
IEEE TRANSACTIONS ON RELIABILITY, VOL. 51, NO. 2, JUNE 2002 183

Optimal Allocation of Test Resources for
Software Reliability Growth Modeling in Software

Development
Michael R. Lyu, Senior Member, IEEE, Sampath Rangarajan, Member, IEEE, and

Aad P. A. van Moorsel, Member, IEEE

Abstract—Component-based software development approach
has become a trend in integrating modern software systems. To
ensure the overall reliability of an integrated software system,
its software components have to meet certain reliability require-
ments, subject to some testing schedule and resource constraints.
Efficiency improvement of the system-testing can be formulated
as a combinatorial optimization problem with known cost, relia-
bility, effort, and other attributes of the system components. This
paper considers “software component testing resource allocation”
for a system with single or multiple applications, each with a
pre-specified reliability requirement. The relation between failure
rates of components and “cost to decrease this rate” is modeled by
various types of reliability-growth curves. Closed-form solutions
to the problem for systems with one single application are devel-
oped, and then “how to solve the multiple application problem
using nonlinear programming techniques” are described. Also
examined are the interactions between the system components,
and inter-component failure dependencies are included in the
modeling formula. In addition to regular systems, the technique
is extended to address fault-tolerant systems. A procedure for a
systematic approach to the testing resource allocation problem is
developed, and its application in a case study of a telecommunica-
tions software system is described. This procedure is automated in
a reliability allocation tool for an easy specification of the problem
and an automatic application of the technique.

This methodology gives the basic approach to optimization of
testing schedules, subject to reliability constraints. This adds “in-
teresting new optimization opportunities in the software testing
phase” to the existing optimization literature that is concerned with
structural optimization of the software architecture. Merging these
two approaches improves the reliability planning accuracy in com-
ponent-based software development.

Index Terms—Component-based technology, reliability alloca-
tion, software reliability engineering, software testing.

NOTATION

abs absolute function
application ,

Manuscript received October 15, 1999; revised May 1, 2001. This work was
supported by a grant from the Research Grants Council of the Hong Kong Spe-
cial Administrative Region (Project CUHK 4222/01E). The described research
was initially carried out at Lucent Bell Labs.

M. R. Lyu is with the Computer Science and Engineering Department,
The Chinese University of Hong Kong, Shatin, Hong Kong (e-mail:
Lyu@cse.cuhk.edu.hk).

S. Rangarajan is with Ranch Networks, Morganville, NJ 07751 USA (e-mail:
Sampath@ranchnetworks.com).

A. P. A. van Moorsel is with the Software Technologies Laboratory, Hewlett-
Packard Labs, Palo Alto, CA 94304 USA (e-mail: Aad@hpl.hp.com).

Publisher Item Identifier S 0018-9529(02)05620-8.

coverage measure for
component ,
fixed amount of testing time allowed for
the testing time invested in
total testing-time invested
function relating () to testing time
number of software applications
number of software components
pre-specified reliability requirement for
weighting function for in the total testing time
sum of failure rates of the components in
fixed total failure-rate constraint
partial derivative operator

: parameters in the Pareto function with
respect to
initial failure rate in at time 0
failure rate in during testing
failure decay parameter for during testing
Lagrange multiplier

usage indicator for on .

I. INTRODUCTION

A. Background

M ODERN complex software-systems are often devel-
oped with components supplied by contractors or

independent teams under various environments. In particular,
component-based software engineering [4], [14] has drawn
tremendous attention in developing cost-effective and reliable
applications to meet short time-to-market requirements. For
systems integrated with such modules or components, the
system-testing problem can be formulated as a combinatorial
optimization problem with known cost, reliability, effort, and
other attributes of the system components. The best known
system-reliability problem of this type is the series-parallel
redundancy allocation problem, where either system reliability
is maximized or total system testing cost/effort is minimized.
Both formulations generally involve system-level constraints
on allowable cost, effort, and/or minimum system-reliability
levels. This series-parallel redundancy-allocation problem
has been widely studied for hardware-oriented systems with
the approaches of dynamic programming [9], [21], integer
programming [3], [10], [18], nonlinear optimization [24], and

0018-9529/02$17.00 © 2002 IEEE

184 IEEE TRANSACTIONS ON RELIABILITY, VOL. 51, NO. 2, JUNE 2002

heuristic techniques [5], [22]. In [7] the optimal apportion-
ment of reliability and redundancy is considered for multiple
objectives using fuzzy optimization techniques. Reference
[6] applies a specific reliability-growth model for hardware
components and determines their optimal testing allocation in
order to achieve an overall system reliability.

Some researchers also address the reliability-allocation
problem for software components. The software reliability-al-
location problem is addressed in [26] to determine how reliable
software modules and programs must be to maximize the user’s
utility, subject to cost and technical constraints. Optimization
models for software-reliability allocation for multiple software
programs are further proposed in [2] using redundancies.
These papers, however, do not consider testing-time of soft-
ware components and the growth of their reliability. Optimal
allocation of component-testing times in a software system
based on a particular software reliability model is addressed
in [17], but it assumes a single application in the system, and
the reliability-growth model is limited to the Hyper-Geometric
Distribution (S-shaped) Model [25].

This paper discusses a generic software-component relia-
bility-allocation problem based on several types of software-re-
liability models in a multiple-application environment. This is
the first effort to apply reliability-growth models for guiding
component testing based on multiple applications. The solution
procedure is given for the single application environment, for
general continuous distributions, thus generalizing [5] and [17].
The situation is examined where software components can
interact with each other, a condition not considered by other
studies. Also included are scenarios for fault-tolerant attributes
of a system where some component failures can be tolerated.
The reliability specification and solution-seeking procedure,
which has been automated by a software tool, is presented as
an innovative mechanism to handle the difficult, important
testing-resource allocation problem.

B. Project Applications

Several real projects on component-based techniques moti-
vate this investigation. They are described in the following three
case studies.

1) Distributed Software Systems:Distributed telecommuni-
cation systems often serve multiple application types, by exe-
cuting various software components to meet various reliability
requirements. For instance, in telephone switches, 1-800 calls
require a processing reliability that is different from standard
calls; similar examples exist in call centers, PBXs, or voice-mail
systems.

During the testing of such systems, reliability is a prime con-
cern, and adequate test and resource allocation are therefore
very important. The examples in this paper make it clear that
trustworthy reliability-growth curves can help considerably in
efficient testing and debugging planning of such systems. The
approach complements [27] and [28] which focus on reliability
analysis of component-based software systems under various
distributed execution scenarios.

2) Fault-Tolerant Systems:Fig. 1 shows a layered fault-tol-
erant software-architecture model that has been applied to many
systems. Each layer can include several software components.
Not all systems include all the layers.

This paper conjectures that error-propagation between layers
occurs only in one direction: upwards. Thus, for example, faults
not contained in the hardware can propagate up to the operating
system or to the application software; however, faults not con-
tained in the middle-ware layer can not propagate to the oper-
ating system but can propagate to the application software layer.

Error propagation occurs from layerto layer if layer
has no fault-tolerance mechanisms: it does not exhibit a

fail-silent behavior. From a modeling perspective, this layer
contributes higher failure rate to the system than a layer with
error detection and recovery mechanisms. Error detection and
recovery software can reside in some or all of the layers.

This paper shows how fault-tolerant mechanisms can be
included in the problem formulation for reliability-specification
and resource-allocation, provided that coverage factors are
available.

3) Object-Oriented Software:Object-oriented software
often allows for a clear delineation between different software
components. If object-oriented software methods are being
used, the relation between components and applications can be
assessed, and testing time can be assigned in the most efficient
way.

Another optimization problem in object-oriented software
testing arises when the best combination of objects must be
selected to make an application as reliable as possible. This
optimization problem is an example of a structure-oriented
optimization problem, and can be solved by using methods
in, e.g., [2], [26]. The intent of this paper is to optimize with
respect to software development and testing, not with respect
to software structure. The combination of structure-oriented
optimization methods in [2] and [26], and the development-ori-
ented methods in this paper can provide a powerful mechanism
in component-based and object-based software system design.

C. Paper Organization

Section II specifies the optimal reliability allocation as two
related problems:

• a problem with fixed target failure rate,
• a problem with fixed debugging time.

Section III presents the analytic solutions to these two prob-
lems for the single application environment: Section III-A for
the exponential distribution, and Section III-B for general dis-
tributions.

Section IV discusses how the solutions for the problems in a
multiple-application environment can be obtained. The results
are extended to consider software-failure dependencies and to
incorporate fault-tolerant systems.

Section V proposes the reliability-allocation problem speci-
fication and solution procedure into a step-by-step framework,
and applies it to a case study. The systematic application of the
reliability allocation framework is designed and implemented in
an automatic software tool.

LYU et al.: OPTIMAL ALLOCATION OF TEST RESOURCES FOR SOFTWARE RELIABILITY GROWTH MODELING 185

Fig. 1. Layered software architecture model.

II. PROBLEM SPECIFICATION

The project case studies in Sections I and II can be described
as a general problem of assigning failure-rate requirements (at
the time of release) to software components that will be used
to build various applications, given that the applications have
pre-specified reliability requirements [16].

Consider the situation where a set ofsoftware components
, can be used in various combinations for various

applications.

• Let there be such applications: .
• Let each application have a pre-specified reliability re-

quirement .
By investing development/testing/debugging time in compo-

nents, then component failure rates can be made such that all
applications meet their reliability requirement.

Therefore, the goal in reliability allocation is to assign
failure-rate requirements to the components, such that all
the pre-specified reliability requirements of theapplications
are satisfied, at minimal cost. The remainder of this Section II
characterizes the cost in terms of component testing (including
debugging) time. The optimization criterion thus is the mini-
mization of this testing time. Reliability-growth models relate
the component failure-rates to the amount of testing time.

A variation of this problem formulation arises if a fixed
amount of testing time is available for each application. This
requirement can occur because of the constraint on the cost
incurred by the component developer and tester. In that case,
“minimization of the failure rate of all the components” is the
objective of the optimization problem. These 2 variations of the
optimization problem are discussed in Sections II-A and II-B.

A. Fixed Failure Rate Constraint

Testing time is assigned to components so that the applica-
tions meet their reliability requirements, and the testing time is
minimized.

Assumptions:

1) The failure rates of components relate to the reliability
of applications through the exponential distribution:

.
2) The testing time, , invested in componentdecreases

the failure rate according to some reliability-growth
model.

3) Once the software components are released, their failure
rates stay constant. (This is reasonable given that the ap-
plication developer does not debug or change the compo-
nent that is used.)

4) Components are independent with respect to their
failure behavior. (This assumption might not be appro-
priate when software components can interact with each
other, potentially causing additional failures.)

The allocation problem is formulated as: The objective func-
tion is:

Minimize

(1)

subject to the constraints:

for application

if uses otherwise.

For the sake of notational simplicity, the are equally “impor-
tant” (costly) among the components; if this is not true, then
apply to each in the objective function.

Because a reliability-growth curve can be very complex, the
objective function is nonlinear; hence this is a general nonlinear
programming problem. Section III-A-1 considers a closed-form
solution for the problem with a single application; Section IV-A
discusses the numerical solution of the general case.

B. Fixed Testing-Budget

Testing time is assigned to components so that each appli-
cation gets assigned at most a specified amount, and the appli-
cation reliability is maximized. Consequently, the total failure
rate of the components is the objective function to be mini-
mized, leading to the following formulation as a mathematical
programming problem. The objective function is:

Minimize

(2)

subject to the constraints:

for

186 IEEE TRANSACTIONS ON RELIABILITY, VOL. 51, NO. 2, JUNE 2002

As in the problem in Section II-A, all variables are positive.
Weight functions for the can be introduced in the objective
function to reflect their impact.

Of special interest is the single application case which
corresponds to the optimization problem where all applications
together have a budget restriction on the testing time. The fixed
testing-budget problem is a variant of the fixed failure-rate
problem, and can be solved by similar means. Sections III-A-2
and IV-A discuss the single and multiple applications, respec-
tively.

III. SOLUTIONS FORSINGLE APPLICATION ENVIRONMENT

When there is only one application in the system, an explicit
solution of the reliability-allocation problem can usually be
found. Section III-B gives the general solution for a large
class of reliability-growth models. To explain the solution
procedure, Section III-A give the solution for an exponential
reliability-growth model.

A. Exponential Reliability-Growth Model

The exponential reliability growth model [11], [20] relates the
to the invested :

(3)

Over an infinite time interval, faults are found. The
is a function of time, although it is not explicitly in the notation.
For this commonly-used reliability growth model, the allocation
problem in the single application environment is solved.

1) Fixed Failure-Rate Constraint:This problem is formu-
lated in the single application environment, assuming exponen-
tial reliability growth curves:

Minimize

(4)

subject to:

To solve (3), one can use the Lagrange method [1]. The opti-
mization problem is equivalent to finding the minimum of:

(5)

The solution is:

(6)

The testing times allotted to the software components follow
from substituting the values in (6) into (4), e.g.,

(7)

is negative if . To assure that no impossible so-
lutions arise, Section III-B presents a procedure that checks for
validity conditions and guarantees that the optimal solution fol-
lows a valid strategy.

Example 1: The system has 3 components,, , , and
1 application which uses all the components.

/year. The application requirement states that
/year. . Then /year

and . Thus, when the initial failure
rates and the rate of reduction in failure rates with debugging is
the same for all the components, then anaveragetesting policy,
where all the component failure rates are brought down to the
same value, provides a solution that meets the application re-
quirement with minimum testing-time; the testing-time for each
component is the same.

Example 2: The system has 3 components which have dif-
ferent initial failure rates: /year, /year,
/year. /year. . Then
. As in example 1, anaveragetesting policyprovides a solution

that meets the application requirement with minimum testing
time spent. But the testing time on each component is different
because the initial failure rates are different. ,

, . The testing time on each com-
ponent is proportional to the logarithm of the initial failure rate.

Example 3: The system has 3 components which have the
same initial failure rates: /year.
, , . . Now, computation shows that

to minimize the testing time, ,
, . The optimal testing

policy that leads to these failure rates requires a total testing
time:

An averagetesting policywhich assigns
leads to a total testing time of which is
more than that of the optimal testing policy.

2) Fixed Testing Budget:The fixed-testing budget-problem
can be formulated in the single application environment, as-
suming exponential reliability-growth curves, as:

Minimize

(8)

subject to the constraint

Again, this can be solved using the Lagrange method, treating
the optimization problem as equivalent to finding the minimum
of

(9)

LYU et al.: OPTIMAL ALLOCATION OF TEST RESOURCES FOR SOFTWARE RELIABILITY GROWTH MODELING 187

The solutions are

(10)

are equal for all .

(11)

Equations (9)–(11) determine how the testing times should be
allocated to the components. The minimumfollows directly
from the values for the testing times.

Only if the and values are independent of, then an
averagetesting policywhere the available testing time is equally
divided among the components, provides an optimal solution.
If either the or values are not the same for all, then
(9)–(11) must be computed to obtain an optimal allocation of
the testing time.

Example 4: Consider the parameters from example 3 where
the initial failure rates are the same (/year, for all),
and the values are not the same for all(e.g., , ,

). The available testing time is 1 year. Then,
, , ; and /year,

/year, /year, and /year.
If an average allocation policy is used, then

, and /year, /year,
/year for a /year which is worse than the optimal

allocation.
If the allocation is , , , then

/year, /year, , and
/year.

B. General Reliability-Growth Models

This section provides the procedure to obtain the closed-form
solution for a generic reliability-growth model. The only restric-
tion to the growth models is with respect to their first and second
derivatives. The solution procedure follows directly from the
solution of the Lagrange method, except that impossible solu-
tions must be prevented. It generalizes the procedure for the
hyper-geometric model [17] to general continuous distributions.

Consider the fixed failure-rate constraint case. Let the relation
between the failure rate and the testing times be functions of:

(12)

Without loss of generality, the components can be reordered
according to the absolute values of the derivatives at the begin-
ning of the debugging interval, at which :

for (13)

The algorithm to obtain the closed-form solution uses this or-
dering (13).

Algorithm for Closed-Form Solution
1. ;
2. For to

express as a function for
such that ;

3. Find from ;
4. If Then

, and go to step 2;
Else
For to

Compute from both in step 3
and from the in step 3;

End_For
End_If

End_Algorithm

The important feature in thisAlgorithm is the ability
to determine which component should be assigned zero
testing-time if an impossible solution is obtained (an impos-
sible solution arises if for some component). If the
first derivatives for all , and the second
derivatives for all , then the component
ranked lowest according to the derivatives at time zero can be
discarded. This happens in step 4 of theAlgorithm ; i.e.,
the sufficient conditions on the derivatives imply that: a) the
failure rate decreases over time, and b) the rate of decrease gets
smaller as time increases. If these conditions on the first and
second derivatives do not hold, then specific conditions must
be established to determine which components should not be
assigned testing time.

TheAlgorithm can be similarly formulated for the fixed-
testing budget problem, but is not done here.

Pareto Growth Model:As an illustration, consider the Pareto
distribution for the fixed failure-rate constraint problem. The
failure rate is

, , are constants.
Hence,

(14)

The Pareto class of failure-rate distributions is useful because
it is a generalization of the exponential, Weibull, and gamma
classes [15], [19]. The Crow model used in [6] is a special case
of the Pareto model.

The first derivative is less than 0, and the second derivative
is greater than 0, if , , are all positive. Hence, using

, the result is, in step 2 of theAlgorithm (
in the first iteration):

(15)

188 IEEE TRANSACTIONS ON RELIABILITY, VOL. 51, NO. 2, JUNE 2002

In step 3, one must equate the total failure rate to; it must be
done numerically, because a closed-form expression using the
Pareto distribution is too intricate. As soon as a possible solution
for is obtained, compute the individual failure rate using:

(16)

Example 5: Assume the following parameters for the Pareto
distribution. , , , , ,

, , , . For , (the sum
of failure rates of the components) the optimal policy requires:

, , . The total testing time is
0.3236.

IV. SOLUTIONS FORMULTIPLE APPLICATION ENVIRONMENT

When there are multiple applications in the system, the relia-
bility-allocation becomes too intricate to solve explicitly. How-
ever, its solution can be obtained using nonlinear programming
software such as AMPL [8].

A. An Example

An example of a 3-component, 3-application system is spec-
ified and solved.

Example 6: There are , , which can be used to build
, , .

• is built using , ;
• is built using , ;
• is built using , , .

Thus, there are multiple applications, each with a failure-rate
constraint. The fixed failure-rate constraint problem is:

Minimize:

(17)

under the constraints:

for

for

for

The fixed testing-budget problem is:

Minimize:

(18)

under the constraints:

Use the parameters from example 3 where the initial failure rates
for the 3 components are the same:
/year; and the values are different (e.g., , ,

). Let the failure-rate requirements for the 3 applica-
tions be , , . Model this as a nonlinear
optimization problem with multiple constraints in AMPL, and
use the MINOS solver; the result is: , ,

. The total testing-time for this failure-rate alloca-
tion is 1.207 years; (the individual testing times can be com-
puted using the failure-rate allocation for each component). The
failure-rate constraint for is strictly satisfied. For with
the failure-rate requirement of 6/year, it is not strictly satisfied
(); similarly for with the failure-rate require-
ment of 5/year ().

Consider anaveragetesting policy where the constraint for
is strictly satisfied without violating the other constraints:

, , . The total testing-time
based on this average testing policy is 1.39 years, much larger
than that obtained with the optimal testing policy.

B. Software-Failure Dependencies and Fault-Tolerant Systems

The basic reliability-allocation problem formulation can be
extended in various ways. Two extensions are discussed: soft-
ware-failure dependencies and fault-tolerance aspects.

Section IV-A assumes that software components fail-inde-
pendently. In reality, this might well not be the case. For ex-
ample, the feature interaction problem [12] describes many inci-
dents where independently developed software components in-
teract with each other unexpectedly, thus causing unanticipated
failures. This extra failure incidence is incorporated by intro-
ducingpair-wise failure rates: represents the failure rate
due to the interaction of and , . These failures are
caused by interactions of software components. Therefore, they
are not detected in individual component testing, but by inte-
gration testing of pairwise components. These failure rates are
computed by counting the numbers of failures involving pair-
wise components during the integration testing, and divide them
by the pairwise components execution times spent in the inte-
gration testing. While failures involving 2 components might
not be neglectable, failures involving at least 3 components are
usually rare [13].

The constraints of the original problem are then modified as:

for

(19)

Subject to the constraint (19), minimize:

Thus the fixed testing-time problem can be obtained by adding
the pair-wise failure rates in the failure-rate constraints and in-
cluding all individual and pairwise component testing times in
the objective function.

When the system possesses fault-tolerant attributes, introduce
coveragefactors [23] into the original problem. Coverage is
defined as the conditional probability that when a fault is ac-
tivated in a component, it is detected and recovered without

LYU et al.: OPTIMAL ALLOCATION OF TEST RESOURCES FOR SOFTWARE RELIABILITY GROWTH MODELING 189

TABLE I
SYSTEM COMPONENTSWITH CORRESPONDINGPARAMETERSGROWTH-CURVE,

AND APPLICATIONSTHAT USE THECOMPONENT

Fig. 2. Optimal allocation for components vs. total available testing-time.

causing system failure. Reformulate the fixed failure-rate con-
straint case, using , as:

Minimize

(20)

subject to:

for

Fault-tolerant attributes are usually provided by external
system-components. The coverage factors are determined by
the design features of these components, which is independent
of how well the target components are tested.

V. RELIABILITY -ALLOCATION SOLUTION FRAMEWORK

Reliability allocation has been discussed in terms of two con-
straints: fixed failure rates or fixed testing budgets. The problem
of accounting for component interactions also has been dis-
cussed. The fault-tolerant attributes in the system to tolerate
component failures are also incorporated. This section formu-
lates a framework for specifying and solving a general relia-
bility-allocation problem, and applies this framework to a spe-
cific application. A tool to automate the procedure is described.

Fig. 3. Optimal testing-time allocation for all components vs.� in growth
curve of the scheduling software.

A. Problem Specification and Solution Procedure

The following procedure specifies the reliability allocation
problem, and obtains solutions either analytically or using nu-
merical methods.

Procedure

1) Determine if the problem is a fixed failure rate con-
straint or a fixed testing budget.

2) Determine if there is single application or multiple
applications in the system.

3) Set the constraints on the failure rates or testing bud-
gets.

4) Obtain parameters of the reliability-growth curves of
the components.

5) Determine if the components interact. If so, obtain
pair-wise failure rates.

6) Determine if there are fault-tolerance features in the
system. If so, obtain coverage measures for each
component.

7) Format the problem as a nonlinear programming
problem with appropriate parameters.

8) If the solution is analytically available, obtain it. Oth-
erwise, use mathematical programming tools and
solvers to obtain the results.

End_Procedure

Section V-B examines a case study where a required relia-
bility-allocation problem is specified. It applies the procedure
in Section V-A to the project to obtain numerical solutions for
various scenarios.

B. Hypothetical Example

Consider a distributed software architecture used for
switching telephone calls. Different call-types exercise dif-
ferent software-modules; the system is split into components
such that reliability-growth models are available for all com-
ponents. A prerequisite to this analysis is the availability of
reliability-growth models, and this example clearly shows that
it is beneficial to make decisions based on such models.

190 IEEE TRANSACTIONS ON RELIABILITY, VOL. 51, NO. 2, JUNE 2002

Fig. 4. Reliability allocation tool.

Table I shows the data input in this example. Neither the ex-
ample nor the data correspond to existing systems or numbers.
Consider 4 types of calls (2 types of standard calls, and 2 types of
1-800 calls), and 5 components (basic processing, scheduling,
call processing, and 2 signal-processing modules). The terms
“in” and “not in” in Table I denote which components are used
by the applications; e.g., the standard calls of type 1 use all
software modules except the call-processing module. The reli-
ability-growth curves for the components are exponential, and
have parameters and , as specified in Table I.

The results of this example show two things:

• the necessity to use mathematical optimization techniques
to establish an optimal allocation scheme,

• the importance of selecting and parameterizing adequate
reliability-growth models.

Fig. 2 depicts, with a given total amount of testing-time avail-
able (-axis), the time allocated to test individual components
(-axis). Following the framework in Section V-A it was solved
as a fixed testing budget problem with multiple applications. As-
sume, however, that the testing time is shared by all applications:
consider the special case in Section II-B where the constraints
map to a single constraint. Applications are weighted, based on

their relative frequency of occurrence (in Table I), which can
be automatically converted to weights on the component failure
rates in the objective function. Using relative frequencies for
various call applications parts of the operational profile are in-
cluded (see, e.g., [15, chapter 5]) in the model. Solutions were
obtained for the testing-time ranging from 2 to 256, assuming
no failure dependency or explicit fault-tolerance mechanisms.

Fig. 2 shows very clearly the dependence of the optimal
schedule on the total testing-time. For example, while the
scheduling component should not be assigned debugging time
if the available budget is small, it takes the largest chunk if the
testing budget is large. The irregular assignment of testing-time
to individual components in Fig. 2 cannot be obtained easily by
means other than mathematical modeling. Without a systematic
approach such as in this paper, one could not expect to get
such precise results, and would be forced to make inefficient
decisions.

Fig. 3 plots changes of the allocation of testing-time to the
components, while “ of the reliability-growth curve for the
scheduling software” varies from 0.001 to 100. In this case, the
allowed failure rates per application were taken to be 4, and the
fixed failure-rate constraint problem was solved.

LYU et al.: OPTIMAL ALLOCATION OF TEST RESOURCES FOR SOFTWARE RELIABILITY GROWTH MODELING 191

The parameter value greatly influences the optimal solution.
If the decay parameter of the reliability-growth model of the
scheduling component is small, then it takes enormous invest-
ments in debugging time to reach the desired failure rates. If the
decay parameter is relatively large, then it takes minor effort for
the scheduling component to obey the failure rate restrictions.

The -correlation between the optimal testing-time and the
parameters of the reliability-growth curve shows the impor-
tance of data collection to establish trustworthy growth models.
Without such models, decisions about reliability allocation will
be suboptimal.

C. RAT: The Reliability Allocation Tool

A reliability allocation tool (RAT) was designed and built
with a GUI (graphical user interface) based on a Java Applet.
The tool allows: a) multiple applications to be specified, and b)
optimizations to be performed both under the fixed failure-rate
and fixed testing-budget constraints. The user inputs the model
using the GUI. and the input is converted into AMPL files and is
solved using the MINOS solver, called by AMPL. Fig. 4 shows
the GUI. The tool chooses the optimization criteria, where op-
timizing the failure-rate implies that the constraint is the fixed
testing budget, and “optimizing testing time” implies that the
constraint is a fixed failure rate. Components can be specified
in the “Components” field, and applications can be specified in
the “Applications” field. The reliability-growth distribution can
be chosen for each component independently; parameters for
these distributions can be specified in the “Parameters” box. At
present, exponential and Pareto distributions are allowed, but we
plan to extend the options to specifying other distributions. For
a fixed failure-rate constraint, the allowed failure-rate for the ap-
plications can be specified in the “Allowed Failure Rate” field;
similarly, if testing time is fixed, then it can be specified in the
“Allowed Debugging Time” field. Information about the com-
ponents that have been specified and the applications that have
been input are shown in two separate areas. When the model is
solved, it produces results in the “Message” field.

The major computational effort required for the RAT tool
is on the MINOS solver. For the 5-component system in Sec-
tion V-B, it takes about a few milliseconds to obtain the result in
a Sun Untra workstation. As the time requirement increases only
linearly with the number of components in the system (not in-
cluding pair-wise failure rates and fault-tolerant attributes), the
performance of the RAT tool is quite acceptable.

ACKNOWLEDGMENT

The authors are pleased to thank C. M. Kintala of Avaya Com-
munications for many of his valuable suggestions and comments
for this work.

REFERENCES

[1] M. Avriel, “Nonlinear programming,” inMathematical Programming
for Operations Researchers and Computer Scientist, A. G. Holzman,
Ed: Marcel Dekker, 1981, ch. 11.

[2] O. Berman and N. Ashrafi, “Optimization models for reliability of mod-
ular software systems,”IEEE Trans. Software Reliability, vol. 19, pp.
1119–1123, Nov. 1993.

[3] R. L. Bulfin and C. Y. Liu, “Optimal allocation of redundant components
for large systems,”IEEE Trans. Reliability, vol. R-34, pp. 241–247,
1985.

[4] X. Cai, M. R. Lyu, K. F. Wong, and R. Ko, “Component-based software
engineering: Technologies, development frameworks, and quality assur-
ance schemes,” inProc. Asia-Pacific Software Engineering Conf., Dec.
2000, pp. 372–379.

[5] D. W. Coit and A. E. Smith, “Reliability optimization of series-parallel
systems using a genetic algorithm,”IEEE Trans. Reliability, vol. 45,
1996.

[6] D. W. Coit, “Economic allocation of test times for subsystem-level reli-
ability growth testing,”IIE Trans., vol. 30, no. 12, pp. 1143–1151, Dec.
1998.

[7] A. K. Dhingra, “Optimal apportionment of reliability and redundancy in
series systems under multiple objectives,”IEEE Trans. Reliability, vol.
41, pp. 576–582, Dec. 1992.

[8] R. Foureret al., AMPL: A Modeling Language for Mathematical Pro-
gramming: The Scientific , 1993.

[9] D. E. Fyffe, W. W. Hines, and N. K. Lee, “System reliability allocation
and a computational algorithm,”IEEE Trans. Reliability, vol. R-17, pp.
64–69, 1968.

[10] P. M. Ghare and R. E. Taylor, “Optimal redundancy for reliability in
series system,”Operational Res., vol. 17, pp. 838–847, 1969.

[11] A. L. Goel and K. Okumoto, “Time-dependent error detection rate model
for software and other performance measures,”IEEE Trans. Reliability,
vol. R-28, pp. 206–211, Aug. 1979.

[12] N. Griffeth and Y.-J. Lin, Eds.,IEEE Communications Mag., Special
Issue on Feature Interactions in Telecommunications Systems, Aug.
1993.

[13] M. Kaâniche, K. Kanoun, M. Cukier, and M. Bastos Martini, “Soft-
ware reliability analysis of three successive generations of a switching
system,” inProc. First European Dependable Computing Conf., Oct.
1994, pp. 473–490.

[14] W. Kozaczynski and G. Booch, “Component-based software engi-
neering,”IEEE Software, vol. 155, pp. 34–36, Sep./Oct. 1998.

[15] M. R. Lyu, Ed.,Handbook of Software Reliability Engineering: Mc-
Graw-Hill and IEEE Computer Society Press, 1996.

[16] M. R. Lyu, S. Rangarajan, and A. P. A. van Moorsel, “Optimization of
reliability allocation and testing schedule for software systems,” inProc.
1997 Int. Symp. Software Reliability Eng., Nov. 1997, pp. 336–346.

[17] R.-H. Hou, S.-Y. Kuo, and Y.-P. Chang, “Efficient allocation of testing
resources for software module testing based on the hyper-geometric dis-
tribution software reliability growth model,” inProc. 7th Int. Symp. Soft-
ware Reliability Eng., Oct./Nov. 1996, pp. 289–298.

[18] K. B. Misra and U. Sharma, “An efficient algorithm to solve integer pro-
gramming problems arising in system reliability design,”IEEE Trans.
Reliability, vol. R-40, pp. 81–91, 1991.

[19] J. Musa, A. Iannino, and K. Okumoto,Software Reliability: Measure-
ment, Prediction, Application: McGraw-Hill, 1987.

[20] J. Musa, “Validity of execution-time theory of software reliability,”
IEEE Trans. Reliability, vol. R-28, pp. 181–191, Aug. 1979.

[21] Y. Nakagawa and S. Miyazaki, “Surrogate constraints algorithm for re-
liability optimization problems with two constraints,”IEEE Trans. Re-
liability , vol. R-30, pp. 175–181, 1981.

[22] L. Painton and J. Campbell, “Genetic algorithms in optimization of
system reliability,”IEEE Trans. Reliability, vol. 44, pp. 172–178, 1995.

[23] D. P. Siewiorek and R. S. Swarz,Reliable Computer Systems: Design
and Evaluation, 2nd ed: Digital, 1992.

[24] F. A. Tillman, C. L. Hwang, and W. Kuo, “Determining component re-
liability and redundancy for optimum system reliability,”IEEE Trans.
Reliability, vol. R-26, pp. 162–165, 1977.

[25] Y. Tohma, K. Tokunaga, S. Nagase, and Y. Murata, “Structural approach
to the estimation of the number of residual software faults based on the
hyper-geometric distribution,”IEEE Trans. Software Eng., vol. 15, pp.
345–355, Mar. 1989.

[26] F. Zahedi and N. Ashrafi, “Software reliability allocation based on struc-
ture, utility, price, and cost,”IEEE Trans. Software Eng., vol. 17, pp.
345–355, Apr. 1991.

[27] S. M. Yacoub, B. Cukic, and H. H. Ammar, “A component-based ap-
proach to reliability analysis of distributed systems,” inProc. 18th IEEE
Symp. Reliable Distributed Syst., 1999, pp. 158–167.

[28] , “A scenario-based reliability analysis of component-based soft-
ware,” in Proc. 10th Int. Symp. Software Reliability Eng., 1999, pp.
22–31.

192 IEEE TRANSACTIONS ON RELIABILITY, VOL. 51, NO. 2, JUNE 2002

Michael R. Lyu (SM’97) received the B.S. degree (1981) in electrical engi-
neering from National Taiwan University, the M.S. degree (1985) in computer
engineering from the University of California, Santa Barbara, and the Ph.D. de-
gree (1988) in computer science from the University of California, Los Angeles.

He is a Professor with the Computer Science and Engineering Department of
the Chinese University of Hong Kong. He worked at the Jet Propulsion Labo-
ratory, Bellcore (now Telcordia), and Bell Labs, and taught at the University of
Iowa. His current research interests include software reliability engineering, dis-
tributed systems, fault-tolerant computing, web technologies, web-based mul-
timedia systems, and wireless communications. He has published over 100 ref-
ereed journal and conference papers in these areas. He is the editor of two book
volumes:Software Fault Tolerance(New York: Wiley, 1995) and theHandbook
of Software Reliability Engineering(New York: IEEE and McGraw-Hill., 1996).

Dr. Lyu initiated the first International Symposium on Software Reliability
Engineering (ISSRE) in 1990. He is the Program Chairman for ISSRE’96,
PRDC’99, and WWW10, and has served in program committees for numerous
international conferences. He serves as General Chairman for ISSRE’2001. He
is on the editorial board for the IEEE TRANSACTIONS ON KNOWLEDGE AND

DATA ENGINEERING, IEEE TRANSACTIONS ON RELIABILITY , and theJournal
Information Science and Engineering.

Sampath Rangarajan(M’91) received the Ph.D. degree (1990) in computer
sciences, and the M.S. degree (1987) in electrical and computer engineering,
both from the University of Texas at Austin.

He is Chief Architect of Technology at Ranch Networks, a start-up company
that builds internet infrastructure products. Before joining Ranch Networks, he
was a Member of Technical Staff in the Distributed Software Research Depart-
ment, which is part of the Systems and Software Research Center at Bell Lab-
oratories, Murray Hill, NJ. Previously, he was an Assistant Professor with the
Department of Electrical and Computer Engineering at Northeastern Univer-
sity, Boston, MA (1992–1996) and a Research Associate with the University of
Maryland Institute for Advanced Computer Studies (UMIACS) (1990–1992).
His research interests are in distributed computing and networking.

Aad P. A. van Moorsel received the M.S. degree (1989) in mathematics from
the University of Leiden, The Netherlands, and the Ph.D. degree (1993) in com-
puter science from the University of Twente, The Netherlands. He developed
performance, reliability, and performability evaluation techniques for telecom-
munication networks and distributed systems.

From 1994 to 1995 he was a research assistant with the University of Illi-
nois at Urbana-Champaign, where he worked on software-tool support for per-
formability evaluation. In 1996, he joined Lucent Technologies, where he was a
Member of the Distributed Software Research Department at Bell Laboratories,
Murray Hill, NJ. In this group he worked in performability engineering, soft-
ware fault-tolerance, and system management. Since November 1999, he has
been working with HP Laboratories, where he heads the E-Services Software
Research Department. This department specializes in ground-breaking research
in manageability and reliability of middleware and Internet applications.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

