
   

  

    

 
Abstract 

 
In this paper, we first show that the logistic testing-effort 
function is practically acceptable/helpful for modeling 
software reliability growth and providing a reasonable 
description of resource consumption. Therefore, in 
addition to the exponential-shaped models, we will 
integrate the logistic testing-effort function into S-shaped 
model for further analysis.  The model is designated as the 
Yamada Delayed S-shaped model.  A realistic failure data 
set is used in the experiments to demonstrate the 
estimation procedures and results. Furthermore, the 
analysis of the proposed model under imperfect debugging 
environment is investigated. In fact, from these 
experimental results and discussions, it is apparent that 
the logistic testing-effort function is well suitable for 
making estimations of resource consumption during the 
software development/testing phase. 
 
 
1. Introduction 
 
     The complexity and size of a computer system have 
grown dramatically for the past two decades.  Traditionally, 
most researches focused only on the design, improvement 
and reliability analysis of the hardware to reach the goal of 
high-performance computer systems.  But now, the 
growing trend of software criticality has generated more 
researches into the field of high-quality software 
development.  In highly complex modern software systems, 
reliability is the most important factor since it quantifies 
software failures during the process of software 
development and software quality control.  Software 
reliability is the probability that a given software will be 
functioning without failure in a given environment during 
a specified period of time [1-3].  A common approach for 
measuring software reliability is by using an analytical 
model whose parameters are generally estimated from 
available data on software failures [1-9].  In the field of 
software reliability modeling, the span of time may be 
considered as calendar time, clock time, and execution 

time.  Musa et al. [2-3] and Ohba [6] showed that the effort 
index or the execution time is a better time domain for 
software reliability modeling than the calendar time 
because the shape of observed reliability growth curve 
depends strongly on the time distribution of the 
testing-effort.   Recently, Yamada et al. [10-13] and Huang 
et al. [14-16] proposed a new and simple SRGM which 
describes the relationship among the calendar testing, the 
amount of testing-effort, and the number of software faults 
detected by testing.   The test-effort index is measured by 
the number of CPU hours, the number of test runs, and so 
on. Unfortunately, most papers assumed that the 
consumption rate of testing resource expenditures during 
the testing phase is a constant or even do not consider such 
testing effort.  In fact, if the effort index data or 
execution-time-based data are available in the actual 
observed data set, software reliability models should be 
developed by incorporating the testing-effort functions in 
real development environment [2-3, 6-7, 14-16].  
Therefore, in addition to the exponential-shaped models, 
we will integrate the logistic testing-effort function into 
S-shaped model for further analysis.  Furthermore, the 
analysis of the proposed model under imperfect debugging 
environment is investigated. 
 In the remaining of the paper, there are four more 
sections.  We investigate how to incorporate logistic 
testing-effort function into the exponential-shaped and the 
S-shaped Software Reliability Growth modeling in section 
2.  The applications of these models to actual test/debug 
data set are discussed in section 3.  Besides, the 
imperfect-debugging problem based on the proposed 
model is discussed in section 4.  Finally, Section 5 gives 
some concluding remarks on the results obtained. 
 
2.  Software reliability growth modeling and 
testing-effort function 
 
2.1 SRGM with logistic testing-effort function 

 
In this section, we will first review logistic 

testing-effort functions.  During the software-testing phase, 
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significant test-effort is required, such as the number of 
test cases, human power, and CPU time.  As usual, the 
test-effort during the testing phase and the time-dependent 
behavior of development effort in the software 
development process can be described by a Weibull-type 
consumption curve, see Yamada et al. [10-13].  In fact, 
since actual testing-effort data represent various 
expenditure patterns, sometimes the testing-effort 
expenditures are difficult to be described by only an 
exponential or a Rayleigh curve.  Although the 
Weibull-type curve can fit the data well under general 
software development environment, however, it will have 
an extreme peak work rate when the shape parameter 

≥m 3. That is, when m=3, 4, and 5, we can find that these 
testing-effort curves have an apparent peak point (i.e. 
non-smoothly increasing and degrading consumption 
curve) during the software development process [6].  This 
fact seems not so realistic because it is not commonly used 
to interpret the actual software development/test process 
and may not be suitable for modeling the test effort 
consumption curve.  Therefore, we will use a logistic 
testing-effort function instead of the Weibull-type 
testing-effort consumption function as the testing-effort 
function to describe the test effort patterns during the 
software development process.  This function differs from 
the Weibull-type function described in the above 
subsection and was used to derive the resource 
consumption curve of a software project over its life cycle 
and predict the future costs/schedules [14-16].  It is a 
dynamic model since the resource consumption is 
estimated from a set of variables that are interdependent.  
Besides, DeMarco also reported that this function was 
fairly accurate in the Yourdon 1978-1980 project survey 
[20].  The cumulative testing-effort consumption of 
logistic testing-effort function in time (0, t] is depicted in 
the following: 
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Therefore, the current testing-effort expenditures at testing 
time t are given by 
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We can see that the w(t) is a smooth bell-shaped function 
and its left side is tailed.  Besides, the w(t) reaches its 
maximum value at time Besides, the testing effort w(t) 
reaches its maximum value at time 
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This basic SRGM is based on the following assumptions:  
1. The fault removal process follows the 

Non-Homogeneous Poisson Process (NHPP).  

2. The software system is subject to failures at random 
times caused by faults remaining in the system.     

3. The mean number of faults detected in the time 
interval (t, t+∆t] by the current test-effort is 
proportional to the mean number of remaining faults 
in the system. 

4. The proportionality is a constant over time. 
5. The consumption curve of testing effort is modeled 

by a logistic testing-effort function. 
6. Each time a failure occurs, the fault that caused it is 

immediately removed, and no new faults are 
introduced. 

 
Secondly, we can describe the mathematical expression of 
a testing-effort-based as the following: 
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Solving the above differential equation under the boundary 
condition m(0)=0 (i.e., the mean value function m(t) must 
be equal to zero at time 0), we have  
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where   
         m(t)= the expected mean number of faults detected     
                     in time (0, t],  
 w(t)= current testing-effort consumption at time t, 
 a= the expected number of initial faults, and  
 r= error detection rate per unit testing-effort at  
               testing time t that satisfies r>0. 
 
2.2 Yamada S-shaped model with logistic 
testing-effort function 
 
 The Delayed S-shaped SRGM was originally 
proposed by Yamada et at. [6-7, 12-13] and was a simple 
modification of the NHPP to obtain an S-shaped growth 
curve for the cumulative number of failures detected.  This 
model’s software fault detection process can be viewed as 
a learning process that the software testers become familiar 
with the testing environments and tools as time progresses, 
these testers’ skills gradually improve and then level off as 
the residual faults become more difficult to uncover [1, 6-7, 
12-13].  Because the original S-shaped model is for the 
analysis of fault isolation data, i.e. the testing process 
contains not only a fault detection process, but also a fault 
isolation process.  Following the similar steps described in 
subsection 2.1, we can get the following relationship 
between m(t) and w(t) for an extended Yamada S-shaped 
software reliability model:  
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where f(t) is the cumulative number of failures detected up 
to t and g(t) is the cumulative number of failures isolated 
up to t.  Solving Eq. (7) and Eq. (8) under the boundary 
condition f(0)=g(0)=0, we have  

))(*
1()))0()((1()( tWeaWtWeatf ϖϖ −−=−−−=  (9) 

where ϖ is the failure detection rate. 
And 
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where ε is the failure isolation rate. 
By assuming the fault detection rate parameter the fault 
isolation rate parameter (ε ) ≅ the fault detection rate 
parameter (ϖ ), the NHPP model with a Delayed S-shaped 
growth curve of detected software faults is: 
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where ψ=fault detection rate per unit testing-effort at 
testing time t that satisfies ψ >0.  
 
3. Numerical examples  
 
 The data set analyzed here is from a study by Ohba 
[6].  The total cumulative number of detected faults after a 
long period of testing is 358 and this value can be used as 
an additional comparison criterion.  Through using the 
methods of MLE and LSE, these estimated parameters of 
the logistic testing-effort function are N=54.8364, 
A=13.0334, and α=0.226337.  Table 1 shows the estimated 
parameters of Eq. (6), comparisons with the estimated 
initial faults a, and MSF of other general SRGMs.  In 
addition, the testing effort function reaches the maximum 
at time t=11.3438 weeks which corresponds to 
w(t)=3.10288 CPU hours and W(t)=23.5107 CPU hours.  
Furthermore, the number of faults removed up to this time 
tmax is 245.421.  Fig. 1(a) graphically shows the actual 
fitting number of software faults, the mean value function 
of Eq. (6), and the 90% upper and lower confidence 
bounds vs. test time.  It shows that the variation in m(t) 
constantly increases with time t and eventually becomes a 
constant.  The observed failure data and the fitted curve for 
the extended S-shaped model with logistic testing-effort 
function are plotted in Fig. 1(b).  From these figures, the 

testers can use the results to estimate the number of 
additional tests to run and the additional amount of 
resources needed to reach the given objective, and such 
information are more useful than those based on historical 
data.  Besides, from the information provided by Fig. 1(a), 
(b) and Table 1, we can see that the model in Eq. (6) gives 
a better fit to the observed data than the Delayed S-shaped 
model with logistic testing-effort function does.  Moreover, 
according to the study in [6], even the Delayed S-shaped 
model does not fit the observed data well when the testing 
effort spent on failure detection/isolation is not a constant.  
But by integrating the testing-effort function into the 
Delayed S-shaped software reliability model, we can find 
that the extended Delayed S-shaped model with logistic 
testing-effort function has smaller AE and MSF than with 
Rayleigh testing-effort functions from Table 1.  From these 
figures and comparison results, we can conclude that the 
advantage of logistic testing-effort function is the 
applicability to various kinds of models and it can yield 
better predictions for other reliability metrics.  It means 
that the logistic testing-effort function we proposed is 
really good enough to give a more accurate description of 
resource consumption during the software development 
phase.     
 

Table 1: Comparison results. 
 

Model a r (or ψψψψ) AE (%) MSF 
SRGM with Logistic 
TEF 

394.076 0.0427223 10.06 118.29

SRGM with 
Rayleigh TEF 

333.18 
 

0.100415 
 

6.93 
 

798.49
 

Yamada  S-Shaped 
Model  

374.05 0.197651  4.48 368.67

Delayed S model 
with Logistic TEF 

338.136 0.10004 5.54 242.79

Delayed S model 
with Rayleigh TEF 

459.08 0.0273367 28.23 268.42

G-O Model  760.00 0.0322688 112.29 139.82
Inflection S-Shaped 
Model  

389.1 0.0935493 8.69 333.53

Delayed S-Shaped 
Model 

374.05 0.197651 4.48 368.67

Exponential Model 455.371 0.0267368 27.09 206.93
AE = Accuracy of Estimation   
MSF = Mean of Square fitting Faults 
TEF = testing-effort function 
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Figure 1(a): Mean value function m(t) of Eq. (6)   
and the 90% confidence bounds vs. time. 

0 2.5 5 7.5 10 12.5 15 17.5

0

50

100

150

200

250

300

350

Time(Weeks)

Number of Failures

 
Figure 1(b): Mean value function m(t) of Eq. (11) and 
the 90% confidence bounds vs. time. 
 
4. Investigation of imperfect debugging 
 
4.1 Modeling SRGM with logistic testing-effort 
function under imperfect debugging environment 
 

From our studies [1-3], different SRGMs make 
different assumptions and therefore can be applied to 
different situations.  Most SRGMs published in the 
literature assume that each time a failure occurs, the error 
that caused it is immediately removed and no new errors 
are introduced.  Besides, some people also assume that the 
correction of an error takes only negligible time and an 
error detected is removed with certainty.  These 
assumptions help to reduce the complexity of modeling 
software reliability growth [21-23].  In this section, we 
plan to incorporate a relaxation of the above assumption in 
order to make the SRGMs more realistic and practical.  
Specially, the software reliability growth model with a 
logistic testing-effort function under the imperfect 
debugging environment can be illustrated.  To show this, 
we modify the sixth assumption presented in Section 2 of 
the original manuscript as: 

 
1. When a fault is detected and removed, it is possible to 
generate another one; 

2. When removing/fixing a detected fault, the probability of 
introducing another fault is a constant β.  
 
Based on the assumptions (1)-(5) described in Section 1 
and the above modified assumptions, we demonstrate the 
modified software reliability growth model under 
imperfect debugging environment in detail.  Due to the 
limitation of space, here we only use Eq. (6) as the 
estimated mean value function for describing the imperfect 
debugging.  Similarly, the Eq. (11) can also be applied 
based on the same procedure.  Rewriting the Eq. (5) as   
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Here we propose a fault content function: 
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Solving the above two differential equations, we have 
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It is noted that the failure intensity function λ(t) is given by 
  
                     λ(t)=arw(t)exp[-r(1−β)W*(t)]                    (16) 

 
The expected number of remaining faults after testing time 
t is                
 mremaining(t)=n(t)−m(t)=a(exp[-r(1−β)W*(t)])        
(17) 

 
It is clear that the above equation mremaining(t) is a 
monotonic decreasing function in testing time t.  However, 
the above equations can represent the case where a fault is 
not successfully removed and new faults are introduced 
during the testing/debugging phase.  Besides, the expected 
number of detected faults after an infinite amount of test 
time is  

                m(∞)= ×
− β1

a
 (1-exp[-r(1−β)

A

NA

+1
])         (18) 

 
4.2 Fitting imperfect debugging model to real 
software data set 
 
 Using the proposed imperfect-debugging model, we 
now show a real numerical illustration for software 
reliability measurement.  Here, in order to validate the 
imperfect-debugging model, the AE and MSF are selected 
as the evaluation criteria.  Table 2 shows the estimated 
parameters of Eq. (14) and the comparison among the 

    Estimated
Upper Bound
Lower Bound

    Estimated
Upper Bound
Lower Bound



   

 

estimated initial faults a and MSF of different models 
presented.  The observed data, estimated growth curves of 
the cumulative number of detected faults, and the 
introduced faults versus time are plotted in Figure 2.  It 
shows that Eq. (14) fits this data set well.  According to 
Table 2, we found that the proposed imperfect debugging 
model has smaller AE and MSF.  Furthermore, the 
extended model of Eq. (14) has a better fit to the observed 
data compared with other proposed imperfect debugging 
models.  Hence, we can conclude that the fault removal 
process in the software development/testing environment 
may not be a pure perfect debugging process (the estimated 
fault introduction rate β=0.0149353 is close to zero but not 
a zero).  However, if we ignore the impact of imperfect 
debugging, the original model in Eq. (6) still can have a 
better fit than other models even in the 
imperfect-debugging environment.  The plot of estimated 
remaining fault content at testing time is shown in Figure 3.  
We can see that it decreases as time progresses but does 
not approach to zero.  That is, some faults are eventually 
undetected/removed in the testing phase.  Moreover, we 
note that β can be pre-calcuated from experiences or 
previous projects releases and the possible values of β are 
listed in Table 2.  From the simulation results, we know 
that the larger the fault introduction rate, the larger the 
fault detection rate and the smaller the number of initial 
faults.  The simulation results reflect that the introduction 
of new faults during the correction process tends to be a 
minor effect in many development efforts if we apply our 
proposed model.  The reason is that the derivations of 
logistic testing-effort function in its basic concepts already 
incorporate the human factors and uncertainties into 
consideration. Therefore, we can conclude that the 
proposed model in Eq. (6) has the built-in flexibility and 
has been tested on real software failure data to show its 
applicability even if the assumption of perfect debugging 
is eliminated.  In fact, in [22] they found that about 14 
percent of the errors detected and removed during the 
observation period were introduced as a result of imperfect 
debugging.  They also supported the conjecture that the 
exponential SRGMs (particularly the G-O model) still can 
be used in practice even when the assumption of perfect 
debugging does not hold [22].   Actually, in any case, the 
extended model to incorporate imperfect debugging in Eq. 
(14) is isomorphic to Eq. (6). 
 
 
 
Table 2: Comparison results under the imperfect- 
debugging environment 
 

Model a r ββββ 

  

 

MSF AE 
Original 
model 

394.076 0.0427223 0.0 118.29 10.06

Eq. (14) 389.66 0.0422699 0.0149353 114.08 8.66
mr(t) [23] 352.0 0.0841 0.062 153.0 11.68

K-G [23] 455.0 0.0309 0.140 207.0 27.09
Eq. (14) 387.65 0.0424883 0.02 114.08 8.28
Eq. (14) 383.703 0.0429263 0.03 114.08 7.18
Eq. (14) 379.747 0.0433735 0.04 115.0 6.07
Eq. (14) 375.7981 0.0439301 0.05 119.0 4.97
Eq. (14) 371.036 0.0442963 0.06 114.08 3.64
Eq. (14) 367.88 0.0447726 0.07 114.08 2.76
Eq. (14) 363.24 0.0452593 0.08 1140.08 1.46
Eq. (14) 359.968 0.0457567 0.09 114.08 0.55
Eq. (14) 356.013 0.0462651 0.10 114.08 0.56
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Figure 2: The cumulative number of observed/ 
estimated failures vs. time. 
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Figure 3: Expected number of remaining fault content.  
 

5. Conclusions 
 

 In this paper, we have proposed a SRGM 
incorporating the logistic testing-effort function that is 
completely different from the traditional Weibull-type 
curve.  We show that the software reliability growth 
analysis based on the effort index is more accurate than 
that based on the calendar time data through several 
experiments on real data.  The reason is that most software 
reliability growth curves are similar and depend on the 
distributions of the testing-effort expenditures in the real 
world.  In additional to incorporating the logistic 
testing-effort function into the exponential-shaped 

    Observed
Perfect
Imperfect
Introduced

    β=0.014935
β=0.03
β=0.06
β=0.10



   

 

software reliability model, we also integrate this 
testing-effort function into the Yamada S-shaped software 
reliability model.  The experimental results indicate that 
the proposed two models fits the real data set fairly well 
and gives us an exact/reasonable description of fault 
detection process.  Ohba mentioned that Delayed S-shaped 
model does not fit the observed data well when the testing 
effort spent on failure detection/isolation is not a constant 
[6].  However, by integrating the testing-effort function 
into the Delayed S-shaped software reliability model, we 
can find that the extended Delayed S-shaped model with 
logistic testing-effort function still has smaller AE and 
MSF than with Rayleigh testing-effort function.  In 
addition, we also discuss the extended SRGM where the 
assumption of perfectly removing faults is not adopted.  
The simulation results reflect that the introduction of new 
faults during the correction process tends to be a minor 
effect in many development efforts since the derivations of 
logistic testing-effort function in the original basic 
concepts already incorporate the human factors into 
consideration.  Therefore, the assumption of fault 
introduction rate being a constant over time in this model 
should be valid and reasonable.   
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