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Abstract

Many kernel learning methods have to as-
sume parametric forms for the target ker-
nel functions, which significantly limits the
capability of kernels in fitting diverse pat-
terns. Some kernel learning methods assume
the target kernel matrix to be a linear com-
bination of parametric kernel matrices. This
assumption again importantly limits the flex-
ibility of the target kernel matrices. The key
challenge with nonparametric kernel learning
arises from the difficulty in linking the non-
parametric kernels to the input patterns. In
this paper, we resolve this problem by intro-
ducing the graph Laplacian of the observed
data as a regularizer when optimizing the
kernel matrix with respect to the pairwise
constraints. We formulate the problem into
Semi-Definite Programs (SDP), and propose
an efficient algorithm to solve the SDP prob-
lem. The extensive evaluation on clustering
with pairwise constraints shows that the pro-
posed nonparametric kernel learning method
is more effective than other state-of-the-art
kernel learning techniques.

1. Introduction

Kernel-based learning methods (Vapnik, 1998;
Schölkopf & Smola, 2002) have been studied exten-
sively in the machine learning community due to their
outstanding performance in many real-world applica-
tions. One of the key issues with all the kernel-based
learning methods is how to identify the appropriate
kernel function or kernel matrix that is consistent
with the characteristics of data. Recently, a number
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of algorithms have been proposed to automatically
learn the kernel function/matrix from the labeled
examples (Cristianini et al., 2001; Kondor & Lafferty,
2002; Lanckriet et al., 2004; Chapelle et al., 2003; Zhu
et al., 2005; Hoi et al., 2006; Kulis et al., 2006).

Most recent studies of kernel learning focus on semi-
supervised learning (Chapelle et al., 2003; Zhang &
Ando, 2005; Kulis et al., 2006), in which the kernels are
learned from a mixture of labeled and unlabeled exam-
ples. To facilitate the learning procedure, many kernel
learning algorithms assumed certain parametric forms
for the target kernel functions. Example algorithms in
this category include cluster kernels (Chapelle et al.,
2003), diffusion kernels (Kondor & Lafferty, 2002),
and the Gaussian random fields approach (Zhu et al.,
2003). In addition, several studies (Lanckriet et al.,
2004; Zhu et al., 2005; Cristianini et al., 2001; Hoi
et al., 2006; Kulis et al., 2006) are devoted to nonpara-
metric kernel learning that does not assume any para-
metric form of the kernel functions. Instead of learning
the kernel functions from the labeled examples, these
studies focus on learning appropriate kernel matrices
for both labeled and unlabeled examples. Despite the
claim of nonparametric kernel learning, however, most
of them assume the target kernel matrix to be a lin-
ear combination of base matrices that are constructed
beforehand. For instance, in (Zhu et al., 2005; Hoi
et al., 2006), these base matrices are constructed by
the principal eigenvectors of the observed data. These
approaches significantly limit the choice of the kernel
matrices, and often the performance of kernel learning
depends on the choice of the base kernels.

The key challenge of nonparametric kernel learning
arises from the difficulty in linking the input patterns
of examples to the nonparametric kernel matrix. To
learn the kernel matrix in a nonparametric setup, it is
often convenient to cast the kernel learning problem
into an optimization problem that includes the entire
kernel matrix as a single variable. As a result, the de-
pendency of kernel matrices on the input patterns of
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examples is difficult to be explored directly within this
framework. In order to resolve this problem, we pro-
pose a novel method for nonparametric kernel learn-
ing. Specifically, we first measure the pairwise similar-
ity between any two examples, and construct a graph
Laplacian matrix based on the pairwise similarities.
This graph Laplacian matrix is then used to regular-
ize the nonparametric kernel learning. By minimizing
the regularizer that is based on the graph Laplacian,
we enforce the learned kernel matrix to be consistent
with the structure of both labeled and unlabeled ex-
amples, and therefore bridge the gap between the in-
put patterns of examples and the nonparametric ker-
nel matrix. Since the related optimization problem is
formulated into a Semi-Definite Programming (SDP)
problem, another challenge faced by this work is how
to solve the SDP problem with a large number of un-
labeled data. To address the computation problem,
we propose to solve the dual problem first, and then
derive the solution for the primal problem through the
Karush-Kuhn-Tucker (KKT) conditions (Boyd & Van-
denberghe, 2003). Furthermore, an efficient algorithm
that is similar to the strategy used in Sequential Min-
imal Optimization (SMO) (Platt, 1999) is proposed to
solve the dual problem.

It is important to note that our work is closely related
to the previous work on learning low rank kernel ma-
trix from pairwise constraints (Kulis et al., 2006). Sim-
ilar to our work, the work in (Kulis et al., 2006) looks
for the nonparametric kernel matrix that is consistent
with the given pairwise constraints. The key difference
between these two approaches is that the approach
in (Kulis et al., 2006) requires an initial low-rank ker-
nel matrix to begin with. In contrast, our proposed ap-
proach allows for the pairwise similarity matrix to be
indefinite. This relaxation is important because many
similarity measurements are hand crafted by domain
experts and are likely to violate the Mercer’s condi-
tions (Schölkopf & Smola, 2002). We also will show
empirically that the proposed method is more effec-
tive than the approach in (Kulis et al., 2006).

The rest of this paper is organized as follows. Section 2
outlines our methodology of learning nonparametric
kernel matrices from pairwise constraints. Section 3
presents an efficient algorithm to solve our optimiza-
tion. Section 4 presents the empirical evaluation of the
proposed algorithm. Section 5 concludes this work.

2. Problem Formulation

Let the entire data collection be denoted by U =
(x1,x2, . . . ,xN ) where each data point xi ∈ Rd is a
vector of length d. Let f(x,x′) be the similarity func-

tion that measures the similarity between any two data
points x and x′. Let S ∈ RN×N be the similarity ma-
trix where each element Si,j = f(xi,xj) represents
the similarity between any two data points xi and xj .
Note that the similarity function f(·, ·) does not have
to be a kernel function that satisfies the Mercer’s con-
dition. For the convenience of presentation, we assume
Si,i = 0 for all the examples. Based on the similarity
matrix S, we then construct the graph Laplacian L as
follows:

L = (1 + δ)I −D−1/2SD−1/2

where D = diag(d1, d2, . . . , dN ) is a diagonal ma-
trix with the diagonal element defined as di =∑N

j=1 f(xi,xj). A small δ > 0 is used as the smoothing
parameter to prevent the matrix L from being singu-
lar. Let S denote the collection of the data pairs that
share the same classes, and D denote the collection
of the data pairs that share different classes. We con-
struct a matrix T ∈ RN×N to represent all the pairwise
constraints, i.e.,

Ti,j =





+1 (xi,xj) ∈ S
−1 (xi,xj) ∈ D
0 otherwise

Given the matrix T , our goal is to identify a kernel
matrix Z ∈ RN×N that is consistent with all the pair-
wise constraints in T . Following the principle of max-
imum margin theory (Vapnik, 1998), we consider the
following optimization problem for learning the kernel
matrix Z:

arg min
Z=V >V

‖V ‖22 + c
∑

(i,j)∈(S∪D)

max (0, 1− Ti,jZi,j) (1)

In the above formula, we introduce a matrix V =
(v1,v2, . . . ,vN ) that can be viewed as a new data rep-
resentation for all the examples. In particular, vi, a
column vector of matrix V , can be viewed as a rep-
resentation vector for example xi. Thus, by minimiz-
ing the term ‖V ‖22 =

∑n
i=1 ‖vi‖22, we essentially look

for a sparse data representation. Note that unlike
the non-negative matrix factorization (Lee & Seung,
2000), we do not specify the rank for V , which on one
hand broadens the choice of the matrix V , and on the
other hand avoids the non-convex optimization prob-
lem. Constant c is introduced in (1) to balance the
sparseness of the solution (i.e., the first term) against
the classification error (i.e., the second term).

However, the problem with the formula in (1) is that
it is independent from the input patterns of examples.
In order to introduce the dependency of input patterns
into the kernel matrix Z, we modify the regularizer
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‖V ‖22 by measuring the inconsistency between the new
data representation V and the similarity matrix S, i.e.,

l(V, S) =
n∑

i,j=1

Si,j√
didj

‖vi − vj‖22 = tr(V LV >) (2)

The above regularizer is similar to the manifold reg-
ularization approach (Belkin et al., 2004), where the
graph Laplacian is used to regularize the classification
results. Using the regularizer in (2), we modify the
problem in (1) as follows:

arg min
Z=V >V

tr(V LV >) + c
∑

(i,j)∈(S∪D)

max (0, 1− Ti,jZi,j)

We can simplify the above formulism by using the fact
tr(V LV >) = tr(LV >V ) = tr(LZ). This results in the
following formulism

arg min
Z,ε

N∑

i,j=1

Li,jZi,j + c
∑

(i,j)∈(S∪D)

εi,j (3)

s. t. ∀(i, j) ∈ (S ∪ D), Ti,jZi,j ≥ 1− εi,j , εi,j ≥ 0
Z º 0

It is not difficult to see that the problem in (3) is a
semi-definitive programming problem, and therefore
can be solved by using the standard software pack-
age, such as SeDuMi/YALMIP (Löfberg, 2004). How-
ever, it could be computationally expensive to solve
the problem in (3) directly, if the number of examples
is large. In the following, we present an efficient algo-
rithm, whose computational complexity only depends
on the number of pairwise constraints and is indepen-
dent of the number of examples.

3. An Efficient Dual Algorithm

3.1. The Dual Problem and KKT Conditions

In this section, we present our solution of a fast dual
solution. In particular, we improve the computational
efficiency of SDP in the following two aspects:

(i) Instead of solving the primal problem directly,
we solve the dual problem of the SDP problem
in (3) first. Then, the solution to the primal prob-
lemin (3) can be recovered by utilizing the KKT
conditions (Boyd & Vandenberghe, 2003).

(ii) To improve the efficiency in solving the dual prob-
lem, we present an algorithm that is similar to
the approach of Sequential Minimal Optimization
(SMO) (Platt, 1999). The key idea is to decom-
pose a multi-variate SDP problem into a number
of univariate SDP problems that possess closed
form solutions.

To obtain the dual problem of (3), we first construct
the Lagrangian function as follows:

L =
N∑

i,j=1

Li,jZi,j + c
∑

(i,j)∈(S∪D)

εi,j

−
∑

(i,j)∈(S∪D)

Qi,j (Ti,jZi,j − 1 + εi,j)

−
∑

(i,j)∈(S∪D)

ξi,jεi,j − tr(MZ)

where Qi,j ≥ 0 and M º 0 are the Lagrangian mul-
tipliers. By setting the first order derivative of L, we
have

∂L
∂εi,j

= c−Qi,j − ξi,j = 0 → Qi,j ≤ c

∂L
∂Zi,j

= Li,j −Qi,jTi,j −Mi,j = 0 → L º Q⊗ T

where the operator ⊗ stands for the element-wise mul-
tiplication between two matrices. Hence, the dual form
for the problem in (3) is written as follows:

arg max
Q

∑

(i,j)∈S
Qi,j +

∑

(i,j)∈D
Qi,j

s. t. 0 ≤ Qi,j ≤ c, ∀(i, j) ∈ (S ∪ D)
L º Q⊗ T (4)

Note that the number of variables in the above prob-
lem is equal to the number of pairwise constraints.
Therefore, the above optimization problem can be
solved efficiently when the number of pairwise con-
straints is small.

After solving the dual problem in (4), the next ques-
tion is to recover the kernel matrix Z for the primal
problem in (3). To efficiently compute Z, we explore
the following KKT conditions

M = L−Q⊗ T, MZ = 0

The first condition in the above gives the solution for
the Lagrangian multiplier M . From the second con-
dition, i.e., MZ = 0, we know that each column of
the matrix Z is the eigenvector of the matrix M for
the zero eigenvalue. Let {ui, i = 1, 2, . . . ,K} be the
eigenvectors of the matrix M whose eigenvalues are
zero. Then, the kernel matrix Z can be expressed in
the following form:

Z = (u1,u2, . . . ,uK)A = UA (5)

where U = (u1,u2, . . . ,uK) and A is a matrix of size
K × n. Furthermore, since both Z and M are sym-
metric matrices, we will also have ZM = 0. Following
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the above logic, we have Z = ÃU . Putting these two
factors together, we obtain the following expression:

Z = UBU>

where B is a positive semi-definitive matrix of size K×
K. Thus, instead of solving Z directly, by using the
dual formulism, we can solve B first, and then compute
Z based on the estimated B. It is important to note
that K ≤ |S| + |D| + 1. This is because the number
of non-zero elements in matrix Q⊗ T is no more than
|S| + |D|. Therefore, the rank of matrix Q ⊗ T is no
more than |S|+ |D|. In the meantime, the rank of the
graph Laplacian L is n − 1 (the minimum eigenvalue
is 0). Since M = L−Q⊗ T , the rank of M is no less
than n − 1 − |S| + |D|, which implies the number of
eigenvectors for zero eigenvalue is no more than |S|+
|D|+1. Thus, given a number of pairwise constraints,
i.e. |S| + |D| ¿ n, the size of the matrix B, i.e., K2,
is significantly smaller than that of the matrix Z, n2.
Hence, solving the matrix B could be computationally
much more efficient than solving matrix Z.

Substituting the expression Z = UBU> into the pri-
mal problem, we have

arg min
Bº0

N∑

i,j=1

Li,jZi,j + c
∑

(i,j)∈(S∪D)

εi,j

s. t. ∀(i, j) ∈ (S ∪ D), Ti,jZi,j ≥ 1− εi,j , εi,j ≥ 0
Z = UBU>

or equivalently,

arg min tr(BU>LU) + c
∑

(i,j)∈(S∪D)

εi,j (6)

s. t. ∀(i, j) ∈ (S ∪ D), Ti,ju>i Buj ≥ 1− εi,j

∀(i, j) ∈ (S ∪ D), εi,j ≥ 0
B º 0

where ui corresponds to the ith row of the matrix U .

3.2. An Efficient Algorithm for Solving the
Dual Problem

Although the number of variables in (4) is small when
the number of constraints is not large, solving the SDP
problem in (4) could still be expensive when the num-
ber of examples is large. This is because the LMI
constraint L º Q⊗ T involves an n× n matrix. Here,
we present an approach that is similar to the SMO
algorithm for SVM (Platt, 1999). In particular, we
solve the SDP problem iteratively. In each iteration,
we select one variable Qi,j , and try to solve the SDP
problem with a single variable. As we will demonstrate

below, the SDP problem in (4) with a single variable
could be solved analytically.

Let Q̃ denote the solution Q that is obtained so far.
Let Qk,l denote the variable that is selected for the cur-
rent iteration. Then, the corresponding optimization
problem for variable Qk,l is written as follows:

arg max
Qk,l

Qk,l (7)

s. t. 0 ≤ Qi,j ≤ c, Ak,l − Tk,lQk,lI
k,l º 0

where matrix Ak,l is defined as

Ak,l = L− (Q̃− Q̃k,lI
k,l)⊗ T. (8)

Note Ik,l is a n× n matrix and is defined as

[Ik,l]i,j =





1 (k = i and l = j)
1 (k = j and l = i)
0 otherwise

Similar to the SMO algorithm for SVM, it turns out
that the problem in (7) has a closed form solution. To
see this, we rearrange the rows and the columns of the
matrix Ak,l−Tk,lQk,lI

k,l by moving the kth and the lth
row/column to the first and the second row/column.
As a result, we can write the matrix Ak,l−Tk,lQk,lI

k,l

as follows: (
A1 W
W> A2

)

where W ∈ R(n−2)×2, A2 ∈ R(n−2)×(n−2), and A1 is

A1 =
(

Lk,k Lk,l −Qk,lTk,l

Lk,l −Qk,lTk,l Ll,l

)

Using the Schur complement (Boyd & Vandenberghe,
2003), the matrix inequality Ak,l − Ti,jQk,lIk,l º 0
is equivalent to A1 º W>A−1

2 W . Let us denote
W>A−1

2 W by

W>A−1
2 W ≡ G =

(
G1,1 G1,2

G2,1 G2,2

)
(9)

Then, A1 º V >A−1
2 V is equivalent to

(
Lk,k −G1,1 Lk,l −Qk,lTk,l −G1,2

Lk,l −Qk,lTk,l −G1,2 Ll,l −G2,2

)
º 0

The necessary and sufficient conditions for the 2 × 2
matrix to be positive semi-definite are

1. Lk,k −G1,1 ≥ 0,

2. Ll,l −G2,2 ≥ 0, and

3. the determinant of the above matrix is non-
negative, i.e., (G1,2 + Tk,lQk,l − Lk,l)2 ≤ (Lk,k −
G1,1)(Ll,l −G2,2).
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Since the first two conditions are independent of the
variable Qk,l, we only include the third condition as
the part of the optimization problem. Therefore, the
optimization problem in (7) is eventually equivalent to
the following optimization problem:

max
Qk,l

Qk,l (10)

s.t. 0 ≤ Qk,l ≤ c

|G1,2 + Tk,lQk,l − Lk,l| ≤ µk,l

where µk,l =
√

(Lk,k −G1,1)(Ll,l −G2,2). The opti-
mal solution for Qk,l is

Qk,l = min (c, µk,l − Tk,lG1,2 + Tk,lLk,l)

Evidently, the main computational cost lies in com-
puting the matrix G, which requires computing the
matrix inverse A−1

2 . To avoid the cost of computing
the matrix inverse for large matrices, we can convert
the computation into an optimization problem. Let
W = (w1,w2). Then, according to the definition of G
in (9), we have

Ga,b = w>
a A−1

2 wb

where indices a and b could be either 1 or 2. The
quantity w>

a A−1
2 wa is indeed the maximum value for

the following optimization problem:

max
x

−x>A2x + 2w>
a x

The above optimization can be solved efficiently us-
ing the conjugate gradient methods (Shewchuk, 1994).
To compute w>

a A−1
2 wb, we can first compute (wa +

wb)>A−1
2 (wa +wb), w>

a A−1
2 wa, and w>

b A−1
2 wb using

the conjugate gradient method. Then, w>
a A−1

2 wb can
be computed as follows:

w>
a A−1

2 wb =
1
2

(
(wa + wb)>A−1

2 (wa + wb)−w>
a A−1

2 wa −w>
b A−1

2 wb

)

4. Experimental Results

To evaluate the proposed algorithm for nonparametric
kernel learning, we engage data clustering as the ap-
plication. More specifically, a kernel matrix is learned
from the pairwise constraints using the proposed al-
gorithm. The learned kernel matrix will then be em-
ployed by the K-means algorithms to cluster examples.
The clustering accuracy of the K-means algorithm will
be used to evaluate the quality of the estimated ker-
nel matrix. In our empirical study, nine datasets are
applied, including two artificial datasets and seven

Table 1. The nine datasets used in our experiments. The
first two are the artificial datasets and the others datasets
are from the UCI machine learning repository.

Dataset #Classes #Instances #Features
Chessboard 2 100 2
Double-Spiral 2 100 3
Glass 6 214 9
Heart 2 270 13
Iris 3 150 4
Protein 6 116 20
Sonar 2 208 60
Soybean 4 47 35
Wine 3 178 12
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Figure 1. Two artificial datasets used in our experiment.

datasets from the UCI machine learning repository.
Table 1 summarizes the information about the nine
datasets, and Fig. 1 shows the data distribution of the
two artificial datasets.

We compare our proposed kernel learning method with
the following state-of-art clustering approaches:

• K-means: This is the regular K-means algorithm
using the default Euclidean metric. This ap-
proach does not utilize any pairwise constraints,
and is engaged as the reference approach.

• Constrained K-means: This approach modi-
fies the standard K-means clustering algorithm by
enforcing each pair of data points in the equiva-
lence constraints to be assigned to the same clus-
ters (Wagstaff et al., 2001).

• Constrained K-means + RCA: This approach
improves the constrained K-means algorithm by
using the metric that is learned by Relevant Com-
ponent Analysis (RCA) (Bar-Hillel et al., 2005).

• Constrained K-means + Xing: This approach
improves the constrained K-means algorithm by
the data distance metric that is learned from the
pairwise constraints using the convex program-
ming approach proposed in (Xing et al., 2002).

• Constrained Kernel K-means + RBF: This
approach improves the kernel K-means algorithm



Learning Nonparametric Kernel Matrices from Pairwise Constraints

by enforcing the equivalence constraints during
the clustering. In this method, the kernel ma-
trix is a standard RBF kernel, whose parameter
is chosen via cross-validation.

• Constrained Kernel K-means + MPK: This
constrained kernel K-means algorithm uses a ker-
nel matrix that is formed by a linear combina-
tion of multiple parametric kernels, in which the
weights are learned by a kernel target alignment
method (Lanckriet et al., 2004). In our experi-
ment, we adopt a combination of three standard
kernels, i.e., Linear, Polynomial and RBF.

• Constrained Kernel K-means + LRK: This
constrained kernel K-means algorithm uses a ker-
nel matrix learned by a low-rank kernel (LRK)
learning technique in (Kulis et al., 2006). We
slightly modify the original algorithm to make it
suitable for learning with pairwise constraints. 1

• Constrained Kernel K-means + NPK: This
approach improves the constrained kernel K-
means algorithm using the kernel matrix that
is learned by our proposed nonparametric ker-
nel (NPK) learning algorithm. For the graph
Laplacian, we use a standard method, i.e., by
calculating the distance matrix by Euclidean dis-
tance, then constructing the adjacency matrix
with 5 nearest neighbors, and finally normalizing
the graph to achieve the final Laplacian matrix.

We adopt the metric of clustering accuracy (Xing
et al., 2002) for evaluating the clustering results. In
particular, this metric measures the percentage of data
pairs that are correctly clustered together. It is defined
as follows

Accuracy =
∑

i>j

1{1{ci = cj} = 1{ĉi = ĉj}}
0.5n(n− 1)

, (11)

where 1{·} is the indicator function that outputs 1
when the input argument is true and 0 otherwise. ci

and ĉi denote the true cluster memberhip and the pre-
dicted cluster membership of the ith data point, re-
spectively. n is the number of examples in the dataset.

To examine the performance of the clustering algo-
rithms in a full spectrum, we consider two different
scenarios that are similar to the settings used in the

1The original algorithm requires a low-rank kernel ma-
trix as the input matrix, for which the authors suggest a
random matrix. However, our empirical study found that
LRK worked poorly for clustering settings when using ran-
dom input matrices. Consequently, we adopt an RBF ker-
nel as the input matrix that empirically achieves better
performances.

previous study (Xing et al., 2002). In the first scenario,
each algorithm is given with “little” side-information.
Specifically, we randomly select a number of data pairs
for pairwise constraints, such that the number of re-
sulting connected components is roughly equal to 90%
of the dataset size. In the second scenario, each algo-
rithm is given with “much” side-information, where
we randomly select a number of data pairs for pair-
wise constraints, such that the number of resulting
connected components is roughly equal to 70% of the
dataset size. Note that the number of resulting con-
nected components is equal to the dataset size when no
any positive constraints are provided. To avoid the un-
balance distribution between equivalence constraints
and inequivalence constraints, the labeled pairs are
chosen such that one half of them are equivalence con-
straints and the other are inequivalence constraints.

Each clustering experiment is run 20 times with mul-
tiple restarts, and parameter c in the NPK algorithm
is fixed to 1 for all experiments. All clustering algo-
rithms are given with the same random set of initial
cluster centers in each experimental trial. Fig. 2 shows
the average clustering accuracy of the eight different
clustering algorithms for the nine datasets. Each dia-
gram in Fig. 2 corresponds to a different dataset, and
is consisted of two parts: the eight bars on the left side
correspond to the clustering results with “little” side-
information, and the eight bars on the right correspond
to the clustering results with “much” side-information.

We can make several observations. First, we ob-
serve that for most cases, the clustering accuracy of
the K-means algorithm is improved by incorporating
the metric learned from pairwise constraints. Second,
compared to the other metric learning algorithms, the
proposed NPK algorithm is significantly more effective
than the others in improving the clustering accuracies
in most cases. The most impressive cases are dataset
“Double-Spiral” and “Sonar”, in which the clustering
accuracy of the K-means algorithm is improved from
about 50% to around 90% and 70%, respectively. In
contrast, the other four metric learning algorithms can
only improve the clustering accuracy with no more
than 5% for these two datasets. Last, compared to
the multi-parametric kernel learning and the low-rank
kernel learning approaches, our NPK method performs
significantly better in most cases.

Finally, we empirically evaluate the computational ef-
ficiency of the NPK algorithm by two different ap-
proaches, i.e., (1) NPK-SDP: the SDP algorithm that
is solved in primal, and (2) NPK-SMO: the SMO-like
algorithm that is solved in dual. To examine the scal-
ability, we evaluate their time performance of differ-
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Figure 2. The clustering accuracy of the K-means algorithm using different data metrics that are learned from pairwise
constraints. In each individual diagram, the eight bars on the left side correspond to the experiment with a small number
of pairwise constraints (“little” side-information), and the eight bars on the right correspond to the experiment a large
number of pairwise constraints (“much” side-information). From left to right, the eight bars are respectively K-means,
Constrained K-means, Constrained K-means + RCA metric, Constrained K-means + Xing’s metric, Constrained Kernel
K-means + RBF kernel, Constrained Kernel K-means + Multi-Parametric Kernel (MPK), Constrained Kernel K-means
+ Low-Rank Kernel (LRK), and Constrained Kernel K-means + Non-Parametric Kernel (NPK). The value of Kc denotes
the number of connected components formed with respect to a set of pairwise constraints. Standard error bars are also
shown in the figure.
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Figure 3. Time cost of different numbers of data examples.
The number of pairwise constraints is fixed to 100.

ent dataset sizes. Specially, we generate a number of
“Double-Spiral” datasets with sizes from 20 to 200.
Fig. 3 shows the result that is averaged over 10 trials,
in which the number of pairwise constraints is fixed
to 100 for each trial. Note that we cut the data size
to 200 because the NPK-SDP algorithm is computa-
tionally prohibited for a dataset with more than 200
examples. We clearly see that the computational time
of the NPK-SDP method increases dramatically when
the dataset size is greater than 100. On the contrary,
the computational time of the NPK-SMO algorithm
remains almost unchanged when the number of exam-
ples is increased. This result shows that the proposed
NPK-SMO algorithm is computationally efficient.

5. Conclusion

In this paper we proposed a novel algorithm that
learns nonparametric kernel matrices from given pair-
wise constraints. We formulated the nonparametric
kernel learning problem into a Semi-Definite Program-
ming problem. We then presented an efficient algo-
rithm that first solves the dual problem of the related
SDP problem and then infers the solution for the pri-
mal problem using the KKT condition. Furthermore,
we presented an SMO-like algorithm to efficiently solve
the dual problem. We studied the proposed method
for nonparametric kernel learning with application to
clustering with pairwise constraints. The encourag-
ing empirical results show that our proposed method
is more effective than the traditional approaches for
clustering with side-information.

Acknowledgments

The work described in this paper was fully supported
by a grant from the Shun Hing Institute of Advanced
Engineering (SHIAE), CUHK.

References

Bar-Hillel, A., Hertz, T., Shental, N., & Weinshall, D.
(2005). Learning a mahalanobis metric from equivalence
constraints. JMLR, 6, 937–965.

Belkin, M., Matveeva, I., & Niyogi, P. (2004). Regulariza-
tion and semi-supervised learning on large graphs. An-
nual Conference on Learning Theory (COLT2004).

Boyd, S., & Vandenberghe, L. (2003). Convex optimization.
Cambridge University Press.

Chapelle, O., Weston, J., & Schölkopf, B. (2003). Cluster
kernels for semi-supervised learning. NIPS2003.

Cristianini, N., Shawe-Taylor, J., Elisseeff, A., & Kandola,
J. (2001). On kernel-target alignment. NIPS2001.

Hoi, S. C. H., Lyu, M. R., & Chang, E. Y. (2006). Learning
the unified kernel machines for classification. KDD2006
(pp. 187–196). Philadelphia, PA, US.

Kondor, R., & Lafferty, J. (2002). Diffusion kernels on
graphs and other discrete structures. ICML2002.

Kulis, B., Sustik, M., & Dhillon, I. S. (2006). Learning
low-rank kernel matrices. ICML2006 (pp. 505–512).

Lanckriet, G., Cristianini, N., Bartlett, P., Ghaoui, L. E.,
& Jordan, M. (2004). Learning the kernel matrix with
semi-definite programming. JMLR, 5, 27–72.

Lee, D. D., & Seung, H. S. (2000). Algorithms for non-
negative matrix factorization. NIPS’13 (pp. 556–562).
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