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Abstract We study on stacked gener-
alization performance with software reliability
growth data by using a pseudoinverse learn-
ing algorithm for feedforward neural networks.
The experiments show that for noisy data, us-
ing stacked generalization can not improve the
network performance when overtrained networks
are engaged. With properly trained networks,
stacked generalization can improve the network
generalization performance.
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1 Introduction

Multilayer feedforward neural networks
have already been found to be successful for
various supervised learning tasks. Both theo-
retical and empirical studies have shown that
the networks are of powerful capabilities for pat-
tern classification and universal approximation
[1, 2, 3]. In the neural network applications, it is
a common belief that “neural networks can gen-
eralize”. That is, one of the important purpose
to train a neural network is for generalization.
When training samples set is small and deterio-
rates by random noise, the network is sometimes
overtrained and becomes fitted to the noise,
while overfitting the noisy data will degrade the
prediction accuracy of the network [4]. There
are several methods to avoid the overfitting and
improve network generalization, such as regu-
larization and model selection. Weight decay [5]
and early stopping [6, 7] are the most popular
methods of regularization. Regularization is the
procedure of allowing parameters bias towards

what are thought to be more plausible values,
which reduces the variance of the estimates at
the cost of introducing bias. In the article of
Geman et. al [8], a more rigorous approach on
the bias/variance trade-off has been discussed.
Combining networks [9, 10] can be categorized
into a special case of model selection, it selects
all models to form ensemble networks. Stacked
generalization [11] can be viewed as a nonlinear
combination of trained networks, it engages par-
titioning of the data set to find an overall system
with improved generalization performance. But
how it works on overtrained network and under
what situations it works well still needs to be
further investigated.

This paper mainly focuses on investigat-
ing stacked generalization performance with real
world software reliability growth modeling data.
In order to efficiently investigate the perfor-
mance of the stacked generalization, we adopt
a learning algorithm called pseudoinverse learn-
ing algorithm (PIL) for feedforward neural net-
works [12] in the experiments.

2 Stacked Generalization

The method of stacked generalization pro-
vides a way of combining trained networks to-
gether, engaging partitioning of the data set to
find an overall system with improved general-
ization performance. The idea is to train the
level-0 networks first and then examine their be-
havior when generalizing. This provides a new
training set for training the level-1 network.

The specific procedure for setting up the
stacked generalization system is as follows. Let
the complete set of available data be denoted by
D. We first leave aside a single data point from
D as a validation point, and treat the remain-
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der of D as a training set. All level-0 networks
are then trained by the training partition and
their outputs are measured using the validation
data point. This generates a single pattern for
a new data set which will be used to train the
level-1 network. The inputs of this pattern con-
sist of the outputs of all the level-0 networks,
and the target value is the corresponding target
value from the original full data set. This pro-
cess is repeated with a different choice for the
data point which is kept aside. After cycling
through the full data set of N points we have
N patterns in the new data set, which is now
used to train the level-1 network. Finally, all
of the level-0 networks are re-trained using the
full data set D. Predictions on new data can
now be made by presenting new input vector to
the level-0 networks and taking their outputs as
the inputs to the level-1 network, whose output
constitutes the predicted output.

Mathematical expression is as the follow-
ing for cross-validation partition training sam-
ples (CVPS) of stacked generalization. Given a
training data set D = {xi,oi}N

i=1, we randomly
partition the data into K almost-equal subset
Ds1, Ds2, · · · , DsK . Define Dsj and Ds(−j) =
D−Dsj to be the validation and training sets for
the jth fold of a K-fold cross-validation. These
are called level-0 models. Especially, if K = N ,
the validation set only has one sample, while
training set contains N − 1 samples. This is
called leave-one-out cross-validation.

Let zi denote the validation output of the
model Mj on xi. At the end of the entire cross-
validation process, the data set assembled from
the outputs of the models is

Dcv = {zi,oi}N
i=1. (1)

This is the level-1 data set used to train level-
1 model. To complete the training process, the
final level-0 models are derived using all the data
in D.

3 Experiments

3.1 Learning Algorithm

Stacked generalization requires to train a
lot of networks to get level-1 training sam-
ples, which is very computation-time consuming
when using back propagation algorithm to per-
form the required task. In order to reduce train-
ing time and investigate the stacked general-
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Figure 1: The trained network output for y =
sin(x) function mapping problem. “∗” stands
for training data output, while “o” stands for
test data.

ization properties, this paper use the pseudoin-
verse learning algorithm, which is a feedforward-
only algorithm. Learning errors are transferred
forward and the network architecture is estab-
lished. The previously trained weights in the
network are not changed. Hence, the learning
errors are minimized separately on each layer in-
stead of globally for the network as a whole. The
learning accuracy is determined by the num-
ber of layer. By adding layers to eliminate er-
rors, all examples of a training set can be per-
fectly learned. From a mathematical compu-
tational point of view, the algorithm is based
on generalized linear algebraic method and em-
ploys matrix inner products and pseudoinverse
operations. Unlike gradient descent algorithms,
the PIL is a feed-forward only, fully automated
algorithm, including no critical user-dependent
parameters such as learning rate or momentum
constant. For most problems, we only need one
step to reach the exact learning. More detail
discussion about the PIL algorithm is in refer-
ence [12].

3.2 Experiments

In the experiments, multilayer neural net-
work structure is adopted as individual net-
work. The stacked generalization is tested with
the function mapping examples first. Figure 1
shows sin(x) function mapping results, which is
reasonably good.

The experiments show that with smooth
function or piecewise smooth function, the
trained network generalization performance is
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Figure 2: The neural network model trained
with software reliability Sys1 data set (normal-
ized). Solid line is the original data, “∗” stands
for training data samples, while “o” stands for
test data samples. Because of overfitting the
training samples, the network generalization is
poor.

good with stacked generalization. The exam-
ples also illustrate that generalization can be
expected when the underlying function is suffi-
ciently smooth. In fact, for smoothing function,
without stacked generalization, trained network
performance on unseen data also good in the
experiments.

In order to investigate the properties of the
stacked generalization technique in noisy data
case, we adopt real world data sets in further
experiments. The data sets are Sys1 and Sys3
software failure data applied for software relia-
bility growth modeling in [13].

Sys1 data set contains 54 data pairs. In
the experiment, we partition the data into two
parts: training set and test set. The training
set consists of 37 samples which are randomly
drawn from the original data set. The remain-
ing 17 samples consist the test set. The data set
are normalized to the range of [0,1]. Normaliz-
ing is a standard procedure for data preprocess-
ing. In this problem, the network input is nor-
malized successive failure occurrence times, and
the network output is the accumulated failure
number. During training, each input sample xt

at time t is associated with the corresponding
output value ot at the same time t. This kind
of training is called generalization training [14].

Figure 2 shows the experimental result for
software reliability growth modeling trained by
using data set Sys1, which is one of the level-
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Figure 3: The stacked generalization output for
Sys1 data set (normalized). Solid line is the
original data, “o” stands for test data output
of level-0 neural network, while “+” stands for
test data output of level-1 network output. The
results are also poor.

0 network output. Figure 3 shows the stacked
generalization output for Sys1 data set. Because
of overfitting the training samples, the level-
0 output strays away. These samples are not
in level-1 training data either, and the level-1
network outputs are further away from the de-
sired values. The generalization ability is not
improved by stacked generalization because of
overfitting to the noise. Here we can see that
when overfitting to the noise occurs, stacked
generalization is not a suitable technique for
improving network generalization performance.
Poor generalization ability is not what we ex-
pected, so we should seek for the methods that
can avoid overfitting in noisy data cases.

As we have mentioned early in this pa-
per, PIL algorithm can eliminate learning errors
layer by layer. For the generalization problem,
we do not expect to realize the perfect learning.
Therefore, we may adopt the strategy like early
stopping to employ a three-layer neural network
structure.

Figure 4 shows the experimental result by
a three-layer structure trained with data set
Sys1, which is one of the level-0 network out-
put. To avoid overfitting, the training error is
not small, and the network outputs for training
samples are not completely fitting the target val-
ues. Compared with perfect leaning error which
is 2.3 × 10−9, the training error is now 0.0034.
This introduces the bias to the training samples,
and the output tend to be a smooth curve.
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Figure 4: The three-layer network trained with
software reliability Sys1 data set (normalized).
Solid line is the original data, and “∗” stands
for training data samples. Training accuracy is
not very high and overfitting is avoided.

Figure 5 shows the stacked generalization
output for Sys1 data set. In this case, with
stacked generalization, the total sum-of-square
test error is 0.0152. While without stacked gen-
eralization, the total sum-of-square test error is
0.0434. Therefore, generalization ability is im-
proved by stacked generalization.

Another data set is Sys3. In this data set,
altogether there are 278 data pairs. In the ex-
periment, we partition the data into a training
set and a test set. The number of training data
is about 2/3 of the total data number, consisting
of randomly drawn 186 samples from the orig-
inal data set. The remaining 92 samples form
the test set.

If we assign the training error as 10−7, after
two hidden layers are added, the final training
error reaches the order of 10−14. But with this
trained network, the test error (20.329) is large.
Figure 6 shows the results.

Now we still use leave-one-out CVPS to
train level-0 neural networks for stacked gener-
alization. At this time, the three-layer network
structure is adopted. For individual network,
the training error is about 0.0442, while the test
error is 0.0221. Figure 7 shows the individual
network training output, while Figure 8 is for
stacked generalization results.

From these real-world experimental results,
we can see that it is at the cost of introduc-
ing the bias (training error) to reduce the vari-
ance (generalization error) [8]. For most gen-
eralization problems the stacked generalization
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Figure 5: The stacked generalization output for
Sys1 data set (normalized). Solid line is the
original data, “o” stands for test data output of
level-0 neural network, while “+” stands for test
data output of level-1 network output. Gener-
alization is improved at the cost of introducing
training bias.

can be expected to reduce the generalization er-
ror rate. For example, in the Sys1 experiment,
the test error is 0.0434 without stacked gener-
alization, while the test error reduces to 0.0152
with stacked generalization. However, for some
particular data set such as Sys3, stacked gener-
alization dose not show significant improvement
(test error is reduced from 0.0221 to 0.0215), but
the computation time is dramatically increased.
The results are summarized in Table 1.

From experiments we have observed, for
noisy data, if the network is overtrained (overfit
to noise), the generalization will be poor. Using
stacked generalization can not improve the net-
work performance when overtrained networks
are engaged. The reason is that the overtrained
network is biased to particular training samples,
therefore, forecasting the values which are not
in the training set will be far away from the
expected values. Stacked generalization only
improves generalization performance with prop-
erly trained networks.

Stacked generalization is a computation-
intensive technique, when large-scale data set
is given, it is not effective at all. For a large-
scale data set, one of the well-known strategy
is divide-and-conquer method. That is, parti-
tion the data set into subsets, so as to reduce
the individual network size. We can also use
other methods such as ensemble networks [9] to
improve the network performance and then ap-
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Table 1: Training error and generalization error for software reliability growth model data set

Data Set Sys1 Sys3
Training number 37 186
Test number 17 92
Individual net (4-layers) Training error 3.49×10−4 1.47×10−14

Test error 58.003 20.329
Individual net (3-layers) Training error 0.0181 0.0442

Test error 0.0434 0.0221
Stacked ( level-1) Test error 0.0152 0.0215
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Figure 6: The network output for Sys3 data set
(normalized). Solid line is the original data, “o”
stands for test data output. Because of overfit-
ting the training samples, the network general-
ization is poor.

ply weight parameter average to reduce the net-
work size [15]. For example, we can employ k-
fold CVPS to train neural networks. Details on
ensemble neural network generalization ability
and its application to software reliability growth
model is beyond the scope of this paper.

4 Summary

We have made the following observations
and analysis in our case study on stacked gener-
alization with software reliability growth data.
(i) For noisy data, if the network is overtrained,
the generalization will be poor. Using stacked
generalization can not improve the network per-
formance when overtrained networks are en-
gaged. (ii) With properly trained networks,
stacked generalization can improve generaliza-
tion performance. (iii) With smooth function or
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Figure 7: The three layer network model
trained with software reliability Sys3 data
set(normalized). Solid line is the original data,
and “∗” stands for training data samples. Train-
ing accuracy is not very high and overfitting is
avoided.

piecewise smooth function, the trained network
generalization performance is good with stacked
generalization. (iv) The stacked generalization
is not necessarily as effective as individual net-
work when data set is large or the underlying
function is sufficiently smooth.
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