole system globally and statistically. However,
using many “parameters” also results in serious problems. One of the main
problems is that the density is overwhelmingly dependent on the training
samples. Therefore, to generate an accurate density, the number of samples
needs to be very large (much larger than would be required if we perform
the estimation by generative learning approaches). Furthermore the number
of data unfortunately increases exponentially with the dimension of data.
Hence, it is usually hard to apply non-parametric learning in tasks with high-
dimensional data. Another disadvantage caused is its severe requirement for
the storage, since all the samples need to be saved beforehand in order to
predict new data.

Instead of estimating an accurate distribution over data, an alternative
approach is using some robust global information. The Linear Discriminant
Analysis builds up a linear classifier by trying to minimize the intra-class dis-
tance while maximizing the inter-class distance. In this process, only up to the
second order moments which are more robust with respect to the distribution,
are adopted. Moreover, recent research has extended this linear classifier into
nonlinear classification by using kernelization techniques [15]. In addition, a
more recently-proposed model, the Minimax Probability Machine, goes fur-
ther in this direction. Rather than constructing the decision boundary by
estimating specific distributions, this approach exploits the worst-case distri-
bution, which is distribution-free and more robust. With no assumptions on
data, this model appears to be more valid in practice and is demonstrated
to be competitive with the Support Vector Machine. Furthermore, Huang et
al. [12] develop a superset of MPM, called Minimum Error Minimax Proba-
bility Machine, which achieves a worst-case distribution-free Bayes Optimal
Classifier.

However, the problems for these models are that the robust estimation,
e.g., the first and second order moments, may also be inaccurate. Considering
specific data points, namely the local characteristic, seems to be necessary in
this sense.



2.2 Local Learning

Local learning adopts a largely different way to construct classifiers. This
type of learning is task-oriented. In the context of classification, only the
final mapping function from the features z to the class variable c is crucial.
Therefore, describing global information from data or explicitly summarizing
a distribution, is an intermediate step. Hence the global learning scheme may
be deemed wasteful or imprecise especially when the global information cannot
be estimated accurately.

Alternatively, recent progress has suggested the local learning methodol-
ogy. The family of approaches directly pin-points the most critical quantities
for classification, while all other information less irrelevant to this purpose is
simply omitted. Compared to global learning, this scheme assumes no model
and also engages no explicit global information. Among this school of methods
are neural networks [16, 17, 18, 19, 20, 21], Gabriel Graph methods [6, 7, 8],
and large margin classifiers [22, 23, 24, 5] including Support Vector Machine, a
state-of-the-art classifier which achieves superior performance in various pat-
tern recognition tasks. In the following, we will focus on introducing SVM in
details.

The Support Vector Machine is established based on minimizing the ex-
pected classification risk defined as follows:

R(Θ) =

∫

z,c

p(z, c)l(z, c, Θ) , (3)

where Θ represents the chosen model and the associate parameters, which
are assumed to be the linear hyperplane in this chapter, and l(z, c, Θ) is the
loss function. Generally p(z, c) is unknown. Therefore, in practice, the above
expected risk is often approximated by the so-called empirical risk:

Remp(Θ) =
1

N

N∑

j=1

l(zj , cj , Θ) . (4)

The above loss function describes the extent on how close the estimated
class disagrees with the real class for the training data. Various metrics can
be used for defining this loss function, including the 0-1 loss and the quadratic
loss [25].

However, considering only the training data may lead to the over-fitting
problem. In SVM, one big step in dealing with the over-fitting problem has
been made, i.e., the margin between two classes should be pulled away in
order to reduce the over-fitting risk. Figure 4 illustrates the idea of SVM.
Two classes of data, depicted as circles and solid dots are presented in this
figure. Intuitively observed, there are many decision hyperplanes, which can
be adopted for separating these two classes of data. However, the one plotted
in this figure is selected as the favorable separating plane, because it contains
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Fig. 4. An illustration of the Support Vector Machine

the maximum margin between the two classes. Therefore, in the objective
function of SVM, a regularization term representing the margin shows up.
Moreover, as seen in this figure, only those filled points, called support vectors,
mainly determine the separating plane, while other points do not contribute
to the margin at all. In other word, only several local points are critical for the
classification purpose in the framework of SVM and thus should be extracted.

Actually, a more formal explanation and theoretical foundation can be
obtained from the Structure Risk Minimization criterion [26, 27]. Therein,
maximizing the margin between different classes of data is minimizing an
upper bound of the expected risk, i.e., the VC dimension bound [27]. However,
since the topic is out of the scope of this chapter, interested readers can refer
to [9, 27].

2.3 Hybrid Learning

Local learning including SVM has demonstrated its advantages, such as its
state-of-the-art performance (the lower generalization error), the optimal and
unique solution, and the mathematical tractability [27]. However, it does dis-
card many useful information from data, e.g., the structure information from
data. An illustrative example has been seen in Figure 2 in Section 1. In the cur-
rent state-of-the-art classifier, i.e., SVM, similar problems also occur. This can
be seen in Figure 5. In this figure, the purpose is to separate two catergories
of data x and y, and the classification boundary is intuitively observed to be
mainly determined by the dotted axis, i.e., the long axis of the y data (repre-
sented by �’s) or the short axis of the x data (represented by ◦’s). Moreover,
along this axis, the y data are more likely to scatter than the x data, since
y contains a relatively larger variance in this direction. Noting this “global”
fact, a good decision hyperplane seems reasonable to lie closer to the x side
(see the dash-dot line). However, SVM ignores this kind of “global” informa-
tion, i.e., the statistical trend of data occurrence: The derived SVM decision
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Fig. 5. A decision hyperplane with considerations of both local and global informa-
tion.

hyperplane (the solid line) lies unbiasedly right in the middle of two “local”
points (the support vectors). The above considerations directly motivate the
formulation of the Maxi-Min Margin Machine [28, 29].

3 Maxi-Min Margin Machine

In the following, we first present the scope and the notations. We then for
the purpose of clarity, divide M4 into separable and nonseparable categories,
and introduce the corresponding hard-margin M4 (linearly separable) and
soft-margin M4 (linearly non-separable) sequentially. Connections of the M4

model with other models including SVM, MPM, LDA, and MEMPM will be
provided in this section as well.

3.1 Scope and Notations

We only consider two-category classification tasks. Let a training data set con-
tain two classes of samples, represented by xi ∈ Rn and yj ∈ Rn respectively,
where i = 1, 2, . . . , Nx, j = 1, 2, . . . , Ny. The basic task here can be infor-
mally described as to find a suitable hyperplane f(z) = wT z + b separating
two classes of data as robustly as possible (w ∈ Rn\{0}, b ∈ R, and wT is the
transpose of w). Future data points z for which f(z) ≥ 0 are then classified
as the class x; otherwise, they are classified as the class y. Throughout this
chapter, unless we provide statements explicitly, bold typeface will indicate a
vector or matrix, while normal typeface will refer to a scale variable or the
component of the vectors.



3.2 Hard Margin Maxi-Min Margin Machine

Assuming the classification samples are separable, we first introduce the model
definition and the geometrical interpretation. We then transform the model
optimization problem into a sequential Second Order Cone Programming
(SOCP) problem and discuss the optimization method.

The formulation for M4 can be written as:

max
ρ,w 6=0,b

ρ s.t. (5)

(wTxi + b)√
wTΣxw

≥ ρ, i = 1, 2, . . . , Nx , (6)

−(wTyj + b)√
wTΣyw

≥ ρ, j = 1, 2, . . . , Ny , (7)

where Σx and Σy refer to the covariance matrices of the x and the y data,
respectively.1

This model tries to maximize the margin defined as the minimum Maha-
lanobis distance for all training samples,2 while simultaneously classifying all
the data correctly. Compared to SVM, M4 incorporates the data information
in a global way; namely, the covariance information of data or the statistical
trend of data occurrence is considered, while SVMs, including l1-SVM [30]
and l2-SVM [9, 5],3 simply discard this information or consider the same co-
variance for each class. Although the above decision plane is presented in a
linear form, it has been demonstrated that the standard kernelization trick
can be used to extend into the nonlinear decision boundary [12, 29]. Since
the focus of this chapter lies at the introduction of M4, we simply omit the
elaboration of the kernelization.

A geometrical interpretation of M4 can be seen in Figure 6. In this figure,
the x data are represented by the inner ellipsoid on the left side with its center
as x0, while the y data are represented by the inner ellipsoid on the right side
with its center as y0. It is observed that these two ellipsoids contain unequal
covariances or risks of data occurrence. However, SVM does not consider this
global information: Its decision hyperplane (the dotted line) locates unbias-
edly in the middle of two support vectors (filled points). In comparison, M4

defines the margin as a Maxi-Min Mahalanobis distance, which constructs a
decision plane (the solid line) with considerations of both the local and global
information: the M4 hyperplane corresponds to the tangent line of two dashed
ellipsoids centered at the support vectors (the local information) and shaped
by the corresponding covariances (the global information).

1 For simplicity, we assume Σx and Σy are always positive definite. In practice, this
can be satisfied by adding a small positive amount into their diagonal elements,
which is widely used.

2 This also motivates the name of our model.
3 lp-SVM means the “p-norm” distance-based SVM.



Fig. 6. A geometric interpretation of M4. The M4 hyperplane corresponds to the
tangent line (the solid line) of two small dashed ellipsoids centered at the support
vectors (the local information) and shaped by the corresponding covariances (the
global information). It is thus more reasonable than the decision boundary calculated
by SVM (the dotted line).

3.2.1 Optimization Method

According to [29, 12], the optimization problem for the M4 model can be cast
as a sequential conic programming problem, or more specifically, a sequential
SOCP problem. The strategy is based on the “Divide and Conquer” technique.
One may note that in the optimization problem of M4, if ρ is fixed to a
constant ρn, the problem is exactly changed to “conquer” the problem of
checking whether the constraints of (6) and (7) can be satisfied. Moreover, as
demonstrated by Theorem 1,4 this “checking” procedure can be stated as an
SOCP problem and can be solved in polynomial time. Thus the problem now
becomes how ρ is set, which we can use “divide” to handle: If the constraints
are satisfied, we can increase ρn accordingly; otherwise, we decrease ρn.

Theorem 1. The problem of checking whether there exist w and b satisfying
the following two sets of constraints (8) and (9) can be transformed as an
SOCP problem, which can be solved in polynomial time,

(wTxi + b) ≥ ρn
√

wTΣxw, i = 1, . . . , Nx , (8)

−(wTyj + b) ≥ ρn
√

wTΣyw, j = 1, . . . , Ny . (9)

4 Detailed proof can be seen in [12, 29].



Algorithm 3.2.1 lists the detailed step of the optimization procedure, which is
also illustrated in Figure 7.

Get x̄, ȳ, Σx, Σy ;

Initialize ε, ρ0, ρmax, where ρ0 is a feasible ρ, and ρmax is an
infeasible ρ with ρ0 ≤ ρmax ;

Repeat ρn = ρ0+ρmax
2 ;

Call the checking procedure to check whether ρn is
feasible;
If ρn is feasible

ρ0 = ρn
Else

ρmax = ρn
until |ρ0 − ρmax| ≤ ε;

Assign ρ = ρn ;

Algorithm 1: Optimization Algorithm of M4

In Algorithm 3.2.1, if a ρ satisfies the constraints of (6) and (7), we call
it a feasible ρ; otherwise, we call it an infeasible ρ. In practice, many SOCP

maxr0r
n

r

Is
n

r feasible?

no yes

Fig. 7. A graph illustration on the optimization of M4.

programs, e.g., Sedumi [31], provide schemes to directly handle the above
checking procedure.



3.3 Time Complexity

We now analyze the time complexity of M4. As indicated in [32], if the SOCP
is solved based on interior-point methods, it contains a worst-case complexity
of O(n3). If we denote the range of feasible ρ’s as L = ρmax − ρmin and
the required precision as ε, then the number of iterations for M4 is log(L/ε)
in the worst case. Adding the cost of forming the system matrix (constraint
matrix), which is O(Nn3) (N represents the number of training points), the
total complexity would be O(n3 log(L/ε)+Nn3) ≈ O(Nn3), which is relatively
large but can still be solved in polynomial time.5

3.4 Soft Margin Maxi-Min Margin Machine

By introducing slack variables, the M4 model can be extended to deal with
nonseparable cases. This nonseparable version is written as follows:

max
ρ,w 6=0,b,ξ

ρ− C
Nx+Ny∑

k=1

ξk s.t. (10)

(wTxi + b) ≥ ρ
√

wTΣxw − ξi , (11)

−(wTyj + b) ≥ ρ
√

wTΣyw − ξj+Nx
, (12)

ξk ≥ 0 ,

where i = 1, . . . , Nx, j = 1, . . . , Ny, and k = 1, . . . , Nx+Ny. C is the positive
penalty parameter and ξk is the slack variable, which can be considered as
the extent how the training point zk disobeys the ρ margin (zk = xk when

1 ≤ k ≤ Nx; zk = yk−Ny when Nx + 1 ≤ k ≤ Nx + Ny). Thus
∑Nx+Ny

k=1 ξk
can be conceptually regarded as the training error or the empirical error.
In other words, the above optimization achieves maximizing the minimum
margin while minimizing the total training error. The above optimization can
further be solved based on a linear search problem [33] combined with the
second order cone programming problem [29, 12].

3.5 A Unified Framework

In this section, connections between M4 and other models are established.
More specifically, SVM, MPM, and LDA are actually special cases of M4

when certain assumptions are made on the data. M4 therefore represents a
unified framework of both global models, e.g., LDA and MPM, and a local
model, i.e., SVM.

Corollary 1 M4 reduces to the Minimax Probability Machine, when it is
“globalized”.

5 Note that the system matrix needs to be formed only once.



This can be easily seen by expanding and adding the constraints of (6) to-
gether. One can immediately obtain the following:

wT
Nx∑

i=1

xi +Nxb ≥ Nxρ
√

wTΣxw ,

⇒ wTx + b ≥ ρ
√

wTΣxw , (13)

where x denotes the mean of the x training data.
Similarly, from (7) one can obtain:

−(wT

Ny∑

j=1

yj +Nyb) ≥ Nyρ
√

wTΣyw ,

⇒ −(wTy + b) ≥ ρ
√

wTΣyw , (14)

where y denotes the mean of the y training data.
Adding (13) and (14), one can obtain:

max
ρ,w 6=0

ρ s.t.

wT (x− y) ≥ ρ(
√

wTΣxw +
√

wTΣyw) . (15)

The above optimization is exactly the MPM optimization [10]. Note, how-
ever, that the above procedure is irreversible. This means the MPM is a special
case of M4. In MPM, since the decision is completely determined by the global
information, i.e., the mean and covariance matrices [10], the estimates of mean
and covariance matrices need to be reliable to assure an accurate performance.
However, it cannot always be the case in real-world tasks. On the other hand,
M4 solves this problem in a natural way, because the impact caused by inaccu-
rately estimated mean and covariance matrices can be neutralized by utilizing
the local information, namely by satisfying those constraints of (6) and (7)
for each local data point.

Corollary 2 M4 reduces to the Minimax Probability Machine, when Σx =
Σy = Σ = I.

Intuitively, as two covariance matrices are assumed to be equal, the Maha-
lanobis distance changes to the Euclidean distance as used in standard SVM.
The M4 model will naturally reduce to the SVM model (refer to [29, 12] for
a detailed proof). From the above, we can consider that two assumptions are
implicitly made by SVM: One is the assumption on data “orientation” or data
shape, i.e., Σx = Σy = Σ, and the other is the assumption on data “scattering
magnitude” or data compactness, i.e., Σ = I. However, these two assumptions
are inappropriate. We demonstrate this in Figure 8(a) and Figure 8(b). We
assume the orientation and the magnitude of each ellipsoid represent the data
shape and compactness, respectively, in these figures.



Figure 8(a) plots two types of data with the same data orientations but
different data scattering magnitudes. It is obvious that, by ignoring data scat-
tering, SVM is improper to locate itself unbiasedly in the middle of the sup-
port vectors (filled points), since x is more possible to scatter in the horizontal
axis. Instead, M4 is more reasonable (see the solid line in this figure). Further-
more, Figure 8(b) plots the case with the same data scattering magnitudes
but different data orientations. Similarly, SVM does not capture the orienta-
tion information. In comparison, M4 grasps this information and demonstrates
a more suitable decision plane: M4 represents the tangent line between two
small dashed ellipsoids centered at the support vectors (filled points). Note
that SVM and M4 do not need to generate the same support vectors. In Fig-
ure 8(b), M4 contains the above two filled points as support vectors, whereas
SVM has all the three filled points as support vectors.

(a) (b)

Fig. 8. An illustration on the connections between SVM, and M4. (a) demonstrates
SVM omits the data compactness information. (b) demonstrates SVM discards the
data orientation information.

Corollary 3 M4 reduces to the LDA model, when it is “globalized” and as-
sumes Σx = Σy = (Σ̂x+Σ̂y)/2, where Σ̂x and Σ̂y are estimates of covariance
matrices for the class x and y respectively.

If we change the denominators in (6) and (7) as

√
wT Σ̂xw + wT Σ̂yw, the

optimization can be changed as:



max
ρ,w 6=0,b

ρ s.t. (16)

(wTxi + b)√
wT Σ̂xw + wT Σ̂yw

≥ ρ , (17)

−(wTyj + b)√
wT Σ̂xw + wT Σ̂yw

≥ ρ , (18)

where i = 1, . . . , Nx and j = 1, . . . , Ny. If the above two sets of constraints
for x and y are “globalized” via a procedure similar to that in MPM, the
above optimization problem is easily verified to be the following optimization:

max
ρ,w 6=0,b

ρ s.t.

wT (x − y) ≥ ρ
√

wTΣxw + wTΣyw. (19)

Note that (19) can be changed as ρ ≤ |wT (x−y)|√
wTΣxw+wTΣyw

, which is exactly the

optimization of the LDA.

Corollary 4 When a “globalized” procedure is performed on the soft margin
version, M4 reduces to a large margin classifier as follows:

max
w 6=0,b

θt+ (1− θ)s s.t. (20)

wTx + b√
wTΣxw

≥ t , (21)

− wTy + b√
wTΣyw

≥ s . (22)

We can see that the above formula optimize a very similar form as the

MEMPM model except that (20) changes to minw 6=0,b θ
t2

1+t2 +(1−θ) s2

1+s2 [12].

In MEMPM, t2

1+t2 ( s2

1+s2 ) (denoted as α (β)) represents the worst-case accu-
racy for the classification of future x (y) data. Thus MEMPM maximizes the
weighted accuracy on the future data. In M4, s and t represent the correspond-
ing margin, which is defined as the distance from the hyperplane to the class
center. Therefore, it represents the weighted maximum margin machine in this

sense. Moreover, since the conversion function of g(u) = u2

1+u2 increases mono-
tonically with u, maximizing the above formulae contains a physical meaning
similar to the optimization of MEMPM. For the proof, please refer to [29, 12].

3.5.1 Relationship with Local Support Vector Regression

A recently proposed promising model, the Local Support Vector Regres-
sion [13], can also be linked with M4. In regression, the objective is to learn a



model from a given data set, {(x1, y1), . . . , (xN , yN )}, and then based on the
learned model to make accurate predictions of y for future values of x. The
LSVR optimization is formulated as follows:

min
w,b,ξi,ξ∗i

1

N

N∑

i=1

√
wTΣiw + C

N∑

i=1

(ξi + ξ∗i ), (23)

s.t. yi − (wTxi + b) ≤ ε
√

wTΣiw + ξi,

(wTxi + b)− yi ≤ ε
√

wTΣiw + ξ∗i , (24)

ξi ≥ 0, ξ∗i ≥ 0, i = 1, . . . , N,

where ξi and ξ∗i are the corresponding up-side and the down-side errors at
the i-th point, respectively. ε is a positive constant, which defines the mar-
gin width. Σi is the covariance matrix formed by the i-th data point and
those data points close to it. In the state-of-the-art regression model, namely,
the support vector regression [34, 35, 36, 27], the margin width ε is fixed.
As a comparison in LSVR, this width is adapted automatically and locally
with respect to the data volatility. More specifically, suppose yi = wTxi + b
and ȳi = wT x̄i + b. The variance around the i-th data point is written as
∆i = 1

2k+1

∑k
j=−k(yi+j − ȳi)2 = 1

2k+1

∑k
j=−k(wT (xi+j − x̄i))

2 = wTΣiw,
where 2k is the number of data points closest to the i-th data point. Therefore,
∆i = wTΣiw actually captures the volatility in the local region around the
i-th data point. LSVR can systematically and automatically vary the tube:
If the i-th data point lies in the area with a larger variance of noise, it will
contribute to a larger ε

√
wTΣiw or a larger local margin. This will result

in reducing the impact of the noise around the point; on the other hand, in
the case that the i-th data point is in the region with a smaller variance of
noise, the local margin (tube), ε

√
wTΣiw, will be smaller. Therefore, the

corresponding point would contribute more in the fitting process.
The LSVR model can be considered as an extension of M4 into the re-

gression task. Within the framework of classification, M4 considers different
data trends for different classes. Analogously, in the novel LSVR model, we
allow different data trends for different regions, which is more suitable for the
regression purpose.

4 Conclusion

We present a unifying theory of the Maxi-Min Margin Machine (M4) that com-
bines two schools of learning thoughts, i.e., local learning and global learning.
This hybrid model is shown to subsume both global learning models, i.e.,
the Linear Discriminant Analysis and the Minimax Probability Machine, and
a local learning model, the Support Vector Machine. Moreover, it can be



linked with a worst-case distribution-free Bayes optimal classifier, the Mini-
mum Error Minimax Probability Machine and a promising regression model,
the Local Support Vector Regression. Historical perspectives, the geometrical
interpretation, the detailed optimization algorithm, and various theoretical
connections are provided to introduce this novel and promising framework.
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