
 1

ComPARE: A Generic Quality Assessment Environment

for Component-Based Software Systems

Xia Cai, Michael R. Lyu, Kam-Fai Wong, Mabel Wong

Dept. of Computer Science and Engineering Center of Innovation and Technology

The Chinese University of Hong Kong

{xcai, lyu}@cse.cuhk.edu.hk, kfwong@se.cuhk.edu.hk, mabel@cintec.cuhk.edu.hk

Abstract

Component-based technology is gaining popularity in modern software development.

This approach helps reduce development cost and time-to-market, as well as improve

maintainability and reliability. One of the key problems in component-based software

development is finding a way to certify the quality of individual components and that of the

integrated component-based software systems. There are several different techniques which

have been developed to describe the predictive relationship between software metrics and the

reliability of the software components.

In this paper, we propose a generic quality assessment environment for software

components: ComPARE. ComPARE collects various metrics from candidate components

including process metrics, static code metrics and dynamic metrics. Also it integrates

different models to predict software quality and reliability, and compares the result of

different models. With ComPARE, user can select and define their own prediction models and

validate these models against the failure data collected in real life. The benchmark models

can be established after validation for future use. Finally, prediction results can be visualized

and hidden problems can be identified in the source code in the ComPARE environment.

Keyword: Quality assessment tool, component-based software, classification tree

 model, case-based reasoning, Bayesian Belief Network.

1. Introduction

Component-based software development (CBSD) has become a popular

 2

methodology in developing modern software systems. It is generally considered that this

approach can reduce development cost and time-to-market, and at the same time are

built to improve maintainability and reliability. As CBSD is to build software systems

using a combination of components including off-the-shelf components, components

developed in-house and components developed contractually, the over quality of the

final system greatly depends on the quality of the selected components.

We need to first measure the quality of a component before we can certify it.

Software metrics are designed to measure different attributes of a software system and

development process, indicating different levels of quality in the final product [1] [2].

Many metrics such as process metrics, static code metrics and dynamic metrics can be

used to predict the quality rating of software components at different development

phases [2][4][5]. For example, code complexity metrics, reliability estimates, or

metrics for the degree of code coverage achieved have been suggested. Test

thoroughness metric is also introduced to predict a component’s ability to hide faults

during tests [3].

In order to make use of the results of software metrics, several different

techniques have been developed to describe the predictive relationship between

software metrics and the classification of the software components into fault-prone

and non fault-prone categories [6]. These techniques include discriminant analysis [9],

classification trees [10], pattern recognition [11], Bayesian network [12], case-based

reasoning (CBR) [13], and regression tree models [6]. There are also some prototype

or tools [16,17,18,19] that use such techniques to automate the procedure of software

quality prediction. However, these tools address only one kind of metrics, e.g.,

process metrics or static code metrics. Besides, they rely on only one prediction

technique for the overall software quality assessment.

In this paper, we propose a Component-based Program Analysis and Reliability

Evaluation (ComPARE) to evaluate the quality of software systems in component-

based programming technology. ComPARE automates the collection of different

metrics, the selection of different prediction models, the formulation of user-defined

models, and the validation of the established models according to fault data collected

in the development process. Different from other existing tools, ComPARE takes

dynamic metrics into account (such as code coverage and performance metrics),

integrates them with process metrics and more static code metrics for object-oriented

 3

programs (such as complexity metrics, coupling and cohesion metrics, inheritance

metrics), and provides different models for integrating these metrics to an overall

estimation with higher accuracy.

2. Objective

A number of commercial tools are available for the measurement of software

metrics for object-oriented programs. Also there are off-the-shelf tools for testing or

debugging software components. However, few tools can measure the static and

dynamic metrics of software systems, perform various quality modeling, and validate

such models against actual quality data.

ComPARE aims to provide an environment for quality prediction of software

components and assess their reliability in the overall system developed using CBSD.

The overall architecture of ComPARE is showed in Figure 1. First of all, various

metrics are computed for the candidate components, then the users can select and

weighing the metrics deemed important to quality assessment. After the models have

been constructed and executed (Case Base is used in BBN model), the users can

validate the selected models with failure data in real life. If users are not satisfied with

the prediction, they can go back to the previous step, re-define the criteria and

construct a revised model. Finally, the overall quality prediction can be displayed

under the architecture of the candidate system. Results for individual components can

also be displayed after all the procedures.

Figure 1. Architecture of ComPARE

Metrics
Computation

Criteria
Selection

Model
Definition

Model Result
Display

Case Base

Failure

Candidate
Components

System
Architecture

 4

The objective of ComPARE can be summarized as follows:

1. To predict the overall quality by using process metrics, static code metrics as well

as dynamic metrics. In addition to complexity metrics, we use process metrics,

cohesion metrics, inheritance metrics as well as dynamic metrics (such as code

coverage and call graph metrics) as the input to the quality prediction models. Thus

the prediction is more accurate as it is based on data from every aspect of the

candidate software components.

2. To integrate several quality prediction models into one environment and compare

the prediction result of different models. ComPARE integrates several existing

quality models into one environment. In addition to selecting or defining these

different models, user can also compare the prediction results of the models on the

candidate component and see how good the predictions are if the failure data of the

particular component is available.

3. To define the quality prediction models interactively. In ComPARE, there are

several quality prediction models that users can select to perform their own

predictions. Moreover, the users can also define their own model. For example, if

the users want to define their own tree models, they can select the metrics and the

parameters associated with the final tree models. The users can also validate their

own models by the evaluation procedure.

4. To display quality of components by different categories. Once the metrics are

computed and the models are selected, the overall quality of the component can be

displayed according to the category it belongs to. Program modules with problems

can also be identified.

5. To validate reliability models defined by user against real failure data (change

report). Using the validation criteria, the result of the selected quality prediction

model can be compared with failure data in real life. The user can redefine their

models according to the comparison.

6. To show the source code with potential problems at line-level granularity.

ComPARE can identify the source code with high risk (i.e., the code that is not

covered by test cases) at line-level granularity. This can help the users to locate

high risk program modules or portions promptly and conveniently.

 5

7. To adopt commercial tools in accessing software data related to quality attributes.

We adopt Metamata [7] and Jprobe [8] suites to measure the different metrics for

the candidate components. These two tools, including metrics, audits, debugging, as

well as code coverage, memory and deadlock detected, are commercially available

in the component-based program testing market.

3. Metrics Used in ComPARE

 Process metrics as well as product metrics are computed and collected in

ComPARE. Also static metrics and dynamic metrics are used to give an overall

quality prediction. The metrics in ComPARE are also widely used in previous

software quality prediction tools from software engineering research community. The

process metrics we select are listed in Table 1 [18,19].

 Metric Description

Time Time spent from the design to the delivery (months)

Effort The total human resources used (man*month)

Change Report Number of faults found in the development

Table 1. Process Metrics

As we perceive Object-Oriented (OO) techniques are essential in the CBSD

approach, we select static code metrics according to the most important features in

OO programs: complexity, coupling, inheritance and cohesion. They are listed in

Table 2 [7, 21, 22]. The dynamic metrics encapsulate measurement of the features of

components when they are executed. Table 3 shows the details description of the

dynamic metrics.

 The process, static and dynamic metrics we select are also available from some

commercial tools, e.g., Metamata Suite [7] and Jprobe Testing Suite [8]. We will

measure and apply these metrics in ComPARE.

 6

Abbreviation Description

Lines of Code (LOC) Number of lines in the components including the
statements, the blank lines of code, the lines of
commentary, and the lines consisting only of syntax
such as block delimiters.

Cyclomatic Complexity
(CC)

A measure of the control flow complexity of a method or constructor. It
counts the number of branches in the body of the method, defined by
the number of WHILE statements, IF statements, FOR statements, and
CASE statements.

Number of Attributes
(NA)

 Number of fields declared in the class or interface.

Number Of Classes
(NOC)

Number of classes or interfaces that are declared. This is usually 1, but
nested class declarations will increase this number.

Depth of Inheritance Tree
(DIT)

 Length of inheritance path between the current class and the base class.

Depth of Interface
Extension Tree (DIET)

The path between the current interface and the base interface.

Data Abstraction
Coupling (DAC)

Number of reference types that are used in the field
declarations of the class or interface.

Fan Out (FANOUT) Number of reference types that are used in field declarations, formal
parameters, return types, throws declarations, and local variables.

Coupling between Objects
(CO)

Number of reference types that are used in field declarations, formal
parameters, return types, throws declarations, local variables and also
types from which field and method selections are made.

Method Calls
Input/Output (MCI/MCO)

Number of calls to/from a method. It helps to analyze the coupling
between methods.

Lack of Cohesion Of
Methods (LCOM)

For each pair of methods in the class, the set of fields each of them
accesses is determined. If they have disjoint sets of field accesses then
increase the count P by one. If they share at least one field access then
increase Q by one. After considering each pair of methods,
 LCOM = (P > Q) ? (P - Q) : 0

Table 2. Static Code Metrics

 Metric Description

Test Case Coverage The coverage of the source code when executing the given test cases. It
may help to design effective test cases.

Call Graph metrics The relationships between the methods, including method time (the
amount of time the method spent in execution), method object count (the
number of objects created during the method execution) and number of
calls (how many times each method is called in you application).

Heap metrics Number of live instances of a particular class/package, and the memory
used by each live instance.

Table 3. Dynamic Metrics

 7

4. Models Definition

 In order to predict the quality of different software components, several techniques

have been developed to classify software components according to their reliability [6].

These techniques include discriminant analysis [9], classification trees [10], pattern

recognition [11], Bayesian network [12], case-based reasoning (CBR) [13] and

regression tree model [6]. In ComPARE, we integrate five types of models to

evaluate the quality of the software components for an overall CBSD system

evaluation. User can customize these models and compare the prediction results from

different tailor-made models.

4.1 Summation Model

This model gives a prediction by simply adding all the metrics selected and

weighted by a user. The user can validate the result by real failure data, and then

benchmark the result. Later when new components are included, the user can predict

their quality according to their differences from the benchmarks. The concept of

summation model can be summarized as the following:

1

n

i i
i

Q mα
=

=∑ (1)

where mi is the value of one particular metric, iα is its corresponding weighting

factor, n is the number of metrics, and Q is the overall quality mark.

4.2 Product Model

 Similar to the summation model, the product model multiplies all the metrics

selected and weighted by the user and the resulting value indicates the level of quality

of a given component. Similarly, the user can validate the result by real failure data,

and then determine the benchmark for later usage. The concept of product model is

shown as the following:

1

n

i

miQ
=

=∏ (2)

 8

where mi is the value of one particular metric, n is the number of metrics, and Q is

the overall quality mark. Note that mis are normalized as a value which is close to 1,

so that none of them will dominate the result.

4.3 Classification Tree Model

Classification tree model [14] is to classify the candidate components into

different quality categories by constructing a tree structure. All the candidate

components are leaves in the tree. Each node of the tree represents a metric (or a

composed metric calculated by other metrics) of a certain value. All the children of

the left sub tree of the node represent those components whose value of the same

metric is smaller than the value of the node, while all the children of the right sub tree

of the node are those components whose value of the same metric is equal to or larger

than the value of the node.

In ComPARE, a user can define the metrics and their value at each node from the

root to the leaves. Once the tree is constructed, a candidate component can be directly

classified by following the threshold of each node in the tree until it reaches a leaf

node. Again, the user can validate and evaluate the final tree model after its definition.

Below is an example of the outcome of a tree model. At each node of the tree there

are metrics and values, and the leaves represent the components with certain number

of predicted faults in the classification result.

Figure 2. An example of classification tree model

4.4 Case-Based Reasoning Model

 9

Case-based reasoning (CBR) has been proposed for predicting the quality of

software components [13]. A CBR classifier uses previous “similar” cases as the basis

for the prediction. Previous cases are stored in a case base. Similarity is defined in

terms of a set of metrics. The major conjecture behind this model is that the candidate

component that has a similar structure to the components in the case base will inherit

a similar quality level.

A CBR classifier can be instantiated in different ways by varying its parameters.

But according to the previous research, there is no significant difference in prediction

validity when using any combination of parameters in CBR. So we adopt the simplest

CBR classifier modeling with Euclidean distance, z-score standardization [13], but no

weighting scheme. Finally, we select the single, nearest neighbor for the prediction

purpose.

4.5 Bayesian Network Model

Bayesian networks (also known as Bayesian Belief Networks, BBN) is a graphical

network that represents probabilistic relationships among variables [12]. BBNs enable

reasoning under uncertainty. Besides, the framework of Bayesian networks offers a

compact, intuitive, and efficient graphical representation of dependence relations

between entities of a problem domain. The graphical structure reflects properties of

the problem domain directly, which provides a tangible visual representation as well

as a sound mathematical basis in Bayesian probability [15]. The foundation of

Bayesian networks is the following theorem known as Bayes’ Theorem:

 P(H|c)P(E|H,c)

P(H|E,c) =
P(E|c) (3)

where H, E, c are independent events, P is the probability of such event under

certain circumstances.

With BBNs, it is possible to integrate expert beliefs about the dependencies

between different variables and to propagate consistently the impact of evidence on

the probabilities of uncertain outcomes, such as “unknown component quality”.

Details of the BBN model for quality prediction can be found in [12]. Users can also

 10

define their own BBN models in ComPARE and compare the results with other

models.

5. Prototype

Under the framework that we have described, we prototyped a specific version of

ComPARE which targets software components developed by the Java language. Java

is one of the most popular languages used in off-the-shelf components development

today, and it is a common language binding in the three standard architecture of

component-based software development: CORBA, DCOM and Java/RMI. The

prototype is composed of eight major functional areas:

1. File Operations (“File” menu)

2. Selecting Metrics (“Metrics” menu)

3. Selecting Criteria (“Criteria” menu)

4. Model selection and definition (“Models” menu)

5. Model Validation (“Validation” menu)

6. Display result (“Display” menu)

7. Windows switch (“Windows” menu)

8. Help system (“Help” menu)

 The details of each function are described in the following sections.

5.1 File Operation

There are three operations that can be performed in the File menu. They are:

“New”, “Open” and “Exit”. “New” closes the current component-based system under

evaluation and clears the buffer. “Open” navigates through the directory to select a

component-based system for assessment. “Exit” provides a normal exit to the quality

assessment procedure of ComPARE.

5.2 Selecting Metrics

User can select the metrics they want to collect for the opened component-based

system. There are three categories of metrics available:

 11

1. Process Metrics: containing the time, effort and change report in development

procedure. These data items can also be can be input by the user.

2. Static Metrics: including all the code metrics, such as complexity, coupling,

cohesion and inheritance metrics.

3. Dynamic Metrics: collecting the data when executing the current component.

5.3 Selecting and Weighing Criteria

After computing the different metrics, users need to select and weigh the criteria

on these metrics before using them in the reliability modeling. Each metric can be

selected or omitted, and if selected, be marked with the weight between 0 and 100%.

Such information will be used as input parameter later in the quality prediction

models.

5.4 Models Selection and Definition

The Models operations allow users to select or define the model they would like to

perform in the evaluation. Five types of models are available for the users to select: 1)

“Summation Form” establishes a model by using the sum of the selected metrics; 2)

“Product Form” constructs a model by using the product of the selected metrics; 3)

“Tree Form” uses a classification tree to determine the quality of a component

according the value range of the selected metrics; 4) “Case-Based Reasoning” builds

the simplest CBR classifier for modeling purpose; and 5) “Bayesian Network”

constructs BBN modeling based on Bayesian probability. The users should give the

probability of each item related to the overall quality of the candidate component.

5.5 Model Validation

The Validation menu includes “Model Comparison”, “Validation Criteria” and

“Summary”, allowing comparisons between different models and with respect to

actual software failure data. These operations facilitate the users to compare the

different results based on chosen subset of the software failure data under certain

validation criteria.

 12

The comparisons between different models in their predictive capability are

summarized in a summary table. Model Validation operations are activated only when

the software failure data are available.

5.6 Display Result

The Display menu shows the result of metrics and modeling. “Metrics result”

shows the computed metrics in the “Computing metrics”, whereas “Overall quality”

gives the quality score to category the current component as well as the overall system.

5.7 Windows switch

The Windows menu is for users’ convenience, allowing them to switch between

different windows, such that metric computation, model definition, and source code

display can be conducted concurrently.

5.8 Help system

The Help operation provides online assistance by allowing users to search for

ComPARE operations and to read the guidelines and descriptions of the major

functions.

5.9 Graphical User Interface of ComPARE

 Figure 3 and Figure 4 show screen dumps for the describe ComPARE prototype

tool. It can be seen that the computation of various metrics for software components

and application of quality prediction models is a straightforward process. Users also

have flexible choices in selecting and defining different models. The combination of

simple operations and a variety of quality models makes it easy for users to identify

an appropriate prediction model for a given CBSD system with its included

components.

 13

Figure 3. GUI of ComPARE for metrics, criteria and tree model

Figure 4. GUI of ComPARE for prediction display,
 risky source code and result statistics

7. Conclusions

Component-based technology has drawn tremendous attentions from developers

nowadays. The key problem in component-based software development is finding a

way to certify the quality of individual components, as well as the overall system

under an integrated framework.

 14

In this paper, we propose a generic quality assessment environment for software

components: ComPARE. ComPARE collects process metrics, static code metrics and

dynamic metrics for software components, integrates reliability assessment models

from different techniques used in current quality prediction area, and validates these

models against the failure data collected in real life. ComPARE can be used to assess

real-life off-the-shelf components and to evaluate and validate the models selected for

their evaluation. The overall CBSD system can then be composed and analyzed

seamlessly. In summary, ComPARE can be an effective environment to promote

component-based program construction with proper reliability evaluation and quality

assurance.

8. References

[1] J.Vincent, A.Waters and J.Sinclair, Software Quality Assurance (Volume1
Practice and Implementation), Prentice Hall, New Jersey, 1988.

[2] M.R.Lyu (ed.), Handbook of Software Reliability Engineering, McGraw-Hill, New
York, 1996.

[3] J.Voas and J.Payne, “Dependability Certification of Software Components,” The
Journal of Systems and Software, 52, pp.165-172, 2000,

[4] S.M.Yacoub, H.H.Ammar and T.Robinson, “Dynamic Metrics for Object Oriented
Designs,” Proceedings of Sixth International Software Metrics Symposium, pp.50
–61, 1999.

[5] N.E.Fenton and N.Ohlsson, ”Quantitative Analysis of Faults and Failures in a
Complex Software System,” IEEE Transactions on Software Engineering, SE-
26(8), pp.797 –814, Aug. 2000.

[6] S.S.Gokhale and M.R.Lyu, “Regression Tree Modeling for the Prediction of
Software Quality,” Proceedings of the Third ISSAT International Conference on
Reliability and Quality in Design, Anaheim, California, March 1997.

[7] http://www.metamata.com, Jan. 2001.

[8] http://www.klgroup.com, Jan. 2001.

[9] J.Munson and T.Khoshgoftaar, “The Detection of Fault-Prone Programs,” IEEE
Transactions on Software Engineering, SE-18(5), May 1992.

[10] A.A.Porter and R.W.Selby, “Empirically Guided Software Development Using
Metric-Based Classification Trees,” IEEE Software, pp. 46-53, Mar.1990.

[11] L.C.Briand, V.R.Basili and C.Hetmanski, “Developing Interpretable Models for
Optimized Set Reduction for Identifying High-Risk Software Components,” IEEE
Transactions on Software Engineering, SE-19(11), pp.1028-1034, Nov.1993.

[12] N.E.Fenton and M.Neil, “A Critique of Software Defect Prediction Models,”
IEEE Transactions on Software Engineering, SE-25(5), pp.675-689, Oct. 1999.

 15

[13] K.E.Emam, S.Benlarbi, N.Goel and S.N.Rai, “Comparing Case-Based Reasoning
Classifiers for Predicting High Risk Software Components,” The Journal of
systems and Software, 55, pp.301-320, 2001.

[14] A.A.Porter and R.W.Selby, “Empirically Guided Software Development Using
Metric-Based Classification Trees”, IEEE Software, 7(2), pp.46-54, Mar. 1990.

[15] http://www.hugin.com, Jan. 2001.

[16] M.R.Lyu, J.S.Yu, E.Keramidas and S.R.Dalal, “ARMOR: Analyzer for Reducing
Module Operational Risk,” Proceedings of Twenty-Fifth International
Symposium on Fault-Tolerant Computing (FTCS-25), pp.137-142, 1995.

[17] B.E.Gayet and L.C.Briand, “METRIX: A Tool for Software-Risk Analysis and
Management”, Proceedings of Reliability and Maintainability Symposium,
pp.310 –314, 1994.

[18] G.G.Roy and T.L.Woodings, “A Framework for Risk Analysis in Software
Engineering”, Proceedings of Seventh Asia-Pacific Software Engineering
Conference (APSEC 2000), pp.441 –445, 2000.

[19] A.A.Keshlaf and K.Hashim, “A Model and Prototype Tool to Manage Software
Risks,” Proceedings of the First Asia-Pacific Conference on Quality Software,
pp.297-305, 2000.

[20] J.F.Patenaude, E.Merlo, M.Dagenais and B.Lague, “Extending Software Quality
Assessment Techniques to Java Systems,” Proceedings of the Seventh
International Workshop on Program Comprehension, pp.49-56, 1999.

[21] T.Systa, Y.Ping and H.Muller, “Analyzing Java Software by Combining Metrics
and Program Visualization,” Proceedings of the Fourth European Software
Maintenance and Reengineering, pp.199 –208, 2000.

