
Lyu - Software Reliability 1 Oct. 10, 1997

An Integrated Approach to Achieving
High Software Reliability

Michael R. Lyu

Bell Laboratories, Lucent Technologies
600 Mountain Avenue
Murray Hill, NJ 07974

908-582-5366
lyu@research.bell-labs.com

Abstract— In this paper we address the development,
testing, and evaluation schemes for software reliability, and
the integration of these schemes into a unified and consistent
paradigm. Specifically, techniques and tools for the three
phases of software reliability engineering will be described.
The three phases are (1) modeling and analysis, (2) design
and implementation, and (3) testing and measurement.

In the modeling and analysis phase we describe Markov
modeling and fault-tree analysis techniques. We present
system-level reliability models based on these techniques,
and provide modeling examples for the reliability analysis
and study with known system architectures. We describe
how reliability block diagrams can be constructed for a real-
world system for reliability prediction, and how critical
components can be identified from the existing architecture.
We also apply fault tree models to fault tolerant system
architectures, and formulate the resulting reliability quantity.
 Finally, we describe two software tools, SHARPE and
UltraSAN, which are available for reliability modeling and
analysis purpose.

In the design and implementation phase we show specific
fault-tolerant techniques in building reliable software
systems for either single-version software or multiple-
version software. In single-version software we form a
generic platform and a set of reusable software components
to perform software fault tolerance tasks in any application
executing on that platform. These software fault tolerance
components, including watchd, libft, REPL, libckp, and
addrejuv, provide a powerful set of building blocks to
defend against software faults in various levels of a system.
We describe the concept and implementation of these
techniques. In addition, we examine multiple-version
systems using design diversity, including recovery blocks
and N-version programming techniques.

In the testing and measurement phase we describe several
software testing schemes, particularly including data flow
testing, and software reliability measurement procedures.
We describe the software testing schemes in terms of their
effectiveness and their relationship to reliability, as well as
provide quantitative comparison between testing coverage
and reliability measure. Furthermore, we will provide an in-
depth discussion on the software reliability modeling and
measurement techniques, including their concepts,
approaches, and procedures. In particular, the CASRE tool
for automatic reliability measurement will be described and

presented. The CASRE system, a computer-aided software
reliability estimation tool, is implemented to encapsulate
many software reliability modeling techniques in a
comprehensive framework via a systematic procedure, and is
currently widely distributed in industry.

 TABLE OF CONTENTS

 1. INTRODUCTION
 2. PHASE-BASED APPROACH: AN OVERVIEW
 3. PHASE 1: MODELING AND ANALYSIS PHASE
 4. PHASE 2: DESIGN AND IMPLEMENTATION PHASE
 5. PHASE 3: TESTING AND MEASUREMENT PHASE
 6. CONCLUSIONS

 1. INTRODUCTION

Our demand for complex hardware/software systems has
increased more rapidly than our ability to design,
implement, test, and maintain them. When the requirements
for and dependencies on computers increase, the crises of
computer failures also increases. The impact of these
failures ranges from inconvenience (e.g., malfunctions of
home appliances), economic damage (e.g., interruptions of
banking systems), to loss of life (e.g., failures of flight
systems or medical software). The reliability of computer
systems has become a major concern for our society. Within
the computer revolution progress has been uneven: software
assumes a larger burden while based on a less firm
foundation than hardware. In stark contrast with the rapid
advancement of hardware technology, proper development
of software technology has failed to keep pace in all
measures, including quality, productivity, cost, and
performance. With the last decade of the 20th century,
computer software has already become the major source of
reported outages in many systems [1].

As an example, Figure 1 shows the causes of total outage
incidents of U.S. switching systems in 1992, in which we
can see that software accounts for 81% of network outages
(including Retrofits, Scheduled Events, Software Design,
Procedural). Hardware and other faults were only
responsible for less than 20% of the outage [2]. Moreover,
severe software failures have impaired several high-visibility
programs worldwide. These critical incidents either caused
enormous revenue losses to companies, or put human lives
in danger.

Lyu - Software Reliability 2 Oct. 10, 1997

Figure 1 Switching System Outage Causal Classification

To this end, many software companies see a major share of
project development costs identified with the design,
implementation, and assurance of reliable software, and they
recognize a tremendous need for systematic approaches
using software reliability engineering techniques. Clearly,
developing the required techniques for software reliability
engineering is a major challenge to computer engineers,
software engineers, and engineers of various disciplines for
now and the decades to come.

 2. PHASE-BASED APPROACH: AN OVERVIEW

Software reliability engineering is centered around a very
important software attribute: reliability. Software reliability
is defined as the probability of failure-free software
operation for a specified period of time in a specified
environment [3]. It is one of the attributes of software
quality, a multi- dimensional property including other
customer satisfaction factors like functionality, usability,
performance, serviceability, capability, installability,
maintainability, and documentation [4]. Software reliability,
however, is generally accepted as the key factor in software
quality since it quantifies software failures - which can make
a powerful system inoperative or even deadly. As a result,
reliability is an essential ingredient in customer satisfaction
for most commercial companies and governmental
organizations. In fact, ISO 9000-3 specifies measurement of
field failures as the only required quality metric: "... at a
minimum, some metrics should be used which represent
reported field failures and/or defects form the customer’s
viewpoint. ... The supplier of software products should
collect and act on quantitative measures of the quality of
these software products." (See the Section 6.4.1 of [5]).

Reliability engineering is a daily practiced technique in
many engineering disciplines. Civil engineers use it to build
bridges and computer hardware engineers use it to design
chips and computers. Using a similar concept in these
disciplines, we define software reliability engineering as
\f2the quantitative study of the operational behavior of
software-based systems with respect to user requirements
concerning reliability. Software reliability engineering
therefore includes [6]:

 (1) software reliability measurement, which includes
estimation and prediction, with the help of software
reliability models established in the literature;

(2) the attributes and metrics of product design,
development process, system architecture, software
operational environment, and their implications on
reliability; and

(3) the application of this knowledge in specifying and
guiding system software architecture, development, testing,
acquisition, use, and maintenance.

In this paper we attack the problem of software reliability
engineering in three phases: (1) Modeling and Analysis
Phase, (2) Design and Implementation Phase, and (3)
Testing and Measurement Phase. All these phases deal with
the management of software faults and failures. In the
Modeling and Analysis Phase, reliability of the software
system is being modeled according to the structure of the
system and possible fault scenarios. The key topic of this
phase is to provide fault modeling of the system, and ask the
"what if" questions. The available modeling approaches
include system reliability modeling block diagrams,
reliability models by Markov chains, fault tree analysis, and
stochastic Petri-nets. In the Design and Implementation
Phase, reliability of the software system is being achieved by
software engineering techniques. The key topic of this phase
is to provide fault avoidance and fault tolerance. The
available techniques we emphasize include reusable
software fault tolerance routines, and software fault
tolerance by design diversity. In the Testing and
Measurement Phase, reliability of the software system is
being evaluated and verified by testing and measurement
techniques. The key topic of this phase is to provide fault
removal and fault prediction. The available techniques
include data flow testing, reliability measurement tasks and
software reliability tools. We discuss the details of these
techniques in the following three sections.

3. Phase 1: Modeling and Analysis Phase

To provide reliability modeling and analysis of a software
system during the pre-design phase, the overall system
architecture based on requirement can be modeled by
several techniques. The available modeling approaches
include system reliability modeling block diagrams, Makov-
chains reliability modeling, fault tree analysis, and stochastic
Petri-nets. These approaches can be used to establish system
reliability and performance model for the study of system
behavior under various scenarios. The reliability of the
system, for example, can be predicted in a coarse basis for
the overall system given its known architectural options.
Sensitivity analysis can then be performed to locate
important parameters of the system, and critical components
of the system can be identified for enforcement of each
component’s individual reliability. Note that the reliability

Lyu - Software Reliability 3 Oct. 10, 1997

model established in this phase can be refined and revised
for evaluation purpose in a post-design phase for a fine
prediction and estimation purpose.

3.1 Reliability Block Diagram

Figure 2 shows an example for the reliability modeling and
analysis using block diagrams. This is a military distributed
processing system which has an mean time to failure
(MTTF) requirement of 100 hours and an availability
requirement of 0.99. The overall architecture of the system
depicted in Figure 2 indicates that the system consists of
three subsystems, SYS1, SYS2, SYS3, a local area network,
LAN, and a 10 KW power generator GEN. In order for the
system to work, all the components (except SYS2) have to
work. In the early phase of system testing, hardware
reliability parameters are predicted according to the MIL-
HDBK-217, and shown for each system component.
Namely, above each component block in Figure 2 two
numbers appear. The upper number represents the predicted
MTTF for that component, and the lower number represents
its mean time to repair (MTTR). The units are hours. For
example, SYS1 has 280 hours for MTTF and 0.53 hours for
MTTR, while SYS2 and SYS3 have 387 hours for MTTF
and 0.50 hours for MTTR. Note that SYS2 is configured as
a triple module redundant system, shown in the dotted-line
block, where the subsystem will work as long as two or more
modules work. Due to this fault-tolerant capability, its
MTTF improves to 5.01 ? 104 hours and MTTR becomes
0.25 hours.

Figure 2 An Example of Predicting System Reliability

To calculate the overall system reliability, all the
components in the system have to be considered. If we
assume the software does not fail (a mistake often made by
system reliability engineers!), the resulting system MTTF
would be 125.9 hours, and MTTR would be 0.62 hours,
achieving system availability of 0.995. It looks as if the
system already meets its original requirements.

But the software does fail. Both SYS2 and SYS3 software
contain 300,000 lines of source code, and following the
prediction model described in [7], the predicted initial
failure rates for SYS2 software and SYS3 software are both
2.52 failures per execution hour. (Note the three SYS2 S/W
are identical software copies and not fault-tolerant.) Even
without considering SYS1 software failures, the system
MTTF would have become 11.9 CPU minutes. If assuming
MTTR is still 0.62 hours, the system availability becomes
0.24, far less than it was predicted assuming no software
failures.

3.2 Fault Tree Analysis

Fault tree models have long been used for the qualitative and
quantitative analysis of the failure modes of critical systems

[8]. A fault tree provides a mathematical and graphical
representation of the combinations of events which can lead
to system failure. The construction of a fault tree model can
provide insight into the system by illuminating potential
weaknesses with respect to reliability or safety. A fault tree
can help with the diagnosis of failure symptoms by
illustrating which combinations of events could lead to the
observed failure symptoms. The quantitative analysis of a
fault tree is used to determine the probability of system
failure, given the probability of occurrence for failure
events.

The construction of a fault tree, if performed manually,
provides a systematic method for analyzing and
documenting the potential causes of system failure. The
analyst begins with the failure scenario being considered,
and decomposes the failure symptom into its possible
causes. Each possible cause is then investigated and further
refined until the basic causes of the failure are understood.
From a system design perspective, the fault tree analysis
provides a logical framework for understanding the ways in
which a system can fail, which is often as important as
understanding how a system can succeed.

A fault tree consists of the undesired top event (system or
subsystem failure) linked to more basic events by logic
gates. The top event is resolved into its constituent causes,
connected by AND, OR and M-out-of-N logic gates, which
are then further resolved until basic events are identified.
The basic events represent basic causes for the failure, and
represent the limit of resolution of the fault tree.
Fault trees do not generally use the {\em NOT} gate,
because the inclusion of inversion may lead to a non-
coherent fault tree, which complicates analysis. It is quite
rare to have need for complementation in a fault tree, so this
limitation is acceptable for the analysis of practical systems.

Figure 3 describes an example for applying fault tree
analysis to fault-tolerant software (See Section 4),
specifically, Distributed Recovery Block (DRB) [9]. The
top portion of Figure 3 shows the Markov model of system
structure, where the hardware and error confinement areas
[10] associated with the DRB architecture are considered.
The system is defined by two software variants and two
hardware replications. The hardware error confinement area
(HECA) is the lightly shaded region, the software error
confinement area (SECA) is the darkly shaded region. The
HECA or SECA covers the region of the system affected by
faults in that component. For example, the HECA covers the
software component since the software component will fail
if that hardware experiences a fault. It can be seen that
originally the system is running on a full configuration with
two hardware components and two software components.
Upon a hardware failure (with failure rate ??and coverage
factor c), the system can be reconfigured to a degraded
configuration with two software variants running on one
hardware component. If this hardware failure is not

Lyu - Software Reliability 4 Oct. 10, 1997

recoverable or if a second hardware failure happens, then
the system goes to the failure state.

The middle and lower portions of Figure 3 show how fault
tree models can be constructed for the initial and degraded
configurations, respectively, for the computation errors. For
the initial state, a single task computation will produce
unacceptable results if one of three events occur. First, if
both the primary and secondary fail on the same input,
because of two unrelated faults or a single related fault.
Second, if both hardware components experience faults, then
the computations being hosted will be upset and be unable to
produce correct results. Third, if the decider (acceptance
test) fails to either detect unacceptable results or to accept
correct results, then the computation fails. Fault tree model
for the intermediate state after one hardware failure is the
same except that there is only one hardware component left.

The fault tree model provides a compact format for
describing the effects of both software and hardware faults.
For example, we can easily visualize the effects of a decider
failure or a related fault between the versions. To formulate
the system behavior quantitatively, we use the following
notation for basic events in the fault tree model:

{bf V#} (where \# is an integer between 1 and 4) For (up to)
four versions of software, the input for a single computation
activates an unrelated fault.

{bf D} An independent fault in the decider (acceptance test,
majority voter, comparator, adjudicator).

{bf RV##} (where each \# is an integer between 1 and 4)
The input for a single computation activates a related fault
between two versions. A related fault is one that occurs in
two different versions causing both to produce the same
erroneous result.

{bf RALL} A related fault affects all versions as well as the
decider, caused by imperfect specifications.

{bf H#}(where \# is an integer between 1 and 4) A hardware
fault affects the task computation.

Furthermore, let P_X is the probability that event X
occurs, and $Q_{X} = 1 - P_{X}$, then the probability that
an unacceptable result is produced during a single task
iteration is given by

R(DRB) = P_{RV}+ Q_{RV} P_{D}+
 Q_{RV} P_{RALL} Q_{D}+
 Q_{RV} Q_{RALL} Q_{D} P_{H}^2 +
 P_{V}^2 Q_{RV} Q_{RALL} Q_{D} (1-P_{H}^2)

3.3 Modeling Tools

The usage of software tools is a must in the modeling and

analysis phase. We consider SHARPE [11] and UltraSAN
[12] as two leading tools in this arena.

SHARPE (Symbolic Hierarchical Automated Reliability and
Performance Evaluator) is a very general purpose
performance and reliability modeling "toolchest" which
allows the flexibility of choosing from various model types
and hierarchically combine them, as per the demands of a
particular problem. The model types currently supported by
SHARPE include reliability block diagrams, reliability
graphs, fault trees, Markov and semi-Markov chains,
Markov and semi-Markov reward models, product-form
queueing networks, generalized stochastic Petri nets, and
series-parallel directed acyclic graphs. The tool enables
computation of steady state as well as transient measures.
The presence of many model types and the flexibility of
model composition make SHARPE useful as a tool for
analyzing real-world problems, and as a workbench for
experimenting with modeling techniques, especially the use
of exact and approximate system or model decomposition.

UltraSan (Ultra Stochastic Activity Networks) is a software
tool for model-based performance, dependability and
performability evaluation of computer, communication and
other systems. The tool provides high-level modeling
constructs in the form of stochastic activity networks
(SANs), and offers hierarchical modeling by means of
composed models. To specify performance and
dependability measures for these models, reward variables
are used. Given the SAN, composed model and reward
variables, the tool either generates an executable discrete-
event simulation or an underlying stochastic process, which
then is solved by analytic methods. This tool provides six
analytic solvers and three discrete-event simulators, one
based on importance sampling. Furthermore, the report
generator facilitates the generation of graphs and tables from
the obtained performance results.

4. Phase 2: Design and Implementation Phase

In the Design and Implementation Phase, reliability of the
software system is being achieved by software engineering
techniques. The key topic of this phase is to provide fault
avoidance and fault tolerance. Fault avoidance is the subject
of many software engineering techniques and is beyond the
scope of this paper. Fault tolerance, however, is the focus of
our discussion. We examine fault tolerance techniques used
in single version as well as multiple version environments.

4.1 Single Version Software Fault Tolerance

Software fault tolerance in single version software
environment is achieved by introducing special fault
detection and recovery features, including modularity,
system closure, atomicity of actions, decision verification,
and exception handling. The most successful approach is
primarily accomplished by reusable software fault tolerance

Lyu - Software Reliability 5 Oct. 10, 1997

routines [13]. Traditionally, reliability is provided through
fault tolerance technology in the hardware, operating system
and database layers of a computer system executing the
application software. Two trends are emerging in the
marketplace that are changing this tradition for providing
fault tolerance. First, standard commercial hardware and
operating systems are becoming more reliable, distributed,
and inexpensive. They are now off-the-shelf, commodity
items with open and evolving standards and interfaces.
Second, the proportion of failures due to faults in the
application software is increasing due to increased size and
complexity of software being deployed.

To implement application-level software fault tolerance,
there should be a mechanism to detect and restart a failed
processes at the minimum. The next higher level is to
checkpoint and recover the internal state of a process when
it fails. Additionally, logging and replaying messages may
also be employed. It may happen that some part of the
environment will change during recovery and replay in a
way that the process will not fail upon re-execution. Another
method is to reorder the messages during replay so that
errors due to unexpected event sequences are masked. The
next higher level is on-line replication of application files at
a remote site in addition to the previous tasks.

In addition to reactive recovery procedures, there is a
complementary pro-active approach, called software
rejuvenation, to handle transient software errors. Software
rejuvenation prevents failures from occurring by
periodically, and gracefully, terminating an application and
immediately restarting it at a clean internal state. Restarting
an application involves queuing the incoming messages, re-
spawning the application processes at an initial state,
reinitializing the in-memory volatile data structures, and
logging administrative records.

Implementing the above software fault tolerance and
rejuvenation tasks individually in each application requires
expertise in reliability and should be accomplished in a
systematic fashion. We have developed a middleware
platform containing a set of reusable software components
({\tt watchd}, {\tt libft}, {\tt REPL}, {\tt libckp}, and {\tt
addrejuv}) to perform those tasks have been developed in
[13]; see Figure 3.

Figure 3 Software Fault Tolerance Platform and
Components

The hardware platform for using those reusable software
components is a network of standard computers where each
computer provides a back-up facility for another one on the
network. The components provide mechanisms to
checkpoint, log messages, watch, detect, rollback, restart,
and recover from failures and rejuvenate to avoid failures.
They are described as follows:

\bu {Watchd}

{\tt Watchd} is a watchdog daemon process that runs on a
single machine or on a network of machines to detect
application process failures and machine crashes. It
determines whether a process is hung or not by either
polling the application or checking a heartbeat message
periodically sent from the application process to {\tt
watchd}. When {\tt watchd} detects that an application
process crashed or hung, it recovers that application at an
initial internal state or at the last checkpointed state. It is
recovered on the primary node if that node has not crashed,
otherwise on the backup node for the primary as specified in
a configuration file. If {\tt libft} is also used, {\tt watchd}
sets the restarted application to process all the logged
messages from the log file generated by {\tt libft}.

{\tt Watchd} also facilitates restoring the saved values and
re-executing the logged events. It also provides facilities for
rejuvenation, remote execution, error reporting, remote
copy, distributed election, and status report production.
Several commands are also provided for operating,
administrating and maintaining a network using {\tt watchd}
daemons.

\bu {Libft}

{\tt Libft} is a user-level library of C functions that can be
used in application programs to specify and checkpoint
critical data, recover the checkpointed data, log events,
locate and reconnect to a backup server. It provides a set of
functions (e.g. {\tt critical()}) to specify critical volatile data
in an application. These critical data items are allocated in a
reserved region of the virtual memory and are periodically
checkpointed on primary and backup nodes.

{\tt Libft} also provides reliable read and write operations
to automatically log messages. The logged data is then
duplicated and logged by the {\tt watchd} daemon on a
backup machine. The replication of logged data is necessary
for a process to recover from a primary machine failure.

\bu {REPL}

{\tt REPL} is a file replication mechanism running on a pair
of machines for on-line replication of critical files of an
application. The mechanism uses dynamic-shared libraries
to intercept file system calls. When a user program issues a
file update, the shared library intercepts the request,
performs the update locally, and passes the update message
to a remote {\tt REPL} server. Upon receiving the message,
the remote {\tt REPL} server replays the message and
performs the file update. The critical files are specified
through an environment variable. {\tt REPL} is built on top
of standard file systems, and so its use requires no change to
the underlying operating system. Speed, robustness and
replication transparency are the primary design goals of the

Lyu - Software Reliability 6 Oct. 10, 1997

{\tt REPL} replication mechanism.

\bu {Libckp}

{\tt Libckp} is a user-transparent checkpointing library. It
can be linked with a user’s program to periodically save the
program state on stable storage without requiring any
modification to the source code. The checkpointed program
state includes program counter, stack pointer, program stack,
open file descriptors, the global/static variables and
dynamically allocated memory of the program and the
libraries linked with the program. {\tt Libckp} has two
unique features. First, the library allows a user to include
files as part of the process state that is checkpointed and
recovered. More specifically, when a process rolls back, all
the modifications it has made to the files since the last
checkpoint are undone so that the states of the files are
consistent with the checkpointed state. Other checkpointing
libraries either do not support the rollback of user files or
only provide the capability to a limited extent. The second
unique feature of {\tt libckp} is that it also provides a non-
transparent mode for flexible execution control: it provides
application-initiated checkpoint and rollback facilities within
a program. The rollback function rolls back the process to a
a location in the program where the previous checkpoint was
made. This facilitates restoration of global/static variables,
dynamically allocated memory, and user files.
\bu {Addrejuv}

{\tt Addrejuv} is an added feature of {\em watchd} to do
software rejuvenation by stopping and restarting a process at
a certain interval or when a particular event happens in the
application process. The interval or event for periodic
rejuvenation is determined through analysis and experience
with the application [14]. When the {\tt addrejuv} feature is
used, {\tt watchd} creates a rejuvenation shell script and
registers the starting time or the event for execution of that
script with a system daemon to rejuvenate the process. The
shell script takes three steps to stop the process. First, a
signal or a command, specified as first argument to the {\tt
addrejuv} feature, is sent to the process to kill it. Then,
fifteen seconds later, a second signal or command, specified
as second argument to the addrejuv feature, is sent to the
process. Finally, fifteen seconds later, a SIGKILL signal is
sent to the process to make sure that the process is really
terminated. The fifteen seconds interval between the two
signals allows the process to clean up its state before being
terminated; the default value of fifteen seconds can be
changed by the application. Once the process is terminated,
watchd takes a recovery action to re-spawn the process in
the same manner as it does when it detects a failure.

4.2 Multiple Version Software Fault Tolerance

Multiple, redundant computing channels (or "lanes") have
been widely used in sets of N = 2, 3, or 4 to build fault-
tolerant hardware systems. To make a simplex software unit

fault-tolerant, the corresponding solution is to add one, two,
or more simplex units to form a set of N ? 2 units. The
redundant units are intended to compensate for, or mask a
failed software unit when they are not affected by software
faults that cause similar errors at cross-check points. The
critical difference between multiple-channel hardware
systems and fault-tolerant software units is that the simple
replication of one design that is effective against random
physical faults in hardware is not sufficient for software fault
tolerance. Copying software will also copy the dormant
software faults; therefore each simplex unit in the fault-
tolerant set of N units needs to be built separately and
independently of the other members of the set. This is the
concept of software design diversity [15].

A set of N ? 2 diverse simplex units alone is not fault-
tolerant; the simplex units need an execution environment
(EE) for fault-tolerant operation. Each simplex unit also
needs fault tolerance features that allows it to serve as a
member of the fault-tolerant software unit with support of
the EE. The simplex units and the EE have to meet three
requirements: (1) the EE must provide the support functions
to execute the N ? 2 member units in a fault-tolerant manner;
(2) the specifications of the individual member units must
define the fault tolerance features that they need for fault-
tolerant operation supported by the EE; (3) the best effort
must be made to minimize the probability of an undetected
or unrecoverable failure of the fault-tolerant software unit
that would be due to a single cause.

The evolution of techniques for building fault-tolerant
software out of simplex units has taken two directions. The
two basic models of fault-tolerant software units are N-
version software (NVS), shown in Figure 4 and recovery
blocks (RB) shown in Figure 5. The common property of
both models is that two or more diverse units (called
versions in NVS, and alternates and acceptance tests in RB)
are employed to form a fault-tolerant software unit. The
most fundamental difference is the method by which the
decision is made that determines the outputs to be produced
by the fault-tolerant unit. The NVS approach employs a
generic decision algorithm that is provided by the EE and
looks for a consensus of two or more outputs among N
member versions. The RB model applies the acceptance
test to the output of an individual alternate; this acceptance
test must by necessity be specific for every distinct service,
i.e., it is custom-designed for a given application, and is a
member of the RB fault-tolerant software unit, but not a part
of the EE.

Figure 4 The N-version software (NVS) model with n = 3

Figure 5 The recovery block (RB) model

N = 2 is the special case of fail-safe software units with two
versions in NVS, and one alternate

Lyu - Software Reliability 7 Oct. 10, 1997

with one acceptance test in RB. They can detect
disagreements between the versions, or between the alternate
and the acceptance test, but cannot determine a consensus in
NVS, or provide a backup alternate in RB. Either a safe
shutdown is executed, or a supplementary recovery process
must be invoked in case of a disagreement.

Both RB and NVS have evolved procedures for error
recovery. In RB, backward recovery is achieved in a
hierarchical manner through a {\it nesting} of RBs,
supported by a {\it recursive cache}, or recovery cache that
is part of the EE. In NVS, forward recovery is done by the
use of the community error recovery algorithm that is
supported by the specification of recovery points and by the
decision algorithm of the EE. Both recovery methods have
limitations: in RB, errors that are not detected by an
acceptance test are passed along and do not trigger recovery;
in NVS, recovery will fail if a majority of versions have the
same erroneous state at the recovery point.

It is evident that the RB and NVS models converge if the
acceptance test is done by NVS technique, i.e., when the
acceptance test is specified to be one or more independent
computations of the same outputs, followed by a choice of a
consensus result. It must be noted that the individual
versions of NVS usually contain error detection and
exception handling (similar to an acceptance test), and that
the NVP decision algorithm takes the known failures of
member versions into account.

5. Phase 3: Testing and Measurement Phase

In this phase the reliability of the software system should be
evaluated and verified, and testing and measurement
techniques are available to achieve this goal. Testing
techniques are for fault removal purpose, and reliability
assessment techniques are for fault prediction purpose. We
discuss each of them in the following sections.

5.1 Software Testing Scheme and Tool

There are many ways of testing software. The terms
functional, regression, integration, product, unit, coverage,
user-oriented, are only a few of the characterizations we
encounter. These terms are derived from the method of
software testing or the development phase during which the
software is tested. The testing methods functional, coverage,
and user-oriented, indicate respectively that the
functionality, the structure, and the user view of the software
are to be tested. Any of these methods might be applied
during the unit, integration, product, or regression phases of
the software’s development.

White-box, or coverage, testing uses the structure of the
software to measure the quality of testing. It is this
structural coverage and its measurement which we believe is
of value in reliability estimation. We describe two coverage

testing methods, mutation testing and data and control flow
testing. Subsequently we discuss the use of these methods in
reliability estimation.

Statement coverage testing directs the tester to construct test
cases such that each statement or a basic block of code, is
executed at least once.

Decision coverage testing directs the tester to construct test
cases such that each decision in the program is covered at
least once. A decision refers to a simple condition. Thus, for
example, the C language statement if (a<b || p>q)... consists
of two simple conditions, a<b and p>q, and one compound
condition. We say that a decision is {\em covered} if during
some execution it evaluates to true and in the same or
another execution it evaluates to false. In the above
example, the two simple conditions must evaluate to true
and false during some execution for the decision coverage
criterion to be satisfied.

Data flow coverage testing directs the tester to construct test
cases such that all the def-use pairs are covered. Consider a
statement S1:x=f() in program P, where f is an arbitrary
function. Let there be another statement S2:p=g(x,*) in P
where g is an arbitrary function of x and any other program
variables. We say that S1 is a definition and S2 a use of the
variable x. The two occurrences of x constitute a def-use
pair. If the use of a variable appears in a computational
expression, then such a pair is termed as a c-use. If the use
appears inside a predicate then the pair is termed as a p-use.
 A path from S1 to S2 is said to be definition free if no
statement along this path, other than S1 and S2, defines x.
Such a path is considered feasible if there exists at least one
d ? D such that when P is executed on d the path is
traversed.

All statements in P that can possibly be executed
immediately after the execution of some statement S, are
known as successors of S. We say that a c-use or a p-use is
covered if the execution of P on some set of test cases
causes at least one definition free path to be executed from
the defining statement to the statement in which the use
occurs and to each of its successors.

The above coverage measures are obtainable from the
ATAC tool. ATAC (Automatic Test Analysis for C) is a
software testing tool for the measurement of data flow
coverage for C programs during their execution. Using
ATAC, two real-world applications were made available to
show the relationship between testing and reliability. The
first application is a automatic (i.e., computerized) airplane
landing system, or so-called autopilot, developed and
programmed by 15 programming teams at the University of
Iowa and the Rockwell/Collins Avionics Division [16],
using an N-version programming design paradigm. 12
versions of the autopilot program were produced and
accepted at the end of the project. Figure 6 shows the

Lyu - Software Reliability 8 Oct. 10, 1997

progress of software testing from unit testing (1 complete
test case), integration testing (960 test cases), to acceptance
testing (21600 test cases). The dash lines depict the
accumulation of test coverage, while the solid line depicts
the increased percentage of fault detection. The data points
are taken from the average of the resulting 12 programs. It
can be seen from Figure 6 that as the number of program
executions increases, the data flow coverage increases, and
the number of detected faults also increases. Both the
coverage and the detected faults, however, do not increase
linearly with respect to the number of program executions.

Figure 6 Relationship between Coverage Improvement and
Fault Detection during Testing Phases

Figure 7 displays data from another experiment to compare
the statement coverage of unit tests for 28 modules of a
single system to the number of system test faults found for
each module [17]. From this figure, again, we can see a
clear relationship between high statement coverage in unit
testing and low system test faults.

Figure 7 Relationship of Unit Coverage Testing to System
Test Faults for One System

5.2 Software Reliability Measurement and Tool

Software reliability measurement is the application of
statistical inference procedures to failure data taken from
software testing and operation to determine software
reliability. We have established a framework for software
reliability measurement purpose, as described in Figure 8.

Figure 8 Software Reliabilty Measurement Procedure
Overview

First, customer usage is quantified by developing an
operational profile. Second, quality is defined quantitatively
from the customer’s viewpoint by defining failures and
failure severity, by determining a reliability objective, and
by specifying balance among key quality objectives (e.g.,
reliability, delivery date, cost, etc.) to maximize customer
satisfaction. We then advocate the employment of
operational profile and quality objectives to manage
resources and to guide design, implementation, and testing
of software. Moreover, we track reliability during testing to
determine product release, using appropriate software
reliability measurement tools. This activity may be repeated
until a certain reliability
level has been achieved. We also analyze reliability in the
field to validate the reliability engineering effort and to
introduce product and process improvements.

It can be seen from Figure 8 that there are four major
components in this software reliability measurement process,
namely,

(1) reliability objective,
(2) operational profile,
(3) reliability modeling and measurement, and
(4) reliability validation.

A reliability objective is the specification of the reliability
goal of a product from the viewpoint of the customer. If a
reliability objective has been specified by the customer, that
reliability objective should be used. Otherwise, you can
select a reliability measure which is most intuitive and easily
understood, and then determine the customer’s "tolerance
threshold" for system failures in terms of this reliability
measure. For example, customer A might be mostly
concerned with the total number of field failures product X
may produce. Therefore, the reliability objective could be
specified as, say, "product X should not produce more than
10 failures in its first 50 months of operation by customer
A."

Operational profile is a set of disjoint alternatives of system
operation and their associated probabilities of occurrence.
The construction of an operational profile encourages testers
to select test cases according to the system’s operational
usage, which contributes to more accurate estimation of
software reliability in the field.

Reliability modeling is an essential element of the reliability
estimation process. It determines if a product meets its
reliability objective and is ready for release. It is required to
use a reliability model to calculate, from failure data
collected during system testing (such as failure report data
and test time), various estimates of a product’s reliability as
a function of test time. Several interdependent estimates
make equivalent statements about a product’s reliability.
They typically include the product’s failure intensity (failure
rate, i.e., the number of failures per unit time) as a function
of test time t, the number of failures expected up to test time
t, and the mean time to failure (MTTF) at test time t. These
reliability estimates can provide the following information
useful for product quality management:

(1) The reliability of the product at the end of system testing.

(2) The amount of (additional) test time required to reach
the product’s reliability objective.

(3) The reliability growth as a result of testing (e.g., the ratio
of the value of the failure intensity at the start of testing to
the value at the end of testing).

(4) The predicted reliability beyond the system testing
already performed. This can be, for example, the product’s
reliability in the field, if the system testing has already been
completed, or the predicted reliability at the end of testing, if
the system testing has not yet been completed.

Lyu - Software Reliability 9 Oct. 10, 1997

Despite the existence of more than 40 models, the problem
of model selection and application is manageable.
Experience has shown that it is sufficient to consider only a
dozen models, including Jelinski-Moranda Model,
Generalized Poisson Model, Goel-Okumoto Model, Musa
Basic Model, Musa-Okumoto Model, Schneidewind Model,
Non-Homogeneous Poisson Process Model, Delayed S-
Shape Model, and Littlewood-Verrall Bayesian Model, etc.

Using these statistical methods, "best" estimates of
reliability are obtained during testing. These estimates are
then used to project the reliability during field operation in
order to determine if the reliability objective has been met.
This procedure is an iterative process since more testing will
be needed if the objective is not met. When the operational
profile is not fully developed, application of a test
compression factor can assist in estimating field reliability.
A test compression factor is defined as the ratio of execution
time required in the operational phase to execution time
required in the test phase to cover the input space of the
program. Since testers during testing are trying to "break"
the software by searching through the input space for
difficult execution conditions, while users during operation
only execute the software at a normal pace, this factor
represents the reduction of failure rate (or increase in
reliability) during operation with respect to that observed
during testing.

Finally, the projected field reliability has to be validated by
comparing it with the observed field reliability. This
validation not only establishes benchmarks and confidence
levels of the reliability estimates, but also provides feedback
to the software reliability measurement process for process
improvement and better parameter tuning. For example, the
model validity could be established, the growth of reliability
could be determined, and the test compression factor could
be refined, etc. Since the engagement and application of
software reliability models and the evaluation and
interpretation of model results involve tedious computation-
intensive tasks, we believe the only practical usage of
reliability models is through software tools. For this
purpose, we designed and implemented a software reliability
modeling tool, called Computer-Aided Software Reliability
Estimation (CASRE) system [18], for an automatic and
systematic approach in estimating software reliability.

CASRE is implemented as a software reliability modeling
tool that addresses the ease-of-use issue as well as other
issues. Figure 9 shows the high-level architecture for
CASRE.

Figure 9 High-Level Architecture for CASRE

CASRE is currently executed in a Windows environment.
The command interface is menu driven; users are guided
through the selecting of a set of failure data and executing a
model by selectively enabling pull-down menu options.

Modeling results are also presented in a graphical manner.
Users can select multiple models from two categories
depending on failure data format: Time-Between-Failures
models (for interfailure times) or Failure-Count models (for
failure intensities). After one or more models have been
executed, the predicted failure intensities or interfailure
times are drawn in a graphical display window. Users can
manipulate this window’s controls to display the results in a
variety of ways, including cumulative number of failures and
the reliability growth curve. Users may also display the
results in a tabular fashion if they wish. The performance of
each model is evaluated using multiple criteria to assess
model accuracy, model bias, model bias trend, and model
noise. Based on these criteria, the best model or models can
be selected for reliable prediction of the software reliability.

In addition, CASRE is facilitated with a useful functionality.
Namely, results from different models can be combined in
various ways to yield reliability estimates whose predictive
quality is better than that of the individual models
themselves [19]. CASRE incorporates our findings that
prediction accuracy may be increased by combining the
results of several models in a linear fashion. Moreover,
CASRE allows users to define their own combinations and
record them as part of the tool’s configuration. Weights for
the components of the combination may be static or
dynamic, and may be based on statistical techniques used to
determine the applicability of a model to a set of failure
data. Once combination models have been defined, the
steps required to execute them are no different than
executing a simple model. CASRE have been used by major
corporations including AT&T, Lucent, Microsoft, NASA,
IBM, Motorola, Nortel, etc. It is available through NASA
Cosmic software distribution center, and included in a
software diskette in [6].

6. Conclusions

Developing reliable software systems is a formidable task,
which involve the best of our knowledge in software
reliability techniques. This paper surveys the current
schemes in the planning, design, testing, and evaluation of
software reliability. We integrate these techniques in a
unified paradigm, consisting three software reliability
engineering phases: (1) modeling and analysis, (2) design
and implementation, (3) testing and measurement. We
describe the reliability techniques associated with each of
these three phases for fault management, fault avoidance and
fault tolerance, as well as fault removal and fault prediction.
 We also discuss the software tools available in each phase,
including SHARPE, UltraSAN for phase (1), watchd, libft,
libckp, REPL, addrejuv for phase (2), and ATAC, CASRE
for phase (3). We examine CASRE in detail for its
capability to apply multiple software reliability models and
to choose the most appropriate model for project-specific
environments.

Lyu - Software Reliability 10 Oct. 10, 1997

 6. SUMMARY OF DUE DATES

The key dates for conference abstract and paper submission,
review, and final copy plus the dates for registration and
lodging payments are summarized in Table 1.

 7. SUMMARY OF STYLE SPECIFICATIONS

The editorial style requirements for 1997 IEEE Aerospace
Conference Papers are summarized in Table 2.

 REFERENCES

[1] J. Gray, “A Census of Tandem System Availability
Between 1985 and 1990,” IEEE Transactions on Reliability
39:4, 409-418, October 1990.

[2] National Reliability Council (NRC) Switch Focus Team
Report, June 1993.

[3] Institute of Electrical and Electronics Engineers,
ANSI/IEEE Standard Glossary of Software Engineering
Terminology, IEEE Std. 729-1991, 1991.

[4] R.B. Grady, Practical Software Metrics for Project
Management and Process Improvement, Prentice-Hall,
Englewood Cliffs, New Jersey, 1992.

[5] International Standard Organization, "Quality
Management and Quality Assurance Standards - Part 3:
Guidelines for the Application of ISO 9001 to the
Development, Supply and Maintenance of Software," ISO
9000-3, Switzerland, June 1991.

[6] M.R. Lyu (ed.), Handbook of Software Reliability
Engineering, McGraw-Hill and IEEE Computer Society
Press, New York, 1996.

[7] Rome Laboratory, Methodology for Software Reliability
Prediction and Assessment, Technical Report RL-TR-92-52,
volumes 1 and 2, 1992.

[8] E.J. Henley and H. Kumamoto, Probabilistic Risk
Assessment, IEEE Press, New York, 1982.

[9] K.H. Kim and H.O. Welch, "Distributed Execution of
Recovery Blocks: An Approach for Uniform Treatment of
Hardware and Software Faults in Real-Time Applications,"
IEEE Transactions on Computers, 38:5, 626-636, May
1989.

[10] J.-C. Laprie, J. Arlat, C. Beounes, and K. Kanoun,
"Definitiona and Analysis of Hardware- and Software-Fault-
Tolerant Architectures," IEEE Computer, 23:7, 39-51, July

1990.

[11] R.A.Sahner, K.S. Trivedi, and A. Puliafito,
Performance and Reliability Analysis of Computer Systems:
An Example-Based Approach Using the SHARPE Software
Package, Kluwer Academic Publishers, Boston, MA, 1996.

[12] J. Couvillion, R. Freire, R. Johnson, W.D. Obal, M.A.
Qureshi, M. Rai, W.H. Sanders, and J.E. Tvedt,
"Performability Modeling with UltraSan," IEEE Software,
8:5, 69-80, Sept. 1991.

[13] Y. Huang, C.M.R. Kintala, L. Bernstein, and Y.-M.
Wang, "Components for Software Fault Tolerance and
Rejuvenation," AT&T Technical Journal, 29-37,
March/Spril 1996.

[14] Y. Huang, C.M.R. Kintala, N. Kolettis, and N.D.
Fulton, "Software Rejuvenation: Analysis, Module and
Applications," Proceedings of 25th International Symposium
on Fault-Tolerant Computing (FTCS-25), 381-390,
Pasadena, California, June 1995.

[15] A. Avizienis, "The Methodology of N-Version
Programming," Chapter 2 of Software Fault Tolerance, M.
Lyu (ed.), Wiley, 23-46, 1995.

[16] M.R. Lyu and Y. He, "Improving the N-Version
Programming Process Through the Evolution of a Design
Paradigm," in IEEE Transactions on Reliability, 42:2, 179 -
189, June 1993.

[17] S.R. Dalal, J.R. Horgan, and J.R. Kettenring, "Reliable
Software and Communication: Software Quality, Reliability,
and Safety," Proceedings of the 15th International
Conference on Software Engineering, Baltimore, MD, May
1993.

[18] M.R. Lyu and A. Nikora, "CASRE - A Computer-
Aided Software Reliability Estimation Tool," Proceedings of
Computer-Aided Software Engineering Workshop, 264-275,
Montreal, Canada, July 1992.

[19] M.R. Lyu and A. Nikora, "Using Software Reliability
Models More Effectively," IEEE Software, 43-52, July
1992.

Michael R. Lyu is currently a Member of the Technical
Staff at Bell Labs Research, Lucent Technologies. He
worked at the Jet Propulsion Laboratory as a Member of
the Technical Staff from 1988 to 1990. From 1990 to 1992
he was with the Electrical and Computer Engineering
Department at the University of Iowa as an Assistant
Professor. From 1992 to 1995, he was a Member of the
Technical Staff in the Applied Research Area of the Bell
Communications Research(Bellcore). Dr. Lyu’s research

Lyu - Software Reliability 11 Oct. 10, 1997

interests include software reliability engineering, software
process and metrics, distributed systems, and fault-tolerant
computing. He has published over 50 refereed journal and
conference papers in these areas. He initiated the first
International Symposium on Software Reliability
Engineering (ISSRE) in 1990. He was the program chair for
ISSRE’96, and has served in program committees for many
conferences. He is the editor for two book volumes:
Software Fault Tolerance, published by Wiley in 1995 and
the Handbook of Software Reliability Engineering,
published by IEEE and McGraw-Hill in 1996. He is an
associated editor of IEEE Transactions on Reliability and
an editor for IEEE Transactions on Knowledge and Data
Engineering.

Lyu - Software Reliability 12 Oct. 10, 1997

