
This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the

author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without

limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s

administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,

or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission

may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial

http://www.elsevier.com/locate/permissionusematerial

Aut
ho

r's

pe
rs

on
al

co

py

A hierarchical mixture model for software reliability prediction

Shaoming Li a,b, Qian Yin a,b, Ping Guo a,b,*, Michael R. Lyu c

a Department of Computer Science, Beijing Normal University, Beijing 100875, China
b Laboratory of Computer Science, Institute of Software, The Chinese Academy of Sciences, Beijing 100080, China

c Department of Computer Science and Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong, China

Abstract

It is important to develop general prediction models in current software reliability research. In this paper, we propose a
hierarchical mixture of software reliability models (HMSRM) for software reliability prediction. This is an application of
the hierarchical mixtures of experts (HME) architecture. In HMSRM, individual software reliability models are used as
experts. During the training of HMSRM, an Expectation–Maximizing (EM) algorithm is employed to estimate the param-
eters of the model. Experiments illustrate that our approach performs quite well in the later stages of software develop-
ment, and better than single classical software reliability models. We show that the method can automatically select the
most appropriate lower-level model for the data and performances are well in prediction.
� 2006 Elsevier Inc. All rights reserved.

Keywords: Software reliability model; HME; EM algorithm; Prediction

1. Introduction

Software reliability is one of a number of aspects of computer software which can be taken into consider-
ation when determining the quality of the software. Nowadays, software reliability is widely used by such users
as Alcatel, AT&T, Bellcore, CNES (France), ENEA (Italy), Ericsson Telecom, Hewlett Packard, Hitachi, IBM,
NASAs Jet Propulsion Laboratory, Lockheed-Martin, Lucent Technologies, Microsoft, Mitre, Motorola,
Nortel, Saab Military Aircraft, Tandem Computers, the US Air Force, and the US Marine Corps. There are
over 65 published articles by users of software reliability engineering, and the number continues to grow [1].

Building good reliability models is one of the key problems in the field of software reliability. A good soft-
ware reliability model should give good predictions of future failure behavior, compute useful quantities and
be widely applicable. Therefore, a very important goal of current software reliability research is to develop
general prediction models [2]. Existing models typically rely on assumptions about development environments,
the nature of software failures and the probability of individual failure occurrences. Thus each model can be
shown to perform well with a specific failure data set, but no model appears to perform well for all cases.

0096-3003/$ - see front matter � 2006 Elsevier Inc. All rights reserved.

doi:10.1016/j.amc.2006.07.028

* Corresponding author. Address: Department of Computer Science, Beijing Normal University, Beijing 100875, China.
E-mail addresses: pguo@ieee.org (P. Guo), lyu@cse.cuhk.edu.hk (M.R. Lyu).

Applied Mathematics and Computation 185 (2007) 1120–1130

www.elsevier.com/locate/amc

Aut
ho

r's

pe
rs

on
al

co

py

In recent years, many methods have been proposed to improve the quality of reliability models. Some non-
parametric methods have been introduced into the field [3–5], such as Neural Network and Genetic Program-
ming. These types of method are flexible, but they often lack theoretical basis. Other work has focused on
building a unified scheme to solve the generalizability problem mentioned above [6,7]. Such schemes are often
theoretically rigorous, but some of them are not practical because there are too many parameters to estimate.
Another approach aims try to use various methods to improve the estimation performance of reliability mod-
els [8]; our work belongs to this type.

In this paper, a hierarchical mixture of software reliability models (HMSRM) is proposed, which is based
on the principle of ‘‘divide-and-conquer’’. HMSRM can be considered as an application of the hierarchical
mixtures of experts (HME) architecture [9]. The model takes the outputs of several ‘‘experts’’ as inputs and
integrates them together effectively using gating networks. Unlike many other divide-and-conquer algorithms,
HME makes use of ‘‘soft’’ splits of data. Thus it can employ as much input information as possible in order to
make decisions.

HMSRM is designed to exploit the advantages of several classical software reliability models, which are
treated as ‘‘experts’’. By this means, we can get more accurate predictions. In order to adjust the ‘‘contribu-
tion’’ of each expert, an Expectation–Maximization (EM) algorithm [9,12] is employed. The experimental
results show that the generalization performance of HMSRM is better than individual classical software reli-
ability models, and that it is a good approach to model selection.

2. Classical software reliability models

In the course of development of software reliability research, many models have been built to predict future
failures. Some of the models are described as Nonhomogeneous Poisson Process (NHPP) models, because the
mean value function M(t) represents the cumulative number of faults exposed up to time t [10]. In practice,
many of the NHPP models are proved to be effective only in a particular environment. In order to construct
HMSRM, we choose four classical NHPP models as the ‘‘experts’’ in the HMSRM. They are as follows:

(1) Goel and Okumoto model (G–O model)

MðtÞ ¼ að1� e�btÞ: ð1Þ
(2) Duane model

MðtÞ ¼ atb: ð2Þ
(3) S-shaped model

MðtÞ ¼ að1� ð1þ btÞe�btÞ: ð3Þ
(4) K-stage Erlangian (gamma) growth curve model (k = 3)

MðtÞ ¼ a 1� 1þ bt þ ðbtÞ2

2

 !
e�bt

 !
: ð4Þ

In these NHPP models, usually parameter a usually represents the mean number of software failures that will
eventually be detected, and parameter b represents the probability that a failure is detected in a constant period.

3. HMSRM and the EM algorithm

The HMSRM we used here is based on the HME architecture. The failure data are given in pairs as
X = {(x(t),d(t))}, where x(t) represents the execution time and d(t) represents the number of failures. In the train-
ing algorithm, we divide the input space into a set of sub-regions and assign each ‘‘expert’’ to certain regions.
The bounds of the regions are adjusted dynamically by the algorithm.

The architecture of a two-level HMSRM [9,13] is shown in Fig. 1. It has exactly the same tree-like structure
as the HME model. Classical reliability models, which are expert networks in the HME model, sit at the leaves

S. Li et al. / Applied Mathematics and Computation 185 (2007) 1120–1130 1121

Aut
ho

r's

pe
rs

on
al

co

py
of the tree, and gating networks control the nonterminals of the tree. Each classical model receives the x (exe-
cution time) as input and produces a result lij (number of failures). In the meantime, the gating networks
receive the same x and compute the weights of each lower-level model.

In the architecture, each lower-level model produces its output lij as a function of the input x:

lij ¼ fi;jðxÞ: ð5Þ

The gating networks are considered as generalized linear. We define the intermediate variables:

ki ¼ vT
i x; ð6Þ

where vi is a weight vector. The top-level gating network is defined as follows:

gi ¼
ekiP
kekk

: ð7Þ

Similarly, the lower-level networks are defined as follows:

gjji ¼
ekijP
kekik

; kij ¼ vT
ijt; ð8Þ

where vij is also a weight vector for the expert network (i, j). Thus, the output of the whole HMSRM is

l ¼
X

i

gili; li ¼
X

j

gjjilij: ð9Þ

As gi and gjji sums to one for each x respectively, they can be considered as ‘‘prior’’ probabilities. Using Bayes’
rules, we can define the posterior probabilities as follows:

hi ¼
gi

P
jgjjiP ijðyÞP

igi

P
jgjjiP ijðyÞ

; ð10Þ

GOEL AND
OKUMOTO

[Expert Network(1,1)]

DUANE MODEL
[Expert Network(1,2)]

S-SHAPED MODEL
[Expert Network(2,1)]

K-STAGE MODEL
[Expert Network(2,2)]

µ
11

µ
21

µ 12

µ 22

µ
1

µ 2

Gating
Network

g 2|2

g 1|2

Gating
Network

g 2

g 1

Gating
Network

g 1|1

g 2|1

x

x

x

x

x

x

x

Fig. 1. A two-level hierarchical mixture of software reliability model.

1122 S. Li et al. / Applied Mathematics and Computation 185 (2007) 1120–1130

Aut
ho

r's

pe
rs

on
al

co

py

and

hjji ¼
gjjiP ijðyÞP

jgjjiP ijðyÞ
; ð11Þ

where Pij is the distribution of the outputs of the classical models. Also, joint posterior probabilities are de-
fined as

hij ¼
gigjjiP ijðyÞP

igi

P
jgjjiP ijðyÞ

: ð12Þ

We employ the EM algorithm to solve the learning problem of HMSRM. The EM algorithm is a general tech-
nique for maximum likelihood estimation; it is an iterative approach. Each iteration of an EM algorithm has
two steps: an Estimation (E) step and a Maximization (M) step. The M step involves the maximization of a
likelihood function that is redefined in each iteration by the E step [9].

In order to apply the EM algorithm to HMSRM, we define indicator variables zi and zjji, such that one and
only one of the zi is equal to one, and one and only one of the zjji is equal to one. Thus their expectation can be
written as follows:

E½zðtÞij jX � ¼ P zðtÞij ¼ 1jyðtÞ;xðtÞ;hðpÞ
� �

¼
P ðyðtÞjzðtÞij ¼ 1;xðtÞ;hðpÞÞP zðtÞij ¼ 1jxðtÞ;hðpÞ

� �
PðyðtÞjxðtÞ;hðpÞÞ

¼
PðyðtÞjxðtÞ;hðpÞÞgðtÞi gðtÞjjiP

ig
ðtÞ
i

P
jg
ðtÞ
jji P ðyðtÞjxðtÞ;h

ðpÞÞ
¼ hðtÞij ;

ð13Þ
where h stands for the parameters of the expert networks. Also note that E½zðtÞi jX � ¼ hðtÞi and E½zðtÞjji jX � ¼ hðtÞjji .

The complete-data likelihood is:

lcðh; yÞ ¼
X

t

X
i

X
j

zðtÞij ln gðtÞi gðtÞjji P ijðyðtÞÞ
� �

; ð14Þ

and then the expectation of the complete-data likelihood is

Qðh; bhðnÞÞ ¼X
t

X
i

X
j

E½zðtÞij � ln gðtÞi þ ln gðtÞjji þ ln P ijðyðtÞÞ
� �

¼
X

t

X
i

X
j

hðtÞij ln gðtÞi þ ln gðtÞjji þ ln P ijðyðtÞÞ
� �

: ð15Þ

The M step requires maximization of the Qðh; bhðnÞÞ. According to Eq. (15), we can adjust the lower-level mod-
el parameters and the gating network weights. Thus the M step reduces to the following optimization
problems:

wðpþ1Þ
ij ¼ arg max

wij

X
t

hðtÞij ln P ijðyðtÞÞ; ð16Þ

vðpþ1Þ
i ¼ arg max

vi

X
t

X
k

hðtÞk ln gðtÞk ; ð17Þ

vðpþ1Þ
ij ¼ arg max

vij

X
t

X
k

hðtÞk

X
l

hðtÞljk ln gðtÞljk; ð18Þ

where wij is the parameters of the (i, j) lower-level model. To simplify the problem, we assume the distribution
of Pij is normal.

P ijðyðtÞÞ ¼ ke�ðd
ðtÞ�yðtÞij Þ

2

; ð19Þ
where k is an constant value. Thus Eq. (16) reduces to

wðpþ1Þ
ij ¼ arg min

wij

X
t

hðtÞij dðtÞ � yðtÞij

� �2

; ð20Þ

where yij is the output of the (i, j) lower-level model and d(t) is the corresponding result of x(t).

S. Li et al. / Applied Mathematics and Computation 185 (2007) 1120–1130 1123

Aut
ho

r's

pe
rs

on
al

co

py

4. Experiments

The training and testing data SYS1 and CSR1 are selected from the CD-ROM of the ‘‘Handbook of Soft-
ware Reliability Engineering’’ [11]. In data set SYS1, there are 136 samples that contain time and number of
failures, while there are 397 failures and corresponding time-to-failure data in CSR1. We take the early part of
the software running data to train the HMSRM.

In the experiments, we construct a two level HMSRM. At the terminal nodes sit the four single models as
shown in Fig. 1. In this part, two experiments are performed to verify the model using data SYS1. Before the
experiment, the data are normalized. In the first experiment, the model is trained with the first 60% of the sam-
ples on the time axis, while the remaining failure data are used for test. The data is divided into 114 training
samples and 22 testing samples. In the second experiment, the model is trained with the first 75% of the sam-
ples on the time axis, which means there are 128 training samples and eight testing samples. The data are used
to train the HMSRM with the EM algorithm mentioned above. As a comparison, we also train individual
NHPP models. In order to simplify the problem, the gradient descent learning algorithm is adopted to esti-
mate the parameters of the classical models. Also, the variance is used to measure the quality of the models.
The results are shown in Tables 1 and 2.

Figs. 2 and 3 show the curves of the HMSRM and individual models, respectively, in comparison with the
real data. The two figures indicate that HMSRM works well in the prediction and the DUANE model is much
better than other individual models. From Table 3, we can find that HMSRM is as good as the DUANE
model in prediction, or even better under some conditions. This suggests HMSRM is an effective method
in failure prediction.

Table 1
Prediction results based on 60% data

Model Parameters Variance (training data) Variance (testing data)

Goel and Okumoto model a = 0.8014 7.4913e�004 0.0195
b = 5.8456

Duane model a = 1.1054 7.5958e�004 0.0021
b = 0.4897

S-shaped model a = 0.7354 0.0040 0.0374
b = 15.1317

K-stage model (k = 3) a = 0.7256 0.0070 0.0411
b = 23.0171

HMSRM 3.2064e�004 0.0022

Table 2
Prediction results based on 75% data

Model Parameters Variance (training data) Variance (testing data)

Goel and Okumoto model a = 0.8703 0.0014 0.0133
b = 5.0047

Duane model a = 1.0976 6.8968e�004 0.0045
b = 0.4860

S-shaped model a = 0.7911 0.0056 0.0339
b = 13.7296

K-stage model (k = 3) a = 0.7742 0.0089 0.0403
b = 21.7276

HMSRM 3.6517e�004 0.0011

1124 S. Li et al. / Applied Mathematics and Computation 185 (2007) 1120–1130

Aut
ho

r's

pe
rs

on
al

co

py

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Execution Time (normalized)

F
ai

lu
re

s
(n

or
m

al
iz

ed
)

Fig. 2. The prediction curve of HMSRM in 75% prediction: the solid line shows the HMSRM prediction result and the dashed line shows
the real failure data.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

F
ai

lu
re

s
(n

or
m

al
iz

ed
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

F
ai

lu
re

s
(n

or
m

al
iz

ed
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

F
ai

lu
re

s
(n

or
m

al
iz

ed
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

F
ai

lu
re

s
(n

or
m

al
iz

ed
)

a b

c d

Execution Time (normalized) Execution Time (normalized)

Execution Time (normalized)Execution Time (normalized)

Fig. 3. The prediction curves of individual models in 75% prediction: the solid lines show the prediction result and the dashed lines show
the real failure data. (a) G–O model, (b) Duane model, (c) S-shaped model, (d) K-stage model.

Table 3
Prediction results (data normalized)

Model 60% Variance
(training data)

60% Variance
(testing data)

75% Variance
(training data)

75% Variance
(testing data)

Goel and Okumoto 7.4913e�004 0.0195 0.0014 0.0133
Duane 7.5958e�004 0.0021 6.8968e�004 0.0045
S-shaped 0.0040 0.0374 0.0056 0.0339
K-stage (k = 3) 0.0070 0.0411 0.0089 0.0403
HMSRM 3.2064e�004 0.0022 3.6517e�004 0.0011

S. Li et al. / Applied Mathematics and Computation 185 (2007) 1120–1130 1125

Aut
ho

r's

pe
rs

on
al

co

py

Also, Figs. 4 and 5 show ‘‘contribution’’ curves of the final result of the HMSRM in the experiments. They
represent the effects of every single models in the final result in various time periods. As DUANE model works
relative well for a longer time period, it has the largest contribution. G–O model also works well with specific
time period. The other two models are not suitable in this region, therefore they are restrained by the gating
networks.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1a

g 11

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1b

g 12

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1c

g 21

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1d
g 22

Execution Time (normalized) Execution Time (normalized)

Execution Time (normalized) Execution Time (normalized)

Fig. 4. The contribution curves of the lower-level models in the HMSRM in 60% prediction. (a) G–O model, (b) Duane model, (c) S-
shaped model, (d) K-stage model.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1a

g 11

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1b

g 12

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1c

g 21

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1d

g 22

Execution Time (normalized) Execution Time (normalized)

Execution Time (normalized)Execution Time (normalized)

Fig. 5. The contribution curves of the lower-level models in the HMSRM in 75% prediction. (a) G–O model, (b) Duane model, (c) S-
shaped model, (d) K-stage model.

1126 S. Li et al. / Applied Mathematics and Computation 185 (2007) 1120–1130

Aut
ho

r's

pe
rs

on
al

co

py

As shown in Eqs. (7) and (8), gi and gjji have an exponential function form, models that are less suitable are
gradually suppressed, and one model ultimately has the biggest weight as time t increases. Thus the most
suitable model has a dominating effect on the prediction, as the DUANE model does above. This makes
the prediction close to that of the best model. As the best model is selected automatically by the gating
networks during the training, HMSRM is a good approach for selecting appropriate lower-level models in
software reliability prediction. Besides the dominant one, other lower-level software reliability models in
the HMSRM may work for part of the data, just as the G–O model does in the above experiment. This
may help the HMSRM improve part of the prediction data, and so the HMSRM may get better results than
the best single lower-level model.

Table 3 also shows that if we have a larger set of failure data, the accuracy of prediction is improved. More
information about the failures can help the gating networks choose the best lower-level model and decide the
most suitable regions for the lower-level models more accurately. More information is also useful for training
the lower-level models, which will consequently lead to better predictions. This result can also be found by com-
paring Figs. 4 and 5. In Fig. 5, the HMSRM depends upon the DUANE model much more, whereas G–O
model has a relatively low effect. We can see that leads to a better prediction result, as shown in the tables.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

F
ai

lu
re

s
(n

or
m

al
iz

ed
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
F

ai
lu

re
s

(n
or

m
al

iz
ed

)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

F
ai

lu
re

s
(n

or
m

al
iz

ed
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

F
ai

lu
re

s
(n

or
m

al
iz

ed
)

a

c

b

d

Execution Time (normalized) Execution Time (normalized)

Execution Time (normalized)Execution Time (normalized)

Fig. 6. The prediction curves of individual models in CSR1 prediction: the solid lines show the prediction result and the dashed lines show
the real failure data. (a) G–O model, (b) Duane model, (c) S-shaped model, (d) K-stage model.

Table 4
Prediction results of CSR1 based on the first 300 samples

Model Parameters Variance (training data) Variance (testing data)

Goel and Okumoto model a = 0.8079 0.0011 0.0101
b = 9.9644

Duane model a = 2.8549 0.0127 1.0798
b = 0.8165

S-shaped model a = 0.7478 7.6480e�004 0.0222
b = 25.7710

K-stage model (k = 3) a = 0.7545 0.0031 0.0205
b = 38.3136

HMSRM 7.9633e�004 0.0098

S. Li et al. / Applied Mathematics and Computation 185 (2007) 1120–1130 1127

Aut
ho

r's

pe
rs

on
al

co

py

Another experiment is done to verify the model using data set CSR1. In the experiment, we attempt to
derive a prediction of the software quality early in the testing process. There are 397 samples in the data
set. First the data set is converted into the form of time and corresponding number of failures, and then it
is normalized. As before, we use the earlier 300 samples as the training set and the remaining 97 samples
to verify the prediction result. This means that the training data covers 33% of the time axis. The prediction
results of individual models are shown in Fig. 6. We can see the most seriously problematic of the individual
models is the DUANE model, which is not suitable for the data. It fits some of the early data, but the pre-
diction result has a large disparity with the real data.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

F
ai

lu
re

s
(n

or
m

al
iz

ed
)

Execution Time (normalized)

Fig. 7. The prediction curve of HMSRM in CSR1 prediction: the solid line stands for the HMSRM prediction result and the dashed line
stands for the real failure data.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Time (normalized)

g 11

The Contribution of GOEL AND OKUMOTO Model

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Time (normalized)

g 12

The Contribution of DUANE Model

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Time (normalized)

g 21

The Contribution of SSHAPED Model

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Time (normalized)

g 22

The Contribution of KSTAGE Model

a

c

b

d

Fig. 8. The contribution curves of the lower-level models in the HMSRM in CSR1 prediction. (a) G–O model, (b) Duane model,
(c) S-shaped model, (d) K-stage model.

1128 S. Li et al. / Applied Mathematics and Computation 185 (2007) 1120–1130

Aut
ho

r's

pe
rs

on
al

co

py

HMSRM is applied to solve the problem and the result is shown in Table 4. The structure of the network is
the same as we used in the first experiment. Though the DUANE model is very effective for the data set SYS1,
it is not suitable for the current CSR1 samples. From the result, we can see HMSRM is not affected by the
irrelevancy of each individual models and can still produce an acceptable prediction. This proves our proposed
technique is not dependent on single specific models, and demonstrates that it can select the best ‘‘contribution
curve’’ for various data sets automatically.

Fig. 7 gives the prediction curve of our mixture models and Fig. 8 gives the contribution curves of individ-
ual models. From these curves, we can see there are some problems remaining. Though the prediction of the
mixture model is a little better than individual models, it has some disagreement with the real data. From the
contribution curves, we can see there is no single dominant model. According to Fig. 6, none of the lower-level
models is suitable for the data set. However, the mixture model is based on these single models. Thus the pre-
diction accuracy of the mixture model is impaired. Also, the insufficient amount of training data is an impor-
tant reason for the bad performance.

As a comparison, we also use 50% of the data in time axis as training data. The result is given in Table 5.
From Tables 4 and 5, it can be seen that the performances of all the models are improved by the provision of
more information in the training phase. This also benefits the mixture model. Again, it shows that the perfor-
mance of the mixture model is restricted by some of the lower-level models, and indicates that our mixture
model is not suitable for early software failure rate prediction.

5. Conclusions

In this paper, we apply the HME architecture to mix classical software-reliability models and to form a
novel model, HMSRM. During the training phase, the EM algorithm is used to ensure the convergence of
the training. The experimental results show that the HMSRM can select the appropriate lower-level models
for the given failure data sets automatically and can produce a good prediction.

Since its prediction quality is based on the lower-level models employed HMSRM can be built with a large
number of successful reliability models in order to achieve a good performance, thanks to its expandable
architecture. Also, it can suppress irrelevant models in the architecture. From the above discussion, we con-
clude that HMSRM is a promising method in reliability prediction for the later part of the software develop-
ment period.

Acknowledgements

This work was fully supported by a grant from the National Natural Science Foundation of China (Project
No. 60275002) and a grant from the Research Grants Council of the Hong Kong Special Administrative
Region, China (Project No. CUHK4205/04E).

Table 5
Prediction results of CSR1 based on the first 50% samples

Model Parameters Variance (training data) Variance (testing data)

Goel and Okumoto model a = 0.8710 0.0015 0.0052
b = 8.3477

Duane model a = 1.5970 0.0191 0.1232
b = 0.7013

S-shaped model a = 0.8491 0.0056 0.0080
b = 18.8443

K-stage model (k = 3) a = 0.8444 0.0116 0.0088
b = 28.5820

HMSRM 5.6953e�004 4.1115e�004

S. Li et al. / Applied Mathematics and Computation 185 (2007) 1120–1130 1129

Aut
ho

r's

pe
rs

on
al

co

py

References

[1] John D. Musa, More reliable software faster and cheaper, Tutorial, 16th International Symposium on Software Reliability
Engineering (ISSRE 16), Chicago, IL, 2005.

[2] Karunanithi Nachimuthu, Whitley Darrell, K. Malaiya Yashwant, Using neural networks in reliability prediction, IEEE Transactions
on Software Engineering July/August (1992) 53–59.

[3] R. Sitte, Comparison of software reliability growth predictions: neural networks vs parametric recalibration, IEEE Transactions on
Software Engineering 48 (3) (1999) 291–385.

[4] Miyoung Shin, Amrit L. Goel, Empirical data modeling in software engineering using radial basis functions, IEEE Transactions on
Software Engineering 26 (6) (2000) 567–576.

[5] Eduardo Oliveira Costa, Silvia R. Vergilio, Aurora Pozo, Gustavo Souza, Modeling software reliability growth with genetic
programming, in: 16th International symposium on software reliability engineering (ISSRE 16), Chicago, IL, 2005, pp. 171–180.

[6] Chin-Yu Huang, Michael R. Lyu, Sy-Yen Kuo, Unified scheme of some nonhomogenous Poisson process models for software
reliability estimation, IEEE Transactions on Software Engineering 29 (3) (2003) 261–269.

[7] Tadashi Dohi, Shunji Osaki, Kishor S. Trivedi, An infinite server queueing approach for describing software reliability growth unified
modeling and estimation framework, in: Proceedings of the 11th Asia-Pacific Software Engineering Conference (APSEC’04). pp. 120–
129.

[8] Hiroyuki Okamura, Atsushi Murayama, Tadashi Dohi, EM algorithm for discrete software reliability models: a unified parameter
estimation method, in: Proceedings of the Eighth IEEE International Symposium on High Assurance Systems Engineering
(HASE’04), pp. 219–228.

[9] Michael I. Jordan, Rober A. Jacobs, Hierarchical mixtures of experts and the EM algorithm, Neural Computation 6 (1994) 181–214.
[10] T.M. Khoshgoftaar, T.G. Woodcock, Software reliability model selection: a case study, in: Proceedings of the 2nd International

Symposium on Software Reliability Engineering, Austin, TX, IEEE Computer Society, (1991), pp. 183–191.
[11] Michael R. Lyu, Handbook of Software Reliability Engineering, IEEE Computer Society Press, McGraw Hill, New York, 1996.
[12] Haykin Simon, Neural Networks: A Comprehensive Foundation, 2/E, Prentice Hall, 1999, pp. 351–386.
[13] Yin Qian, Li Shaoming, Guo Ping, A case study on the hierarchical software reliability model, in: Proceedings of 2004 National

Annual Software and Applications Conference (NASAC 2004), pp. 242–246 (in Chinese).

1130 S. Li et al. / Applied Mathematics and Computation 185 (2007) 1120–1130

