
SIAS: A Secure Shopping Information Agent System
Anthony H. W. Chan, T. Y. Wong, Caris K. M. Wong, and Michael R. Lyu
Department of Computer Science and Engineering, the Chinese University of Hong Kong

Shatin, N.T., Hong Kong
Fax: (852) 2603-5024

{hwchan1, tywong,kmwong1,lyu}@cse.cuhk.edu.hk

ABSTRACT
In this paper, we build a Shopping Information Agent System
(SIAS) based on mobile agent technology. We discuss possible
security attacks by malicious hosts to agents in the system, and
present our solutions to prevent these attacks. We analyze the
security of our solutions, and evaluate the performance overhead
introduced.

Keywords
Mobile agents, electronic commerce, information agents, security

1. INTRODUCTION
Mobile agents can bring benefits such as reduced network load
and overcoming of network latency [1]. Nevertheless, security is
one of the blocking factors of the development of these systems.
The main unsolved security problem lies on the possible existence
of malicious hosts that can manipulate the execution and data of
agents [2].

In this paper, we build a Shopping Information Agent System
(SIAS) using the Concordia [3] architecture. The system is useful
to collect and compare the prices of a set of products specified by
users from different seller hosts in an electronic market. We
address the security issues of the system, describe possible attacks
by malicious hosts to the system, and devise and implement our
solutions to protect the system against these attacks.

2. OVERVIEW OF SIAS
SIAS is a web-based mobile agent system that provides users with
information of products for sale in an electronic marketplace.
Advantages of SIAS include such properties as reduction of
communication costs and delegation of tasks, which are the
intrinsic advantages of a mobile agent system. It is written in the
Java programming language and on top of the Concordia [3]
application-programming interface (API).

The Concordia architecture, among different mobile agent
platforms developed worldwide, is chosen for implementation of
SIAS mainly because of the API simplicity, and the ability it
allows to manipulate agent code execution, which is good for

simulating malicious attack behaviors. The Java programming
language is a natural choice for the Java-based Concordia API.

SIAS implements mobile agents to retrieve product information in
an electronic market for users. An electronic market consists of
hosts that sell products on the network. Each seller maintains a
database that stores the prices and quantities in stock of different
products available at that host. The control flow of the system is
described by Figure 1.

3. SECURITY DESIGN OF SIAS
Both host security and agent security [4] would be issues of SIAS.
However, we are primarily interested in agent security. The Java
sandbox model has largely simplified the host security part.

Figure 1: Control flow of SIAS.

Explanation of steps:
1. Client program launches a request to the Launch

Server object upon user input using Java Remote
Method Invocation (RMI);

2. Launch Server creates an Agent object;
3. Launch Server initializes the agent with user-specified

products and quantities, and the itinerary of agent;
4. Launch Server sends the agent to the network;
5. Database Server on Host One retrieves the required

information for the incoming agent;
6. Agent goes to the next destination;
7. Database Server on Host Two repeats Step (5);
8. Agent goes to other hosts in the itinerary;
9. Database Server on each host repeats Step (5);
10. Launch Server receives the returning agent and

calculates the cheapest purchasing combination;
11. Launch Server reports the cheapest purchasing

combination to client program by Java RMI.

H o s t O n e
(C o n c o r d i a

A g e n t T r a n s p o r t e r)

H o s t T w o
(C o n c o r d i a

A g e n t T r a n s p o r t e r)

H o s t N
(C o n c o r d i a

A g e n t T r a n s p o r t e r)

L a u n c h S e r v e r
(R M I S e r v e r)

C l i e n t P r o g r a m
(Java App le t)

S t ep (1)

S tep (4)

S tep (6)

S t e p (1 1)

L a u n c h S e r v e r
execu t e s S t eps (2) & (3)

 D a t a B a s e S e r v e r
e x e c u t e s S t e p (5)

S tep (8)

S tep (7) S tep (9)

S t e p (1 0)

Three particular security problems for SIAS can be identified:

a) Modification of query products by a malicious host;

b) Modification of query quantities by a malicious host; and

c) Spying out and modification of query results.

This is only a subset of possible attacks. There are other attacks
such as replaying of query results and masquerading of hosts. For
the time being, we consider the four attacks only, for simplicity.

Having figured out the above system vulnerabilities, we develop a
simple but original approach to protect agents in SIAS against
attacks from malicious host, based on cryptographic techniques.
We introduce a public-key infrastructure into the system, and
require each host and agent in the system to possess a pair of keys
for encryption and decryption. Therefore, each agent or host can
encrypt or digitally sign the data items carried by an agent, and
thus all the a) query products, b) query quantities, c) query results
can be protected. Figure 2 illustrates changes to the system for
security enhancement.

4. EVALUATION OF THE SECURE SIAS
The security of the additional measures lies mainly on the
introduction of a key server that facilitates the use of public key
cryptography. Assuming the key server, the communication
channel with the key server are secure enough, and the keys are
managed properly, the prevention of modification of the signed
product and quantity lists of an agent by a malicious host is
supported by the security of the RSA encryption algorithm. The
time complexity for breaking the RSA cryptosystem depends on
the length of the key in number of bits. The longer the key is, the
more secure the system would be. In our implementation, we have
chosen a key length of 128 bits. This would be sufficiently secure
for our security purpose.

To evaluate the performance overhead introduced, we have tested
the times for SIAS to launch a single agent with and without
security measures. Round trip times (RTTs) required for an agent
to travel around an electronic market of three hosts, with and
without security enforcement, are measured respectively. Queries
of different sizes (number of product items) have been tested.

Results show that, without security measures, the RTT for an
agent to travel in SIAS does not change much over when the size
of query varies. However, when security is enforced, the RTT
increases very fast and linearly with the size of query. This can be
explained by the extensive use of the RSA algorithm to encrypt
and decrypt each item, which is time consuming, especially when
the key is long. In addition, we simulate malicious hosts trying to
modify the query list of an agent in SIAS, and measure the
overheads introduced by the actions of malicious hosts. The
results show that it takes a little bit more time for an agent to
travel around when there is attack from malicious host. This
suggests that the agent round trip time may be used as a measure
for tampering detection.

5. CONCLUSION
We studied the technology of autonomous mobile agents and the
problem of malicious hosts in a mobile agent system. We
implemented SIAS as a sample application of mobile agents. We
addressed some security problems of malicious hosts in SIAS, and
developed a primitive approach to protect the agents. We analyzed
the security of our approach, and believe it is strong enough for
our application. We measured the performance overhead of the
security measures, saw a trade-off between performance and
security for SIAS, and learned that it takes time for a malicious
host to attack an agent.

6. References
[1] Danny B. Lange and Mitsuru Oshima. "Seven Good Reasons

for Mobile Agents", Communications of the ACM, p.88 - 89,
1999 Mar.

[2] F. Hohl. "A Model of Attacks of Malicious Hosts Against
Mobile Agents", Proceedings of the ECOOP Workshop on
Distributed Object Security and 4th Workshop on Mobile
Object Systems: Secure Internet Mobile Computations, p.
105 - 120, INRIA, France, 1998.

[3] "Concordia - Java Mobile Agent Technology".
http://www.meitca.com/HSL/Projects/Concordia/

[4] C. Tschudin. "Mobile Agent Security", Intelligent
Information Agents: Agent Based Information Discovery and
Management in the Internet, p. 431 - 446, Springer, 1999.

Figure 2: Control flow of security-enhanced SIAS.

Explanation of additional / modified steps:

3.1. Launch Server generates a key pair for agent;

3.2. Launch Server signs the product and quantity
lists for agents and registers the public key of agent to Key
Server;

5. Database Server on Host One retrieves public
key of agent from Key Server, and verify the signatures of
product and quantity lists of agents. Then, the Database
Server retrieves the required information for the incoming
agent, signs the results using its own private key, and
encrypt the results using the public key of agent;

11. Launch Server decrypts the query results, and
verifies the signatures of the query results. It also detects
change of agent itinerary by decrypting the chain of
encrypted itineraries, and finally reports the cheapest
purchasing combination to client program.

12. Launch Server deletes the public key entry of the
finished agent from the key server.

H o s t O n e
(C o n c o r d i a

A g e n t T r a n s p o r t e r)

H o s t T w o
(C o n c o r d i a

A g e n t T r a n s p o r t e r)

H o s t N
(C o n c o r d i a

A g e n t T r a n s p o r t e r)

L a u n c h S e r v e r
(R M I S e r v e r)

K e y S e r v e r
(R M I S e r v e r)

C l i e n t P r o g r a m
(Java App le t)

S t ep (1)

S tep (4)

S t e p
(1 1)

S t e p (1 2)

S tep (6) S tep (8)

L a u n c h S e r v e r
execu te s S t eps (2) ,
(3) , (3 .1) & (3 .2)

D a t a B a s e S e r v e r
e x e c u t e s S t e p s (5)

S t e p (1 0)

S tep (7) S tep (9)

