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Abstract— In this paper we address the development, 
testing, and evaluation schemes for software reliability, and 
the integration of these schemes into a unified and consistent 
paradigm.  Specifically, techniques and tools for the three 
phases of software reliability engineering will be described. 
The three phases are (1) modeling and analysis, (2) design 
and implementation, and (3) testing and measurement. 
 
In the modeling and analysis phase we describe Markov 
modeling and fault-tree analysis techniques.  We present 
system-level reliability models based on these techniques, 
and provide modeling examples for the reliability analysis 
and study with known system architectures. We describe 
how reliability block diagrams can be constructed for a real-
world system for reliability prediction, and how critical 
components can be identified from the existing architecture. 
We also apply fault tree models to fault tolerant system 
architectures, and formulate the resulting reliability quantity. 
 Finally, we describe two software tools, SHARPE and 
UltraSAN, which are available for reliability modeling and 
analysis purpose. 
 
In the design and implementation phase we show specific 
fault-tolerant techniques in building reliable software 
systems for either single-version software or multiple-
version software.  In single-version software we form a 
generic platform and a set of reusable software components 
to perform software fault tolerance tasks in any application 
executing on that platform.  These software fault tolerance 
components, including watchd, libft, REPL, libckp, and 
addrejuv, provide a powerful set of building blocks to 
defend against software faults in various levels of a system.  
We describe the concept and implementation of these 
techniques. In addition, we examine multiple-version 
systems using design diversity, including recovery blocks 
and N-version programming techniques. 
 
In the testing and measurement phase we describe several 
software testing schemes, particularly including data flow 
testing, and software reliability measurement procedures.   
We describe the software testing schemes in terms of their 
effectiveness and their relationship to reliability, as well as 
provide quantitative comparison between testing coverage 
and reliability measure. Furthermore, we will provide an in-
depth discussion on the software reliability modeling and 
measurement techniques, including their concepts, 
approaches, and procedures.  In particular, the CASRE tool 
for automatic reliability measurement will be described and 

presented.  The CASRE system, a computer-aided software 
reliability estimation tool, is implemented to encapsulate 
many software reliability modeling techniques in a 
comprehensive framework via a systematic procedure, and is 
currently widely distributed in industry. 
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 1. INTRODUCTION 

Our demand for complex hardware/software systems has 
increased more rapidly than our ability to design, 
implement, test, and maintain them. When the requirements 
for and dependencies on computers increase, the crises of 
computer failures also increases. The impact of these 
failures ranges from inconvenience (e.g., malfunctions of 
home appliances), economic damage (e.g., interruptions of 
banking systems), to loss of life (e.g., failures of flight 
systems or medical software). The reliability of computer 
systems has become a major concern for our society.  Within 
the computer revolution progress has been uneven: software 
assumes a larger burden while based on a less firm 
foundation than hardware. In stark contrast with the rapid 
advancement of hardware technology, proper development 
of software technology has failed to keep pace in all 
measures, including quality, productivity, cost, and 
performance. With the last decade of the 20th century, 
computer software has already become the major source of 
reported outages in many systems [1].  
 
As an example, Figure 1 shows the causes of total outage 
incidents of U.S. switching systems in 1992, in which we 
can see that software accounts for 81% of network outages 
(including Retrofits, Scheduled Events, Software Design, 
Procedural).  Hardware and other faults were only 
responsible for less than 20% of the outage [2]. Moreover, 
severe software failures have impaired several high-visibility 
programs worldwide.  These critical incidents either caused 
enormous revenue losses to companies, or put human lives 
in danger. 
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Figure 1  Switching System Outage Causal Classification  
 
To this end, many software companies see a major share of 
project development costs identified with the design, 
implementation, and assurance of reliable software, and they 
recognize a tremendous need for systematic approaches 
using software reliability engineering techniques. Clearly, 
developing the required techniques for software reliability 
engineering is a major challenge to computer engineers, 
software engineers, and engineers of various disciplines for 
now and the decades to come. 
 
 2. PHASE-BASED APPROACH: AN OVERVIEW 

Software reliability engineering is centered around a very 
important software attribute:  reliability. Software reliability 
is defined as the probability of failure-free software 
operation for a specified period of time in a specified 
environment [3]. It is one of the attributes of software 
quality, a multi- dimensional property including other 
customer satisfaction factors like functionality, usability, 
performance, serviceability, capability, installability, 
maintainability, and documentation [4]. Software reliability, 
however, is generally accepted as the key factor in software 
quality since it quantifies software failures - which can make 
a powerful system inoperative or even deadly. As a result, 
reliability is an essential ingredient in customer satisfaction 
for most commercial companies and governmental 
organizations.  In fact, ISO 9000-3 specifies measurement of 
field failures as the only required quality metric: "... at a 
minimum, some metrics should be used which represent 
reported field failures and/or defects form the customer’s 
viewpoint. ... The supplier of software products should 
collect and act on quantitative measures of the quality of 
these software products." (See the Section 6.4.1 of [5]). 
 
Reliability engineering is a daily practiced technique in 
many engineering disciplines.  Civil engineers use it to build 
bridges and computer hardware engineers use it to design 
chips and computers. Using a similar concept in these 
disciplines, we define software reliability engineering as 
\f2the quantitative study of the operational behavior of 
software-based systems with respect to user requirements 
concerning reliability. Software reliability engineering 
therefore includes [6]: 
 

 (1) software reliability measurement, which includes 
estimation and prediction, with the help of software 
reliability models established in the literature; 
 
(2) the attributes and metrics of product design, 
development process, system architecture, software 
operational environment, and their implications on 
reliability; and 
 
(3) the application of this knowledge in specifying and 
guiding system software architecture, development, testing, 
acquisition, use, and maintenance. 
 
In this paper we attack the problem of software reliability 
engineering in three phases: (1) Modeling and Analysis 
Phase, (2) Design and Implementation Phase, and (3) 
Testing and Measurement Phase. All these phases deal with 
the management of software faults and failures. In the 
Modeling and Analysis Phase, reliability of the software 
system is being modeled according to the structure of the 
system and possible fault scenarios.  The key topic of this 
phase is to provide fault modeling of the system, and ask the 
"what if" questions. The available modeling approaches 
include system reliability modeling block diagrams, 
reliability models by Markov chains, fault tree analysis, and 
stochastic Petri-nets. In the Design and Implementation 
Phase, reliability of the software system is being achieved by 
software engineering techniques. The key topic of this phase 
is to provide fault avoidance and fault tolerance.  The 
available techniques we emphasize include reusable 
software fault tolerance routines, and software fault 
tolerance by design diversity. In the Testing and 
Measurement Phase, reliability of the software system is 
being evaluated and verified by testing and measurement 
techniques. The key topic of this phase is to provide fault 
removal and fault  prediction.  The available techniques 
include data flow testing, reliability measurement tasks and 
software reliability tools. We discuss the details of these 
techniques in the following three sections.  
 
3. Phase 1: Modeling and Analysis Phase 
 
To provide reliability modeling and analysis of a software 
system during the pre-design phase, the overall system 
architecture based on requirement can be modeled by 
several techniques. The available modeling approaches 
include  system reliability modeling block diagrams, Makov-
chains reliability modeling, fault tree analysis, and stochastic 
Petri-nets. These approaches can be used to establish system 
reliability and performance model for the study of system 
behavior under various scenarios. The reliability of the 
system, for example, can be predicted in a coarse basis for 
the overall system given its known architectural options. 
Sensitivity analysis can then be performed to locate 
important parameters of the system, and critical components 
of the system can be identified for enforcement of each 
component’s individual reliability. Note that the reliability 
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model established in this phase can be refined and revised 
for evaluation purpose in a post-design phase for a fine 
prediction and estimation purpose. 
 
3.1 Reliability Block Diagram 
 
Figure 2 shows an example for the reliability modeling and 
analysis using block diagrams.  This is a military distributed 
processing system which has an mean time to failure 
(MTTF) requirement of 100 hours and an availability 
requirement of 0.99. The overall architecture of the system 
depicted in Figure 2 indicates that the system consists of 
three subsystems, SYS1, SYS2, SYS3, a local area network, 
LAN, and a 10 KW power generator GEN. In order for the 
system to work, all the components (except SYS2) have to 
work. In the early phase of system testing, hardware 
reliability parameters are predicted according to the MIL-
HDBK-217, and shown for each system component. 
Namely, above each component block in Figure 2 two 
numbers appear.  The upper number represents the predicted 
MTTF for that component, and the lower number represents 
its mean time to repair (MTTR).  The units are hours. For 
example, SYS1 has 280 hours for MTTF and 0.53 hours for 
MTTR, while SYS2 and SYS3 have 387 hours for MTTF 
and 0.50 hours for MTTR. Note that SYS2 is configured as 
a triple module redundant system, shown in the dotted-line 
block, where the subsystem will work as long as two or more 
modules work. Due to this fault-tolerant capability, its 
MTTF improves to 5.01 ?  104 hours and MTTR becomes 
0.25 hours. 
 
Figure 2  An Example of Predicting System Reliability 
 
To calculate the overall system reliability, all the 
components in the system have to be considered.  If we 
assume the software does not fail (a mistake often made by 
system reliability engineers!), the resulting system MTTF 
would be 125.9 hours, and MTTR would be 0.62 hours, 
achieving system availability of 0.995.  It looks as if the 
system already meets its original requirements. 
 
But the software does fail.  Both SYS2 and SYS3 software 
contain 300,000 lines of source code, and following the 
prediction model described in [7], the predicted initial 
failure rates for SYS2 software and SYS3 software are both 
2.52 failures per execution hour.  (Note the three SYS2 S/W 
are identical software copies and not fault-tolerant.) Even 
without considering SYS1 software failures, the system 
MTTF would have become 11.9 CPU minutes.  If assuming 
MTTR is still 0.62 hours, the system availability becomes 
0.24, far less than it was predicted assuming no software 
failures. 
 
3.2 Fault Tree Analysis 
 
Fault tree models have long been used for the qualitative and 
quantitative analysis of the failure modes of critical systems 

[8]. A fault tree provides a mathematical and graphical 
representation of the combinations of events which can lead 
to system failure. The construction of a fault tree model can 
provide insight into the system by illuminating potential 
weaknesses with respect to reliability or safety. A fault tree 
can help with the diagnosis of failure symptoms by 
illustrating which combinations of events could lead to the 
observed failure symptoms.  The quantitative analysis of a 
fault tree is used to determine the probability of system 
failure, given the probability of occurrence for failure 
events. 
 
The construction of a fault tree, if performed manually, 
provides a systematic method for analyzing and 
documenting the potential causes of system failure. The 
analyst begins with the failure scenario being considered, 
and decomposes the failure symptom into its possible 
causes.  Each possible cause is then investigated and further 
refined until the basic causes of the failure are understood.  
From a system design perspective, the fault tree analysis 
provides a logical framework for understanding the ways in 
which a system can fail, which is often as important as 
understanding how a system can succeed. 
 
A fault tree consists of the undesired top event (system or 
subsystem failure) linked to more basic events by logic 
gates.  The top event is resolved into its constituent causes, 
connected by AND, OR and M-out-of-N logic  gates, which 
are then further resolved until basic events are identified.  
The basic events represent basic causes for the failure, and 
represent the limit of resolution of the fault tree. 
Fault trees do not generally use the {\em NOT} gate, 
because the inclusion of inversion may lead to a non-
coherent fault tree, which complicates analysis.  It is quite 
rare to have need for complementation in a fault tree, so this 
limitation is acceptable for the analysis of practical systems. 
 
Figure 3 describes an example for applying fault tree 
analysis to fault-tolerant software (See Section 4), 
specifically, Distributed Recovery Block (DRB) [9].  The 
top portion of Figure 3 shows the Markov model of system 
structure, where the hardware and error confinement areas 
[10] associated with the DRB architecture are considered. 
The system is defined by two software variants and two 
hardware replications.  The hardware error confinement area 
(HECA) is the lightly shaded region, the software error 
confinement area (SECA) is the darkly shaded region.  The 
HECA or SECA covers the region of the system affected by 
faults in that component. For example, the HECA covers the 
software component since the software component will fail 
if that hardware experiences a fault. It can be seen that 
originally the system is running on a full configuration with 
two hardware components and two software components. 
Upon a hardware failure (with failure rate ??and coverage 
factor c), the system can be reconfigured to a degraded 
configuration with two software variants running on one 
hardware component.  If this hardware failure is not 
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recoverable or if a second hardware failure happens, then 
the system goes to the failure state.   
 
The middle and lower portions of Figure 3 show how fault 
tree models can be constructed for the initial and degraded 
configurations, respectively, for the computation errors. For 
the initial state, a single task computation will produce 
unacceptable results if one of three events occur.  First, if 
both the primary and secondary fail on the same input, 
because of two unrelated faults or a single related fault. 
Second, if both hardware components experience faults, then 
the computations being hosted will be upset and be unable to 
produce correct results. Third, if the decider (acceptance 
test) fails to either detect unacceptable results or to accept 
correct results, then the computation fails. Fault tree model 
for the intermediate state after one hardware failure is the 
same except that there is only one hardware component left. 
 
The fault tree model provides a compact format for 
describing the effects of both software and hardware faults. 
For example, we can easily visualize the effects of a decider 
failure or a related fault between the versions. To formulate 
the system behavior quantitatively, we use the following 
notation for basic events in the fault tree model: 
 
{bf V#} (where \# is an integer between 1 and 4) For (up to) 
four versions of software, the input for a single computation 
activates an unrelated fault. 
 
{bf D} An independent fault in the decider (acceptance test, 
majority voter, comparator, adjudicator). 
 
{bf RV##} (where each \# is an integer between 1 and 4) 
The input for a single computation activates a related fault 
between two versions. A related fault is one that occurs in 
two different versions causing both to produce the same 
erroneous result. 
 
{bf RALL} A related fault affects all versions as well as the 
decider, caused by imperfect specifications. 
 
{bf H#}(where \# is an integer between 1 and 4) A hardware 
fault affects the task computation. 
 
Furthermore, let $P_X$ is the probability that event $X$ 
occurs, and $Q_{X} = 1 - P_{X}$, then the probability that 
an unacceptable result is produced during a single task 
iteration is given by 
 
R(DRB) = P_{RV}+ Q_{RV} P_{D}+ 
         Q_{RV} P_{RALL} Q_{D}+ 
         Q_{RV} Q_{RALL} Q_{D} P_{H}^2 + 
         P_{V}^2  Q_{RV} Q_{RALL} Q_{D} (1-P_{H}^2) 
 
3.3 Modeling Tools 
 
The usage of software tools is a must in the modeling and 

analysis  phase.  We consider SHARPE [11] and UltraSAN 
[12] as two leading tools in this arena.  
 
SHARPE (Symbolic Hierarchical Automated Reliability and 
Performance Evaluator) is a very general purpose 
performance and reliability modeling "toolchest" which 
allows the flexibility of choosing from various model types 
and hierarchically combine them, as per the demands of a  
particular problem. The model types currently supported by 
SHARPE include  reliability block diagrams, reliability 
graphs, fault trees, Markov and  semi-Markov chains, 
Markov and semi-Markov reward models,  product-form 
queueing networks, generalized stochastic Petri nets,  and 
series-parallel directed acyclic graphs. The tool enables 
computation of  steady state as well as transient measures. 
The presence of many model types and the flexibility of 
model composition make SHARPE useful as a tool for 
analyzing real-world problems, and as a workbench for 
experimenting with modeling techniques, especially the use 
of exact and  approximate system or model decomposition.  
 
UltraSan (Ultra Stochastic Activity Networks) is a software 
tool for model-based performance, dependability and 
performability evaluation of computer, communication and 
other systems.  The tool provides high-level modeling 
constructs in the form of stochastic activity networks 
(SANs), and offers hierarchical modeling by means of 
composed models.  To specify performance and 
dependability measures for these models, reward variables 
are used. Given the SAN, composed model and reward 
variables, the tool either generates an executable discrete-
event simulation or an underlying stochastic process, which 
then is solved by analytic methods.  This tool provides six 
analytic solvers and three discrete-event simulators, one 
based on importance sampling.  Furthermore, the report 
generator facilitates the generation of graphs and tables from 
the obtained performance results. 
 
4. Phase 2: Design and Implementation Phase 
 
In the Design and Implementation Phase, reliability of the 
software system is being achieved by software engineering 
techniques. The key topic of this phase is to provide fault 
avoidance and fault tolerance.  Fault avoidance is the subject 
of many software engineering techniques and is beyond the 
scope of this paper.  Fault tolerance, however, is the focus of 
our discussion.  We examine fault tolerance techniques used 
in single version as well as multiple version environments. 
 
4.1 Single Version Software Fault Tolerance 
 
Software fault tolerance in single version software 
environment is achieved by introducing special fault 
detection and recovery features, including modularity, 
system closure, atomicity of actions, decision verification, 
and exception handling. The most successful approach is 
primarily accomplished by reusable software fault tolerance 
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routines [13]. Traditionally, reliability is provided through 
fault tolerance technology in the hardware, operating system 
and database layers of a computer system executing the 
application software. Two trends are emerging in the 
marketplace that are changing this tradition for providing 
fault tolerance. First, standard commercial hardware and 
operating systems are becoming more reliable, distributed, 
and inexpensive. They are now off-the-shelf, commodity 
items with open and evolving standards and interfaces. 
Second, the proportion of failures due to faults in the 
application software is increasing due to increased size and 
complexity of software being deployed. 
 
To implement application-level software fault tolerance, 
there should be a mechanism to detect and restart a failed 
processes at the minimum.  The next higher level is to 
checkpoint and recover the internal state of a process when 
it fails.  Additionally, logging and replaying messages may 
also be employed. It may happen that some part of the 
environment will change during recovery and replay in a 
way that the process will not fail upon re-execution. Another 
method is to reorder the messages during replay so that 
errors due to unexpected event sequences are masked. The 
next higher level is on-line replication of application files at 
a remote site in addition to the previous tasks. 
 
In addition to reactive recovery procedures, there is a 
complementary pro-active approach, called software 
rejuvenation, to handle transient software errors. Software 
rejuvenation prevents failures from occurring by 
periodically, and gracefully, terminating an application and 
immediately restarting it at a clean internal state. Restarting 
an application involves queuing the incoming messages, re-
spawning the application processes at an initial state, 
reinitializing the in-memory volatile data structures, and 
logging administrative records. 
 
Implementing the above software fault tolerance and 
rejuvenation tasks individually in each application requires 
expertise in reliability and should be accomplished in a 
systematic fashion. We have developed a middleware 
platform containing a set of reusable software components 
({\tt watchd}, {\tt libft}, {\tt REPL}, {\tt libckp}, and {\tt 
addrejuv}) to perform those tasks have been developed in 
[13]; see Figure 3.  
 
Figure 3  Software Fault Tolerance Platform and 
Components 
 
The hardware platform for using those reusable software 
components is a network of standard computers where each 
computer provides a back-up facility for another one on the 
network. The components provide mechanisms to 
checkpoint, log messages, watch, detect, rollback, restart, 
and recover from failures and rejuvenate to avoid failures.  
They are described as follows: 
 

\bu {Watchd} 
 
{\tt Watchd} is a watchdog daemon process that runs on a 
single machine or on a network of machines to detect 
application process failures and machine crashes. It 
determines whether a process is hung or not by either 
polling the application or checking a heartbeat message 
periodically sent from the application process to {\tt 
watchd}. When {\tt watchd} detects that an application 
process crashed or hung, it recovers that application at an 
initial internal state or at the last checkpointed state.  It is 
recovered on the primary node if that node has not crashed, 
otherwise on the backup node for the primary as specified in 
a configuration file. If {\tt libft} is also used, {\tt watchd} 
sets the restarted application to process all the logged 
messages from the log file generated by {\tt libft}. 
 
{\tt Watchd} also facilitates restoring the saved values and 
re-executing the logged events. It also provides facilities for 
rejuvenation, remote execution, error reporting, remote 
copy, distributed election, and status report production. 
Several commands are also provided for operating, 
administrating and maintaining a network using {\tt watchd} 
daemons. 
 
\bu {Libft} 
 
{\tt Libft} is a user-level library of C functions that can be 
used in application programs to specify and checkpoint 
critical data, recover the checkpointed data, log events, 
locate and reconnect to a backup server. It provides a set of 
functions (e.g. {\tt critical()}) to specify critical volatile data 
in an application. These critical data items are allocated in a 
reserved region of the virtual memory and are periodically 
checkpointed on primary and backup nodes. 
 
{\tt Libft} also provides reliable read and write operations 
to automatically log messages. The logged data is then 
duplicated and logged by the {\tt watchd} daemon on a 
backup machine. The replication of logged data  is necessary 
for a process to recover from a primary machine failure. 
 
\bu {REPL} 
 
{\tt REPL} is a file replication mechanism running on a pair 
of machines for on-line replication of critical files of an 
application. The mechanism uses dynamic-shared libraries 
to intercept file system calls.  When a user program issues a 
file update, the shared library intercepts the request, 
performs the update locally, and passes the update message 
to a remote {\tt REPL} server.  Upon receiving the message, 
the remote {\tt REPL} server replays the message and 
performs the file update.  The critical files are specified 
through an  environment variable. {\tt REPL} is built on top 
of standard file systems, and so its use requires no change to 
the underlying operating system. Speed, robustness and 
replication transparency are the primary design goals of the 
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{\tt REPL} replication mechanism. 
 
\bu {Libckp} 
 
{\tt Libckp} is a user-transparent checkpointing library. It 
can be linked with a user’s program to periodically save the 
program state on stable storage without requiring any 
modification to the source code.  The checkpointed program 
state includes program counter, stack pointer, program stack, 
open file descriptors, the global/static variables and 
dynamically allocated memory of the program and the 
libraries linked with the program. {\tt Libckp} has two 
unique features. First, the library allows a user to include 
files as part of the process state that is checkpointed and 
recovered. More specifically, when a process rolls back, all 
the modifications it has made to the files since the last 
checkpoint are undone so that the states of the files are 
consistent with the checkpointed state. Other checkpointing 
libraries either do not support the rollback of user files or 
only provide the capability to a limited extent. The second 
unique feature of {\tt libckp} is that it also provides a non-
transparent mode for flexible execution control: it provides 
application-initiated checkpoint and rollback facilities within 
a program. The rollback function rolls back the process to a 
a location in the program where the previous checkpoint was 
made. This facilitates restoration of global/static variables, 
dynamically allocated memory, and user files.  
\bu {Addrejuv} 
 
{\tt Addrejuv} is an added feature of {\em watchd} to do 
software rejuvenation by stopping and restarting a process at 
a certain interval or when a particular event happens in the 
application process. The interval or event for periodic 
rejuvenation is determined through analysis and experience 
with the application [14]. When the {\tt addrejuv} feature is 
used, {\tt watchd} creates a rejuvenation shell script and 
registers the starting time or the event for execution of that 
script with a system daemon to rejuvenate the process. The 
shell script takes three steps to stop the process. First, a 
signal or a command, specified as first argument to the {\tt 
addrejuv} feature, is sent to the process to kill it. Then, 
fifteen seconds later, a second signal or command, specified 
as second argument to the addrejuv feature, is sent to the 
process. Finally, fifteen seconds later, a SIGKILL signal is 
sent to the process to make sure that the process is really 
terminated. The fifteen seconds interval between the two 
signals allows the process to clean up its state before being 
terminated; the default value of fifteen seconds can be 
changed by the application.  Once the process is terminated, 
watchd takes a recovery action to re-spawn the process in 
the same manner as it does when it detects a failure. 
 
4.2 Multiple Version Software Fault Tolerance 
 
Multiple, redundant computing channels (or "lanes") have 
been widely used in sets of N = 2, 3, or 4 to build fault-
tolerant hardware systems. To make a simplex software unit 

fault-tolerant, the corresponding solution is to add one, two, 
or more simplex units to form a set of N ?  2 units.  The 
redundant units are intended to compensate for, or mask a 
failed software unit when they are not affected by software 
faults that cause similar errors at cross-check points. The 
critical difference between multiple-channel hardware 
systems and fault-tolerant software units is that the simple 
replication of one design that is effective against random 
physical faults in hardware is not sufficient for software fault 
tolerance. Copying software will also copy the dormant 
software faults; therefore each simplex unit in the fault-
tolerant set of N units needs to be built separately and 
independently of the other members of the set.  This is the 
concept of software design diversity [15]. 
 
 
A set of N ?  2 diverse simplex units alone is not fault-
tolerant; the simplex units need an execution environment 
(EE) for fault-tolerant operation.  Each simplex unit also 
needs fault tolerance features that allows it to serve as a 
member of the fault-tolerant software unit with support of 
the EE. The simplex units and the EE have to meet three 
requirements: (1) the EE must provide the support functions 
to execute the N ?  2 member units in a fault-tolerant manner; 
(2) the specifications of the individual member units must 
define the fault tolerance features that they need for fault-
tolerant operation supported by the EE; (3) the best effort 
must be made to minimize the probability of an undetected 
or unrecoverable failure of the fault-tolerant software unit 
that would be due to a single cause. 
 
The evolution of techniques for building fault-tolerant 
software out of simplex units has taken two directions. The 
two basic models of fault-tolerant software units are N-
version software (NVS), shown in Figure 4 and recovery 
blocks (RB) shown in Figure 5. The common property of 
both models is that two or more diverse units (called 
versions in NVS, and alternates and acceptance tests in RB) 
are employed to form a fault-tolerant software unit. The 
most fundamental difference is the method by which the 
decision is made that determines the outputs to be produced 
by the fault-tolerant unit.  The NVS approach employs a 
generic decision algorithm that is provided by the EE and 
looks for a consensus of two or more outputs among N 
member versions.  The RB model applies the acceptance 
test to the output of an individual alternate; this acceptance 
test must by necessity be specific for every distinct service, 
i.e., it is custom-designed for a given application, and is a 
member of the RB fault-tolerant software unit, but not a part 
of the EE. 
 
Figure 4  The $N$-version software (NVS) model with n = 3 
 
Figure 5  The recovery block (RB) model 
 
N = 2 is the special case of fail-safe software units with two 
versions in NVS, and one alternate 
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with one acceptance test in RB.  They can detect 
disagreements between the versions, or between the alternate 
and the acceptance test, but cannot determine a consensus in 
NVS, or provide a backup alternate in RB.  Either a safe 
shutdown is executed, or a supplementary recovery process 
must be invoked in case of a disagreement. 
 
Both RB and NVS have evolved procedures for error 
recovery. In RB, backward recovery is achieved in a 
hierarchical manner through a {\it nesting} of RBs,  
supported by a {\it recursive cache}, or recovery cache that 
is part of the EE. In NVS, forward recovery is done by the 
use of the community error recovery algorithm that is 
supported by the specification of recovery points and by the 
decision algorithm of the EE. Both recovery methods have 
limitations:  in RB, errors that are not detected by an 
acceptance test are passed along and do not trigger recovery; 
in NVS, recovery will fail if a majority of versions have the 
same erroneous state at the recovery point. 
 
It is evident that the RB and NVS models converge if the 
acceptance test is done by NVS technique, i.e., when the 
acceptance test is specified to be one or more independent 
computations of the same outputs, followed by a choice of a 
consensus result. It must be noted that the individual 
versions of NVS usually contain error detection and 
exception handling (similar to an acceptance test), and that 
the  NVP decision algorithm takes the known failures of 
member versions into account. 
 
5. Phase 3: Testing and Measurement Phase 
 
In this phase the reliability of the software system should be 
evaluated and verified, and testing and measurement 
techniques are available to achieve this goal. Testing 
techniques are for fault removal purpose, and reliability 
assessment techniques are for fault prediction purpose.  We 
discuss each of them in the following sections. 
 
5.1 Software Testing Scheme and Tool 
 
There are many ways of testing software.  The terms 
functional, regression, integration, product, unit, coverage, 
user-oriented, are only a few of the characterizations we 
encounter.  These terms are derived from the method of 
software testing or the development phase during which the 
software is tested. The testing methods functional, coverage, 
and user-oriented, indicate respectively that the 
functionality, the structure, and the user view of the software 
are to be tested.  Any of these methods might be applied 
during the unit, integration, product, or regression phases of 
the software’s development. 
 
White-box, or coverage, testing uses the structure of the 
software to measure the quality of  testing.  It is this 
structural coverage and its measurement which we believe is 
of value in reliability estimation.  We describe two coverage 

testing methods, mutation testing and data and control flow 
testing.  Subsequently we discuss the use of these methods in 
reliability estimation. 
 
Statement coverage testing directs the tester to construct test 
cases such that each statement or a  basic block of code, is 
executed at least once. 
 
Decision coverage testing directs the tester to construct test 
cases such that each decision in the program is covered at 
least once. A decision refers to a simple condition. Thus, for 
example, the C language statement if (a<b || p>q)... consists 
of two simple conditions, a<b and p>q, and one compound 
condition. We say that a decision is {\em covered} if during 
some execution it evaluates to true and in the same or 
another execution it evaluates to false. In the above 
example, the two simple  conditions must evaluate to true 
and false during some execution for the decision coverage 
criterion to be satisfied. 
 
Data flow coverage testing directs the tester to construct test 
cases such that all the def-use pairs are covered. Consider a 
statement S1:x=f() in program P, where f is an arbitrary 
function. Let there be another statement S2:p=g(x,*) in P 
where g is an arbitrary function of x and any other program 
variables. We say that S1 is a definition and S2 a use of  the 
variable x.  The two occurrences of x constitute a def-use 
pair. If the use of a variable appears in a computational 
expression, then such a  pair is termed as a c-use. If the use 
appears inside a predicate then the pair is termed as a p-use. 
 A path from S1 to S2 is said to be definition free if no 
statement along this path, other than S1 and S2, defines x. 
Such a path is considered feasible if there exists at least one 
d ?  D such that when P is executed on d the path is 
traversed. 
 
All statements in P that can possibly be executed 
immediately after the execution of some statement  S, are 
known as successors of S. We say that a c-use or a p-use is 
covered if the execution of P on some set of  test cases 
causes at least one  definition free path to be executed from 
the defining statement to the statement in which the use 
occurs and to each of its successors. 
 
The above coverage measures are obtainable from the 
ATAC tool. ATAC (Automatic Test Analysis for C) is a 
software testing tool for the measurement of data flow 
coverage for C programs during their execution.  Using 
ATAC, two real-world applications were made available to 
show the relationship between testing and reliability. The 
first application is a automatic (i.e., computerized) airplane 
landing system, or so-called autopilot, developed and 
programmed by 15 programming teams at the University of 
Iowa and the Rockwell/Collins Avionics Division [16], 
using an N-version programming design paradigm. 12 
versions of the autopilot program were produced and 
accepted at the end of the project.  Figure 6 shows the 
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progress of software testing from unit testing (1 complete 
test case), integration testing (960 test cases), to acceptance 
testing (21600 test cases). The dash lines depict the 
accumulation of test coverage, while the solid line depicts 
the increased percentage of fault detection.  The data points 
are taken from the average of the resulting 12 programs. It 
can be seen from Figure 6 that as the number of program 
executions increases, the data flow coverage increases, and 
the number of detected faults also increases.  Both the 
coverage and the detected faults, however, do not increase 
linearly with respect to the number of program executions. 
 
Figure 6  Relationship between Coverage Improvement and 
Fault Detection during Testing Phases 
 
Figure 7 displays data from another experiment to compare 
the statement coverage of unit tests for 28 modules of a 
single system to the number of system test faults found for 
each module [17].  From this figure, again, we can see a 
clear relationship between high statement coverage in unit 
testing and low system test faults. 
 
 
Figure 7  Relationship of Unit Coverage Testing to System 
Test Faults for One System 
 
5.2 Software Reliability Measurement and Tool 
 
Software reliability measurement is the application of 
statistical inference procedures to failure data taken  from 
software testing and operation to determine software 
reliability. We have established a framework for software 
reliability measurement purpose, as described in Figure 8. 
 
Figure 8  Software Reliabilty Measurement Procedure 
Overview 
 
First, customer usage is quantified by developing an 
operational profile.  Second, quality is defined quantitatively 
from the customer’s viewpoint by defining failures and 
failure severity, by determining a reliability objective, and 
by specifying balance among key quality objectives (e.g., 
reliability, delivery date, cost, etc.) to maximize customer 
satisfaction. We then advocate the employment of 
operational profile and quality objectives to manage 
resources and to guide design, implementation, and testing 
of software. Moreover, we track reliability during testing to 
determine product release, using appropriate software 
reliability measurement tools. This activity may be repeated 
until a certain reliability 
level has been achieved. We also analyze reliability in the 
field to validate the reliability engineering effort and to 
introduce product and process improvements. 
 
It can be seen from Figure 8 that there are four major 
components in this software reliability measurement process, 
namely, 

 
(1)  reliability objective, 
(2)  operational profile, 
(3)  reliability modeling and measurement, and 
(4)  reliability validation. 
 
A reliability objective is the specification of the reliability 
goal of a product from the viewpoint of the customer.  If a 
reliability objective has been specified by the customer, that 
reliability objective should be used.  Otherwise, you can 
select a reliability measure which is most intuitive and easily 
understood, and then determine the customer’s "tolerance 
threshold" for system failures in terms of this reliability 
measure.  For example, customer A might be mostly 
concerned with the total number of field failures product X 
may produce.  Therefore, the reliability objective could be 
specified as, say, "product X should not produce more than 
10 failures in its first 50 months of operation by customer 
A." 
 
Operational profile is a set of disjoint alternatives of system 
operation and their associated probabilities of occurrence. 
The construction of an operational profile encourages testers 
to select test cases according to the system’s operational 
usage, which contributes to more accurate estimation of 
software reliability in the field. 
 
Reliability modeling is an essential element of the reliability 
estimation process.  It determines if a product meets its 
reliability objective and is ready for release. It is required to 
use a reliability model to calculate, from failure data 
collected during system testing (such as failure report data 
and test time), various estimates of a product’s reliability as 
a function of test time.  Several interdependent estimates 
make equivalent statements about a product’s reliability. 
They typically include the product’s failure intensity (failure 
rate, i.e., the number of failures per unit time) as a function 
of test time t, the number of failures expected up to test time 
t, and the mean time to failure (MTTF) at test time t. These 
reliability estimates can provide the following information 
useful for product quality management: 
 
(1) The reliability of the product at the end of system testing. 
 
(2) The amount of (additional) test time required to reach 
the product’s reliability objective. 
 
(3) The reliability growth as a result of testing (e.g., the ratio 
of the value of the failure intensity at the start of testing to 
the value at the end of testing). 
 
(4) The predicted reliability beyond the system testing 
already performed.  This can be, for example, the product’s 
reliability in the field, if the system testing has already been 
completed, or the predicted reliability at the end of testing, if 
the system testing has not yet been completed. 
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Despite the existence of more than 40 models, the problem 
of model selection and application is manageable. 
Experience has shown that it is sufficient to consider only a 
dozen models, including Jelinski-Moranda Model, 
Generalized Poisson Model, Goel-Okumoto Model, Musa 
Basic Model, Musa-Okumoto Model, Schneidewind Model, 
Non-Homogeneous Poisson Process Model, Delayed S-
Shape Model, and Littlewood-Verrall Bayesian Model, etc. 
 
Using these statistical methods, "best" estimates of 
reliability are obtained during testing. These estimates are 
then used to project the reliability during field operation in 
order to determine if the reliability objective has been met. 
This procedure is an iterative process since more testing will 
be needed if the objective is not met. When the operational 
profile is not fully developed, application of a test 
compression factor can assist in estimating field reliability. 
A test compression factor is defined as the ratio of execution 
time required in the operational phase to execution time 
required in the test phase to cover the input space of the 
program. Since testers during testing are trying to "break" 
the software by searching through the input space for 
difficult execution conditions, while users during operation 
only execute the software at a normal pace, this factor 
represents the reduction of failure rate (or increase in 
reliability) during operation with respect to that observed 
during testing. 
 
Finally, the projected field reliability has to be validated by 
comparing it with the observed field reliability.  This 
validation not only establishes benchmarks and confidence 
levels of the reliability estimates, but also provides feedback 
to the software reliability measurement process for process 
improvement and better parameter tuning.  For example, the 
model validity could be established, the growth of reliability 
could be determined, and the test compression factor could 
be refined, etc. Since the engagement and application of 
software reliability models and the evaluation and 
interpretation of model results involve tedious computation-
intensive tasks, we believe the only practical usage of 
reliability models is through software tools. For this 
purpose, we designed and implemented a software reliability 
modeling tool, called Computer-Aided Software Reliability 
Estimation (CASRE) system [18], for an automatic and 
systematic approach in estimating software reliability. 
 
CASRE is implemented as a software reliability modeling 
tool that addresses the ease-of-use issue as well as other 
issues. Figure 9 shows the high-level architecture for 
CASRE. 
 
Figure 9  High-Level Architecture for CASRE 
 
CASRE is currently executed in a Windows environment. 
The command interface is menu driven; users are guided 
through the selecting of a set of failure data and executing a 
model by selectively enabling pull-down menu options. 

Modeling results are also presented in a graphical manner. 
Users can select multiple models from two categories 
depending on failure data format: Time-Between-Failures 
models (for interfailure times) or Failure-Count models (for 
failure intensities). After one or more models have been 
executed, the predicted failure intensities or interfailure 
times are drawn in a graphical display window.  Users can 
manipulate this window’s controls to display the results in a 
variety of ways, including cumulative number of failures and 
the reliability growth curve.  Users may also display the 
results in a tabular fashion if they wish.  The performance of 
each model is evaluated using multiple criteria to assess 
model accuracy, model bias, model bias trend, and model 
noise.  Based on these criteria, the best model or models can 
be selected for reliable prediction of the software reliability. 
 
In addition, CASRE is facilitated with a useful functionality. 
Namely, results from different models can be combined in 
various ways to yield reliability estimates whose predictive 
quality is better than that of the individual models 
themselves [19]. CASRE incorporates our findings that 
prediction accuracy may be increased by combining the 
results of several models in a linear fashion.  Moreover, 
CASRE allows users to define their own combinations and 
record them as part of the tool’s configuration.  Weights for 
the components of the combination may be static or 
dynamic, and may be based on statistical techniques used to 
determine the applicability of a model to a set of failure 
data.  Once combination models have been defined, the 
steps required to execute them are no different than 
executing a simple model.  CASRE have been used by major 
corporations including AT&T, Lucent, Microsoft, NASA, 
IBM, Motorola, Nortel, etc. It is available through NASA 
Cosmic software distribution center, and included in a 
software diskette in [6]. 
 
6. Conclusions 
 
Developing reliable software systems is a formidable task, 
which involve the best of our knowledge in software 
reliability techniques. This paper surveys the current 
schemes in the planning, design, testing, and evaluation of 
software reliability.  We integrate these techniques in a 
unified paradigm, consisting three software reliability 
engineering phases: (1) modeling and analysis, (2) design 
and implementation, (3) testing and measurement. We 
describe the reliability techniques associated with each of 
these three phases for fault management, fault avoidance and 
fault tolerance, as well as fault removal and fault prediction. 
 We also discuss the software tools available in each phase, 
including SHARPE, UltraSAN for phase (1), watchd, libft, 
libckp, REPL, addrejuv for phase (2), and ATAC, CASRE 
for phase (3).  We examine CASRE in detail for its 
capability to apply multiple software reliability models and 
to choose the most appropriate model for project-specific 
environments. 
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 6.  SUMMARY OF DUE DATES 

The key dates for conference abstract and paper submission, 
review, and final copy plus the dates for registration and 
lodging payments are summarized in Table 1. 
 
 7. SUMMARY OF STYLE SPECIFICATIONS 

The editorial style requirements for 1997 IEEE Aerospace 
Conference Papers are summarized in Table 2. 
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