
Optimal Allocation of Testing-Resource Considering Cost, Reliability, and
Testing-Effort

Chin-Yu Huang1, Jung-Hua Lo2, Sy-Yen Kuo3, and Michael R. Lyu4
1Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan
2Department of Information Management, Lan Yang Institute of Technology, I-Land, Taiwan
3Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
4Computer Science & Engineering Department, The Chinese University of Hong Kong, Shatin,

Hong Kong

Abstract

 We investigate an optimal resource allocation problem in
modular software systems during testing phase. The main
purpose is to minimize the cost of software development
when the number of remaining faults and a desired
reliability objective are given. An elaborated optimization
algorithm based on the Lagrange multiplier method is
proposed and numerical examples are illustrated. Besides,
sensitivity analysis is also conducted. We analyze the
sensitivity of parameters of proposed software reliability
growth models and show the results in detail. In addition,
we present the impact on the resource allocation problem if
some parameters are either overestimated or underestimated.
We can evaluate the optimal resource allocation problems
for various conditions by examining the behavior of the
parameters with the most significant influence. The
experimental results greatly help us to identify the
contributions of each selected parameter and its weight.
The proposed algorithm and method can facilitate the
allocation of limited testing-resource efficiently and thus the
desired reliability objective during software module testing
can be better achieved.

1. Introduction

The size and complexity of computer systems have
grown rapidly for the last several decades. Software costs
as a percentage of total computer system costs continue to
increase; while associated hardware costs continue to
decrease. The quantitative assessment of software quality
can be conducted through many approaches; however, it is
sometimes difficult for the project managers to measure
software quality and productivity. Nevertheless, reliability
may be the most important quality attribute of commercial
software since it quantifies software failures during the
development process. Although we can test maintainability,
usability, or efficiency, but the key issue for software testing

is still reliability. Software reliability is defined as the
probability of failure-free software operation for a specified
period of time in a specified environment [1]. Its evaluation
includes two types of activities: reliability estimation and
reliability prediction. Since the early 1970s, many analytical
software reliability growth models (SRGMs) have been
proposed for estimation of reliability growth of products
during software development processes. There are two
main categories of reliability estimation models: SRGMs
and statistical models. The models in the former class can
estimate the software reliability using the failure history of
the program. On the other hand, the latter models apply the
success/failure information of a program from a random
sample of test cases without making any corrections on the
discovered errors [2-3].

Most SRGMs are typically based on failure data such as
number of failures, time of occurrence, failure severity, or
the interval between two consecutive failures, whereas other
models describe the relationship among the calendar testing,
the amount of testing-effort, and the number of software
faults detected by testing. The testing-effort can be
represented as the number of CPU hours, the number of
executed test cases, etc [4-6]. SRGMs sometimes show
good performance in terms of predictability of the software
reliability, but sometimes they do not. This fact may be
caused by insufficient information on how the software has
been developed, maintained, and operated.

Furthermore, many SRGMs neglect cost. Some software
cost models consider reliability as one of the factors
affecting cost [7]. For example, the well-known COCOMO
model takes reliability as one of its fifteen cost drivers [8].
Musa et al. [3] also discuss a model for determining the
minimal life cycle cost of software, in which they assumed
that testing cost is a nonlinear function of software failure
rate. Similarly, some papers provide optimal software
release policies and include reliability in the cost function.
Kubat formulates a mathematical programming model to
determine module reliabilities by minimizing software

development costs [9-10]. Berman et al. also propose an
optimization model for deriving cost allocations while
satisfying a budget constraint [11]. Morevoer, cost analysis
can be performed by multiplying the difference in expected
total number of defects by either a relative or a fixed cost
parameter. Following Okumoto and Goel, and Yamada et
al., we can evaluate the total software testing cost by using
the cost of testing-effort expenditures during software
testing phase [3, 12-13].
 Practically, a software testing process consists of several
testing stages including module testing, integration testing,
system testing and installation testing. During the testing
phase, software faults can be detected and removed. The
quality of the tests usually corresponds to the maturity of the
software test process, which in turn relates to the maturity of
the overall software development process. In general, most
popular and commercial software products are complex
systems composed of a number of modules. Typically,
module testing is the most time-critical part of testing to be
performed. All the testing activities of different modules
should be completed within a limited time, and these
activities normally consume approximately 40%~50% of the
total amount of software development resources. Therefore,
project managers should know how to allocate the specified
testing-resources among all the modules and develop quality
software with high reliability. Many recent papers have
addressed the problem of optimal resource allocation [9-29].
For example, the reliability allocation approach of Leung
[14, 17-19] used the operational profile to define a software
utility function. Kubat presented a stochastic model to
minimize cost subject to an overall system failure intensity
goal [9-10, 14]. He took an implicit usage view of the
system by modeling transitions through modules according
to a Markov process, which is similar in concept to the
modular software reliability model proposed by Littlewood
[28]. Besides, Hou et al. investigated software release
policies to minimize testing cost while satisfying a system
reliability objective. They considered minimizing the
number of undetected software faults under a budget
constraint, as well as minimizing testing resources
constrained by undetected faults [14, 20-21]. The purpose
of these research efforts is to allocate testing-resources
efficiency to testing activities so that the reliability of
software systems will be maximized or the remaining faults
can be minimized.
 In this paper, we will show how to minimize the cost of
software, given the number of remaining faults and a desired
reliability objective. We provide a systematic method for
the software project managers to allocate specific amount of
testing-resource expenditures for each module under given
constraints. An SRGM with generalized logistic
testing-effort function to describe the time-dependency
behaviors of detected software faults is used. The paper is
organized as follows. In Section 2, an SRGM with
generalized logistic testing-effort function based on NHPPs

is presented. The derivation of an optimal testing-resource
allocation problem for modular software testing is developed
in Section 3. We investigate the optimization problem of
minimizing the software development cost with a given
fixed amount of testing-effort and a reliability objective.
Furthermore, several numerical examples are described and
a sensitivity analysis is illustrated in Sections 4. We can
evaluate the optimal resource allocation problems for
various conditions by examining about the behavior of some
parameters with the most significant influence. Finally, the
conclusions are drawn in Section 5.

2. Reviews of SRGM with generalized logistic
testing-effort function

A number of SRGMs have been proposed on the subject
of software reliability. Among these models, Goel and
Okumoto used an NHPP as the stochastic process to
describe the fault process [1]. Yamada et al. [6-8] modify
the G-O model and incorporate the concept of testing-effort
in an NHPP model to get a better description of the software
fault detection phenomenon. We also propose a new
SRGM with the logistic testing-effort function to predict the
behavior of failure occurrences and the fault content of a
software product. Based on our past experimental results,
this approach is suitable for estimating the reliability of
software application during the development process [6-9,
19-23]. Here are the modeling assumptions:
(1). The fault removal process is modeled by an NHPP.
(2). The software application is subject to failures at random

times caused by the remaining faults in the system.
(3). The mean number of faults detected in the time interval

(t, t+!t) by the current testing-effort is proportional to
the mean number of remaining faults in the system at
time t, and the proportionality is a constant over time.

(4). Testing effort expenditures are described by a
generalized logistic testing-effort function.

(5). Each time a failure occurs, the corresponding fault is
immediately removed and no new faults are introduced.

(6). The hazard rate for software occurring initially after the
testing is proportional to the elapsed time " and the
remaining faults.

With these assumptions, if the number of faults

detected by the current testing-effort expenditures is
proportional to the number of remaining faults, then we
obtain the following differential equation:
)]([

)(
1)(tmar

twdt
tdm #$%$

&

 (1)

where m(t) is the expected mean number of faults detected in
time (0, t) , W&(t) is the current testing-effort consumption at
time t, a is the expected number of initial faults, and r is the
fault detection rate per unit testing-effort at testing time t and
r>0.

Solving Eq. (1) under the boundary condition m(0)=0
(i.e., the mean value function m(t) is equal to zero at time 0),
we have

))])0()((exp[1()(&& WtWratm ###%
' ())]((exp[1 tWra ##% (2)

In Eq. (2), m(t) is non-decreasing with respect to testing
time t. Knowing its value can help us determine whether
the software is ready for release and if not, how much more
testing resources are required [1, 6]. It can provide an
estimate of the number of failures that will eventually be
encountered by the customers. When t��, the expected
number of faults to be detected is

a
A

Nam)*
+
,

-
.
/

0
#$%1]

1
exp[1)((if A >> N) (3)

Besides, a generalized logistic testing-effort function
with structuring index is proposed, which can be used to
consider and evaluate the effects of possible improvements
on software development methodology, such as top-down
design or stepwise refinement [4, 6, 25]. The generalized
logistic testing-effort function is depicted as follows:

&

2&

3&
&

/1

1
/)1()(**

+

,
--
.

/

0

0$%
tAe

NtW (4)

where N is the total amount of testing effort to be
consumed,42 is the consumption rate of testing-effort
expenditures, A is a constant, and &4 is a structuring index,
whereas a large value is used for modeling well-structured
software development efforts.

In addition, given that the testing has continued up to
time t, the probability that a software failure does not occur
in the time interval (t, t+!t))0(5!t is given by

))]()((exp[)|()(tmttmtttRtR #!0#%!06 (5)

Taking the logarithm on both sides of the above equation,
we obtain

))()(()(ln tmttmtR #!0#% (6)
From the Eq. (6) and Eq. (1) we can determine the testing
time needed to reach a desired reliability R0 [6]. On the
other hand, from assumption (6), we can also obtain
software reliability [23]
 7 8"" $#$$#%)](exp[exp)(trWarR (7)

That is, Eq. (7) means that no software failure occurs during
the time interval (0,a"8 after the testing and it is seldom used
except in some papers [8, 16]. Therefore, we define
another measure of software reliability, i.e., the ratio of the
cumulative number of detected faults at time t to the
expected number of initial faults [4, 21-22].

a
tmtR)()(6 (8)

We can solve Eq. (8) and obtain a unique t satisfying R(t)=R0.
Note that R(t) is an increasing function in t. Using R(t), we
can easily get the required testing time needed to reach the
reliability objective R0 or decide whether the reliability
objective can be satisfied at a specified time. If we know

that the reliability of a software system has achieved an
acceptable reliability level, then we can determine the right
time to release this software.

3. Testing-resource allocation policies for
module testing

In this section, we will consider resource allocation
problems based on an SRGM with generalized logistic
testing-effort function during software testing phase.

3.1. Model’s assumptions and descriptions

Assumptions [6, 25]:
(1). The software system is composed of N independent

modules that are tested individually. The number of
software faults remaining in each module can be
estimated by an SRGM with generalized logistic
testing-effort function.

(2). For each module, the failure data have been collected
and the parameters of each module can be estimated.

(3). The total amount of testing resource expenditures
available for the module testing processes is fixed and
denoted by W.

(4). If any of the software modules fails upon execution,
the whole software system is in failure.

(5). The system manager has to allocate the total testing
resources W to each software module and minimize
the number of faults remaining in the system during
the testing period. Besides, the desired software
reliability after the testing phase should achieve the
reliability objective R0.

 From Section 2, the mean value function of a software
system with N modules can be formulated as:

M(t)= 9 ##%9
%%

N

i
iiii

N

i
ii tWravtmv

11
)))(exp(1()((9)

where vi is a weighting factor to measure the relative
importance of a fault removal from module i in the future.
If vi =1 for all i=1, 2,…, N, the objective is to minimize the
total number of faults remaining in the software system after
the testing phase. This indicates that the number of
remaining faults in the system can be estimated by

9 #69 #
%%

N

i
iiii

N

i
ii WravtWrav ii

11
)exp())(exp((10)

3.2. Minimizing the software cost with a given fixed
amount of testing-effort and a reliability objective

In this subsection, we should allocate an amount of
testing-effort to each software module to minimize the
software testing cost. In general, testing might stop when a
90% upper confidence bound on the number of remaining
faults is below a desired bound. Alternatively, testing

could stop when total lifecycle cost is minimized. The cost
of a failure is greater in the field than in system test.
Therefore, the marginal benefit of testing for an increment of
execution time is the expected decrease in the cost of field
failures, accounting for the expected number of failures in
that increment. The marginal cost of testing is the
resources needed to test for an increment of execution time.
To minimize the total cost, testing should proceed until the
marginal benefit falls below the marginal cost [30]. There
are some cost models published in the literature, such as
Putnam's SLIM cost model, Checkpoint, Boehm's
COCOMO model, RCA PRICE S model, or COCOMO'II, ...,
etc [8].

Actually, software cost analysis can also be performed
by multiplying the difference in expected total number of
defects by either a relative or a fixed cost parameter. Kubat
formulate a mathematical programming model which, for a
given level of software reliability, determines module
reliabilities by minimizing development and testing costs
[9-10]. In his model the reliability of a program is the
multiplication of the reliability of its modules, and the
reliability of the system is a weighted sum of the reliability
of its programs. The cost of each module is assumed to be
a linear function of its reliability. The goal of the model is
to find the reliability of each module so that the reliability of
the system will be maximized within a given budget [7, 30].
We can evaluate the total software cost by using cost
criterion, the cost of testing-effort expenditures during
software development & testing phase, and the cost of
correcting errors before and after release as follows [3-4,
12-13, 23]:

:$0#10%
t

dxxwCtmmCtmCtC
0321)(')]()([')(')((11)

where C’1 is the cost of correcting an error during testing,
C’2 is the cost of correcting an error in operational use (C’2>
C’1), and C’3 is the cost of testing per unit testing-effort
expenditure. If we use Eq. (2), (3), (9), and (10) to
substitute m(t) in Eq. (11), we can develop a software cost
model based on an NHPP (Non-homogeneous Poisson
process) model and the total cost can be computed as follows:

9
%

##%9
%

N

i
iiii

N

i
ii WravCWCost

1
1))exp(1(*)(

1

99
%%

$0#0
N

i

N

i
iiiii WCWravC

1
3

1
2 *)exp(* (12)

where C*1 is the cost of correcting an error during module
testing, C*2 is the cost of correcting an undetected error
during module testing, and C*3 is the cost of module testing
per unit testing-effort expenditures. We know that C*2 >C*1
as C*2 is usually an order of magnitude greater than C*1 [8].

Altogether, based on labor, overhead, and related
expenses, we can determine the cost per failure C*1 for
failures that occur during module test, as well as the cost per
unit testing-effort expenditures C*3. Besides, based on
program maintenance, service impact, and related expenses,
we can determine the cost per failure C*2 for failures that

occur during the operational use [8, 30].
From Eq. (12), we can know the relationship between

the total cost for each software module and the
testing-resource expenditures. Therefore, the optimization
problem is how to allocate testing efforts to each module,
given that the total amount of testing-effort is fixed, and a
reliability objective is set. Suppose the total amount of
testing-effort is W, and module i is allocated Wi testing-effort,
then the optimization problem can be represented as follows:

The objective function is:

Minimize:)(
1
9
%

N

i
ii WCost (13)

Subject to the constrains:

0,
1

5;9
%

i
N

i
i WWW , i=1, 2,..., N. (14)

0))(exp(1)(RtWrtR iii 5##% (15)

From Eq. (15), we can obtain

.,...,2,1),1ln(1
0 NiR

r
W

i
i %#

#
5

Let .,...,2,1),1ln(1
0 NiR

r
D

i
i %#

#
6 (16)

Thus, we can have

NiWWW i
N

i
i ,...,2,1,0,

1
%5;9

%
 and ii CW 5 ,

where),.....,,,,0max(321 NDDDDCi %

Let iii CWX #% , we can transform above equations to:

 Minimize:)(*
1
9
%

N

i
ii XCost (17)

Subject to 0,
11

59#;9
%%

i
N

i
i

N

i
i XCWX , i=1,2, ..., N. (18)

where $##$%9 9
%%

N

i
iiii

N

i
ii CravCXCost

1
1)exp(1(*)(*

1

0##$0#$ 9
%

N

i
iiiiiiii XrCravCXr

1
2)exp()exp(*))exp(

9
%

0$
N

i
ii CXC

1
3)(* (19)

Note that the parameters vi, ai, and ri should already be
estimated by the proposed model. To solve the above
problem, the Lagrange multiplier method can be applied.
As we all know the conditions of Kuhn-Tucker are the most
important theoretical results in the field of nonlinear
programming. They must be satisfied at any constrained
optimum, local or global, of any linear and most nonlinear
programming problems [31-32]. Consequently, associating
multiplier < with Eq. (18), the above equations can be
simplified as follows:

Minimize:

9
%

###%
N

i
iiiiiiN XrCravCXXXL

1
1))exp()exp(1(*),,...,,(21 <

)exp()exp(*
1

2 iiiiii XrCravC
N

i
#$#$0 9

%

)()(*
111

3 90#900$0
%%

9
%

N

i
i

N

i
iii CWXCXC

N

i
< (20)

Based on the Kuhn-Tucker conditions (KTC), the

necessary conditions for a minimum value of Eq. (20) are in
existence and can be stated as follows [12-13, 16, 31-32]:
A1: 0),,...,,(21 %

=
=

i

N

X
XXXL < , i=1, 2,..., N. (21)

A2: 0),,...,,(21 %
=

=

i

N
i X

XXXLX < , i=1, 2,..., N. (22)

A3: 0)}({
11

%9##9$
%%

N

i
i

N

i
i CWX< , i=1, 2,..., N. (23)

Theorem 1. A feasible solution Xi (i=1, 2,..., N) of Eq. (20)

is optimal if and only if

(1) 312 *)exp()exp()**(CXrCrCCrav iiiiiii ##$##5<

(2) $###0$)exp()**(*{ 123 iiiiii CrCCravCX <

0)}exp(%# ii Xr

Proof: The proof is omitted since it is quite straightforward.

Corollary 1. Let Xi be a feasible solution of Eq. (20)
(i) Xi=0 if and only if

312 *)exp()**(CCrCCrav iiiii ###5<
(ii) If Xi>0, then

iiiiiii rCCrCCravX /)}*ln())exp()**({ln(312 0###% <
Proof:
(i) If Xi=0, then Theorem 1 implies that

312 *)exp()**(CCrCCrav iiiii ###5<
That is, if 312 *)exp()**(CCrCCrav iiiii ###%< , then
from Theorem 1 (2) we know that

$####$)**()exp()**({ 1212 CCravCrCCravX iiiiiiiii
0)}exp()exp(%#$# iiii XrCr or $#$)**(12 CCravX iiii

0)}exp(1{)exp(%##$# iiii XrCr .
 Since vi�0, ai�0, ri�0, and 0)exp(># iiCr , therefore
we have Xi=0 or 0)exp(1 %## ii Xr . That is, Xi=0. On the
other hand, if 312 *)exp()**(CCrCCrav iiiii ###?< , then

$#5##?)**()exp()**(1212 CCravCrCCrav iiiiiiii<
)exp()exp(iiii XrCr #$# or $#)**(12 CCrav iii

)exp()exp()**()exp(12 iiiiiiiii XrCrCCravCr #$#$###
0> . Therefore, from Theorem 1 (2), we have Xi=0. Q.E.D.

(ii) From Theorem 1 (2), we know that if Xi>0,
312 *)exp()exp()**(CXrCrCCrav iiiiiii ##$##%< .

Therefore
iiiiiii rCCrCCravX /)}*ln())exp()**({ln(312 0###% <

and 312 *)exp()**(0 CCrCCrav iiiii ###@; < . Q.E.D.

From Eq. (20), we have

###%
=

=
)exp()exp(*

),,...,,(
1

21
iiiiiii

i

N XrCrravC
X

XXXL <

<00#$# 32 *)exp()exp(* CXrCrravC iiiiiii
0*)exp()exp()**(312 %00##$##% <CXrCrravCC iiiiiii

 (24)

0),,...,,(
11

21 %90#9%
=

=
%%

N

i
i

N

i
i

N CWXXXXL
<

<

Thus, the solution 0
iX is

iiiiiii rCCrCCravX /)}*ln())exp()**({ln(3
0

12
0 0###% <

, i=1, 2,..., N. (25)
The solution 0< is

0#% 3*0 C<

A
A
A

B

C

D
D
D

E

F

9

9 90###

%

% %
N

i
i

N

i

N

i
iiiiiii

r

CWCrCCravr

1

1 1

)/1(

))exp()**()(ln/1(
exp

12 (26)

Hence, we get),...,,,(00
3

0
2

0
1

0
NXXXXX % as an optimal

solution to Eq. (20). However, the above X0 may have
some negative components if)exp()**(12 iiiii CrCCrav #$#

3*0 C0@ < , making 0X infeasible for Eq. (17) and Eq.
(18). If this is the case, the solution X0 can be corrected by
the following steps.

Algorithm 1

Step 1: Set l=0.
Step 2: Calculate the following equations

)}*ln())exp()**({ln(1
312 CCrCCrav

r
X iiiii

i
i 0###% <

i=1, 2,..., N#4l.
0#% 3*C<

A
A
A

B

C

D
D
D

E

F

9

9 90###

%

% %
N

i
i

N

i

N

i
iiiiiii

r

CWCrCCravr

1

1 1

)/1(

))exp()**()(ln/1(
exp

12

Step 3: Rearrange the index i such that
.... ***

21 lNXXX #555
Step 4: IF 0* 5#lNX then

 stop (i.e., the solution is optimal)
 Else

0* %#lNX ; l=l+1
End-IF.

Step 5: Go to Step 2.

The optimal solution has the following form:

G
G
G
G
G

H

G
G
G
G
G

I

J

%

A
A
A

B

C

D
D
D

E

F

9

9 90###

0#%
#%

0###%

%

% %

otherwiseX

r

CWCrCCravr

Cwhere
lNi

CCrCCrav
r

X

i

N

i
i

N

i

N

i
iiiiiii

iiiii
i

i

,0

)/1(

))exp()**()(ln/1(
exp

*
.,...,2,1,

)}*ln())exp()**({ln(1

*
1

1 1

*

12

3

312

<

<

(27)

It is noted that Algorithm 1 converges in, at worst, N#1
steps. Thus the value of objective function given by Eq.
(20) at the optimal solution),...,,(**

2
*
1 NXXX is

9
%

$0###
N

i
iiiiii CXrCravC

1
2

*
1 *))exp()exp(1(*

99
%%

00##
N

i
i

N

i
iiiiii CXCXrCrav

1

*
13

1

*)(*)exp()exp((28)

4. Numerical illustration

4.1. Numerical examples

In this section, we assume that the estimated parameters
ai, ri, and &4in Eq. (9), for a software system consisting of 10
modules, are summarized in Table 1. All the parameters ai
and ri for each software module were estimated by using the
maximum likelihood estimation (MLE) or the least squares
estimation (LSE). We apply the proposed model to
software failure data set [12-13, 15, 21, 26]. Here we have
to allocate the expenditures to each module and minimize
the number of remaining faults. Besides, we let the cost
parameters C*1 =2, C*2 =10, and C*3=0.5. Moreover, the
weighting vectors vi in Eq. (9) are also listed in Table 1.
We need to allocate the expenditures to each module and
minimize the expected cost of software during module
testing. In the following, we illustrate one example to
show how the optimal allocation of testing-effort
expenditures to each software module is determined.
 Suppose that the total amount of testing-effort
expenditures W is 50,000 man-hours and R0=0.9. From
Table 1 and Algorithm 1 in Section 3.2, the optimal
testing-effort expenditures for the software systems are also
estimated and shown in Table 1. It is noted that the
weighting vectors of module 9 is 0.05. Through Eq. (12) and
Table 1, it is easy to obtain the total expected software cost.
Conversely, if for some reasons and specific requirements

we intend to decrease more software cost, we have to re-plan
and re-consider the allocation of testing-resource
expenditures; i.e., using the same values of ai, ri, and vi, the
optimal testing-effort expenditures should be re-estimated.
Following the same procedure described in Section 3.2, we
can still easily find out how much amount of testing-
resource expenditures is expected.

Table 1: The optimal testing-effort expenditures
with estimated values of ai, ri, vi , and &&&&4444

Module ai ri & vi *
iX

1 89 4.1823×10-4 1 1.0 7632
2 25 5.0923×10-4 1 0.6 3158
3 27 3.9611×10-4 1 0.7 4009
4 45 2.2956×10-4 1 0.4 4329
5 39 2.5336×10-4 1 1.5 8964
6 39 1.7246×10-4 1 0.5 4568
7 59 8.819×10-5 1 0.5 6023
8 68 7.274×10-5 1 0.6 9112
9 37 6.824×10-5 1 0.05 0

10 14 1.5309×10-4 1 1 2203

4.2. Sensitivity analysis

 In this section, a sensitivity analysis of the proposed
model is conducted to study the effect of the principal
parameters, such as the expected initial faults and the fault
detection rate. In Eq. (1), we know that there are some
parameters affecting the mean value function, such as the
expected total number of initial faults, fault detection rate,
the total amount of testing-effort, the consumption rate of
testing-effort expenditures, or the structuring index, etc.
Therefore, we need to estimate all these parameters for each
software module very carefully since they play important
roles for these optimal resource allocation problems. In
general, each parameter is estimated based on the available
data, which is often sparse. Therefore, in this section, we
analyze the sensitivity of some principal parameters but not
for all parameters due to the limitation of size.
Nevertheless, we still can evaluate the optimal resource
allocation problems for various conditions by examining
about the behavior of some parameters that have the most
significant influence [33-35]. We thus perform the
sensitivity of optimal resource allocation problems with
respect to the estimated parameters so that attention can be
paid to those parameters deemed most critical. In the
following paragraph, we will give some numerical examples
to understand the sensitivity of optimal resource allocation
problems with respect to the estimated parameters.

4.2.1. Effect of variations on expected initial faults. From
Table 1, we can know that the optimal testing-effort

expenditures (OTEE) with estimated values of ai, ri, vi , and
&4 under 5.0,10,2 *

3
*
2

*
1 %%% CCC , and W=50,000. We

investigate the possible change of optimal testing-effort
expenditures when the expected initial faults a1 is changed
by ± 100x%. First, we define

 Relative Change (RC) =
OTEE

OTEEMTEE # (29)

where OTEE is the original optimal-testing-effort-
expenditures and MTEE is the modified optimal-testing-
effort-expenditures.

Assuming we have obtained the optimal testing-effort
expenditures to each software module that minimizes the
expected cost of software, then we can calculate the MTEE
concerning the changes of expected initial fault ai for the
specific module i. The procedure can be repeated for
various values of ai. For example, for the data set used in
Section 4.1, if the expected initial fault a1 of module 1 is
increased or decreased by 40%, 30%, 20%, or 10%, then the
modified testing-effort expenditures for each software
module can be obtained by following the similar procedures
described in Section 3.2. Figure 1 plots relative change of
the optimal testing-effort expenditures for the case of 40%,
30%, 20%, and 10% increase to a1. The result indicates
that the estimated values of optimal testing-effort
expenditures will be changed when a1 changes. That is, if
a1 is increased by 40%, then the estimated value of optimal
testing-effort expenditure for module 1 is changed from
7632 to 8400 and its RC is 0.100628931 (about 10%
increment). But for modules 2, 3, 4, 5, 6, 7, 8, and 10, the
estimated values of optimal testing-effort expenditures are
about 0.95%, 0.95%, 1.52%, 0.67%, 1.93%, 2.87%, 2.30%,
and 4.49% decrement, respectively. Therefore, the variation
in a1 has the significant influence on the optimal allocation
of testing-effort expenditures.

Besides, from Figure 1, we can also know that if the
change of a1 is small, the sensitivity of the optimal
testing-resources allocation with respect to the value of a1 is
low. Next, we will show the same comparison results in
case that a1 is decreased by 100x%. From Figure 2, it is
shown that if a1 is decreased by 30%, the estimated value of
optimal testing-effort expenditure for module 1 is changed
from 7632 to 6818 and its RC is 0.106656184 (about
10.66% decrement). It is noted that for modules 2, 3, 4, 5,
6, 7, 8, and 10, the estimated values of optimal testing-effort
expenditures are about 1.01%, 1.02%, 1.64%, 0.71%, 2.06%,
3.05%, 2.44%, and 4.86% increment, respectively. A
similar procedure and conclusion can be obtained for the
other parameters, such as a2, a3, …, or a10. We perform an
extensive sensitivity analysis for the expected initial faults as
shown above. However, each ai is considered in isolation.
Here we try to study the effects of simultaneous changes of
ai & aj (j�i). If we let a1 & a2 both be increased by 40%,
then the estimated values of optimal testing-effort
expenditure for modules 1 and 2 are changed from 7632 to
8370 (about 9.67% increment) and 3158 to 3764 (about

19.18% increment), respectively. But for modules 3, 4, 5, 6,
7, 8, and 10, the estimated values of optimal testing-effort
expenditures are about 1.75%, 2.79%, 1.23%, 3.52%, 5.25%,
4.19%, and 8.22% decrement, respectively. Therefore, the
variation in a1 & a2 has the significant influence on the
optimal allocation of testing-effort expenditures. Similarly,
from Figure 3, we can see that if the changes of a1 & a2 are
less, the sensitivity of the optimal testing-resources
allocation with respect to the values of a1 & a2 is low. On
the other hand, from Figure 4, it is also shown that if a1 & a2
are both decreased by 30%, the estimated values of optimal
testing-effort expenditure for modules 1 and 2 are changed
from 7632 to 6850 (about 10.24% decrement) and 3158 to
2516 (about 20.32% decrement), respectively. It is also
noted that for module 3, 4, 5, 6, 7, 8, and 10, the estimated
values of optimal testing-effort expenditures are,
respectively, about 1.87%, 2.98%, 1.31%, 3.77%, 5.56%,
4.47%, and 8.81% increment.

Finally, we can conclude that if ai is changed, it will
impose much influence on the estimated values of optimal
testing-effort expenditure for module i. A decrease in ai
will decrease the estimated value of optimal testing-effort
expenditure for module i but the estimated value of optimal
testing-effort expenditures for the other module j (j�i) will
be increased, and vice versa.

1 2 3 4 5 6 7 8 9 10

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

R
el

at
iv

e
C

ha
ng

e

Modules

 a1*1.4
 a1*1.3
 a1*1.2
 a1*1.1

Figure 1: Relative change of OTEE for the case of

40%, 30%, 20%, and 10% increase to a1.

1 2 3 4 5 6 7 8 9 10

-0.16

-0.14

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

R
el

at
iv

e
C

ha
ng

e

Modules
 a1*0.6
 a1*0.7
 a1*0.8
 a1*0.9

Figure 2: Relative change of OTEE for the case of

40%, 30%, 20%, and 10% decrease to a1.

1 2 3 4 5 6 7 8 9 10

-0.10
-0.08
-0.06
-0.04
-0.02
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22

R
el

at
iv

e
C

ha
ng

e

Modules

 a1*1.4 & a2*1.4
 a1*1.3 & a2*1.3
 a

1
*1.2 & a

2
*1.2

 a1*1.1 & a2*1.1

Figure 3: Relative change of OTEE for the case of

40%, 30%, 20%, and 10% increase to a1 & a2.

1 2 3 4 5 6 7 8 9 10

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

Re
la

tiv
e

C
ha

ng
e

Modules a1*0.6 & a
2
*0.6

 a
1
*0.7 & a

2
*0.7

 a
1
*0.8 & a

2
*0.8

 a
1
*0.9 & a

2
*0.9

Figure 4: Relative change of OTEE for the case of

40%, 30%, 20%, and 10% decrease to a1 & a2.

4.2.2. Effect of variations on fault detection rate. In this
subsection we investigate the sensitivity of fault detection
rate. Similarly, for the data set used in Section 4.1, if the
fault detection rate r1 of module 1 is increased or decreased,
respectively, by 40%, 30%, 20%, or 10%, then the modified
testing-effort expenditures for each software module can be
calculated by following the similar procedures described in
Section 3.2. Figure 5 plots the relative change of the
optimal testing-effort expenditures for the case of 40%, 30%,
20%, and 10% increase to r1. We can find that the
estimated values of optimal testing-effort expenditures will
be changed when r1 changes. That is, if r1 is increased by
40%, then the estimated value of optimal testing-effort
expenditure for module 1 is changed from 7632 to 6079 and
its RC is -0.203 (about 20% decrement). But for modules 2,
3, 4, 5, 6, 7, 8, and 10, the estimated values of optimal
testing-effort expenditures are about 1.93%, 1.96%, 3.12%,
1.36%, 3.94%, 5.83%, 4.68%, and 9.21% increment,
respectively. Therefore, compared with a1, the variation in
r1 has less influence on the optimal allocation of
testing-effort expenditures. Besides, from Figure 5, we can
also see that if the change of r1 is small, the sensitivity of the
optimal testing-resources allocation with respect to the value
of r1 is low.

 From Figure 6, it is seen that if r1 is decreased by 30%,
the estimated value of optimal testing-effort expenditure for
module 1 is changed from 7632 to 9554 and its RC is 0.252
(about 25% increment). It is also noted that for modules 2,
3, 4, 5, 6, 7, 8, and 10, the estimated values of optimal
testing-effort expenditures are about 2.37%, 2.39%, 3.83%,
1.68%, 4.86%, 7.21%, 5.78%, and 11.30% decrement,
respectively. Nevertheless, a similar procedure and
conclusion can be obtained for the other parameters, such as
r2, r3, …, or r10.

Furthermore, if we let r1 & r2 be increased by 40%,
then the estimated values of optimal testing-effort
expenditure for modules 1 and 2 are changed from 7632 to
6094 (about 20% decrement) and 3158 to 2783 (about 12%
decrement), respectively. But for modules 3, 4, 5, 6, 7, 8,
and 10, the estimated values of optimal testing-effort
expenditures are about 2.49%, 3.99%, 1.75%, 5.03%, 7.47%,
5.99%, and 11.80% increment. Therefore, the variation in
r1 & r2 imposes the most significant influence on the optimal
allocation of testing-effort expenditures. Similarly, from
Figure 7, we can also observe that if the changes of r1 & r2
are small, the sensitivity of the optimal testing-resources
allocation with respect to the values of a1 & a2 is low. On
the other hand, from Figure 8, it is shown that if r1 & r2 are
both decreased by 30%, the estimated values of optimal
testing-effort expenditure for modules 1 and 2 are changed
from 7632 to 9534 (about 24.92% increment) and 3158 to
3387 (about 7.25% increment), respectively. It is noted
that for modules 3, 4, 5, 6, 7, 8, and 10, the estimated values
of optimal testing-effort expenditures are about 2.77%,
4.43%, 1.94%, 5.60%, 8.32%, 6.66%, and 13.07%
decrement, respectively.

Finally, it is obvious that if ri is changed, there is less
influence on the estimated values of optimal testing-effort
expenditure for module i, compared with ai. A decrease in
ri, thus increases the estimated value of optimal testing-
effort expenditure for module i and decreases the estimated
value of optimal testing-effort expenditures for the other
module j (j�i), and vice versa.

1 2 3 4 5 6 7 8 9 10

-0.22
-0.20
-0.18
-0.16
-0.14
-0.12
-0.10
-0.08
-0.06
-0.04
-0.02
0.00
0.02
0.04
0.06
0.08
0.10

R
el

at
iv

e
C

ha
ng

e

Modules r1*1.4
 r1*1.3
 r1*1.2
 r1*1.1

Figure 5: Relative change of OTEE for the case of

40%, 30%, 20%, and 10% increase to r1.

1 2 3 4 5 6 7 8 9 10

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4
R

el
at

iv
e

C
ha

ng
e

Modules

 r
1
*0.6

 r
1
*0.7

 r
1
*0.8

 r
1
*0.9

Figure 6: Relative change of OTEE for the case of

40%, 30%, 20%, and 10% decrease to r1.

1 2 3 4 5 6 7 8 9 10

-0.22
-0.20
-0.18
-0.16
-0.14
-0.12
-0.10
-0.08
-0.06
-0.04
-0.02
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

R
el

at
iv

e
C

ha
ng

e

Modules
 r1*1.4 & r2*1.4
 r1*1.3 & r2*1.3
 r1*1.2 & r2*1.2
 r1*1.1 & r2*1.1

Figure 7: Relative change of OTEE for the case of

40%, 30%, 20%, and 10% increase to r1 & r2.

1 2 3 4 5 6 7 8 9 10

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Re
la

tiv
e

C
ha

ng
e

Modules

 r
1
*0.6 & r

2
*0.6

 r
1
*0.7 & r

2
*0.7

 r
1
*0.8 & r

2
*0.8

 r
1
*0.9 & r

2
*0.9

Figure 8: Relative change of OTEE for the case of

40%, 30%, 20%, and 10% decrease to r1 & r2.

5. Conclusions

This paper proposes a method to optimize the software
testing-resource allocation problem. It minimizes the cost of
software development, with a given number of remaining
faults and a reliability objective. We develop a
comprehensive strategy for module testing in order to help

software project managers make the best decisions in
practice. Numerical examples are described and discussed.
In addition, an extensive sensitivity analysis is presented to
study the effects of various principal parameters on the
optimization problem of testing-resource allocation. We
perform an extensive sensitivity analysis for each of the
main parameters.

6. Acknowledgement

This research was supported by the National Science
Council, Taiwan, R.O.C., under Grant NSC 92-2213-E-
007-073 and also substantially supported by a grant from the
Research Grant Council of the Hong Kong Special
Administrative Region, China (Project No. CUHK4182/
03E).

References

[1] M. R. Lyu (1996), Handbook of Software Reliability

Engineering, McGraw Hill.
[2] M. Xie (1991), Software Reliability Modeling, World

Scientific Publishing Company.
[3] J. D. Musa, A. Iannino, and K. Okumoto (1987), Software

Reliability, Measurement, Prediction and Application,
McGraw Hill.

[4] C. Y. Huang, J. H. Lo, S. Y. Kuo, and M. R. Lyu, “Software
Reliability Modeling and Cost Estimation Incorporating
Testing-Effort and Efficiency,” Proceedings of the 10th IEEE
International Symposium on Software Reliability Engineering
(ISSRE'99), pp. 62-72, Nov. 1999, Boca Raton, FL, U.S.A.

[5] S. Y. Kuo, C. Y. Huang, and M. R. Lyu, “Framework for
Modeling Software Reliability, Using Various Testing-Efforts
and Fault-Detection Rates,” IEEE Trans. on Reliability, Vol.
50, No. 3, pp. 310-320, Sep. 2001.

[6] C. Y. Huang and S. Y. Kuo, “Analysis and Assessment of
Incorporating Logistic Testing Effort Function into Software
Reliability Modeling,” IEEE Trans. on Reliability, Vol. 51, No.
3, pp. 261-270, Sept. 2002.

[7] O. Berman and M. Cutler, “Optimal Software Implementation
Considering Reliability and Cost,” Computers and Operations
Research, Vol. 25, No. 10, pp. 857-868, 1998.

[8] B. Boehm, C. Abts, and S. Chulani, “Software Development
Cost Estimation Approaches–A Survey,” Annals of Software
Engineering, Vol. 10, Issue 1-4, pp. 177-205, 2000.

[9] P. Kubat and H. S. Koch, “Managing Test-Procedure to
Achieve Reliable Software,” IEEE Trans. on Reliability, vol.
32, No. 3, pp. 299-303, 1983.

[10] P. Kubat, “Assessing Reliability of Modular Software,”
Operation Research Letters, vol. 8, No. 1, pp. 35-41, 1989.

[11] O. Berman and N. Ashrafi, “Optimization Models for
Reliability of Modular Software Systems,” IEEE Trans. on
Software Engineering, vol. 19, no. 11, pp. 1119-1123, Nov.
1993.

[12] S. Yamada, T. Ichimori, and M. Nishiwaki, “Optimal
Allocation Policies for Testing Resource Based on a Software
Reliability Growth Model,” International Journal of
Mathematical and Computer Modelling, Vol. 22, pp. 295-301,

1995.
[13] M. Nishiwaki, S. Yamada, and T. Ichimori, “Testing-resource

Allocation Policies based on an Optimal Software Release
Problem,” Mathematica Japonica, Vol. 43, No. 1, pp. 91-97,
1996.

[14] M. E. Helander, M. Zhao, and N. Ohlsson, “Planning Models
for Software Reliability and Cost,” IEEE Trans. on Software
Engineering, vol. 24, no. 6, pp. 420-434, June 1998.

[15] H. Ohtera and S. Yamada, “Optimal Allocation and Control
Problems for Software-Testing Resources,” IEEE Trans. on
Reliability, vol. 39, No. 2, pp. 171-176, 1990.

[16] T. Ichimori, H. Masuyama, and S. Yamada, “A Two-Resource
Allocation Problem according to an Exponential Objective:
Optimum Distribution of Searching Effort,” International
Journal of Reliability, Quality and Safety Engineering, Vol. 1,
No. 2, pp. 135-146, 1994.

[17] Y. W. Leung, “Dynamic Resource Allocation for Software
Module Testing,” The Journal of Systems and Software, vol.37,
No.2, pp.129-139, May 1997.

[18] Y. W. Leung, “Software Reliability Allocation under Uncertain
Operational Profiles,” Journal of the Operational Research
Society, vol.48, No.4, pp.401-411, April 1997.

[19] Y. W. Leung, “Optimal Reliability Allocation for Modular
Software System Designed for Multiple Customers,” IEICE
Trans. on Information and Systems, vol.79, No.12,
pp.1655-1662, Dec. 1996.

[20] R. H. Huo, S. Y. Kuo, and Y. P. Chang, “Needed Resources for
Software Module Test, Using the Hyper-Geometric Software
Reliability Growth Model,” IEEE Trans. on Reliability, Vol.
45, No.4, pp. 541-549, Dec. 1996.

[21] R. H. Huo, “Software Reliability Modeling and Its
Applications,” Ph.D. Dissertation, Department of Electrical
Engineering, National Taiwan University, Taipei, Taiwan,
1996.

[22] J. H. Lo, C. Y. Huang, S. Y. Kuo, and M. R. Lyu, “Optimal
Resource Allocation and Reliability Analysis for
Component-Based Software Applications,” to appear in
Proceedings of the 26rd IEEE Annual International Computer
Software and Applications Conference (COMPSAC 2002), pp.
7-12, Aug. 2002, Oxford, England.

[23] B. Yang and M. Xie, “Testing-Resource Allocation for
Redundant Software Systems,” Proceedings of the 1999
Pacific Rim International Symposium on Dependable
Computing (PRDC'99), pp. 78-83, Dec. 1999, Hong Kong,
China.

[24] B. Yang and M. Xie, “Optimal Testing-time Allocation for
Modular Systems,” International Journal of Quality and
Reliability Management, Vol. 18, No. 8, pp. 854-863, 2001.

[25] M. R. Lyu, S. Rangarajan, and A. P. A. van Moorsel, “Optimal
Allocation of Test Resources for Software Reliability Growth
Modeling in Software Development,” IEEE Trans. on
Reliability, Vol. 51, No. 2, pp. 183-192, June 2002.

[26] M. R. Lyu, S. Rangarajan, and A. P. A. van Moorsel,
“Optimization of Reliability Allocation and Testing Schedule
for Software Systems,” Proceedings of the 8th International
Symposium on Software Reliability Engineering (ISSRE'97),
pp. 336-346, Nov. 1997, Albuquerque, New Mexico.

[27] C. Y. Huang, J. H. Lo, S. Y. Kuo, and M. R. Lyu, “Optimal
Allocation of Testing Resources for Modular Software
Systems,” Proceedings of the Thirteenth IEEE International
Symposium on Software Reliability Engineering (ISSRE 2002),
pp. 129-138, Nov. 2002, Annapolis, Maryland.

[28] B. Littlewood, “Software Reliability Model for Modular
Program Structure”, IEEE Trans. on Reliability, vol. 28, No. 3,
pp. 241-4246, 1979.

[29] F. Zahedi and N. Ashrafi, “Software Reliability Allocation
Based on Structure, Utility, Price, and Cost,” IEEE Trans. on
Software Engineering, vol. 17, no. 4, pp. 345-355, April 1991.

[30] J. Marciniak and R. Vienneau, “Software Engineering
Baselines,” Technical Report, Data & Analysis Center for
Software, July 1996.

[31] L. S. Lasdon (1970), Optimization Theory for Large Systems,
MacMillan.

[32] M. S. Bazaraa, H. D. Sherali, and C. M. Shetty (1993),
Nonlinear Programming: Theory and Algorithms, 2nd Ed.,
John Wiley & Sons.

[33] M. Xie and G. Y. Hong, “A Study of the Sensitivity of
Software Release Time,” Journal of Systems and Software, Vol.
44, Issue 2, pp. 163-168, Dec. 1998.

[34] S. S. Gokhale, and K. S. Trivedi, “Reliability Prediction and
Sensitivity Analysis Based on Software Architecture,”
Proceedings of the Thirteenth IEEE International Symposium
on Software Reliability Engineering (ISSRE 2002), pp. 64-75,
Nov. 2002, Annapolis, Maryland.

[35] H. W. Jung and B. Choi, “Optimization Models for Quality
and Cost of Modular Software Systems,” European Journal of
Operational Research, pp. 613-619, 1999.

