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Abstract

Although N-version programming has been employed in
some mission-critical applications, the reliability and fault
correlation issues remain a debatable topic in the research
community. In this paper, we perform a comprehensive
evaluation on our recent project data on N-version pro-
gramming and present statistical investigations on coinci-
dent failures and correlated faults. Furthermore, we com-
pare our project with NASA 4-University project to iden-
tify the “variants” and “invariants” with respect to failure
rate, fault density, coincident failures, related faults, and
reliability improvement for N-version programming. Our
experimental results support fault tolerance as an effective
software reliability engineering technique.

Keywords: N-version programming, fault correlation,
reliability, software fault tolerance, empirical study

1 Introduction

As one of the main techniques for software fault tol-
erance, N-version programming (NVP) aims at tolerating
residual software design faults by independently develop-
ing multiple program versions from a common specifica-
tion. Although it has been adopted in some mission-critical
applications, the effectiveness of this approach is still an
open question. The main issue is how to predict the final
reliability as well as how to estimate the fault correlation
between multiple versions. Theoretical as well as empirical
investigations have been conducted based on experimenta-
tion [4, 7, 8, 15, 16], modeling [3, 5, 6, 11, 18], and evalu-
ation [1, 12, 13, 17] for reliability and fault-correlation fea-
tures of N-version programming.

In our previous work, we conducted a real-world project
and engaged multiple programming teams to independently
develop program versions based on an industry-scale avion-

ics application. In this paper, we perform comprehensive
operational testing on our original versions and collect sta-
tistical data on coincident failures and faults. We also con-
duct comparison with NASA 4-University project [4] and
search for the “variant” as well as “invariant” features in
N-version programming between our project and NASA 4-
University project, two projects with the same application
but separated by 17 years. Both qualitative and quantita-
tive comparisons are engaged in development process, fault
analysis, average failure rate and reliability improvement of
N-version programming.

The terminology used in this paper for experimental de-
scriptions and comparisons is defined as the following. Co-
incident failures refer to the failures where two or more dif-
ferent software versions respond incorrectly (with respect to
the specification) on the same test case, no matter whether
they produce similar or different results. Related faults are
defined as the faults which affect two or more software ver-
sions, causing them to produce coincident failures on the
same test cases, although these related faults may not be
identical.

The remaining of this paper is organized as follows:
Section 2 describes the experimental background of previ-
ous studies on N-version programming, including NASA 4-
University project and our project. Qualitative comparisons
and quantitative comparisons between the two projects are
listed in Section 3 and Section 4, respectively. Section 5 dis-
cusses our main findings on the comparisons, and Section 6
concludes the paper.

2 Experimental Background

To investigate and evaluate the reliability and fault corre-
lation features of N-version programming, statistical failure
data are highly demanded from experiments or real-world
projects. To simulate real environments, the experimental
application should be as complicated as real-world projects
to represent actual software in practice. In such experi-
ments, the population of program versions should be large
enough to provide valid statistical analysis. Furthermore,
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the development process should be well-controlled, so that
the bug history can be recorded and real faults can be stud-
ied.

Up to now, a number of projects have been conducted to
investigate and evaluate the effectiveness of N-version pro-
gramming, including UCLA Six-Language project [9, 14],
NASA 4-University project [4, 17, 19], Knight and Leve-
son’s experiment [10], and Lyu-He study [3, 15]. Consid-
ering the population of programming versions and the com-
plexity of the application, NASA 4-University project was a
representative and well-controlled experiment for the eval-
uation of N-version programming.

Recently, we conducted a large-scale N-version pro-
gramming experiment which engaged the same application
as that in NASA 4-University project and followed well-
defined development and verification procedures [16]. Both
NASA 4-University project and our project chose the same
application of a critical avionics instrument, Redundant
Strapped-Down Inertial Measurement Unit (RSDIMU), to
conduct a multi-version software experiment. RSDIMU is
part of the navigation system in an aircraft or spacecraft,
where developers are required to estimate the vehicle ac-
celeration using eight redundant accelerometers (also called
“sensors”) mounted on the four triangular faces of a semi-
octahedron in the flight vehicle. As the system itself is
fault tolerant, it allows a calculation of the acceleration even
when some of the accelerometers fail. Figure 1 shows the
system data flow diagram of RSDIMU application.

Figure 1. RSDIMU System Data Flow Diagram

The experimental procedures of both NASA 4-
University project and our project are described in the fol-
lowing subsections.

2.1 NASA 4-University Project

In 1985, NASA Langley Research Center sponsored an
experiment to develop a set of high reliability aerospace
application programs to study multi-version software ap-
proaches, involving graduate student programmers from
four universities in 20 program teams [19]. Details of the
experimental procedure and development process can be
found in [4, 9, 19].

In this experiment, the development process was con-
trolled to maintain as much independence as possible be-
tween different programming teams. In addition, the final
twenty programs went through a separate three-phase test-
ing process, namely, a set of 75 test cases for acceptance
test, 1196 designed and random test cases for certification
test, and over 900,000 test cases for operational test.

The testing data collected in NASA 4-University project
have been widely investigated to explore the reliability fea-
tures of N-version programming [4, 11, 17].

2.2 Our Project Descriptions

In the Spring of 2002 we formed 34 independent pro-
gramming teams at the Chinese University of Hong Kong to
design, code, test, evaluate, and document the RSDIMU ap-
plication. Each team was composed of four senior-level un-
dergraduate Computer Science students for a twelve-week
project in a software engineering course. The project de-
tails and the software development procedure are portrayed
in [16]. The acceptance test set contains 1196 test cases,
including 800 functional test cases and 400 randomly-
generated test cases. Another random 100,000 test cases
have been conducted recently in an operational test for a fi-
nal evaluation of all the 34 program versions in our project.

3 Qualitative Comparison with NASA 4-
University Project

In NASA 4-University project [9, 19], the final 20 ver-
sions were written in Pascal, while developed and tested in
a UNIX environment on VAX hardware. As this project
has some similarities and differences with our experiment,
interesting observations can be made by comparing these
two projects, which are widely separated both temporally
and geographically, to identify possible “variants” as well
as “invariants” of design diversity.

The commonalities and differences of the two experi-
ments are shown in Table 1. The two experiments en-
gaged the same RSDIMU specification, with the difference
that NASA 4-University project employed the initial ver-
sion of the specification which inherited specification incor-
rectness and ambiguity, while we employed the latest ver-
sion of the specification and little specification faults were
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Table 1. Comparisons between the two projects
Features NASA 4-University project Our experiment
Commonality
1.same specification initial version (faults involved) mature version
2.similar development dura-
tion

10 weeks 12 weeks

3.similar development
process

training, design, coding, testing,
preliminary acceptance test

initial design, final design, initial
code, unit test, integration test, ac-
ceptance test

4.same testing process acceptance test, certification test,
operational test

unit test, integration test, accep-
tance test, operational test

5.same operational test envi-
ronment (i.e., determined by
the same generator)

1196 test cases for certification test 1200 test cases for acceptance test

Difference
1.Time (17 year apart) 1985 2002
2.Programming Team 2-person 4-person
3.Programmer experience graduate students undergraduate students
4.Programmer background U.S. Hong Kong
5.Language Pascal C

detected during the development. The development dura-
tion were similar: 10 weeks vs. 12 weeks. The develop-
ment process and the testing process are also similar. We
engaged 1200 test cases before accepting the program ver-
sions, which were then subjected to 100,000 cases for oper-
ational test. NASA 4-University project involved the same
1196 test cases in its certification test, and other 900,000
test cases as operational test. Note that all test cases were
generated by the same test case generator. The two exper-
iments, on the other hand, differed in time (which is 17
years apart), programming team (2-person vs. 4-person),
programmer experience and background, as well as the pro-
gramming language employed (Pascal vs. C).

3.1 Fault analysis in development phase

As the two N-version programming experiments exhibit
native commonalities and differences, it will be interesting
to see what remains unchanged in these two experiments
concerning software reliability and fault correlation. As
stated above, the original version of the RSDIMU specifi-
cation involved some faults which were fixed during NASA
4-University project development. We first consider the de-
sign and implementation faults detected during the NASA
certification test and our acceptance test. These two testing
phases employed the same set of test cases, and a compar-
ison between them should be reasonable. In our investi-
gation, we focus our discussion on the related faults, i.e.,
the faults which occurred in more than one version, and
triggered off coincident failures of different versions at the

same test case.

The classification of the related faults in our experiment
is listed in Table 2. There are totally 15 categories of related
faults. The distribution of the related faults is listed in Table
3. All the faults are design and implementation faults. Only
class F1 is at low severity level; others are at critical severity
level.

Comparing Table 2 with the related faults detected in
certification testing of the NASA project [19], we can see
that some common faults were generated during the devel-
opment of these two projects. They are F1(D4 in [19]),
F2.3(D1.3), F3.1(D3.7), F3.4(D3.1) and F5(D8). F1 faults
are related to the display module of the application. Dis-
play algorithm was clearly stated in the RSDIMU specifi-
cation, but it encountered related faults most frequently in
both projects. This may be due to the fact that the module
was comparatively simple and less critical in the whole ap-
plication, and programmers inclined to overlook it in both
development and testing phases. Fault F2.3 is related to a
calculation in the wrong frame of reference, which involved
only one version in both experiments. Fault F3.1 is a fault
involved in many program versions, causing fatal failures
due to initialization problems. Fault F3.4 is similar to fault
D3.1, and both were due to misunderstanding of the content
of the specification. Finally, the missing process of mask-
ing input from sensors to 12 bits (e.g., mod 4096) results in
fault F5, which involved four teams in our project and 11
teams in the NASA project.

For the related faults occurring in both projects, some
of them (F1, F2.3, F5) were due to misunderstanding of

Proceedings of the 16th IEEE International Symposium on Software Reliability Engineering (ISSRE 2005)

1071-9458/05 $20.00 © 2005 IEEE



Table 2. Related faults detected in our experiment
Faults Brief Description severity level
F1 Display error low

F1.1 improper initialization and assignment
F1.2 incorrect rounding at Display values
F1.3 DisplayMode assignment error

F2 Misalignment problem critical
F2.1 the misalignment should be in radians
F2.2 the misalignment should be in milliradians
F2.3 wrong frame of reference

F3 Sensor Failure Detection and Isolation problems critical
F3.1 fatal failures due to initialization problem
F3.2 wrongly set of the status of system
F3.3 update problem after failure detection
F3.4 test threshold for Edge Vector Test is miscalculated or misjudged
F3.5 wrong OFFRAW array order
F3.6 arithmetic and calculation error

F4 Acceleration estimation problem critical
F4.1 specific force recalculated problem after failure detection
F4.2 wrongly calculation with G (should multiply 0.3048)

F5 Input from sensor not properly masked to 12 bits (e.g., “mod 4096” missing) critical

Table 3. Distribution of related faults detected
Faults Versions Fault Span
F1

F1.1 P2,P4,P9 3
F1.2 P4,P8,P15,P17,P18 5
F1.3 P1,P2,P4,P5,P7,P8,P9,P15,P17,P18,P24,P27,P33 13

F2
F2.1 P3 1
F2.2 P1,P8,P15 3
F2.3 P15 1

F3
F3.1 P3,P4,P5,P7,P8,P22,P27 7
F3.2 P1,P8 2
F3.3 P1,P2 2
F3.4 P31,P32 2
F3.5 P12,P31 2
F3.6 P1,P5 2

F4
F4.1 P2,P18 2
F4.2 P4,P12,P15,P17 4

F5 P12,P17,P15,P33 4
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the specification or inadequate efforts spent on the difficult
part of the problem, and others (F3.1 and F3.4) were caused
by lack of knowledge in the application area or in the pro-
gramming language area, e.g., omission or wrong variable
initialization.

Some fault types occurred in the NASA project but did
not occur in our experiment, e.g., D5 (division by zero on
all failed input sensors), D6 (incorrect conversion factor)
and D7 (Votelinout procedure call placement fault and/or
error in using the returned values). Some of the reasons
are: 1) As mentioned above, the initial specification con-
tained incorrectness and inconsistency. Some design and
implementation faults (e.g., D7) may be caused by the am-
biguity or wrong statements in the specification. 2) Certain
exception faults, such as division by zero, did not occur in
our experiment. This is an interesting phenomenon, and the
possible reason is that nowadays students learned the prin-
ciple of avoiding exception faults as a common practice in
the programming language courses.

From the comparison of the two experiments, we can see
that both cause and effect of some related faults remain the
same. As the application can be decomposed into differ-
ent subdomains, related faults often occurred in most diffi-
cult parts. Furthermore, no matter which programming lan-
guage was used, the common problems with programming
remained the same, e.g., the initialization problem. Finally,
the most fault-prone part being the easiest part of the appli-
cation (i.e., Display module) confirms that a comprehensive
testing and certification procedure towards the easiest mod-
ule is important.

3.2 Fault analysis in operational test

As all the 34 versions have already passed the acceptance
test, their failures revealed in the operational test deserve to
be scrutinized. To investigate the features of these failures,
especially those coincident failures occurring in more than
two versions, we identify all the operational faults in each
version and list them in Table 4. There are totally six faults
detected during operational test. We denote each individ-
ual fault by the version number in which the fault occurs,
followed by a sequence number. For example, version 22
contains one single fault 22.1, and version 34 is associated
with three different faults: 34.1, 34.2, and 34.3. Table 4
also shows the input condition where a corresponding fault
is manifested, together with a brief description of the fault.

Since these four versions have already passed the accep-
tance test, their faults were detected by some extreme situ-
ations. It is noticed that these faults are all sensor Failure
Detection and Isolation problems, i.e., F3 category in Table
2, including wrong setting of system status (F3.2) and arith-
metic and calculation error (F3.6). These faults were trig-
gered only under special combinations of individual sensor

failures due to input, noise and failure detection process.
In Table 4, versions 22, 29 and 32 exhibit single faults,

while version 34 contains multiple faults. There is no re-
lated fault or coincident failure among the former three ver-
sions. For version 34, one of its faults (34.2) is related to the
fault in version 22 (22.1), resulting in coincident failures on
25 test cases, as shown in Table 6. The other fault 34.3 is
related to the one in version 29 (29.1), leading to 32 coin-
cident failures. Although causing coincident failures, these
two fault pairs are quite different by nature.

Compared with other program versions, version 34
shows the lowest quality in terms of its program logic and
design organization. Particularly, hard code is found in the
source code, i.e., some intermediate result was manually as-
signed according to specific input data of a particular test
case, but not through the required computational functions.
Because of its lack of detailed report and poor quality, we
omitted this version (as well as a number of other versions)
when applying mutation testing in our previous study [16].
Since related faults and coincident failures exist in this ver-
sion, we took a pessimistic approach to include it (and all
other program versions) in the following analysis. It is
noted that the overall performance of N-version program-
ming derived from our data would be much better, if the
failures in version 34 are ignored (as no related faults or co-
incident failures would then be observed in other versions).

4 Quantitative Comparison with NASA 4-
University Project

In this comprehensive testing study, we generate 100,000
test cases randomly to simulate the operational environment
for RSDIMU application. The failures occurring in all these
34 versions are recorded according to their input and output
domains. Here we adopt the similar partition method de-
scribed in [4], i.e., all the normal operations are classified
as one of the following six system states exclusively:

Si,j = {i sensors previously failed and

j of the remaining sensors fail

| i = 0, 1, 2; j = 0, 1 }.
In addition, we introduce a new category Sothers to denote
all the exceptional operations which do not belong to any
of the above six system states. In the following analysis,
we partition the whole input and output domain into seven
categories for an investigation in software reliability mea-
surement.

4.1 Failure probability and fault density

Version failures which are detected in operational test
are listed in Table 5. Most of the 34 versions passed all
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Table 4. Fault description during operational test
Version Fault Input condition Fault description
22 22.1 At least one sensor fail during the test Incorrect calculation in sensor failure detection

process
29 29.1 No sensor fail before the test, and more than two

bad faces due to noise and failure detection, but
at least one sensor pass the failure detection algo-
rithm

Omission of setting all sensor failure output to
TRUE when the system status is set to FALSE

32 32.1 Three or four sensors fail in more than two faces,
due to input, noise, or failure detection algorithm

Incorrectly setting system status to FALSE when
more than five sensors fail

34
34.1 Sensor failure in the input Wrongly setting the second sensor as failure when

the first sensor in the same face fails
34.2 No sensor fail due to input and noise Incorrect calculation in Edge Vector Test is wrong
34.3 At most two faces fail due to input and noise, no.

of bad faces is greater than 2, and at least one more
sensor on the third face fail in failure detection al-
gorithm

Only counting the number of bad face prior to the
Edge Vector Test

Table 5. Failures collected in our project
Version ID S0,0 S0,1 S1,0 S1,1 S2,0 S2,1 Sothers Total Probability

22 0 210 0 246 0 133 29 618 0.00618
29 0 0 0 0 0 0 2760 2760 0.0276
32 0 0 0 0 0 0 2 2 0.00002
34 0 617 0 407 0 74 253 1351 0.0135

Total no. of failures 0 827 0 653 0 207 3044 4731 0.0473
Conditional average
failure probability 0 0.0024 0 0.0017 0 0.0011 0.0023 0.0014
No. of test cases 9928 10026 11558 11624 12660 5538 38666 100000

these 100,000 test cases, while only four of them exhibited
a number of failures, ranging from 2 to 2760. Compared
with the failure data of NASA 4-University project with
over 900,000 test cases described in [4], our data demon-
strate some similar as well as different reliability features
with respect to the same RSDIMU application.

In both projects, the programs are generally more reli-
able for the cases where no sensor failure occurs during op-
eration (i.e., States S0,0, S1,0, and S2,0) than in the situa-
tions where one false sensor occurs during operation (i.e.,
States S0,1, S1,1, and S2,1). This is because there are some
complicated computations under the latter situations. Par-
ticularly in our project data, no new failure was detected
in the former three states, while all the detected failures
were revealed under the latter three states and the excep-
tional states (State Sothers). Especially for version 29, all
the 2760 failures occurred under exceptional system states.

In our operational test, totally 4731 failures were col-
lected for 34 versions, representing an average 139 failures
per 100, 000 executions for each version. The failure proba-
bility is thus 0.00139 for a single version, with highest prob-
ability in state S0,1 (with 0.0825). This indicates on average

the programs inherit high reliability.

We further investigate the coincident failures between
version pairs. Here two or more versions are regarded as
correlated if they fail at the same test case, whether their
outputs are identical or not. Two correlated version pairs
were observed, as listed in Table 6.

It can be seen that for version pair 22 & 34, there were 25
coincident failures, thus the percentage of coincident fail-
ures versus total failures is 4% for version 22 and 1.85%
for version 34. For the other version pair 29 & 34, 32 co-
incident failures were observed with the percentage 1.16%
for version 29 and 2.37% for version 34. The low probabil-
ity of coincident failures versus total failures supports the
effectiveness of N-version programming, meaning a more
reliable system can be expected by this approach from out
project data. Moreover, as seen in Table 4, there are to-
tally six faults identified in four out of the 34 versions. As
noted in [16], the size of these versions varies from 1455
to 4512 source lines of code. We can calculate the average
fault density to be roughly one fault per 10,000 lines. This
figure is close to industry-standard for high quality software
systems.
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Table 6. Coincident failures between versions
Version pairs S0,0 S0,1 S1,0 S1,1 S2,0 S2,1 Sothers Total failures

22 & 34 0 15 0 6 0 4 0 25
29 & 34 0 0 0 0 0 0 32 32

Total no. of failures 0 827 0 653 0 207 3044 4731
Conditional frequency 0 0.0005 0 0.0003 0 0.0006 0.0003 0.0004

4.2 Reliability improvement by N-version pro-
gramming

To estimate the reliability improvement of N-version
programming compared with one single version, we first
adopt the simplest statistical method. For 2-version system,
there are C(34, 2) = 561 combinations out of 34 versions.
Considering there are 57 coincident failures observed, the
average failure is 57/561=0.102 over 100, 000 executions.
In a 3-version system there are C(34, 3) = 5984 combina-
tions, so that the average failure probability is 57/5984 =
0.0095 for 100,000 executions, which implies a 11 times
higher reliability than that of a 2-version system. Recall
the average failures in single version listed in Table 5 is
139; therefore, we obtain the reliability improvement from
3-version system versus one single version of about 15000
(139/0.0095) times. For more accurate comparisons, failure
bound models can be exercised to investigate the reliabil-
ity features for N-version programming compared with one
single version. Consequently, we fit the observed opera-
tional test failure data to Popov and Strigini failure bound
model [2, 17] and estimate the reliability improvement of
N-version programming. The estimated failure bounds for
version pair (22,34) and (29,34) are listed in Table 7.

Note that DP1, DP2 and DP3 stand for three different
testing profiles with various probabilities on different input
domains, i.e., Si,j [2]. For simplicity, we denote an insignif-
icant value of the lower bound for version pair (29,34) under
DP1 to be zero, which stands for independence between the
versions. Since only two version pairs show correlations,
we add these bounds up, and then divided by 34, to get the
average lower and upper bounds for all 2-version combina-
tions. The average lower bound and upper bounds for any
2-version system under different profiles are shown in Ta-
ble 7. Compared with the average failure probability for
single version 0.00139, the reliability improvement of 2-
version system versus one single version under DP3 (which
is the closest to the real distribution) is 90 to 2,000 times.
As the reliability of 3-version system is 11 times of that for
2-version system, the reliability improvement by 3-version
system is thus about 900 to 20,000 times over single version
system under DP3. Similar improvement can be obtained in
DP2, and DP1 achieves even higher improvement.

Moreover, we apply the same failure bound model on the
NASA data and get the average failure bounds, as shown in

Table 7. It is surprise to see that the failure bounds in the
NASA project are at least an order of magnitude larger than
those in our project. The experimental data in [4] indicate
that although there were only seven faults identified in 14
versions, they produced almost 100,000 failures. Particu-
larly, the single fault in version 7 caused more than half of
these failures. The fault was caused by incorrect initializa-
tion of a variable; however, it was not stated that why the
initialization problem was not detected by certification test.
We can see that the failure bounds would have been compa-
rable to our project results, had the fault in version 7 been
detected and removed in the NASA project.

4.3 Comparison with NASA 4-University Project

In NASA 4-University operational test involving over
900,000 test cases, only seven out of 20 versions passed all
the test cases. Moreover, a number of these versions, rang-
ing from 2 to 8, were observed to fail simultaneously on
the same test cases. In addition, seven related faults were
identified which caused the coincident failures. Two of the
NASA faults are also related to sensor failure detection and
isolation problem. Other faults, e.g., variable initialized
incorrectly and failure isolation algorithm implemented in
wrong coordinate system, were not observed in our data. In
our future research we will investigate failure coincidences
between these two projects.

We compare the failure data collected in operational test
in both our project and NASA 4-University project, and list
some of the reliability related features in Table 8. In our ex-
periment, only 2-version coincident failures occurred, and
no coincident failures among three or more versions were
detected. The number of failures and coincident failures in
the NASA project is much larger than that in our project,
meaning we have achieved a significantly higher reliability
figure in our project. Interestingly, the difference on fault
number and fault density is not significant for these two
projects. Note there is a number of coincident failures in
2- to 8-version combinations in the NASA project, yet the
reliability improvement for 3-version system still achieves
80 to 330 times over the single version. Our project ob-
tains similar improvement for 3-version system (i.e., 900 to
20,000 times) over the single version. Considering the aver-
age failure rate for a single version is already 50 times better
than that in the NASA project, it is understandable that the
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Table 7. Failure bounds for 2-version system
Version pair DP1 DP2 DP3

Lower bound Upper bound Lower bound Upper bound Lower bound Upper bound
(22,34) 0.000007 0.000130 0.000342 0.006721 0.000353 0.008396
(29,34) 0.000000 0.000001 0.000009 0.000131 0.000047 0.000654

Average in our project 1.25 · 10−8 2.34 · 10−7 6.26 · 10−7 0.000012 7.13 · 10−7 0.000016
Average in NASA project 2.32 · 10−7 0.000007 0.000023 0.000103 0.000072 0.000276
Average in NASA project
after omitting version 7 6.15 · 10−9 0.000006 2.16 · 10−7 0.000024 5.97 · 10−7 0.000028

Table 8. Quantitative comparison in operational test with NASA 4-University project
Item Our project NASA 4-University project
no. of test cases 100,000 920,746
failure probability 0.00139 0.06881
number of faults 6 7
fault density 1 per 10,000 lines 1.8 per 10,000 lines
2-version coincident failures 57 21173
3 or more version coincident failures 0 372
3-version improvement 900 to 20,000 times 80 to 330 times

improvement for 3-version system in our experiment is 30
to 60 times of that in the NASA project.

Overall, from the above comparison between NASA 4-
University project and our project, we can derive some vari-
ances as well as invariances on N-version programming.
The invariances are:

• Both experiments yielded reliable program versions
with low failure probability, i.e., 0.06881 and 0.00139
for single version respectively.

• The number of faults identified in the operational test
was of similar size, i.e., 7 versus 6 faults.

• The fault density was of similar size, i.e., 1.8 versus 1
fault detected per 10, 000 lines of code.

• Remarkable reliability improvement was obtained for
N-version programming in both experiments, i.e., hun-
dreds to tens of thousands of times enhancement.

• Related faults were observed in both projects, in both
difficult and easy parts of the application.

Nevertheless, there are some variances between the two
projects:

• Some faults identified in the NASA project did not ap-
pear in our project, e.g., divide by zero, wrong coordi-
nate system, and incorrect initialization problems.

• More failures were observed in the NASA project than
in our project, causing their average failure probability
to be an order of magnitude higher than ours.

• In the NASA project, more coincident failures are ob-
served and the failure correlation between versions
was more significant, especially among more than
three versions. In our project, the fault correlation was
reduced, especially if we omit version 34, which con-
tains hard code and poor logic.

• The overall reliability improvement derived from our
data is at least an order of magnitude larger than that
from the NASA project. This is true for both single
version system and N-version system.

The reasons behind the variance and invariance between
the two projects can be concluded from the following as-
pects: First, as the first RSDIMU experiment, NASA 4-
University project had to deal with some specification-
related faults. Its N-version programming development
process became a bit messy, as faults in the specification
would be identified and revised, then distributed to the de-
velopers for further evaluation. In our project, as we em-
ployed a stable version of the specification, such revisions
no longer occurred, and programmers could concentrate on
the problem solving process. Secondly, there is apparently
a significant progress on programming course and training
to computer science students over the past 20 yeas. Mod-
ern programmers are well disciplined to avoid common pro-
gramming fault such as divide by zero and uninitialization
problems. Lastly, based on the experience accumulated in
all the former projects and experiments on N-version pro-
gramming, we were able to follow a more well-controlled
protocol in our experimental procedure. We believe that the
N-version programming design and development process
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can keep further improvement as a vital software reliabil-
ity engineering technique.

5 Discussions

In this experimental evaluation, we perform comprehen-
sive testing and compare the two projects addressing N-
version programming. The empirical data show that both
similar and dissimilar faults were observed in these two
projects. We analyze the reasons behind their similarities
and differences. It is evident that the program versions in
our project are more reliable than those in the NASA project
in the terms of total number of failures and coincident fail-
ures revealed in operational test. Our data show the reliabil-
ity improvement by N-version programming is significantly
high, i.e., from 900 to 20,000, over single program ver-
sions already with very high reliability. The effectiveness
of N-version programming in mission-critical applications
is confirmed in our project data.

Moreover, when we examine the faults identified in our
project, especially for 22.1, 29.1 and 32.1, we can find that
these hard-to-detected faults are only hit by some rare input
domains. This means a new strategy should be employed
for such faults. As discussed in our previous study [2, 16],
code coverage is a good estimator for testing effectiveness.
Experimental data show that in our acceptance test, test
cases with higher code coverage tend to detect more faults,
especially for exceptional test cases. Nevertheless, in this
operational test, none of these faults can be detected by the
code coverage indicator.

6 Conclusion

In this paper, we perform an empirical investigation on
evaluating reliability features by a comprehensive compar-
ison between two projects. We conduct operational testing
involving 100,000 test cases on our 34 program versions
and analyze their failures and faults. The data collected in
this testing process are compared with those in NASA 4-
University project.

Similar as well as dissimilar faults are observed and ana-
lyzed, indicating common problems related to the same ap-
plication in these projects. Less failures are detected in our
operational test of our project, including a very small num-
ber of coincident failures. This result provides a supportive
evidence for N-version programming, and the improvement
is attributed to cleaner development protocol, stable speci-
fication, experience in N-version programming experiment,
and better programmer training.
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