

Abstract

In this paper, we first show that the logistic testing-effort
function is practically acceptable/helpful for modeling
software reliability growth and providing a reasonable
description of resource consumption. Therefore, in
addition to the exponential-shaped models, we will
integrate the logistic testing-effort function into S-shaped
model for further analysis. The model is designated as the
Yamada Delayed S-shaped model. A realistic failure data
set is used in the experiments to demonstrate the
estimation procedures and results. Furthermore, the
analysis of the proposed model under imperfect debugging
environment is investigated. In fact, from these
experimental results and discussions, it is apparent that
the logistic testing-effort function is well suitable for
making estimations of resource consumption during the
software development/testing phase.

1. Introduction

 The complexity and size of a computer system have
grown dramatically for the past two decades. Traditionally,
most researches focused only on the design, improvement
and reliability analysis of the hardware to reach the goal of
high-performance computer systems. But now, the
growing trend of software criticality has generated more
researches into the field of high-quality software
development. In highly complex modern software systems,
reliability is the most important factor since it quantifies
software failures during the process of software
development and software quality control. Software
reliability is the probability that a given software will be
functioning without failure in a given environment during
a specified period of time [1-3]. A common approach for
measuring software reliability is by using an analytical
model whose parameters are generally estimated from
available data on software failures [1-9]. In the field of
software reliability modeling, the span of time may be
considered as calendar time, clock time, and execution

time. Musa et al. [2-3] and Ohba [6] showed that the effort
index or the execution time is a better time domain for
software reliability modeling than the calendar time
because the shape of observed reliability growth curve
depends strongly on the time distribution of the
testing-effort. Recently, Yamada et al. [10-13] and Huang
et al. [14-16] proposed a new and simple SRGM which
describes the relationship among the calendar testing, the
amount of testing-effort, and the number of software faults
detected by testing. The test-effort index is measured by
the number of CPU hours, the number of test runs, and so
on. Unfortunately, most papers assumed that the
consumption rate of testing resource expenditures during
the testing phase is a constant or even do not consider such
testing effort. In fact, if the effort index data or
execution-time-based data are available in the actual
observed data set, software reliability models should be
developed by incorporating the testing-effort functions in
real development environment [2-3, 6-7, 14-16].
Therefore, in addition to the exponential-shaped models,
we will integrate the logistic testing-effort function into
S-shaped model for further analysis. Furthermore, the
analysis of the proposed model under imperfect debugging
environment is investigated.
 In the remaining of the paper, there are four more
sections. We investigate how to incorporate logistic
testing-effort function into the exponential-shaped and the
S-shaped Software Reliability Growth modeling in section
2. The applications of these models to actual test/debug
data set are discussed in section 3. Besides, the
imperfect-debugging problem based on the proposed
model is discussed in section 4. Finally, Section 5 gives
some concluding remarks on the results obtained.

2. Software reliability growth modeling and
testing-effort function

2.1 SRGM with logistic testing-effort function

In this section, we will first review logistic

testing-effort functions. During the software-testing phase,

Effort-Index-Based Software Reliability Growth Models and

Performance Assessment

Chin-Yu Huang*, Sy-Yen Kuo*, Michael R. Lyu**
 , and Jung-Hua Lo*

*Department of Electrical Engineering **Computer Science & Engineering Department
 National Taiwan University The Chinese University of Hong Kong
 Taipei, Taiwan Shatin, Hong Kong
 sykuo@cc.ee.ntu.edu.tw lyu@cse.cuhk.edu.hk

significant test-effort is required, such as the number of
test cases, human power, and CPU time. As usual, the
test-effort during the testing phase and the time-dependent
behavior of development effort in the software
development process can be described by a Weibull-type
consumption curve, see Yamada et al. [10-13]. In fact,
since actual testing-effort data represent various
expenditure patterns, sometimes the testing-effort
expenditures are difficult to be described by only an
exponential or a Rayleigh curve. Although the
Weibull-type curve can fit the data well under general
software development environment, however, it will have
an extreme peak work rate when the shape parameter

≥m 3. That is, when m=3, 4, and 5, we can find that these
testing-effort curves have an apparent peak point (i.e.
non-smoothly increasing and degrading consumption
curve) during the software development process [6]. This
fact seems not so realistic because it is not commonly used
to interpret the actual software development/test process
and may not be suitable for modeling the test effort
consumption curve. Therefore, we will use a logistic
testing-effort function instead of the Weibull-type
testing-effort consumption function as the testing-effort
function to describe the test effort patterns during the
software development process. This function differs from
the Weibull-type function described in the above
subsection and was used to derive the resource
consumption curve of a software project over its life cycle
and predict the future costs/schedules [14-16]. It is a
dynamic model since the resource consumption is
estimated from a set of variables that are interdependent.
Besides, DeMarco also reported that this function was
fairly accurate in the Yourdon 1978-1980 project survey
[20]. The cumulative testing-effort consumption of
logistic testing-effort function in time (0, t] is depicted in
the following:

]exp[1

)(
tA

N
tW

α−+
= (1)

Therefore, the current testing-effort expenditures at testing
time t are given by

() 2

2
])exp[](exp[]exp[1

]exp[
)(

22

tt
A

NA

tA

tNA
tw

αα

α

α

αα

−+
=

−+

−×
= (2)

We can see that the w(t) is a smooth bell-shaped function
and its left side is tailed. Besides, the w(t) reaches its
maximum value at time Besides, the testing effort w(t)
reaches its maximum value at time

α

A
t

ln
max =

(3)
This basic SRGM is based on the following assumptions:
1. The fault removal process follows the

Non-Homogeneous Poisson Process (NHPP).

2. The software system is subject to failures at random
times caused by faults remaining in the system.

3. The mean number of faults detected in the time
interval (t, t+∆t] by the current test-effort is
proportional to the mean number of remaining faults
in the system.

4. The proportionality is a constant over time.
5. The consumption curve of testing effort is modeled

by a logistic testing-effort function.
6. Each time a failure occurs, the fault that caused it is

immediately removed, and no new faults are
introduced.

Secondly, we can describe the mathematical expression of
a testing-effort-based as the following:

)]([
)(

1)(
tmar

twdt

tdm
−×=× , a>0, 0<r(t)<1 (4)

that is,

)]([)(
)(

tmartw
dt

tdm
−××=

(5)
Solving the above differential equation under the boundary
condition m(0)=0 (i.e., the mean value function m(t) must
be equal to zero at time 0), we have

))(*
1()))0()((1()(trWeaWtWreatm −−=−−−= (6)

where
 m(t)= the expected mean number of faults detected
 in time (0, t],
 w(t)= current testing-effort consumption at time t,
 a= the expected number of initial faults, and
 r= error detection rate per unit testing-effort at
 testing time t that satisfies r>0.

2.2 Yamada S-shaped model with logistic
testing-effort function

 The Delayed S-shaped SRGM was originally
proposed by Yamada et at. [6-7, 12-13] and was a simple
modification of the NHPP to obtain an S-shaped growth
curve for the cumulative number of failures detected. This
model’s software fault detection process can be viewed as
a learning process that the software testers become familiar
with the testing environments and tools as time progresses,
these testers’ skills gradually improve and then level off as
the residual faults become more difficult to uncover [1, 6-7,
12-13]. Because the original S-shaped model is for the
analysis of fault isolation data, i.e. the testing process
contains not only a fault detection process, but also a fault
isolation process. Following the similar steps described in
subsection 2.1, we can get the following relationship
between m(t) and w(t) for an extended Yamada S-shaped
software reliability model:

)]([
)(

1)(
tfa

twdt

tdf
−×=× ϖ (7)

)]()([
)(

1)(
tgtf

twdt

tdg
−×=× ε

(8)
where f(t) is the cumulative number of failures detected up
to t and g(t) is the cumulative number of failures isolated
up to t. Solving Eq. (7) and Eq. (8) under the boundary
condition f(0)=g(0)=0, we have

))(*
1()))0()((1()(tWeaWtWeatf ϖϖ −−=−−−= (9)

where ϖ is the failure detection rate.
And

)})(*)(*
(

1
1{)(tWetWeatg ϖεεϖ

εϖ
−−−

−
−=

(10)
where ε is the failure isolation rate.
By assuming the fault detection rate parameter the fault
isolation rate parameter (ε) ≅ the fault detection rate
parameter (ϖ), the NHPP model with a Delayed S-shaped
growth curve of detected software faults is:

)))0()(())0()((1(1()(WtWeWtWatm −−×−+−= ψψ

))(*
))(*1(1(tWetWa ψψ −×+−= (11)

where ψ=fault detection rate per unit testing-effort at
testing time t that satisfies ψ >0.

3. Numerical examples

 The data set analyzed here is from a study by Ohba
[6]. The total cumulative number of detected faults after a
long period of testing is 358 and this value can be used as
an additional comparison criterion. Through using the
methods of MLE and LSE, these estimated parameters of
the logistic testing-effort function are N=54.8364,
A=13.0334, and α=0.226337. Table 1 shows the estimated
parameters of Eq. (6), comparisons with the estimated
initial faults a, and MSF of other general SRGMs. In
addition, the testing effort function reaches the maximum
at time t=11.3438 weeks which corresponds to
w(t)=3.10288 CPU hours and W(t)=23.5107 CPU hours.
Furthermore, the number of faults removed up to this time
tmax is 245.421. Fig. 1(a) graphically shows the actual
fitting number of software faults, the mean value function
of Eq. (6), and the 90% upper and lower confidence
bounds vs. test time. It shows that the variation in m(t)
constantly increases with time t and eventually becomes a
constant. The observed failure data and the fitted curve for
the extended S-shaped model with logistic testing-effort
function are plotted in Fig. 1(b). From these figures, the

testers can use the results to estimate the number of
additional tests to run and the additional amount of
resources needed to reach the given objective, and such
information are more useful than those based on historical
data. Besides, from the information provided by Fig. 1(a),
(b) and Table 1, we can see that the model in Eq. (6) gives
a better fit to the observed data than the Delayed S-shaped
model with logistic testing-effort function does. Moreover,
according to the study in [6], even the Delayed S-shaped
model does not fit the observed data well when the testing
effort spent on failure detection/isolation is not a constant.
But by integrating the testing-effort function into the
Delayed S-shaped software reliability model, we can find
that the extended Delayed S-shaped model with logistic
testing-effort function has smaller AE and MSF than with
Rayleigh testing-effort functions from Table 1. From these
figures and comparison results, we can conclude that the
advantage of logistic testing-effort function is the
applicability to various kinds of models and it can yield
better predictions for other reliability metrics. It means
that the logistic testing-effort function we proposed is
really good enough to give a more accurate description of
resource consumption during the software development
phase.

Table 1: Comparison results.

Model a r (or ψψψψ) AE (%) MSF
SRGM with Logistic
TEF

394.076 0.0427223 10.06 118.29

SRGM with
Rayleigh TEF

333.18

0.100415

6.93

798.49

Yamada S-Shaped
Model

374.05 0.197651 4.48 368.67

Delayed S model
with Logistic TEF

338.136 0.10004 5.54 242.79

Delayed S model
with Rayleigh TEF

459.08 0.0273367 28.23 268.42

G-O Model 760.00 0.0322688 112.29 139.82
Inflection S-Shaped
Model

389.1 0.0935493 8.69 333.53

Delayed S-Shaped
Model

374.05 0.197651 4.48 368.67

Exponential Model 455.371 0.0267368 27.09 206.93
AE = Accuracy of Estimation
MSF = Mean of Square fitting Faults
TEF = testing-effort function

0 2.5 5 7.5 10 12.5 15 17.5

0

50

100

150

200

250

300

350

Time(Weeks)

Number of Failures

Figure 1(a): Mean value function m(t) of Eq. (6)
and the 90% confidence bounds vs. time.

0 2.5 5 7.5 10 12.5 15 17.5

0

50

100

150

200

250

300

350

Time(Weeks)

Number of Failures

Figure 1(b): Mean value function m(t) of Eq. (11) and
the 90% confidence bounds vs. time.

4. Investigation of imperfect debugging

4.1 Modeling SRGM with logistic testing-effort
function under imperfect debugging environment

From our studies [1-3], different SRGMs make
different assumptions and therefore can be applied to
different situations. Most SRGMs published in the
literature assume that each time a failure occurs, the error
that caused it is immediately removed and no new errors
are introduced. Besides, some people also assume that the
correction of an error takes only negligible time and an
error detected is removed with certainty. These
assumptions help to reduce the complexity of modeling
software reliability growth [21-23]. In this section, we
plan to incorporate a relaxation of the above assumption in
order to make the SRGMs more realistic and practical.
Specially, the software reliability growth model with a
logistic testing-effort function under the imperfect
debugging environment can be illustrated. To show this,
we modify the sixth assumption presented in Section 2 of
the original manuscript as:

1. When a fault is detected and removed, it is possible to
generate another one;

2. When removing/fixing a detected fault, the probability of
introducing another fault is a constant β.

Based on the assumptions (1)-(5) described in Section 1
and the above modified assumptions, we demonstrate the
modified software reliability growth model under
imperfect debugging environment in detail. Due to the
limitation of space, here we only use Eq. (6) as the
estimated mean value function for describing the imperfect
debugging. Similarly, the Eq. (11) can also be applied
based on the same procedure. Rewriting the Eq. (5) as

)]()([)(
)(

tmtnrtw
dt

tdm
−××= (12)

Here we propose a fault content function:

)()(tmatn ×+= β (13)

Solving the above two differential equations, we have

)))0()(()1(1(
1

)(WtWre
a

tm −×−×−−×
−

= β
β

 (14)

)))0()(()1(1(
1

)(WtWre
a

tn −×−×−×−×
−

= ββ
β

(15)
It is noted that the failure intensity function λ(t) is given by

 λ(t)=arw(t)exp[-r(1−β)W*(t)] (16)

The expected number of remaining faults after testing time
t is
 mremaining(t)=n(t)−m(t)=a(exp[-r(1−β)W*(t)])
(17)

It is clear that the above equation mremaining(t) is a
monotonic decreasing function in testing time t. However,
the above equations can represent the case where a fault is
not successfully removed and new faults are introduced
during the testing/debugging phase. Besides, the expected
number of detected faults after an infinite amount of test
time is

 m(∞)= ×
− β1

a
 (1-exp[-r(1−β)

A

NA

+1
]) (18)

4.2 Fitting imperfect debugging model to real
software data set

 Using the proposed imperfect-debugging model, we
now show a real numerical illustration for software
reliability measurement. Here, in order to validate the
imperfect-debugging model, the AE and MSF are selected
as the evaluation criteria. Table 2 shows the estimated
parameters of Eq. (14) and the comparison among the

 Estimated
Upper Bound
Lower Bound

 Estimated
Upper Bound
Lower Bound

estimated initial faults a and MSF of different models
presented. The observed data, estimated growth curves of
the cumulative number of detected faults, and the
introduced faults versus time are plotted in Figure 2. It
shows that Eq. (14) fits this data set well. According to
Table 2, we found that the proposed imperfect debugging
model has smaller AE and MSF. Furthermore, the
extended model of Eq. (14) has a better fit to the observed
data compared with other proposed imperfect debugging
models. Hence, we can conclude that the fault removal
process in the software development/testing environment
may not be a pure perfect debugging process (the estimated
fault introduction rate β=0.0149353 is close to zero but not
a zero). However, if we ignore the impact of imperfect
debugging, the original model in Eq. (6) still can have a
better fit than other models even in the
imperfect-debugging environment. The plot of estimated
remaining fault content at testing time is shown in Figure 3.
We can see that it decreases as time progresses but does
not approach to zero. That is, some faults are eventually
undetected/removed in the testing phase. Moreover, we
note that β can be pre-calcuated from experiences or
previous projects releases and the possible values of β are
listed in Table 2. From the simulation results, we know
that the larger the fault introduction rate, the larger the
fault detection rate and the smaller the number of initial
faults. The simulation results reflect that the introduction
of new faults during the correction process tends to be a
minor effect in many development efforts if we apply our
proposed model. The reason is that the derivations of
logistic testing-effort function in its basic concepts already
incorporate the human factors and uncertainties into
consideration. Therefore, we can conclude that the
proposed model in Eq. (6) has the built-in flexibility and
has been tested on real software failure data to show its
applicability even if the assumption of perfect debugging
is eliminated. In fact, in [22] they found that about 14
percent of the errors detected and removed during the
observation period were introduced as a result of imperfect
debugging. They also supported the conjecture that the
exponential SRGMs (particularly the G-O model) still can
be used in practice even when the assumption of perfect
debugging does not hold [22]. Actually, in any case, the
extended model to incorporate imperfect debugging in Eq.
(14) is isomorphic to Eq. (6).

Table 2: Comparison results under the imperfect-
debugging environment

Model a r ββββ

MSF AE
Original
model

394.076 0.0427223 0.0 118.29 10.06

Eq. (14) 389.66 0.0422699 0.0149353 114.08 8.66
mr(t) [23] 352.0 0.0841 0.062 153.0 11.68

K-G [23] 455.0 0.0309 0.140 207.0 27.09
Eq. (14) 387.65 0.0424883 0.02 114.08 8.28
Eq. (14) 383.703 0.0429263 0.03 114.08 7.18
Eq. (14) 379.747 0.0433735 0.04 115.0 6.07
Eq. (14) 375.7981 0.0439301 0.05 119.0 4.97
Eq. (14) 371.036 0.0442963 0.06 114.08 3.64
Eq. (14) 367.88 0.0447726 0.07 114.08 2.76
Eq. (14) 363.24 0.0452593 0.08 1140.08 1.46
Eq. (14) 359.968 0.0457567 0.09 114.08 0.55
Eq. (14) 356.013 0.0462651 0.10 114.08 0.56

2.5 5 7.5 10 12.5 15 17.5 20
0

100

200

300

400

500

Time(Weeks)

Number of Failures

Figure 2: The cumulative number of observed/
estimated failures vs. time.

0 2.5 5 7.5 10 12.5 15 17.5

0

100

200

300

Time(Weeks)

Number of Remaining Fault Content

Figure 3: Expected number of remaining fault content.

5. Conclusions

 In this paper, we have proposed a SRGM
incorporating the logistic testing-effort function that is
completely different from the traditional Weibull-type
curve. We show that the software reliability growth
analysis based on the effort index is more accurate than
that based on the calendar time data through several
experiments on real data. The reason is that most software
reliability growth curves are similar and depend on the
distributions of the testing-effort expenditures in the real
world. In additional to incorporating the logistic
testing-effort function into the exponential-shaped

 Observed
Perfect
Imperfect
Introduced

 β=0.014935
β=0.03
β=0.06
β=0.10

software reliability model, we also integrate this
testing-effort function into the Yamada S-shaped software
reliability model. The experimental results indicate that
the proposed two models fits the real data set fairly well
and gives us an exact/reasonable description of fault
detection process. Ohba mentioned that Delayed S-shaped
model does not fit the observed data well when the testing
effort spent on failure detection/isolation is not a constant
[6]. However, by integrating the testing-effort function
into the Delayed S-shaped software reliability model, we
can find that the extended Delayed S-shaped model with
logistic testing-effort function still has smaller AE and
MSF than with Rayleigh testing-effort function. In
addition, we also discuss the extended SRGM where the
assumption of perfectly removing faults is not adopted.
The simulation results reflect that the introduction of new
faults during the correction process tends to be a minor
effect in many development efforts since the derivations of
logistic testing-effort function in the original basic
concepts already incorporate the human factors into
consideration. Therefore, the assumption of fault
introduction rate being a constant over time in this model
should be valid and reasonable.

Acknowledgment

 We would like to express our gratitude for the support
of the National Science Council, Taiwan, R.O.C., under
Grant NSC 87-TPC-E-002-017. The work described in
this paper was also supported by a grant from the Research
Grant Council of the Hong Kong Special Administrative
Region (Project No. CUHK4432/99E), and by a grant from
France/Hong Kong Joint Research Scheme 1999/2000.
Besides, we also thank several anonymous referees for
their critical review and comments.

References

[1] M. R. Lyu (1996). Handbook of Software Reliability

Engineering. McGraw Hill.
[2] J. D. Musa, A. Iannino, and K. Okumoto (1987). Software

Reliability, Measurement, Prediction and Application.
McGraw Hill.

[3] J. D. Musa (1999). Software Reliability Engineering:
More Reliable Software, Faster Development and Testing.
McGraw-Hill.

[4] B. Littlewood, "Software Reliability Modeling:
Achievements and Limitations, " Proceedings of 5th
Annual Euopean Computer Conference on Advanced
Computer Technology, Reliable Systems and Applications
(CompEuro’91), pp. 36-344, 13-16 May, 1991, Bologna.

[5] A. L. Goel, "Software Reliability Models: Assumptions,
Limitations, and Applicability," IEEE Trans. on Software
Engineering, Vol. SE-11, No. 12, Dec. 1985.

[6] M. Ohba, "Software Reliability Analysis Models, '' IBM J.
Res. Develop., Vol. 28, No. 4, pp. 428-443, July 1984.

[7] P. N. Misra, "Software Reliability Analysis, '' IBM

Systems Journal, Vol. 22, No. 3, pp. 262-279, 1983.
[8] W. Everett, S. Keene, and A. Nikora, "Applying Software

Reliability Engineering in the 1990s, " IEEE Transactions
on Reliability, Vol. R-47, No. 3-sp, pp. 372-378, Sept.
1998.

[9] A. Gana and S. T. Huang, "Statistical Modeling Applied
to Managing Global 5ESS- 2000 Switch Software
Development," Bell Labs Technical Journal, Vol. 2, No.1,
pp. 144-153, winter 1997.

[10] S. Yamada, H. Ohtera, and H. Narihisa, "Software
Reliability Growth Models with Testing Effort, " IEEE
Trans. on Reliability, vol. R-35, No. 1, pp. 19-23, April
1986.

[11] S. Yamada, J. Hishitani, and S. Osaki, "Software
Reliability Growth Model with Weibull Testing Effort: A
Model and Application, " IEEE Trans. on Reliability, Vol.
R-42, pp. 100-105, 1993.

[12] S. Yamada, J. Hishitani, and S. Osaki, " A Software
Reliability Growth Model for Test-Effort Management,"
Proceedings of the Fifteenth Annual International
Computer Software and Applications Conference
(COMPSAC'91), pp. 585-590, Sept. 11-13, 1991, Tokyo,
Japan.

[13] J. Hishitani, S. Yamada, and S. Osaki, "Comparison of
Two Estimation Methods of the Mean Time-Interval
Between Software Failures, " Proceedings of the Ninth
Annual International Phoenix Conference on Computers
and Communications Conference, pp.418-424, March
21-23, 1990, Scottsdale, Arizona, USA.

[14] C. Y. Huang, J. H. Lo, S. Y. Kuo, and M. R. Lyu,
"Software Reliability Modeling and Cost Estimation
Incorporating Testing-Effort and Efficiency,"
Proceedings of the 10th International Symposium on
Software Reliability Engineering (ISSRE'99), pp. 62-72,
Nov. 1-4, 1999, Boca Raton, FL, U.S.A.

[15] C. Y. Huang, J. H. Lo and S. Y. Kuo, "A Pragmatic Study
of Parametric Decomposition Models for Estimating
Software Reliability Growth," Proceedings of the 9th
International Symposium on Software Reliability
Engineering (ISSRE'98), pp. 111-123, Nov. 4-7. 1998,
Paderborn, Germany.

[16] C. Y. Huang, S. Y. Kuo and I. Y. Chen, "Analysis of a
Software Reliability Growth Model with logistic
Testing-Effort Function, " Proceedings of the 8th
International Symposium on Software Reliability
Engineering (ISSRE'97), pp. 378-388, Nov. 1997,
Albuquerque, New Mexico. U.S.A.

[17] S. Chatterjee, R. B. Misra and S. S. Alam, "Joint Effect of
Test Effort and Learning Factor on Software Reliability
and Optimal Release Policy," International Journal of
Systems Science, Vol. 28, No. 4, pp. 391-396, 1997.

[18] G. Xia, P. Zeephongsekul, and S. Kumar, "Optimal
Software Release Policy with a Learning Factor for
Imperfect Debugging," Microelectronics and Reliability,
Vol. 33, pp. 81-86, 1993.

[19] K. Pillai and V. S. Sukumaran Nair, "A Model for
Software Development Effort and Cost Estimation," IEEE
Trans. on Software Engineering, Vol. 23, No. 8, pp.
485-497, Aug. 1997.

[20] T. DeMarco (1982). Controlling Software Projects:
Management, Measurement and Estimation. Prentice-Hall,
Englewood Cliffs, NJ.

[21] S. Yamada, K. Tokuno, and S. Osaki, "Imperfect
Debugging Models with Fault Introduction Rate for
Software Reliability Assessment," International Journal of
Systems Science, Vol. 23, No. 12, pp. 2241-2252, 1992.

[22] M. Ohba and X. Chou, "Does Imperfect Debugging Affect
Software Reliability Growth?," Proc. 11th International
Conference on Software Engineering, pp. 237-244, 1989.

[23] P. K. Kapur and R. B. Garg, "Modeling an Imperfect
Debugging Phenomenon in Software Reliability,"
Microelectronics and Reliability, Vol. 36, pp. 645-650,
1996.

