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Abstract— Wireless sensor-actuator networks (WSANs) have
recently been suggested as an enhancement to the traditional
sensor networks by employing powerful and mobile actuators.
Multiple actuators can patrol along different routes and com-
municate with the static sensors. To minimize the data collection
time, an effective route design is crucial for the actuators to travel
in the sensing field. In this paper, we present a mathematical
formulation of the route design problem, and show that the
general problem is computationally intractable. We then develop
a practically efficient algorithm to reduce the waiting time
for the sensors. Our algorithm adaptively differentiates the
actuator visiting frequencies to the sensors according to their
relative weights and data generation patterns. Simulation results
demonstrate that our algorithm can effectively reduce the overall
data collection time.

I. INTRODUCTION

Wireless sensor networks (WSNs) have been applied in
environment monitoring, battlefield surveillance, chemical at-
tack detection, and target tracking [1][2]. The asymmetric
communication patterns from sensors to the sink, however,
often overload the nodes close to the sinks and reduce the
network lifetime. Moreover, network partitions may occur
in sensor networks, which make multihop communications
impossible. To alleviate these problems, mobile elements, such
as mobile sinks [3] or mobile relays [4], have been suggested
for collecting data in WSNs. Actuator nodes, which have
much stronger computation and communication power than
uni-purpose micro-sensors, have also been introduced [5][6].
In a Wireless Sensor-Actuator Network (WSAN), an actuator
(e.g., a robot) can move around to cover the sensing field and
interact with static sensors. Each static sensor has a limited
buffer, which stores locally sensed data until some actuator
approaches. It can then upload the data to the actuator with
short-range communications and free its buffer.

Note that the amount and frequency of data generation in the
sensor nodes are non-uniform [7]. The actuators thus should
visit locations with higher importance more frequently. This
can be achieved by either increasing the number of actuators
passing through important locations, or reducing the length
of the routes of passing-through actuators. More formally,
there is a Route Design Problem (RDP) for the actuators to
minimize their average inter-arrival time to the static sensors.

In this paper, we present the first formal study on the RDP
problem. We demonstrate that the general problem is NP-hard.
We then develop an efficient algorithm based on the minimum
spanning tree construction. Our simulation results show that
the algorithm can effectively reduce the overall data collection
time.

The remainder of the paper is organized as follows: The
related work is presented in Section II, followed by the formu-
lation and NP-hardness proof of the RDP problem in Section
III. The proposed approximation algorithm is described in
Section IV. Simulation results are provided and discussed in
Section V. Finally, Section VI concludes the paper.

II. RELATED WORK

Mobile elements have been proposed to carry data in
wireless networks. Shah. et al. [8] presented an architecture
using moving entities (Data Mules) to collect sensor data.
There have been studies on mobile sinks with predictable
and controllable movement patterns [9][10]. Mobile sinks can
find the optimal time schedule to stay at appropriate sojourn
points [3]. Apart from the above, Zhao et al. [11] proposed
a message ferrying (MF) approach to address the network
partition problem in sparse ad hoc networks. Luo et al. [4]
investigated a joint mobility and routing algorithm with mobile
relays to prolong the lifetime of wireless sensor networks.
Gu et al. [12] proposed a partitioning-based algorithm to
schedule the movement of mobile element (ME) to avoid
buffer overflow in sensors and reduce the minimum required
ME speed.

Our work is motivated by the above studies. The key
difference is that we focus on the route design for multiple
mobile components in WSANs, specifically, actuators moving
along independent routes. We also address issues regarding the
non-uniform weights of the static sensors.

A closely related problem to RDP is the vehicle routing
problem (VRP), which considers scheduling vehicles stationed
at a central facility to support customers with known demands,
targeting at minimizing the total distance travelled [13]. There
are a number of variations to VRP, including the Capacitated
VRP (CPRV)[14] and VRP with time windows (VRPTW)[15].
While these investigations have studied the routes of mobile



components, the unique features of the actuators and the
heterogeneous sensor networks have yet to be explored.

III. PROBLEM FORMULATION

We consider a Wireless Sensor-Actuator Network consisting
of multiple mobile actuators and a set of static sensors. The
actuators move in the sensing field along independent routes.
Each static sensor has a limited buffer to accommodate locally
sensed data. When an actuator approaches, the sensor can
upload the data to the actuator and free its buffer.

In our design, sensors are assigned with different weights
Wj , according to their types and importance of data. Normally,
the sensors which detect more urgent events will be assigned
with higher weights. For example, sensors detecting gas leak-
ages would have higher weights than those sensing humidity.
The objective of our work is to design the distinct routes for
the actuators to walk through the sensors.

We now give a formal description of the system parameters,
which is summarized in Table I. Our objective is to minimize
the overall length of routes, while guaranteeing locations with
higher weights can achieve lower actuator inter-arrival time.

TABLE I

SYSTEM PARAMETERS

s Sensor node
Rs Communication range of sensor node
cij Cost from sensor location i to j
xijk Boolean indicating whether link (i, j) is on route k
Wj Weight of sensor location j (a value between 0.0

and 1.0)
Nj Number of sensors with weight Wj
Aj Average actuator inter-arrival time for sensor loca-

tion j
Tk Period of route k
N Number of sensor locations
M Number of actuators

Route Design Problem (RDP):

Minimize
∑
∀j

Aj ∗ Wj ∗ Nj , (1)

where Tk =
∑N

i=1

∑N
j=1 xijk ∗ cij , Aj = F(T1, T2, ..., TM′) is the

function of all Tk that pass through the sensor location j.

Subject to:
M∑

k=1

N∑
i=1

xijk ≥ 1, ∀j = 1, ..., N (2)

||s, j|| ≤ Rs, ∀s, ∃j (3)

N∑
i=1

xipk −
N∑

j=1

xpjk = 0, ∀k = 1, ..., M, p = 1, ..., N (4)

yj − yi + N

M∑
k=1

xijk ≤ N − 1, i �= j = 1, ..., N (5)

xijk ∈ {1, 0}, ∀i, j, k; yi arbitrary, (6)

where our objective (Eq. 1) is to minimize weighted aver-
age actuator inter-arrival time among all sensor locations.
F(T1, T2, ..., TM ′) is a function for calculating the Aj of
a sensor location that is passed by the routes with period
T1, T2, ..., TM ′ . Constraint (2) suggests that each sensor lo-
cation should be on at least one route. Constraint (3) ensures
every sensor can communicate with the actuators, provided
that at least one sensor location is within the communication
range Rs of the sensor. Constraint (4) states that if an actuator
visits a sensor location, it must also depart from it. Constraint
(5) is the subtour-elimination condition derived for the travel-
ling salesman problem [16]. The route design problem differs
from the traditional vehicle routing problem in the following
aspects:

1) The sensors are of different weights, according to their
data generation rates and importance. Sensor locations with
higher weights will achieve lower average actuator inter-arrival
times.

2) Sensors upload data to actuators through wireless com-
munications. Data transmission is possible only when the
distance between the sensor and actuator is within a com-
munication range Rs.

3) It is not necessary for each route to pass through the
depot (or the base station), as the actuators generally can
communicate with the base station directly with its stronger
power.

We now offer some observations on the general route design
problem.

Definition 1: Route is a path that is walked through repeatly

by an actuator.

Property 1: Route with a Hamiltonian cycle achieves

shorter maximum inter-arrival time Amax than that without.
Proof: Let p1, p2, .., pn be the sensor locations on a

route, c12, c23, ..., cn1 be the cost between consecutive sensor
locations. We have T =

∑
∀c c/v is the period of the route,

where v is the moving speed of the actuators. If the route is a
Hamiltonian cycle, Amax of any sensor location p is always
equal to T . On the contrary, considering a route that is not
a Hamiltonian cycle, an actuator will need to walk from one
end to another end, then back to the beginning sensor location
to complete a cycle. The Amax of the sensor locations at two
ends will then be 2T , which is much longer then T .

Property 2: The average actuator inter-arrival time Aj of

a sensor location j on multiple routes can be calculated as

F(T1, T2, ..., TM ′) =
∏M′

k=1 Tk∑ M′
k=1(

∏M′
i=1,i�=k Ti)

.

Proof: Find a common multiple Q among the period
T1, T2, ..., TM ′ of all routes that pass through sensor location
j. One of the simplest common multiple is Q = T1 ∗ T2 ∗
... ∗ TM ′ . If Q is a time interval, the number of times that



the actuator on route k passes through sensor location j is∏M ′

i=1,i �=k Ti. The total number of times that the actuators visit
j is the summation of the number of visits by each actuator,∑M ′

k=1(
∏M ′

i=1,i �=k Ti). The average inter-arrival time Aj is then
equal to the total time over the total number of visits, that is,

Aj =
∏M′

k=1 Tk∑ M′
k=1(

∏M′
i=1,i�=k Ti)

.

Theorem 1: The route design problem (RDP) is NP-hard.
Proof: To prove the route design problem (RDP) is NP-

hard, we show that HAM-CYCLE ≤p RDP. Let G = (V,E)
be an instance of HAM-CYCLE. We construct an instance of
RDP as follows. We form a complete graph Gk = (Vk, Ek)
for each actuator k, where Ek = (i, j) : i, j ∈ Vk, i �= j,
G′ = (V,E′) =

⋃
∀k Gk, V =

⋃
∀k Vk, E′ =

⋃
∀k Ek, for

k = 1, ...,M , and we define the cost function c by

ci,j =
{

0 if (i, j) ∈ E,
1 if (i, j) � ∈E.

Considering Wj = constant for all j ∈ V , all sensor
locations j will be visited once by any of the actuators, such
that the instances of RDP is (G′, c, C[1, ...k, ...M ] = 1), where
C[k] is the sum of ci,j for all (i, j) ∈ Ek.

We now show that the graph G has a Hamiltonian
cycle if and only if G′ has M tours, where the cost
C[k] at each cycle k is at most 1. Suppose that graph
G has a Hamiltonian cycle h. Each edge in h belongs
to E and thus has cost 0 in G′. Select M edge in
h, (i1, j1), (i2, j2), ...(iM , jM ) and remove them. Then, recon-
nect these nodes in sequence (j1, i2), (j2, i3), ...(jM , i1). Since
the edges (j1, i2), (j2, i3), ...(jM , i1) do not belong to E, each
of them has cost 1. As a result, h is broken into M cycles,
where the cost C[k] of each cycle k is at most 1.

Conversely, suppose that G′ has M cycles h1, ...hk, ...hM

of cost at most 1. We can easily merge these M cycles
into one Hamiltonian cycle. Since the cost of each edge in
Ek are 0 and 1, at most one edge of each cycle is 1, and
all other edges are 0. Remove the edge in each cycle that
is 1, (i1, j1), (i2, j2), ...(iM , jM ). Then, reconnect the nodes
involved in a new order, (j1, i2), (j2, i3), ...(jM , i1), such that
a single hamiltonian cycle can be formed.

IV. MST-BASED ROUTE DESIGN ALGORITHM FOR

MULTIPLE ACTUATORS

We now develop a practical algorithm for the route design
problem with multiple actuators in WSANs. Our algorithm
utilizes multiple minimum spanning trees (MSTs). Intuitively,
we want to construct M routes with equal period T , in which
sensors with weights Wi will be visited more frequently.
Notice that each actuator is in charge of one route. A sensor
location with weight Wi will be passed by Wi∗M actuators. In
other words, it will be found on Wi ∗M routes. For example,
a sensor with Wi = 0.75 in a network with 4 actuators will be
visited by 3 different actuators. If all actuators have the same

Fig. 1. Step 1: Sensor locations with Ni = 3 are involved in all trees; Step
2: Sensor locations with Ni = 2 are involved in any two of the trees.

Fig. 2. Final routes formed by the route design algorithm.

period T , from Property (2), its average actuator inter-arrival
time Aavg will be T/3.

In the following, we describe the details of the MST-based
route design algorithm.

A. Clustering with MSTs

Sensor locations are assigned with a specific number of
routes Ni according to their weights Wi, where Ni = �Wi ∗
M�. The locations with the same Ni belong to the set Si.
Our algorithm builds M spanning trees Tk, which include
the sensor locations on the M routes respectively, where
k = 1, ...,M . Firstly, the sensor locations with the highest
Ni, say Ni = M , will be assigned to all trees. Then, the
locations with the next highest Ni will be assigned to Ni

trees with the lowest costs (Figure 1). The process is repeated
until there is no remaining locations, as shown in Algorithm
1. Figure 2 shows the final routes formed by three trees, which
have similar length. It demonstrates that sensor locations with
higher weights will be visited by more actuators. Since the
routes have similar lengths, they also achieve lower actuator
inter-arrival time Aavg .

B. Forming a TSP Solution in each Tree Tk

The M trees above result in M groups of nodes that should
be walked through by actuators on distinct routes. The route
design problem can then be reduced to the Travelling Salesman
Problem (TSP) for each group of nodes. In the literature,
several algorithms to calculate the TSP paths are proposed,
such as the nearest neighbor, LKH [17], and some polynomial-
time approximation schemes [18]. Among different approxi-
mation algorithms, the Approx-TSP-Tour algorithm [19] uses
the minimum spanning tree to create a tour whose weight is
a lower bound on the length of an optimal traveling-salesman



Algorithm 1 Forming Spanning Trees for Actuators
for k = 1 to M do

Tk = φ;
end for
for i = M down to 1 do

for each node p ∈ Si do
for each spanning tree Tk do

Tk′ = Tk

⋃
p;

Calculate the new cost of the tree Tk′ , C(Tk′)
end for
sort the list of C(Tk′)
for the top i trees with the lowest new cost C(Tk′) do

Tk = Tk′ ;
C(Tk) = C(T ′

k);
end for

end for
end for

tour. Its cost is no more than twice of the minimum spanning
tree’s weight. After computing the MST, then it performs
a preorder traversal on the tree to obtain a Hamiltonian
cycle [12]. In our solution, the MST is created using Prim’s
algorithm [19], which is in polynomial-time.

C. Determining the Locations of Actuators

It is more efficient for a sensor to have short waiting time
to the actuators, so the maximum inter-arrival time Amax may
also be an important consideration other than Aavg . We focus
on the sensor locations with the highest Wi and provide a
simple method for deciding the starting point of the actuator
on its route. A location with the highest Wi can be selected as
a reference point pr. Then, each actuator k will be assigned
to the point after travelling for time T ∗ k/M from pr on its
own route. This is to encourage more even inter-arrival time
of the actuators. More advanced methods can be studied as
the future work.

V. PERFORMANCE EVALUATION

We have conducted simulations for our proposed route de-
sign algorithm for multiple actuators. The simulation settings
are mainly drawn from [20], which are summarized in Table
II.

TABLE II

SIMULATION PARAMETERS

Network size 200m x 200m
Node placement Uniform Random or

Cluster
No. of sensor locations (N ) 50 or 100
Weight of sensors (Wj) 0.0-1.0
No. of actuators M
Speed of actuators v
Radio range 40m
MAC layer IEEE 802.11

A. Average Actuator Inter-Arrival Time under Uniform Ran-
dom Sensor Distribution

In the first set of experiments, we evaluate the average
actuator inter-arrival time Aavg with uniformly and randomly

distributed sensors.
Note that the average inter-arrival distance Davg is shown

in our results, instead of the inter-arrival time Aavg . It is
because the moving speed v of actuators may vary in different
environments. Indeed, the average inter-arrival time of actuator
Aavg can be calculated easily by Davg/v, where v is the
moving speed of the actuators. We also compare our results
with the baseline algorithm, which divides the nodes into
different groups according to their weights, and provides a
route for each group to be walked through by an actuator.
More specifically, the nodes are divided into M weight range
and form groups accordingly. Then, a TSP route is formed to
contain the nodes in its group. Finally, M routes are formed
in the network and each of them is patrolled by a distinct
actuator.

Figure 3 shows the average inter-arrival distance Davg for
an actuator to visit the sensor locations periodically under
uniform random sensor distribution with N = 50 and M = 5. It
evaluates distance Davg to the sensor locations with weights
in the ranges 0.0-0.2, 0.2-0.4, 0.4-0.6, 0.6-0.8, and 0.8-1.0,
respectively. It demonstrates that the sensor locations with
higher weights achieve shorter inter-arrival distance Davg ,
and hence shorter inter-arrival time Aavg in our algorithm.
Similarly, Figure 4 shows Davg in the same network with
N=100 and M=7. Again, sensor locations with higher weights
are visited more frequently, which follows our design objec-
tive. In comparison with the baseline algorithm, our algorithm
guarantees much shorter inter-arrival time for highly weighted
sensors. It differentiates the inter-arrival time among the sen-
sors effectively, while a reasonable low overall inter-arrival
time is realized simultaneously.
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Fig. 3. Average inter-arrival distance under uniform sensor distribution with
N=50 and M=5.

B. Average Actuator Inter-Arrival Time under Non-Uniform
Sensor Distribution

We next evaluate our algorithm with a non-uniform sensor
distribution. Sensor nodes are deployed unevenly, which may
result in clusters and network partitions. Specifically, we place
the sensors into three clusters randomly in this experiment.

Figure 5 shows the average actuator inter-arrival distance
Davg with N=50 and M=5. Under a cluster-based sensor
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Fig. 4. Average inter-arrival distance under uniform sensor distribution with
N=100 and M=7.

deployment, our algorithm also achieves better performance
than the baseline algorithm. An interesting observation is that
the Davg under cluster-based sensor deployment is lower than
that under uniform random deployment for both algorithms.
The reason is that the nodes are less distributed under cluster-
based deployment, so they have shorter Euclidean distances
and lead to the routes with shorter lengths. Similarly, Figure
6 shows the result for the same network with N=100 and
M=7. Again, shorter inter-arrival distance Davg is achieved by
our algorithm for sensors with higher weights in comparison
with the baseline algorithm. Our algorithm performs generally
better than the baseline algorithm for all sensors except those
with the lowest weights.
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Fig. 5. Average inter-arrival distance under non-uniform sensor distribution
with N=50 and M=5.

C. Variance on Average Actuator Inter-Arrival Time

We have observed Davg for the sensor locations with the
same weight in the previous experiments. We are also inter-
ested to know whether a sensor location can achieve similar
Davg to the others with the same weight. Figure 7 shows the
distribution of Davg in a network with N=50 and M=4 under
uniform sensor distribution. It is clear that the sensor locations
on the same weight range obtain quite close Davg , so they have
similar waiting time to the actuators. Note that the locations
with the highest weight range achieves the same Davg , since
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Fig. 6. Average inter-arrival distance under non-uniform sensor distribution
with N=100 and M=7.

they are visited by all actuators. Similarly, Figure 8 shows the
results of the same experiment with N=100 and M=7. An
interesting observation is that the sensor locations with lower
weights suffer from greater variance on Davg . The reason is
that these locations are visited by fewer actuators, and the
difference on the route lengths may lead to more significant
variations on their final inter-arrival distance Davg .

Fig. 7. Distribution on average inter-arrival distance with N=50 and M=4.

Fig. 8. Distribution on average inter-arrival distance with N=100 and M=7.

VI. CONCLUSION AND FUTURE WORK

In this paper, we focused on wireless sensor networks with
multiple actuators and their route design. We demonstrated that



the problem is NP-hard and proposed an effective MST-based
approximation. Our algorithm aims at minimizing the overall
inter-arrival time of actuators, while differentiating the visiting
frequency to the sensor locations with different weights. Simu-
lation results suggested that our algorithm remarkably reduces
the average inter-arrival time. Our future work is to further
improve the performance of the route design algorithm and to
consider cooperations among the actuators.
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