
Intelligent Reliability
Monitoring and Engineering for

Online Service Systems

CHEN, Zhuangbin

A Thesis Submitted in Partial Fulfilment
of the Requirements for the Degree of

Doctor of Philosophy
in

Computer Science and Engineering

The Chinese University of Hong Kong
January 2023

Thesis Assessment Committee

Professor LO Chi Lik Eric (Chair)

Professor LYU Rung Tsong Michael (Thesis Supervisor)

Professor LEE Pak Ching Patrick (Committee Member)

Professor TAO Xie (External Examiner)

i

Abstract of thesis entitled:
Intelligent Reliability Monitoring and Engineering for Online

Service Systems
Submitted by CHEN, Zhuangbin
for the degree of Doctor of Philosophy
at The Chinese University of Hong Kong in January 2023

The proliferation of distributed internet applications has imposed
stringent reliability, performance, and scaling requirements on
online service systems. Cloud systems, where online services re-
side, consist of a large variety of both hardware (e.g., networking
equipment, servers, data storage) and software (e.g., virtualiza-
tion software, service programs) components. Since any given
component possesses a small but non-zero failure probability, the
large number of components means that service incidents (inter-
ruptions or performance degradation of a service or product) are
inevitable. Unfortunately, not all incidents are easily detectable
within cloud environments.

To gain visibility into the internals of online service systems,
various monitoring data are accumulated to reflect their run-
time state from different perspectives, including logs, metrics,
alerts/events, and topologies. Data-driven algorithms based on
the massive amount of monitoring data have been proven an
effective means to accelerate and automate problem detection
and resolution in complex cloud systems. This thesis introduces
our research of intelligent reliability monitoring and engineering
for online service systems.

First, it involves an empirical investigation into the current

ii

status of incident management at Microsoft. Based on field stud-
ies and our analysis of two years of incident tickets, we identify a
series of pain points of incident handling in production systems:
imprecise failure impact estimation, redundant engineering ef-
forts, flooding alarms, and gray failures. We discuss the reasons
behind them from the perspective of cloud system design and
operation. We also present Microsoft’s attempts to leverage
data-driven techniques to cope with these challenges. Our study
reveals some crucial problems in this line of research that have
not yet been addressed by existing work. We are motivated to
fill these significant gaps.

Second, we conduct a systematic review and evaluation of
deep learning techniques for log anomaly detection. Log anomaly
detection plays a vital role in software reliability management.
While neural network models have substantially boosted their
performance in recent years, a comprehensive benchmark and
an open-source toolkit are lacking. Therefore, we implement six
representative methods and compare their performance in terms
of accuracy, robustness, and efficiency. We further share our
experience of industrial deployment and our vision of important
future directions. Our study enables better integration and cus-
tomization of log anomaly detection in the industry, alleviating
the problems of flooding alarms and gray failures.

Third, we propose ADSketch, a performance anomaly detec-
tion method based on metrics. ADSketch features the merits
of interpretability and adaptability. In online services, similar
anomalies often manifest as similar unusual metric patterns.
ADSketch extracts such patterns efficiently, which in turn help
interpret the anomaly type. To adapt to new patterns, ADSketch
carefully compares inputs with the learned patterns and refreshes
them accordingly. ADSketch has been deployed in production
environments and demonstrated promising results in combating
flooding alarms and gray failures.

iii

Last, we propose Girdle, an unsupervised and unified alert
aggregation framework based on graph representation learning.
Alerts provide timely awareness of the problems in online ser-
vice systems. Due to complex dependencies in cloud systems,
incidents often come with flooding alerts. By identifying re-
lated alerts, Girdle helps estimate the failure scope and save
duplicate engineering efforts in handling them. To this end, Gir-
dle leverages multi-source information (i.e., alerts, metrics, and
topologies) to profile the failure symptoms of services. Such a
design is essential for tracing the propagation of failures precisely.

In summary, this thesis targets the use of data analytics and
machine learning techniques to improve the reliability monitoring
and engineering of online service systems and gain actionable
insights to accelerate incident diagnosis. Extensive experiments
on both public and industrial datasets validate the effectiveness
and efficiency of our proposed algorithms.

iv

論文題目：在線服務系統的智能可靠性監測與工程

作者 ：陳壯彬

學校 ：香港中文大學

學系 ：計算機科學與工程學系

修讀學位：哲學博士

摘要 ：

分布式互聯網應用的激增對在線服務系統提出了嚴格的可
靠性、性能和可擴展性需求。在線服務所在的雲系統由多種硬

件（如網絡設備、服務器、數據存儲）和軟件（如虛擬化軟

件、服務程序）組成。由於任何組件都具有較小但非零的故障
概率，因此組件數量多意味著服務事故（服務或產品的中斷或

性能下降）不可避免。不幸的是，並非所有事故都能在雲環境

中輕易檢測到。

為了了解在線服務系統的內部情況，需要積累各種監控數
據，以從不同的角度反映其運行時狀態，包括日誌、度量、告

警/問題事件和拓撲。基於大量監控數據的數據驅動算法已被
證明是在復雜雲系統中加速和自動化問題檢測和解決的有效手

段。本論文介紹了我們對在線服務系統可靠性的智能監測與工
程的研究。

首先，它涉及對Microsoft事故管理現狀的實證調查。基於
實地研究和我們對兩年事故單的分析，我們確定了生產系統中

事故處理的一系列痛點：不精確的故障影響評估、冗余的運維
工作、洪水告警和灰色故障。我們從雲系統設計和運行的角度
討論了它們背後的原因。我們還介紹了Microsoft利用數據驅動
技術應對這些挑戰的嘗試。我們的研究揭示了這一研究領域的

一些關鍵問題，這些問題尚未被現有工作解決。我們致力於填
補這些重要空白。
其次，我們對用於日誌異常檢測的深度學習技術進行了系

統的回顧和評估。日誌異常檢測在軟件可靠性管理中起著至關
重要的作用。盡管近年來神經網絡模型使其性能得到了大幅提
升，但全面的基準探究和開源工具包仍然缺乏。因此，我們實
現了六種具有代表性的方法，並在準確性、魯棒性和效率方面

v

比較了它們的性能。我們進一步分享我們的工業部署經驗和我
們對未來重要方向的願景。我們的研究使得業界能夠更好地集
成和定制日誌異常檢測的方法，緩解洪水警報和灰色故障的問
題。
第三，我們提出了ADSketch，一種基於度量的性能異常

檢測方法。ADSketch具有可解釋性和適應性的優點。在在線
服務中，類似的異常通常表現為類似且罕見的異常度量模
式。ADSketch能夠有效地提取這些模式，進而幫助解釋異常
類型。為了適應新的模式，ADSketch仔細比較其輸入與已學
習的模式，並相應地更新它們。ADSketch已部署在生產環境
中，並在應對洪水告警和灰色故障方面取得了良好的效果。
最後，我們提出了Girdle，一個基於圖表征學習的無監督

統一告警聚合框架。告警可及時了解在線服務系統中的問題。

由於雲系統中的復雜依賴關系，事故通常伴隨著洪水告警。

通過識別相關告警，Girdle有助於估計故障範圍，從而節省
處理這些告警的重復運維工作。為此，Girdle利用多源信息

（即告警、度量和拓撲）來描述服務的故障癥狀。這種設計對

於精確跟蹤故障傳播至關重要。

綜上所述，本論文的目標是使用數據分析和機器學習技術
來改進在線服務系統的可靠性監控與工程，並獲得可實施的洞

察以加速事故診斷。在公共和工業數據集上的大量實驗驗證了

我們提出的算法的有效性和效率。

vi

Acknowledgement

First and foremost, I would like to acknowledge Prof. Michael R.
Lyu, for all of his support and guidance over the years. Michael is
a very generous person who believes everyone deserves a second
chance. His generosity and wisdom made my achievements
possible. What I have learned from Michael, beyond the technical
stuff, are kindness, honesty, and rigorousness that I could use in
my entire life.

In addition, I would like to acknowledge the role played by
my thesis committee, Prof. Eric Lo and Prof. Patrick Lee, for
their constructive comments and valuable suggestions on this
thesis and all my term presentations. Great thanks to Prof. Tao
Xie from Peking University, who kindly serves as the external
examiner for my thesis.

Over the years, I have had the chance to collaborate with
several talented researchers and engineers from Huawei Cloud
and Microsoft Research on various projects that appear within
this thesis. I also had a great time working with Prof. Hongyu
Zhang from The University of Newcastle. I would like to express
my thanks and gratitude to all of them. Acknowledgments are
also due to my friends at ARISE Lab, for making this journey
joyful and enriching. And this is important for me.

Significant acknowledgment goes to my family, including my
mother, father, brother, sister, and sister-in-law, for being sup-
portive and understanding throughout this process.

vii

Dedicated to my mother, my beloved family.

viii

Contents

Abstract ii

Acknowledgement vii

1 Introduction 1
1.1 Overview . 1
1.2 Thesis Contributions 5
1.3 Thesis Organization 8

2 Online Service Systems and Monitoring 12
2.1 Online Service Systems 12
2.2 Online Service Monitoring Data 14
2.3 Incident Management for Online Services 16

2.3.1 Incidents 16
2.3.2 Incident Management 16

2.4 Log-based Anomaly Detection 18
2.4.1 Log Collection 19
2.4.2 Log Parsing 19
2.4.3 Log Partition and Feature Extraction . . . 20
2.4.4 Anomaly Detection 22

2.5 Metric-based Performance Anomaly Detection . . 22
2.5.1 Performance Anomaly Patterns 22
2.5.2 Metric Pattern Mining 23

2.6 Alert Aggregation for Online Services 25
2.6.1 Topologies in Large-scale Cloud Systems . 25

ix

2.6.2 Cascading Effect of Service Failures 27

3 Literature Survey on Intelligent Service Monitor-
ing 29
3.1 Intelligent Incident Management 29

3.1.1 Reliability and Resilience of Online Services 29
3.1.2 Empirical Study on Incident Management 30

3.2 Log-based Anomaly Detection 31
3.2.1 Log analysis 31
3.2.2 Empirical studies on logs 32

3.3 Metric-based Anomaly Detection 33
3.3.1 Statistical and ML-based Approaches . . . 33
3.3.2 Deep Learning-based Approaches 34

3.4 Alert Management in Cloud Systems 35
3.4.1 Problem Identification and Diagnosis . . . 35
3.4.2 Intelligent Alert Management 36

4 Intelligent Incident Management 38
4.1 Problem and Contributions 38
4.2 Incident Ticket Analysis 40

4.2.1 Methodology 40
4.2.2 Characteristics of Incident Tickets 42

4.3 Incident Management Understanding 45
4.3.1 Key Challenges of Incident Management . 46
4.3.2 Understand the Key Challenges 56

4.4 BRAIN: An AIOps Framework 59
4.4.1 Design Principles 60
4.4.2 Data and Features 61
4.4.3 Data Preprocessing 62
4.4.4 Techniques of BRAIN 63
4.4.5 Evaluation 65

4.5 Summary . 67

x

5 Deep Log Anomaly Detection 68
5.1 Problem and Contributions 68
5.2 Log Anomaly Detection 72

5.2.1 Loss Formulation 72
5.2.2 Existing Methods 74
5.2.3 Tool Implementation 77

5.3 Evaluation . 78
5.3.1 Experiment Design 79
5.3.2 Accuracy of Log Anomaly Detection . . . 81
5.3.3 Robustness of Log Anomaly Detection . . 85
5.3.4 Efficiency of Log Anomaly Detection . . . 86

5.4 Industrial Practices 88
5.4.1 Industrial Deployment 89
5.4.2 Future Directions 92

5.5 Summary . 93

6 Adaptive Performance Anomaly Detection 95
6.1 Problem and Contributions 96
6.2 Methodology . 98

6.2.1 Overview 98
6.2.2 Offline Anomaly Detection 99
6.2.3 Online Anomaly Detection 105
6.2.4 Time and Space Complexity 110

6.3 Experiments . 110
6.3.1 Experiment Setting 111
6.3.2 Experimental Results 116

6.4 Industrial Practices 121
6.4.1 Online Deployment 121
6.4.2 Case Study 122
6.4.3 Threats to Validity 123

6.5 Summary . 124

xi

7 Graph-based Alert Aggregation 126
7.1 Problem and Contributions 126
7.2 Methodology . 130

7.2.1 Overview 130
7.2.2 Service Failure Detection 131
7.2.3 Failure-Impact Graph Identification 133
7.2.4 Graph-based Alert Representation Learning137
7.2.5 Online Alert Aggregation 139

7.3 Experiments . 141
7.3.1 Experiment Setting 141
7.3.2 Comparative Methods 145
7.3.3 Experimental Results 146
7.3.4 Threats to Validity 150

7.4 Discussion . 151
7.4.1 Success Story 151
7.4.2 Lessons Learned 152

7.5 Summary . 153

8 Conclusion and Future Work 155
8.1 Conclusion . 155
8.2 Future Work . 158

8.2.1 Performance Monitoring and Diagnosis for
Cloud Overlay Networks 159

8.2.2 Cross-layer Failure Propagation Modeling
in Cloud Systems 161

9 List of Publications 164

Bibliography 168

xii

List of Figures

1.1 A Case of Monitoring Data Generation in Online
Service Systems 2

1.2 Intelligent Service Monitoring Studies 5

2.1 Online Service Systems 13
2.2 Online Service System Monitoring Data 14
2.3 The TTx Metrics 17
2.4 The Overall Pipeline of Log-based Anomaly De-

tection . 19
2.5 Examples of Performance Anomaly Patterns . . . 24
2.6 An Illustration of Service Failures’ Cascading Ef-

fect (The circled area in the third subfigure shows
the failure-impact graph.) 26

2.7 An Example of Incomplete Failure-impact Graph 26

4.1 Incident Example 1 48
4.2 Incident Example 2 49
4.3 The No. of Incidents Incurring Redundant Effort

and the Average No. of Involved Service Teams
(with different bases) 50

4.4 Incident Example 3 51
4.5 Incident Example 4 52
4.6 Incident Example 5 54
4.7 The No. of Flooding Alarms and Gray Failures . 55
4.8 A Typical Cloud Computing Architecture 57
4.9 The Framework of BRAIN 59

xiii

4.10 BRAIN’s Effect on TTx (normalized) 66

5.1 Accuracy w/ Varying Anomaly Ratio in Training
Data . 87

5.2 Robustness of DL-based Methods on HDFS . . . 87
5.3 Robustness of ML-based Methods on HDFS . . . 88
5.4 Efficiency on Both HDFS and BGL Datasets . . . 88

6.1 The Overall Framework of ADSketch 99
6.2 The SPW Distance of Different Metric Subsequences101
6.3 The Algorithm of Performance Anomaly Pattern

Discovery . 102
6.4 The Update of the Radius of a Cluster 106
6.5 Parameter Sensitivity 121
6.6 Case Study of ADSketch 123

7.1 The Overall Framework of Girdle 130
7.2 CPU Usage Curve of Four Servers 135

8.1 Virtual Flows in Cloud Overlay Networks 160
8.2 Examples of Identifiable VGWs. A virtual flow fi

is represented as a binary row vector (ai1, . . . , ai5).
aij=1 if fi traverses through VGW vj. 161

xiv

List of Tables

4.1 Distribution of Incident Severity 44
4.2 Distribution of Relative Incident Fixing Time . . 44
4.3 Distribution of Incident Root Causes 44
4.4 Distribution of TTx from Postmortem Reports . . 49
4.5 Non-parametric Hypothesis Test on TTx reduction 66

5.1 Dataset Statistics 81
5.2 Accuracy of DL-based Log Anomaly Detection

Methods . 82
5.3 Accuracy of Traditional ML-based Methods . . . 83

6.1 Summary of Variables 100
6.2 Dataset Statistics 111
6.3 Experimental Results of Offline Anomaly Detection116
6.4 Experimental Results of Online Anomaly Detection118
6.5 Experimental Results of Adaptive Pattern Learning119

7.1 Examples of Alert Aggregation 129
7.2 Dataset Statistics 143
7.3 Experimental Results of Service Failure Detection 147
7.4 Experimental Results of Alert Aggregation 147
7.5 Experimental Results of Alert Aggregation using

Girdle (w/ and w/o failure-impact graph com-
pletion) . 150

xv

Chapter 1

Introduction

1.1 Overview

With the emergence of cloud computing platforms (e.g., Microsoft
Azure, Amazon Web Services, and Google Cloud Platform), many
traditional software systems have been migrated to the cloud
as online services. They have benefited many enterprises by
taking over the maintenance of IT and infrastructure, allowing
them to improve their core business competence. Different from
conventional shrink-wrapped software, online services need to
serve millions of customers worldwide. Thus, the reliability of
online service systems is an important quality attribute. Service
incidents, such as unplanned interruptions and outages, could
cause performance degradation (e.g., slow response time) and
service unavailability if not mitigated timely and properly, leading
to economic loss and user dissatisfaction. For example, in July
2018, an hour episode of downtime on Amazon’s annual Prime
Day led to a loss of $100+ million1. In October 2021, Facebook
and its subsidiaries became globally unavailable for a period of
six to seven hours, resulting in a nearly 5% drop in the company’s
shares and at least a $60 million loss in advertising revenue2.
Experience indicates that online service systems are rife with

1https://techcrunch.com/2018/07/18/amazon-prime-day-outage-cost/
2https://en.wikipedia.org/wiki/2021_Facebook_outage

1

https://techcrunch.com/2018/07/18/amazon-prime-day-outage-cost/
https://en.wikipedia.org/wiki/2021_Facebook_outage

CHAPTER 1. INTRODUCTION 2

Web	
service

Customers

VM

SQL Storage

Service	no	
response

SQL API call
timeout logLog Metric

Time spent on
disk writes spikes

Metric
CPU usage spikes

Disk connec-
tion failed

Alert

Customer	request
Service	dependency

Disk failure

Metrics

Topology

Web	
service

Customers

VM

SQL Storage

Service	no	
response

Log

SQL API call
timeout log

Metric

CPU usage spikes

Alert

SQL connection
failed event

Alert

Customer	request
Service	dependency

Disk failure

Metrics

Time spent on
disk writes spikes

Figure 1.1: A Case of Monitoring Data Generation in Online Service Systems

hardware and software failures, due to the use of commodity
hardware (exhibiting low but non-zero failure rates) coupled
with software bugs, misconfigurations, and failures caused by
service deployment and upgrade [107, 67]. Therefore, intelligent
reliability monitoring and engineering have become a core selling
point of online service providers. In this thesis, we use “incident”
and “failure” interchangeably. Cloud vendors who have promoted
the automation of reliability management have already received
real gains in availability, efficiency, and agility [29, 37, 107].

To understand the health condition of service systems, dif-
ferent types of monitoring data are generated to continuously
reflect the system state from different perspectives, including
logs [68, 70], metrics [12], alerts/events [97, 191], topologies [121,
7, 149]. Figure 1.1 presents a case of monitoring data generation
in online service systems. A disk failure happens to the Storage
service, whose impact propagates along the topology of service
dependencies. Consequently, customers’ requests may receive no
response. In this process, different services produce certain types
of monitoring data reporting the failure symptoms. For example,
to serve customer requests, the Web Service needs to query the

CHAPTER 1. INTRODUCTION 3

database for user authentication, transaction recovery, etc. Fail-
ing to do so results in a log saying “SQL API call timeout.” As
a result, customers will send multiple requests, consuming more
CPU resources of the VMs where the Web Service resides. Based
on the pre-defined alerting policy, the SQL service may generate
an alert describing the connection failure. In the Storage service,
we may also see spikes in the metric monitoring the time spent on
disk writes. Traditionally, engineers rely on manual inspection of
the data for system troubleshooting. For example, they perform
simple keyword searches (e.g., “exception,” “failed,” “error”,
and “timeout”) to mine suspicious logs that might be associated
with the underlying problems, e.g., a failed read/write operation.
Also, they resort to setting fixed thresholds on metrics to detect
unhealthy moments of the system, e.g., long latency. However,
today’s cloud systems have imposed considerable challenges on
such human-dependent IT operations:

• Large scale and complexity. Due to the ever-increasing
scale and complexity of today’s online services, the volume,
variety, and velocity of the monitoring data have reached an
unprecedented level. The traditional approaches fall short
for being labor-intensive and error-prone.

• Fast development iteration. As the demand for new software
and features skyrockets in the digital age, services are being
developed rapidly through frequent iterations and continu-
ous user feedback. Human-defined rules for failure detection
cannot keep pace with newly emerging failure patterns.

• Complicated service dependencies. Online services often
depend on each other to provide and support complete
applications. As a result, minor issues could propagate
their impact and escalate into system-wide outages. Service
dependencies significantly increase the difficulty of manually
maintaining the well-being of online services (e.g., root cause
localization and impact scoping).

CHAPTER 1. INTRODUCTION 4

Therefore, inspecting heterogeneous IT data for troubleshooting
often requires a decent knowledge of the entire online service
system, which often goes beyond the ability of a single engineer.
This situation serves as a catalyst for the algorithmic analysis of
monitoring data toward effective and intelligent service manage-
ment. Specifically, it leverages big data, analytics, and machine
learning techniques to gain actionable information and uncover
powerful insights from an immense quantity of data to enhance
cloud IT operations.

In this context, we conduct research on intelligent reliability
monitoring and engineering for online service systems based on
various IT data, i.e., logs, metrics, alerts, and topologies. As
shown in the left part of Figure 1.2, these data are generated by
services in different cloud layers. The right part of Figure 1.2
shows our contributions in this thesis, which comprise four parts.
First, we provide an empirical study on industrial incident man-
agement at Microsoft. We highlight two critical challenges of
incident handling (i.e., resource health assessment and resource
dependency discovery) and investigate the reasons behind them.
They serve as an important guideline for the following studies of
service reliability. Second, we present a systematic review and
evaluation of popular log anomaly detection methods powered
by deep learning techniques. Researchers and practitioners can
benefit from such a study as it enables them to quickly under-
stand the characteristics of these methods and select appropriate
ones for their problems. Third, we propose ADSketch, a perfor-
mance anomaly detection method based on metrics. It features
the ability to interpret the detected anomalies and learn new
patterns online. These efforts tackle the challenge of resource
health assessment by pursuing more accurate anomaly detection
based on logs and metrics. Finally, we propose Girdle, an alert
aggregation framework based on graph representation learning.
We make use of multi-source monitoring data (i.e., alerts, met-

CHAPTER 1. INTRODUCTION 5

An	empirical	study	on	
industrial	incident	
management

Monitoring
data	collection

Logs

Metrics

Topology

Alerts/Events

A	systematic	review	
on	DL-based	log	
anomaly	detection

Interpretable	and	
adaptive	performance	
anomaly	detection

Unsupervised	and	
unified	alert	
aggregation

Intelligent	service	monitoringService	usage

Network	
infrastructure

VM	&	Containers

Apps & Services

1

2

3

4

An empirical study on
industrial incident

management

Monitoring data
collection

Logs

Metrics

Topology

Alerts/Events

A systematic review
on DL-based log

anomaly detection

Interpretable and
adaptive performance

anomaly detection

Unsupervised and
unified alert
aggregation

Intelligent service monitoringService usage

Network infrastructure

VM & Containers

Apps & Services

1

2

3

4

An empirical study on
industrial incident

management

Monitoring
data collection

Logs

Metrics

Topology

Alerts/Events

A systematic review
on DL-based log

anomaly detection

Interpretable and
adaptive performance

anomaly detection

Unsupervised and
unified alert
aggregation

Intelligent service monitoringService usage

Network
infrastructure

VM & Containers

Apps & Services

1

2

3

4

Figure 1.2: Intelligent Service Monitoring Studies

rics, and topologies) to eliminate the effort of manual labeling,
making Girdle unsupervised. Girdle promotes the discovery
of resource dependencies in a data-driven manner.

1.2 Thesis Contributions

In this thesis, we make the following contributions toward intel-
ligent monitoring for online service systems.

1. An empirical study of incident management.

While modern services have employed an army of support
engineers to ensure their efficient operation, in practice,
we still observe critical incidents that occur unexpectedly,
resulting in a multiple-hour goose chase to identify the root
causes. Our study aims to understand the pain points of
support engineers in handling such critical incidents and
propose dedicated algorithms to alleviate them. Specifically,
based on over two years of incident tickets, we report the

CHAPTER 1. INTRODUCTION 6

current status of incident management at Microsoft. We
study the key challenges that result in the inefficient and
error-prone management workflow for the critical incidents.
We also explain the challenges from the perspective of cloud
system design and operation. We present representative real-
world cases and statistical evidence for our findings. The
insights and lessons learned from the investigation reveal
some essential problems of the current data-driven service
management, which we try to address in this thesis.

2. An evaluation of DL-based log anomaly detection.

Log-based anomaly detection has been an essential means of
service reliability monitoring. By resorting to deep learning
(DL) techniques, it has achieved remarkable performance
in recent years [40, 44, 189]. However, there is currently a
lack of rigorous comparison among representative methods
of this kind. This renders the difficulty for researchers and
practitioners to choose proper methods for the problems
at hand. Also, it is unclear how they can be integrated
into production systems. The industry has pointed out
that full-spectrum engineers with a mix of engineering and
AI/ML/Data Science skills are vital for accelerating AIOps
(AI for IT Operations) innovations and adoptions. Thus,
we provide the first comprehensive study on DL-based log
anomaly detection to help engineers easily customize and in-
tegrate end-to-end solutions into cloud services. Specifically,
we conduct a systematic evaluation that benchmarks the
effectiveness and efficiency of six representative DL-based
log anomaly detectors and share our experience of deploying
them into production systems. An open-source toolkit is
released to allow easy reuse for the community.

3. Interpretable and adaptive metric-based anomaly
detection.

CHAPTER 1. INTRODUCTION 7

When performing anomaly detection over metrics, existing
methods [75, 167, 190, 139] often lack the merit of inter-
pretability. That is, they are unable to explain what type of
anomaly has happened, which requires manual effort to find
out. Thus, interpretability is vital for engineers and analysts
to trust the model’s outputs and take remediation actions
immediately. Moreover, they often lack the adaptability to
effectively accommodate the ever-changing services in an
online fashion. Online service systems have a vast number of
components that continuously undergo updates [94]. In this
case, unseen metric patterns could emerge [52], degrading
the performance of the model in use. In production sys-
tems, setting a fixed threshold on metrics remains the most
widely-used method for anomaly detection, which needs
to consider the trade-off between false positives and false
negatives. All these problems require anomaly detection to
have the ability of online learning to adapt to unprecedented
metric patterns.

We propose ADSketch, an interpretable and adaptive ap-
proach for service performance anomaly detection. ADS-
ketch offers a way to characterize service performance issues
using monitoring metrics. It achieves interpretability by
identifying groups of anomalous metric patterns. Each of
them represents a particular type of performance anomaly.
The type of detected anomalies can then be immediately
recognized if similar patterns show up again. New metric
inputs are carefully compared to the existing patterns for
online updates. Experiments conducted on both public
and industrial metric data from Huawei Cloud have demon-
strated our design’s effectiveness.

4. Unsupervised and unified alert aggregation.

Existing practices for pinpointing service system faults typ-

CHAPTER 1. INTRODUCTION 8

ically involve watching for system alerts (e.g., API call
timeout, high CPU usage rate). Such methods treat alerts
independently and only see a fragment of the failure. There-
fore, in isolation, knowledge of these alerts is of limited
utility. Support engineers need to gradually gather related
alerts to recover the complete picture of the failure. Due to
the cascading effect, cloud incidents often come with over-
whelming alerts from dependent services and devices. This
dramatically increases the difficulty of failure understanding
and root cause analysis. To pursue efficient incident manage-
ment, related alerts should quickly be aggregated to narrow
down the problem scope. This requires leveraging more
than one source of data to precisely profile the trajectory
of failure propagation among services. However, existing
work fails to integrate multi-source information for alert
aggregation in a unified way, leading to poor performance.
To address this problem, we design Girdle, an alert aggre-
gation framework based on graph representation learning.
Girdle combines alerts, metrics, and topologies to measure
the behavioral similarity between services when a failure
happens to search the boundary of its cascading effect. A
feature vector for each unique type of alert is learned in an
unsupervised and unified fashion, encoding its interactions
with other alerts in temporal and topological dimensions.
We conduct experiments on industrial data from Huawei
Cloud to evaluate Girdle, showing promising results.

1.3 Thesis Organization

This remainder of this thesis is organized as follows.

• Chapter 2: Online Service Systems and Monitoring

Chapter 2 scopes the problem that we try to solve and

CHAPTER 1. INTRODUCTION 9

provides context on online service systems and their mon-
itoring. Specifically, we first brief online service systems
in Section 2.1. Then, Section 2.2 introduces four types of
typical IT data, i.e., logs, metrics, alerts, and topologies.
Finally, in the remaining sections of the chapter, we pro-
vide some background for the intelligent service monitoring
studies conducted in this thesis.

• Chapter 3: Literature Survey on Intelligent Service
Monitoring

Chapter 3 examines some contemporary work of online
service monitoring. They are representative in the literature
and closely related to ours. In particular, we discuss the
shortcomings of the approaches proposed by previous work
before presenting the algorithms that we develop to address
them in this thesis.

• Chapter 4: Intelligent Incident Management

Incident management plays a critical role in the assurance
of reliability and quality of service systems. Chapter 4 dis-
cusses Microsoft’s incident management practices, focusing
on figuring out the challenges of handling critical failures
and digging into the reasons behind them. Specifically, we
first introduce the background of incident management and
our contributions in Section 4.1. Then, Section 4.2 discusses
our study methodology and the identified incident character-
istics. Section 4.3 presents our main findings and conclusions
in this study, including the key challenges of incident man-
agement and the underlying reasons. Section 4.4 introduces
an AIOps framework of Microsoft for incident management.
Finally, we summarize this chapter in Section 4.5.

• Chapter 5: Deep Log Anomaly Detection

The industry has pointed out that the lack of the right

CHAPTER 1. INTRODUCTION 10

talents is an important challenge of data-driven service man-
agement. Support engineers should have strong engineering
capabilities and mindset with enough AI/ML/Data Science
skills. To help engineers with the customization and deploy-
ment of log-based service monitoring, Chapter 5 presents
our systematic study on DL techniques for log anomaly
detection. We first introduce the motivation and our con-
tributions in Section 5.1. The problem formulation of log
anomaly detection is summarized in Section 5.2, together
with a review of six representative methods powered by
neural networks. Section 5.3 talks about the experiments
conducted on two widely-used datasets, containing nearly
16 million log messages and 0.4 million anomaly instances
in total. We evaluate them in terms of three quality per-
spectives: accuracy, robustness against noise, and efficiency.
In Section 5.4, we share our experience of industrial deploy-
ment and vision on promising future research directions.
Finally, Section 5.5 summarizes this chapter.

• Chapter 6: Adaptive Performance Anomaly Detec-
tion

Time-series anomaly detection is a traditional topic in both
academia and industry. Many existing algorithms fail to
gain engineers’ trust due to a lack of interpretability. The
ever-changing online services also demand them to self-adapt
to unseen anomaly patterns. To achieve these goals, Chap-
ter 6 introduces ADSketch, an interpretable and adaptive
algorithm for metric-based performance anomaly detection.
Specifically, we first introduce the main problems of existing
research in this field and our main ideas to address them
in Section 6.1. Section 6.2 elaborates on the algorithmic
details for metric pattern extraction and how we use them
to achieve interpretability. We also introduce our design of

CHAPTER 1. INTRODUCTION 11

online pattern updates. Section 6.3 presents experimental
results on both public and production data from Huawei
Cloud. Section 6.4 shares our success stories and some case
studies. Finally, we summarize this chapter in Section 6.5.

• Chapter 7: Graph-based Alert Aggregation

Online services often come with a set of alerting policies
that are used to detect problems in the system. When
isolated, the generated alerts only provide scattered infor-
mation about failures. Chapter 7 investigates the integra-
tion of heterogeneous monitoring data for alert aggregation,
which facilitates the understanding and impact scoping of
failures. Specifically, we first talk about the cascading effect
of service failures in Section 7.1, which raises the need for
alert aggregation. We then describe the proposed frame-
work Girdle for this end in Section 7.2, which considers
the correlations between alerts in both temporal and topo-
logical dimensions. Section 7.3 evaluates the performance of
Girdle based on industrial data from Huawei Cloud. We
discuss our success story and lessons learned from practice
in Section 7.4. Finally, Section 7.5 summarizes this chapter.

• Chapter 8: Conclusion and Future Work

We conclude this thesis in Chapter 8 and talk about inter-
esting future work. We focus especially on modeling failure
propagation across different cloud layers (including services,
middleware, virtual networks, and physical networks) to
achieve full-stack cloud monitoring.

2 End of chapter.

Chapter 2

Online Service Systems and
Monitoring

2.1 Online Service Systems

Online services, also called cloud services or web services, refer
to a wide variety of services delivered on demand to companies
and customers over the Internet. These services are designed
to provide access to applications and resources in a simple and
affordable way. They have been increasingly integrated into
our daily lives and become indispensable, such as emails, search
engines, and instant messaging apps. The internal infrastructure
(e.g., physical servers and networks) of the online service sys-
tems are fully managed by cloud computing vendors and service
providers. Therefore, there is no need for an enterprise to host
applications on its own on-premises hardware.

As shown in Figure 2.1, there are generally three basic types
of online services.

• Software as a Service. Software as a Service (SaaS) is the
most widely recognized type of online service. This broad
category encompasses a variety of services, such as web-
based email, file storage and backup, and online documenta-
tion software. There are three popular types of architecture
for service development, i.e., application, microservice, and

12

CHAPTER 2. ONLINE SERVICE SYSTEMS AND MONITORING 13

Software as a Service (SaaS)

Application Microservice Serverless
Platform as a Service (PaaS)

Container Orchestration Database
Infrastructure as a Service (IaaS)

Compute Networking Storage

Physical MachineVirtual Machine

Figure 2.1: Online Service Systems

serverless function. Examples of SaaS providers include
Google Suite, Microsoft Office 365, and Dropbox.

• Platform as a Service. Platform as a service (PaaS) is a
complete development and deployment environment in the
cloud, where developers can build cloud apps. PaaS provides
programming languages, containers and their orchestration,
database management systems, and middlewares that enable
organizations to manage the complete lifecycle of cloud
apps, including building, testing, deploying, managing, and
updating. Many IaaS vendors, including the examples listed
below, also offer PaaS capabilities.

• Infrastructure as a Service. Infrastructure as a ser-
vice (IaaS) provides essential infrastructure (e.g., compute,
networking, storage) on demand that many cloud service
providers need to provision their applications. IaaS al-
lows organizations to bypass the cost and complexity of
buying and managing physical servers and data center in-
frastructure, and also offers load balancing and application

CHAPTER 2. ONLINE SERVICE SYSTEMS AND MONITORING 14

SaaS
PaaS
IaaS

Incidents
Revenue loss User dissatisfaction

Logs Metrics Alerts/Events Topology

Monitoring data

Figure 2.2: Online Service System Monitoring Data

firewall capabilities. Examples of IaaS are Amazon Web Ser-
vices (AWS), Microsoft Azure, and Google Compute Engine.
Many well-known SaaS providers run on IaaS platforms.

2.2 Online Service Monitoring Data

As shown in Figure 2.2, to ensure online service systems deliver
a high-quality and continuous experience to customers, a variety
of monitoring data are accumulated to reflect their health state
from different perspectives, including:

• Logs. Logs are semi-structured text messages printed by
logging statements in source code, composed of constant
strings and variable values. Logs record critical events and
operations during the runtime of the software.

• Metrics. Metrics are measurement of system status that
are sampled uniformly, including performance counters, re-
sponse time, CPU usage, memory usage, etc.

CHAPTER 2. ONLINE SERVICE SYSTEMS AND MONITORING 15

• Alerts. Alerts (also generally referred to as events or
alarms) raise timely awareness of problems in cloud appli-
cations so they can be resolved quickly. The format of an
alert contains the following information: ID, time, severity,
textual message, source, etc. In cloud systems, alerts are
fired by monitors (which are always-on programs) based
on some policies describing the circumstances under which
customers want to be alerted. Common alerting policies
of monitors include checking resource status, thresholding
metrics, and anomaly detection algorithms based on metrics
or logs.

• Topologies. Topologies are graphical data in cloud systems,
which have different meanings when it comes to different
objects. For example, microservices depend on each other
to provide and support network-based services and applica-
tions, forming service dependencies. Such relations can be
retrieved from API documentation [4], configurations [7], or
trace data [149, 175]. Network topology describes the phys-
ical connections among devices, such as switches, routers,
and hosts. Topologies provide information regarding the
relations among different cloud components, which play an
important role in root cause analysis, failure impact scoping,
visualization, etc. [162, 185].

By profiling service failures, these data provide clues for en-
gineers to conduct incident management. For example, in a
database failure, we may see a log message saying that the soft-
ware experiences a failed connection, a latency metric showing a
spike, and an alert reporting low throughput issue. The service
dependencies would suggest that other functions like login and
searching may also get impacted. Therefore, intelligent monitor-
ing algorithms based on these data serve as a crucial means to
promote the reliability and resilience of online service systems.

In the remaining sections, we provide some background and

CHAPTER 2. ONLINE SERVICE SYSTEMS AND MONITORING 16

challenges for the intelligent service monitoring studies conducted
in this thesis. We start from the general incident management
process and then introduce the pipeline of log-based anomaly
detection. Next, we elaborate on the metric patterns that we
observe and use for performance anomaly detection. Finally, we
talk about the cascading effect of service failures, which motivates
us to perform alert aggregation.

2.3 Incident Management for Online Services

2.3.1 Incidents

In cloud systems, an incident is any unplanned interruption or
performance degradation of a service or product, which can lead
to service shortages at all service levels, i.e., SaaS, PaaS, and
IaaS. For example, a bad HTTP request, security vulnerability,
resource throttling, power outage, or customer-reported error. In
particular, each incident has a severity level, which is set accord-
ing to its potential impact on customers. Every organization has
different classification criteria, but many follow such patterns:
Low, Medium, High, and Critical. For example, a data center
power failure may bring down dozens of services, which should
be treated as a Critical incident. Typically, one service relies on
many supporting services, such as SQL Database and Domain
Name System (DNS), to function properly. Such dependency
quickly increases the chances of incidents, as any component
along the dependency graph can be the source of failure.

2.3.2 Incident Management

In this subsection, we first elaborate on the typical incident
management procedure and then introduce the metrics widely
used to measure its performance.

CHAPTER 2. ONLINE SERVICE SYSTEMS AND MONITORING 17

Cloud Services

Customers

Engineers

MonitorsMonitors

Service Teams

Incident InvestigationIncident mitigation

Incident
Reporting

Incident
Triage

Incident
Mitigation

Time to Detect Time to Engage Time to Mitigate

Detection

TTD TTE TTM
Engagement Mitigation

Started Detected Engaged Mitigated

Incident
Lifecycle

Incident Reporting Incident Triage Incident Mitigation

Time to Detect Time to Engage Time to Mitigate

Detection

TTD TTE TTM

Engagement Mitigation

StartedStarted

Incident Lifecycle

Incident Reporting Incident Triage Incident Mitigation

DetectedDetected EngagedEngaged MitigatedMitigated

Figure 2.3: The TTx Metrics

Incident Management Procedure

Incident management is the process of detecting a live service
problem, creating an incident, determining the cause, restoring
the service to full operation, and capturing knowledge to prevent
the incident from happening again. Typically, there are three
steps involved [28, 20]: incident reporting, incident triage, and
incident mitigation, as shown in Figure 2.3.

• Incident Reporting. Incident reporting is to detect ser-
vice violations or performance degradation and create a
ticket to record relevant information. In cloud systems,
engineers can manually submit incident tickets if abnormal
system behaviors are detected, or customer-reported failure
messages are confirmed. Meanwhile, monitors can detect in-
cidents by periodically monitoring the runtime information
of service systems, e.g., software/system logs, performance
counters, and process/machine/service-level events.

• Incident Triage. Incident triage is to engage the responsi-
ble service team for problem investigation. However, due
to cloud systems’ high complexity and dependencies, in-
cidents are frequently assigned to the wrong responsible
teams, significantly prolonging service downtime.

• Incident Mitigation. Incident mitigation is the process
of bringing problematic service back to normal, so it can
continue to serve customers. In practice, some temporary

CHAPTER 2. ONLINE SERVICE SYSTEMS AND MONITORING 18

workarounds (e.g., server rebooting and service redeploy-
ment) will be applied first to mitigate the impact quickly,
as a short period of downtime could become an expensive
drain on company revenue and user trust.

TTx Metrics of Incident Management

Incident management is critical for cloud vendors to pursue their
ultimate goal: Service Level Agreement (SLA). Cloud SLA is a
commitment of a cloud service provider to its customers, which
guarantees a minimum level of system/service availability, relia-
bility, and responsiveness. Similarly, objectives are also set for
different phases of incident management, which are described by
the TTx metrics, as shown in Figure 2.3. The goal of improv-
ing incident management is to minimize these TTx, efficiently
mitigate the incident impact, and reduce operation loads.

• Time to Detect (TTD): The time it takes to detect an
incident from the start of its impact (SLA breached).

• Time to Engage (TTE): The time it takes to engage the
correct responsible service team from incident detection.

• Time to Mitigate (TTM): The time it takes to mitigate
customer impact and re-establish SLA (SLA re-established).

2.4 Log-based Anomaly Detection

Logs have been an imperative resource for detecting anoma-
lies [70, 68, 194]. The overall pipeline of log-based anomaly
detection is illustrated in Figure 2.4, which mainly consists of
four phases, i.e., log collection, log parsing, feature extraction,
and anomaly detection.

CHAPTER 2. ONLINE SERVICE SYSTEMS AND MONITORING 19

1. Log Collection 3. Log Partition and Feature Extraction2. Log Parsing 4. Anomaly Detection

Log sequences

packet responder for block
terminating
received block of size from

Log words

Sliding partitioning

Identifier-based partitioning
Identifier no.

…2 2 1

…1 1 1 12 2

1 1 1

…

…
Δt

Δt

Fixed partitioning
Δt

…

…
Δt

Log messages:
Log 1: 2009-11-08 20:36:15 PacketResponder 1 for
block blk_123 terminating

Log 2: 2009-11-08 20:38:07 PacketResponder 0 for
block blk_456 terminating

Log 3: 2009-11-08 20:46:55 Received block blk_789
of size 67108864 from /10.251.42.84

Log events:
Log event 1: PacketResponder <*> for block <*>
terminating

Log event 2: Received block <*> of size <*> from <*>

Log parser

Raw logs

Figure 2.4: The Overall Pipeline of Log-based Anomaly Detection

2.4.1 Log Collection

Software systems routinely print logs to the system console or
designated log files to record runtime status. In general, each log
is a line of semi-structured text printed by a logging statement in
source code, which usually contains a timestamp and a detailed
message (e.g., error symptom, target component, IP address).
In large-scale systems such as distributed systems, these logs
are often collected. The abundance of log data has enabled a
variety of log analysis tasks, such as anomaly detection and fault
localization [40, 182].

2.4.2 Log Parsing

After log collection, raw logs are often semi-structured and need
to be parsed into a structured format for downstream analysis.
This process is called log parsing [203]. Specifically, log parsing
tries to identify the constant/static part and variable/dynamic
part of a raw log line. The constant part is commonly referred
to as log event, log template, or log key (we use them inter-
changeably hereafter); the variable part stores the value of the
corresponding parameters (e.g., IP address, thread name, job
ID, message ID), which could be different depending on specific
runs of the system. For example, in Figure 2.4 (phase two),
a log excerpt collected from Hadoop Distributed File System

CHAPTER 2. ONLINE SERVICE SYSTEMS AND MONITORING 20

(HDFS) on Amazon EC2 platform [169] “Received block blk 789
of size 67108864 from /10.251.42.84” is parsed into the log event
of “Received block <*> of size <*> from <*>”, where all pa-
rameters are replaced with the token “<*>”. Zhu et al. [203]
evaluated 13 methods for automated log parsing and released a
toolset.

2.4.3 Log Partition and Feature Extraction

As logs are textual messages, they need to be converted into nu-
merical features such that ML algorithms can understand them.
To this end, each log message is first represented with the log
template identified by a log parser. Then, log timestamp and log
identifier (e.g., task/job/session ID) are often employed to parti-
tion logs into different groups, each representing a log sequence.
In particular, timestamp-based log partition usually includes two
strategies, i.e., fixed partitioning and sliding partitioning.

Fixed Partitioning. Fixed partitioning has a pre-defined par-
tition size, which indicates the time interval used to split the
chronologically sorted logs. In this case, there is no overlap
between two consecutive fixed partitions. An example is shown
in Figure 2.4 (phase three), where the partition size is denoted
as ∆t. ∆t could be one hour or even one day, depending on the
specific problems at hand.

Sliding Partitioning. Sliding partitioning has two parameters,
i.e., partition size and stride. The stride indicates the forwarding
distance of the time window along the time axis to generate log
partitions. In general, the stride is smaller than the partition
size, resulting in the overlap between different sliding partitions.
Therefore, the strategy of sliding partitioning often produces
more log sequences than fixed partitioning, depending on both
the partition size and stride. In Figure 2.4 (phase three), the
partition size is ∆t, while the stride is ∆t/3.

CHAPTER 2. ONLINE SERVICE SYSTEMS AND MONITORING 21

Identifier-based Partitioning. Identifier-based partitioning
sorts logs in chronological order and divides them into different
sequences. In each sequence, all logs share a unique and common
identifier, indicating they originate from the same task execution.
For instance, HDFS logs employ block id to record the operations
associated with a specific block, e.g., allocation, replication, and
deletion. Particularly, log sequences generated in this manner
often have varying lengths. For example, sequences with a short
length could be due to early termination caused by abnormal
execution.

After log partition, many traditional ML-based methods [70]
generate a vector of log event count as the input feature, where
each dimension denotes a log event, and the value counts its
occurrence in a log sequence. Different from them, DL-based
methods often directly consume the log event sequence. In
particular, each element of the sequence can be simply the index
of the log event or a more sophisticated feature such as a log
embedding vector. The purpose is to learn logs’ semantics to
make more intelligent decisions. Specifically, the words in a log
event are first represented by word embeddings learned with
word2vec algorithms, e.g., FastText [80] and GloVe [129]. Then,
the word embeddings are aggregated to compose the log event’s
semantic vector [189].

Then, the word embeddings are aggregated to compose the
log event’s semantic vector, denoted as V . In this process, term
frequency-inverse document frequency (TF-IDF) can be applied
to compute the importance of words in log events. For a target
word, its TF-IDF weight w is TF (word)× IDF (word), where
TF (word) = #word

#total , #word is the number of the target word
in a log event, #total is the number of words in the log event,
IDF (word) = log(#E

#Eword
), #E is the number of all log events,

and #Eword is the number of log events containing the target
word. Finally, the semantic vector of the log event can be

CHAPTER 2. ONLINE SERVICE SYSTEMS AND MONITORING 22

calculated as V = 1
N

∑N
i=1wi ·vi, where N is the number of words

in the log event, wi and vi are the weight and word vector for
the No.i word.

2.4.4 Anomaly Detection

Based on the log features constructed in the previous phase,
anomaly detection can be performed, which is to identify anoma-
lous log instances (e.g., logs printed by interruption exceptions).
Many traditional ML-based anomaly detectors [70] produce a
prediction (i.e., an anomaly or not) for the entire log sequence
based on its log event count vector. Different from them, many
DL-based methods first learn normal log patterns and then deter-
mine the normality for each log event. Thus, DL-based methods
are capable of locating the exact log event(s) that contaminate
the log event sequence, improving interpretability.

2.5 Metric-based Performance Anomaly De-

tection

2.5.1 Performance Anomaly Patterns

In online service systems, a large number of metrics are config-
ured to monitor various aspects of both logical resources (e.g.,
a virtual machine) and physical resources (e.g., a computing
server). Cloud systems often possess an abundance of redun-
dant components, providing the ability of fault tolerance and
self-healing (e.g., load balancing and availability zones). Con-
sequently, the majority of service breakdowns tend to manifest
themselves as performance anomalies first instead of fail-stop
failures [74, 105]. We observed that when performance anomalies
of similar types happen, their impacts tend to trigger similar
reactions/symptoms on the metric time series, which we refer

CHAPTER 2. ONLINE SERVICE SYSTEMS AND MONITORING 23

to as metric patterns. For example, a level shift up on Interface
Throughput may indicate slow service response, which could be
caused by a load balancing failure; a level shift down on it may
suggest service unavailability, and the culprit could be perfor-
mance bugs (e.g., memory leak bugs). Similar observations have
been made in [109, 43]. The rationale behind such a phenomenon
is twofold. First, the design of the metrics is sophisticated and
fine-grained, each dedicated to monitoring a specific problem,
e.g., request timeout or high API error rate. Second, cloud
systems widely employ the microservices architecture, where
cloud applications employ lightweight container deployment, e.g.,
cloud-native applications and serverless computing. With this
architecture, each microservice is designated for well-defined and
modularized jobs, e.g., user login and location service. Thus,
they tend to develop individual and stable patterns, which can
manifest through their monitoring metrics.

2.5.2 Metric Pattern Mining

Metric patterns (i.e., repetitive time-series subsequences describ-
ing the misbehaving moments of metrics) can be leveraged to
sketch the performance issues for anomaly detection. This is
essentially profiling the mode of recurrent anomalies. For ex-
ample, hardware failures often come with a sudden drop in the
corresponding metrics, and the value remains zero for some time.
If anomalies come into existence, they can be immediately identi-
fied by matching the established patterns. Such metric patterns
can also facilitate problem mitigation. For example, when low
service throughput and high CPU usage are detected, engineers
can scale up the microservice (by adding local cores) to increase
its capacity. The key challenge is how to automatically discover
what anomalous patterns a metric time series has experienced.
For each identified pattern, engineers can label the typical per-

CHAPTER 2. ONLINE SERVICE SYSTEMS AND MONITORING 24

0 2000 4000 6000 8000 10000
0.0

0.5

1.0

Interface Throughput

0 2000 4000 6000 8000 10000
0.0

0.5

1.0
Request Timeout Number

0 2000 4000 6000 8000 10000
Time

0.0

0.5

1.0
Application CPU Usage

Figure 2.5: Examples of Performance Anomaly Patterns

formance issues it often associates with. In online scenarios, if a
metric encounters any known anomalous patterns, the underlying
performance issues can be recommended. Pattern sketching thus
provides a means to accumulate and utilize engineers’ knowledge.

In real-world scenarios, the patterns exhibited in metrics
are extremely complicated and can have numerous variants in
terms of scale, length, and combination. We have identified
the following challenges for metric pattern discovery, which are
illustrated in Figure 2.5. Each metric time series records around
one week of monitoring data, whose anomalies are shown in red.

• Background noise. Although a large amount of met-
ric time series is generated, a significant portion of them
is trivial, recording only plain system runtime behaviors.
Moreover, due to the dynamics of online services, some
metrics may experience concept drift [52]. For example, the
Application CPU Usage in Figure 2.5 drops abruptly, which
could be caused by a role switch (e.g., from a primary node
to a backup node) or user behavior change. How to distin-
guish anomalous patterns from normal ones is non-trivial.

CHAPTER 2. ONLINE SERVICE SYSTEMS AND MONITORING 25

• Pattern variety. A metric curve can possess multiple
distinct patterns simultaneously. For example, in Figure 2.5,
the Interface Throughput has two anomaly patterns, i.e.,
spike up and spike down. Also, the patterns can have
different scales, as indicated by the two spikes in the Request
Timeout Number. We need to consider the context of each
metric for pattern extraction.

• Varying anomaly duration. Different performance is-
sues may vary in duration. The first two anomalies in the
Interface Throughput constitute such an example. Par-
ticularly, how long an anomaly lasts is also an important
factor that engineers rely on to understand a service’s health
state. When characterizing the issues, such a fact should
be considered appropriately.

2.6 Alert Aggregation for Online Services

2.6.1 Topologies in Large-scale Cloud Systems

Cloud vendors provide a variety of online services to customers
worldwide, which often possess a hierarchical architecture, i.e.,
service (SaaS), platform (PaaS), and infrastructure (IaaS) lay-
ers. Different layers have different forms of topologies. In the
SaaS layer, each service embodies the integration of code and
data required to execute a complete and discrete functionality.
Different services communicate through virtual networks using
protocols such as HTTP and Remote Procedure Call (RPC).
Service A is said to be dependent on service B if A needs to call
B and requires the response to proceed with its operations. A
call failure describes the case when a service calls another service
but receives no or incorrect response. Such communications
among services constitute the complex topology of online service
systems [112, 98, 200, 136, 53]. The service dependency topology

CHAPTER 2. ONLINE SERVICE SYSTEMS AND MONITORING 26

A failure happened to
service A

Failure propagation Failure-impact graph (the
circled area)

A

C
B

D

E

F G

H

A

C
B

D

E

F G

H

A

C
B

D

E

F G

H

Figure 2.6: An Illustration of Service Failures’ Cascading Effect (The circled
area in the third subfigure shows the failure-impact graph.)

A

C
B

D

E

F G

H

Alert cluster 1

Alert cluster 2

A

C
B

D

E

F G

H

A

C
B

D

E

F G

H
kpis:	{“kpi1”:	[0.1,	0.1,	0.1],	“kpi2”:	[0.2,	0.2,	0.2],	…}

incidents:	[“incident1”,	“incident1”,	“incident2”,	…]

A

C
B

D

E

F G

H

A

C
B

D

E

F G

H
kpis:	{“kpi1”:	[0.1,	0.1,	0.1],	“kpi2”:	[0.2,	0.2,	0.2],	…}

alarms:	[“alarm1”,	“alarm1”,	“alarm2”,	…]

Figure 2.7: An Example of Incomplete Failure-impact Graph

can be built by parsing the REST documentation of services (in
JSON format generated by Swagger1 or RAML2) [4, 160] or ana-
lyzing the trace/invocation records between services [175, 149].
Some popular open-source microservice benchmarks, e.g., Train
Ticket3 and Online Boutique4, directly expose the dependencies
among its components. Another example is the cloud network
topology in the IaaS layer, which includes the physical connec-
tions between different types of network devices (e.g., switches
and servers) [156, 143] and the hosting relation between servers
and Virtual Network Function (VNF) instances [137, 42]. These
dependencies can be retrieved from the Configuration Manage-
ment Database (CMDB) of cloud systems.

1http://swagger.io
2http://raml.org
3https://github.com/FudanSELab/train-ticket
4https://github.com/GoogleCloudPlatform/microservices-demo

http://swagger.io
http://raml.org
https://github.com/FudanSELab/train-ticket
https://github.com/GoogleCloudPlatform/microservices-demo

CHAPTER 2. ONLINE SERVICE SYSTEMS AND MONITORING 27

2.6.2 Cascading Effect of Service Failures

Due to service dependencies, a failure occurring to one service
tends to have a cascading effect across the entire system. Repre-
sentative service failures include slow response, request timeout,
service unavailability, etc., which could be caused by capacity
issues, configuration errors, software bugs, hardware faults, etc.
To quickly understand failure symptoms, a large number of mon-
itors are configured to monitor the states of different services
in a cloud system [29]. A monitor will render an alert when
certain predefined conditions (e.g., CPU usage exceeds 80%) are
met. When a failure happens, the monitors often produce a large
number of alerts. These alerts are triggered by the common root
cause and describe the failure from the perspectives of differ-
ent services. Thus, they can be aggregated to help engineers
understand and diagnose the failure.

We model the set of alerts triggered by a failure as its impact
graph (i.e., failure-impact graph). As illustrated by Figure 2.6,
service A encounters a failure, and the impact propagates to other
services along the system topology. The circled area indicates the
impact graph of the failure, where irrelevant alerts (in blue) in
service D and G are excluded. These alerts are collected during
the failure period, which can be determined by failure detection
algorithms. In this period, failure can manifest its cascading
effect completely. We do not impose stringent requirements on
the clock synchronization among the distributed services, because
the correlation between alerts can be learned appropriately if
they show up during the failure (even if their local clocks drift
slightly). Intuitively, it might seem that the impact graph can be
easily constructed by tracing alerts along the topology. However,
our industrial practices reveal that they are usually incomplete.
An example is given in Figure 2.7, where service B occasionally
fails to report any alert during the failure. Existing approaches
may perceive it as two separate failures, which is undesirable.

CHAPTER 2. ONLINE SERVICE SYSTEMS AND MONITORING 28

We have summarized two main reasons for the missing alerts:

• System monitors that report alerts are configured with
rules predefined by engineers. Due to the diversity of cloud
services and user behaviors, the impact of a failure may
not meet the rules of some monitors. For example, if an
application triggers an alert when its CPU usage rate exceeds
80%, then any value below the threshold will be unqualified.
As a consequence, the monitors will not report any alerts.
Thus, the tracking of the failure’s impact is blocked.

• To ensure continuity, cloud systems are designed to have
a certain fault tolerance capability. In this case, service
systems can bear some abnormal conditions, and thus, no
alerts will be reported. Therefore, the impact of a failure
may not manifest itself entirely over the system topology.

Recent studies on cloud incident management [29, 74] have
demonstrated the incompleteness and imperfection of monitor
design and distribution in online service systems. Thus, along
the service dependency chain, some services in the middle may
remain silent (i.e., report no alert), which impedes tracking
failure’s cascading effect. Therefore, although online service
systems generate many alerts, they are often scattered.

2 End of chapter.

Chapter 3

Literature Survey on Intelligent
Service Monitoring

In this chapter, we review existing work of intelligent monitoring
for online service systems. We highlight their major limitations
that we try to address in this thesis. Following the structure of the
previous chapter, we start with the overall incident management
of cloud services and then discuss related work on logs, metrics,
and alerts.

3.1 Intelligent Incident Management

3.1.1 Reliability and Resilience of Online Services

There are many methods focusing on improving the reliability
and resilience of cloud systems. Regarding failure prediction in
cloud systems, Xu et al. [170] formulated the disk failure predic-
tion problem (a major source of service incidents) as a ranking
problem and adopted the FastTree algorithm to make predic-
tions. He et al. [69] proposed a cascading clustering algorithm to
identify the impactful problems by correlating the clusters of log
event sequences with system KPIs. Zhang et al. [187] addressed
the problem of general bug management in software systems.
Hu et al. [73] automated this process by constructing a developer-

29

CHAPTER 3. LITERATURE SURVEYON INTELLIGENT SERVICEMONITORING30

component-bug network, which models the relationship among
developers, source code components, and the associated bugs.

Some approaches have been proposed to address the service
dependency issues for cloud services. For example, Bahl et al. [7]
presented Leslie Graph, an abstraction describing the complex
dependencies between network, host, and application compo-
nents in networked systems. In particular, they systematically
discussed the challenges and difficulties of discovering service
dependencies. Chen et al. [23] introduced Orion, a system that
searches dependencies using packet headers and timing informa-
tion in network traffic.

3.1.2 Empirical Study on Incident Management

Recently, cloud service incidents and their management are gain-
ing more and more popularity. For example, Zhou et al. [197]
performed an empirical study on the quality issues of a big data
computing platform. They analyzed 210 real service quality
issues and investigated their common symptoms, causes, and
mitigation solutions. Their findings show that 21.0% of major
issues encountered by customers are caused by hardware faults,
36.2% are caused by system-side defects, and 37.2% are due
to customer-side faults. Huang et al. [74] studied the gray fail-
ures in production cloud-scale systems. They found this type of
failure is hardly noticed by the system’s failure detectors even
when applications are afflicted by them. Chen et al. [20] studied
the incident triage problem on 20 large-scale online service sys-
tems at Microsoft. Their results reveal the fact that incorrect
assignment of incident reports frequently occurs, especially for
incidents with high severity. Dang et al. [37] summarized the
real-world challenges in building AIOps solutions and proposed
a roadmap of AIOps-related research directions. Gunawi et
al. [58] conducted a cloud outage study of 32 popular Internet

CHAPTER 3. LITERATURE SURVEYON INTELLIGENT SERVICEMONITORING31

services. They provided answers to why outages still take place
in cloud environments by analyzing 1,247 headline news and
public postmortem reports which detail 597 unplanned outages.

While these papers only study one specific aspect of cloud
systems’ incident management, we present a comprehensive char-
acterization of it. Moreover, we try to understand the reasons
behind the challenges of incident management from the internal
system design and operation principles.

3.2 Log-based Anomaly Detection

3.2.1 Log analysis

Logs have become imperative in the assurance of software sys-
tems’ reliability and continuity because they are often the only
data available that record software runtime information. Typical
applications of logs include anomaly detection [70, 169, 40], fail-
ure prediction [146, 147], failure diagnosis [182, 200], etc. Most
log analysis studies involve two main steps, i.e., log parsing and
log mining. Based on whether log parsing can be conducted in a
streaming manner, log parsers can be categorized into offline and
online. Zhu et al. [203] conducted a comprehensive evaluation
study on 13 automated log parsers and reported the benchmark-
ing results. More recently, Dai et al. [36] proposed an online
parser called Logram, which considers the n-grams of logs. The
core insight is that frequent n-grams are more likely to be part
of log templates.

Many efforts have also been devoted to log mining, especially
anomaly detection due to its practical significance. They can be
roughly categorized into two classes, i.e., traditional ML-based
and DL-based methods. For example, Xu et al. [169] were the
first to apply PCA to mine system problems from console logs. By
mining invariants among log messages, Lou et al. [106] detected

CHAPTER 3. LITERATURE SURVEYON INTELLIGENT SERVICEMONITORING32

system anomalies when any invariants were violated. Lin et
al. [101] proposed LogCluster, which recommends representative
log sequences for problem identification by clustering similar ones.
He et al. [69] proposed Log3C to incorporate system KPIs into
the identification of high-impact issues in service systems. Some
work [50, 120] employs graph models such as finite state machines
and control flow graphs to capture a system’s normal execution
paths. Anomalies are alerted if the transition probability or
sequence violates the learned graph model.

In recent years, there has been a growing interest in applying
neural networks to log anomaly detection. For example, Du
et al. [40] proposed DeepLog, which is the first work to adopt
an LSTM to detect log anomalies in an unsupervised manner.
Meng et al. [114] proposed LogAnomaly to extend their work
by incorporating logs’ semantics. To address the issue of log
instability, i.e., new logs may emerge during system evolution,
Zhang et al. [189] proposed a supervised method called LogRo-
bust, which also considers logs’ semantic information. Wang et
al. [173] addressed the issue of insufficient labels via probabilistic
label estimation and designed an attention-based GRU neural
network. Lu et al. [108] explored the feasibility of CNN for this
task. Other models include the Transformer [122], LSTM-based
generative adversarial network [166], etc.

3.2.2 Empirical studies on logs

Empirical studies are also an important topic in the log analy-
sis community, which derives valuable insights from abundant
research work in the literature and industrial practices. For exam-
ple, Yuan et al. [183] studied the logging practices of open-source
systems and provided developers with suggestions for improve-
ment. Fu et al. [51, 202] focused on the logging practices on the
industry side. The work done by He et al. [70] is the most related

CHAPTER 3. LITERATURE SURVEYON INTELLIGENT SERVICEMONITORING33

study to ours, which benchmarks six representative log anomaly
detection methods proposed before 2016. Different from them,
we focus on the latest DL-based approaches and investigate more
practical issues, such as unprecedented logs in testing data and
inevitable anomalies in training data. Le et al. [87] followed our
work to explore more characteristics of DL-based log anomaly
detectors. More recently, Yang et al. [174] presented an inter-
view study of how developers use execution logs in embedded
software engineering, summarizing the major challenges of log
analysis. He et al. [68] conducted a comprehensive survey on log
analysis for reliability engineering, covering the entire lifecycle of
logs, including logging, log compression, log parsing, and various
log mining tasks. Candido et al. [15] provided a similar review
for software monitoring. Other studies include cloud system
attacks [82], cyber security applications [86], etc.

3.3 Metric-based Anomaly Detection

Performance anomaly detection on time series has been a hot
topic. Monitoring metrics used to profile the runtime status of
a system are usually denoted as multiple univariate time series.
In the literature, anomaly detection methods on time series can
be categorized into statistical, traditional machine learning, and
deep learning approaches.

3.3.1 Statistical and ML-based Approaches

In industry, Autoregressive Moving Average Model (ARMA) [17]
remains the most popular statistical method to detect apparent
anomalies in univariate time series. To capture complex anoma-
lous patterns, Ma et al. [109] summarized several type-oriented
patterns from the metrics of cloud databases to diagnose the
performance degradation in associated online services.

CHAPTER 3. LITERATURE SURVEYON INTELLIGENT SERVICEMONITORING34

More complex pattern recognition methods utilize machine
learning-based models. For example, unsupervised clustering
methods can be used to detect anomalous points in time-series
data. Like our work, Pang et al. [126] proposed a clustering-based
statistical model called LeSiNN to detect anomaly patterns from
history. However, it is not robust in real industry practices due to
complicated parameter tuning. With the assumption that anoma-
lous data should be in smaller numbers and isolated from an
extensive number of normal observations, Isolation Forest (iFor-
est) [102] employs multiple binary trees to distinguish anomalies
in non-linear space. Extreme Value Theory (EVT) [150] studies
the hidden state of a random variable around the tails of its
distribution to adaptively enhance the performance of many sta-
tistical and machine learning methods. However, EVT heavily
relies on hyperparameter tuning.

3.3.2 Deep Learning-based Approaches

In recent years, there has been an explosion of interest in apply-
ing neural networks to metric-based anomaly detection, which
have been demonstrated to achieve better performance. For ex-
ample, Zong et al. [206] proposed a deep autoencoding Gaussian
mixture model (DAGMM) to detect anomalous data points from
each observed data without considering the temporal dependen-
cies in time series. To detect complex anomalies in spacecraft
monitoring systems, LSTM-NDT [75] leverages Long Short-Term
Memory (LSTM) networks with nonparametric dynamic thresh-
olding to pursue interpretability throughout the systems. Zhao
et al. [190] and Lin et al. [99] also employed LSTM to predict per-
formance anomalies in software systems. Inspired by the Spectral
Residual algorithm in other domains, Ren et al. [139] proposed
SR-CNN to detect anomalies from seasonal metric data for large-
scale cloud services, which contain the periodic recurrence of

CHAPTER 3. LITERATURE SURVEYON INTELLIGENT SERVICEMONITORING35

fluctuations. DONUT [167] designs an unsupervised anomaly
detection method based on the Variational Auto-Encoder (VAE)
framework to detect anomalies from low-qualified seasonal metric
time series with various patterns. DONUT provides a theoretical
explanation compared to other deep learning methods. LSTM-
VAE [127] combines LSTM networks and the VAE framework to
reconstruct the probability distribution of observed data in time
series. However, LSTM-VAE ignores the temporal dependencies
in time series. OmniAnomaly [153] learns the normal patterns
using a large collection of historical data. The anomalous pat-
terns are located from the large margin of reconstruction loss to
the normal patterns.

The aforementioned deep learning-based methods usually fol-
low an end-to-end style and play as a black box inside. Due
to poor interpretability, the detection results cannot provide
engineers with actionable suggestions for fault diagnosis. Fur-
thermore, all these methods have difficulties handling unseen
metric patterns brought by the frequent updates of online ser-
vices.

3.4 Alert Management in Cloud Systems

3.4.1 Problem Identification and Diagnosis

To provide high-quality online services, many researchers have
conducted a series of investigations, including problem identifica-
tion and diagnosis from runtime log data and alerts [101, 69, 78].
For example, to identify problems from a large volume of log data,
Lin et al. [101] proposed LogCluster to cluster log sequences and
pick the center of each cluster. Inspired by LogCluster [101],
Zhao et al. [191] clustered online service alerts to identify the
representative alerts to engineers. Different from the clustering
techniques, Jiang et al. [78] proposed an alert prioritization ap-

CHAPTER 3. LITERATURE SURVEYON INTELLIGENT SERVICEMONITORING36

proach by ranking the importance of alerts based on the metrics
in alert data. The top-ranked alerts are more valuable for identi-
fying problems. However, this approach has a limited scope of
application because it is only practical to metric alerts generated
from manually defined threshold rules. To conduct problem
identification more aggressively, Chen et al. [26] proposed an
incident diagnosis framework to predict general incidents by an-
alyzing their relationships with different alerting signals. Zhao
et al. [192] considered a more practical scenario where there are
plenty of noisy alerts in online service systems. They proposed
eWarn to filter out the noisy alerts and generate interpretable
results for incident prediction. Wang et al. [162] constructed a
real-time causality graph based on alerts for root cause analysis
in industrial settings. To incorporate domain knowledge, they
allow customized rules for graph construction. Such a design
facilitate the rapid requirement changes in microservices.

3.4.2 Intelligent Alert Management

In recent years, alert management has become a hotspot topic in
both academia and industry. Massive amount of effort has been
devoted to alert detection [99, 192, 57, 97] and alert triage [57,
54, 20, 21]. For example, Lim et al. [96] utilized Hidden Markov
Random Field for performance issue clustering to identify rep-
resentative issues. Chen et al. [21] proposed DeepCT, a deep
learning-based approach that is able to accumulate knowledge
from alert discussions and automate alert triage. However,
due to high manual examination costs, these methods can-
not handle the overwhelming number of alerts. Many existing
work [97, 168, 191, 193] addresses this problem by reducing the
duplicated or correlated alerts. For example, Zhao et al. [193]
aimed to recommend severe alerts to engineers. Lin et al. [97]
proposed an alert correlation method to cluster semi-structured

CHAPTER 3. LITERATURE SURVEYON INTELLIGENT SERVICEMONITORING37

alert texts to gain insights from the clustering results.
Similar to our method, Zhao et al. [191] conducted alert reduc-

tion by calculating their textual and topological similarity. The
centroid alert of each cluster is then selected as the representative
alert to engineers. Specifically, they first leveraged conventional
methods to detect alert storms and the associated anomalous
alerts and then adopted DBSCAN [41] to cluster alerts based on
their textual and topological similarity. Another similar work is
LiDAR proposed by Chen et al. [25], which links relevant alerts
by incorporating the representation of cloud components. Their
framework consists of two modules, a textual encoding module
and a component embedding module. The first module learns
a representation vector for alert descriptions in a supervised
manner. The textual similarity between two alerts is measured
by the cosine distance of their representation vectors. Similarly,
the second module learns a vector for system components. The
final similarity is calculated by leveraging two parts of infor-
mation. However, these methods employ a simple weighted
sum to combine the information from different sources and still
hardly capture the relationship between alerts. Differently, our
method utilizes sophisticated graph representation learning to
obtain the semantic relationship of alerts from diverse sources,
including temporal locality, topological structure, and metric
data. Moreover, many existing alert management methods rely
on supervised machine learning techniques to detect anomalies
or conduct alert triage. More intelligent approaches with weak
supervision or even unsupervised frameworks are still largely
unexplored, which is addressed in our design.

2 End of chapter.

Chapter 4

Intelligent Incident
Management

Once a service incident occurs, the service provider should imme-
diately take action to diagnose the problem and bring the service
back to normal, which is called incident management. Service
providers have invested significant efforts in incident management
to minimize service downtime and to ensure the high quality of
the provided services. In this chapter, we present the practices
of Microsoft in this direction. The remainder of this chapter
is organized as follows. Section 4.1 provides the problem back-
ground and contributions of this study. Section 4.2 discusses our
study methodology and the identified characteristics of incidents.
Section 4.3 presents the key challenges of incident management
and the underlying reasons. Section 4.4 presents the AIOps
(Artificial Intelligence for IT Operations) framework for incident
management at Microsoft. Finally, Section 4.5 summarizes this
chapter.

4.1 Problem and Contributions

In practice, a typical incident management procedure goes as fol-
lows: when engineers or machine-based monitors detect a service
incident, an incident ticket documenting relevant information

38

CHAPTER 4. INTELLIGENT INCIDENT MANAGEMENT 39

will be created in the incident management system. Based on
the ticket, the incident will be assigned to the responsible service
team to restore the service quickly.

Ideally, if the entire procedure of incident management goes
smoothly, the service can be quickly recovered. With years of
effort, Microsoft is now capable of alerting 97% of incidents
automatically and controlling more than 90% of incidents by
immediate mitigation. However, there are still severe and com-
plex incidents that take a long time to handle. Our investigation
reveals that the delay happens mainly in the following three
scenarios. First, it is not rare that critical incidents cannot be
immediately detected as they are often induced by unexpected
system/customer behaviors. Second, failure’s symptoms are
sometimes hardly enough to directly pinpoint the responsible
service team, as distinct problems could induce similar symp-
toms. Incidents are therefore reassigned multiple times. Third,
engineers usually need a long time to identify the incident’s root
cause and the corresponding impact scope, i.e., impacted services
and customers. Motivated by these observations, we conduct
an empirical study to understand the key challenges bringing
about the delay in these steps as well as the fundamental reasons
behind them.

Microsoft runs worldwide cloud systems with thousands of
services. Such a large scale makes it challenging to conduct inci-
dent management. We have summarized two critical challenges:
(1) building dependencies among massive services/resources and
(2) assessing the health state of numerous cloud resources to fire
reasonable alerts. In large cloud enterprises, the performance
and reliability of any particular application may rely on multiple
services and resources, spanning many hosts and network compo-
nents [119]. The dependency issue refers to the incompleteness
and vagueness of such relationships across the entire system.
Consequently, the culprits of the incident cannot be easily found.

CHAPTER 4. INTELLIGENT INCIDENT MANAGEMENT 40

Even provided with the dependencies, we still need to assess
the health condition of resources to locate root causes. To help
understand these issues, we carefully select some real-world coun-
terintuitive incident cases to illustrate different types of pain
points and why heuristic solutions would fail. Meanwhile, we
present four exciting lessons learned. For example, while root
cause localization stands as the core of impactful incident mitiga-
tion, addressing all impacted services could be equally important;
a flood of alerts during impactful incidents is inevitable even if
careful aggregations and tuned thresholds have been applied. In
addition, we quantitatively analyze the incidents collected from
six core large-scale services at Microsoft and conduct a series of
experiments to derive statistical support for our findings.

Given that incident management is data-driven by nature,
the concept of AIOps was proposed to address the challenges
of IT operations with AI techniques [76, 37, 28]. We have seen
its great potential in extracting patterns from recurrent incident
symptoms to provide actionable recommendations. We present
IcM BRAIN (BRAIN for short), our AIOps framework for inci-
dent management. First, we introduce different types of data
utilized in the framework and the data preprocessing procedure.
Then, we elaborate on the techniques for mitigating the afore-
mentioned challenges. Finally, we share the application results
to demonstrate the industrial benefits conveyed to the incident
management of Microsoft.

4.2 Incident Ticket Analysis

4.2.1 Methodology

Raw Dataset

Microsoft provides thousands of online services running on a
24/7 basis. To ensure service reliability and availability, cloud

CHAPTER 4. INTELLIGENT INCIDENT MANAGEMENT 41

systems incorporate sophisticated monitoring mechanisms, where
each monitor is tailored for a specific type of service-affecting
symptom. The entity over which to perform health evaluation,
monitoring, and alerting is called a resource, which can be a phys-
ical resource like a computer device or a logical resource like a
virtual machine. Upon a violation of any predefined performance
metric (e.g., availability and latency), the corresponding monitor
will render an incident ticket with the timestamp, location, sever-
ity, involved services/teams, impacted resources/components, a
title briefly describing the symptom, etc. Besides auto alerts,
manual reporting (i.e., detected by customers or engineers) is
another important source of incidents, in which an extra text
snippet summarizing the cloud issue is included. During prob-
lem investigation, discussions conducted by On-Call Engineers
(OCEs) will be continuously added to the ticket.

We have studied incidents from all services over two years.
Among them, we select six core services at Microsoft, namely,
Datacenter Management (DCM), Network, Storage, Compute,
Database, and Web Service (WS), which are known as the fun-
damental basis that thousands of other services rely on. In this
chapter, we report our findings by analyzing these services’ in-
cident tickets. We exclude the incidents that are intentionally
generated for testing purposes. For over two years of operations,
these core services have produced a large number of incidents
and almost half of the impactful incidents at Microsoft. Due
to privacy and security reasons, we do not release the dataset.
Nevertheless, public incident tickets [58, 151] can help readers
understand the main characteristics of our dataset. They both
record cloud system failures and share certain similarity. At the
same time, our dataset paints a more comprehensive landscape
of the incidents in large-scale cloud systems and provides more
details that are not publicly-available. These advantages allows
us to conduct an in-depth analysis of incident management.

CHAPTER 4. INTELLIGENT INCIDENT MANAGEMENT 42

Study Approaches

After collecting incident tickets, we perform the following inves-
tigations to derive insights:

1) Incident ticket analysis. We calculate the distribution of in-
cidents along multiple dimensions (e.g., severity and root cause)
to obtain a clear view of their characteristics. Moreover, we
manually study the impactful incidents as well as their post-
mortem reports to understand the issues of incident management
that constitute the unique challenges of troubleshooting in cloud
systems.

2) Field studies. Besides statistical analysis, we discuss with
OCEs to collect first-hand information regarding the pain points
of incident handling and empirically verify our hypotheses. In this
process, we acquire much valuable feedback and suggestions, e.g.,
the selection of representative incident examples (Section 4.3.1).

3) Validation. To support our findings, we design dedicated
experiments to obtain statistical evidence from the collected
incidents. Moreover, to validate the effectiveness of our AIOps
framework in production systems, we perform non-parametric
hypothesis testing on incidents with and without BRAIN support.

4.2.2 Characteristics of Incident Tickets

Incident Severity

Table 4.1 shows the distribution of incident severity among six
services. We can see that in all services, the Low and Medium
incidents together take up more than 90% of the total. In Net-
work and Storage, the numbers of these two types of incidents
are similar, while in others, Medium incidents outnumber Low
incidents by a substantial margin. The number of High inci-
dents drops significantly, whose proportion ranges from 1.21%
(Network) to 5.48% (DCM). Finally, incidents of Critical type
account for a very small portion, i.e., < 0.5%. However, such

CHAPTER 4. INTELLIGENT INCIDENT MANAGEMENT 43

incidents constitute a significant threat to the SLA of cloud
vendors and, thus, should be addressed promptly and carefully.

Incident Fixing Time

We calculate incident fixing time and denote it as Time to Fix
(TTF). Formally, it is defined as the time from the start of an
incident to its final mitigation, i.e., TTF=TTD+TTE+TTM .
In particular, to ignore infrequent peaks, we report the 90th
percentile, which is chosen empirically. The results are shown
in Table 4.2. Due to privacy concerns, we conceal the absolute
results by dividing them by the smallest figure obtained in each
experiment. A counter-intuitive observation is that the TTF of
incidents with a lower severity (i.e., Medium and Low) is usually
larger than that of incidents with a High severity. We find it is
because low-severity incidents are usually trivial issues. Engi-
neers will not address them immediately as they often could be
mitigated by automatic routines. Meanwhile, except in Network,
Critical incidents are always the most time-consuming incidents
to mitigate. One reason is that the respective root causes (such
as wrong configurations, software bugs, faulty devices, etc.) of
Critical incidents will be fixed soon after postmortem analysis,
and most of them will never re-occur. Every new Critical incident
is likely to carry a brand-new failure, so OCEs need a long time
for root cause identification and mitigation. Moreover, there
exist hierarchical dependencies among these services. DCM is
in charge of infrastructure maintenance and thus is a service at
the lowest layer. On top of DCM are Network and then Storage,
which are also fundamental services. Compute belongs to the
next tier, followed by Database and WS, which have complicated
dependencies on low-layer services. Therefore, high-layer services
(i.e., Compute, Database, and WS) may have hierarchical root
causes. The increased problem search space leads to a longer
TTF.

CHAPTER 4. INTELLIGENT INCIDENT MANAGEMENT 44

Table 4.1: Distribution of Incident Severity

DCM Network Storage Compute Database WS
Critical 0.01% 0.01% 0.01% 0.31% 0.40% 0.07%
High 5.48% 1.21% 2.57% 5.27% 4.32% 3.33%

Medium 86.65% 46.90% 43.32% 74.19% 63.93% 84.52%
Low 7.86% 51.88% 54.10% 20.23% 31.35% 12.08%

Table 4.2: Distribution of Relative Incident Fixing Time

DCM Network Storage Compute Database WS
Critical 38.33x 8.46x 10.06x 142.05x 209.97x 286.6x
High 19.25x 3.18x 2.52x 2.56x 5.75x 3.56x

Medium 1x 9.8x 7.09x 2.95x 25.28x 12.93x
Low 3.01x 5.49x 1.09x 11.65x 2.41x 144.79x

Table 4.3: Distribution of Incident Root Causes

Root Cause Dist. Root Cause Dist.
Network (Hardware) 22.95% Human Error (Code Defect) 19.23%
Network (Connectivity) 2.24% Human Error (Config.) 7.45%
Network (Config.) 0.89% Human Error (Design Flaw) 5.66%
Network (Other) 4.47% Human Error (Integration) 2.09%
Deployment (Upgrade) 5.22% Human Error (Other) 2.83%
Deployment (Config.) 3.87% External Issue (Partner) 2.83%
Deployment (Other) 1.19% External Issue (Other) 1.64%
Capacity Issue 6.56% Others 10.88%

Root Causes

To have an in-depth analysis of the incidents, we need to under-
stand the reasons for their occurrence, which also helps charac-
terize the failure patterns of cloud systems. Thus, we manually
inspect the Critical incidents along with their postmortem re-
ports and summarize their root causes into different categories.
The results are shown in Table 4.3. We group incident root

CHAPTER 4. INTELLIGENT INCIDENT MANAGEMENT 45

causes into six categories, which are Network Issue, Human
Error, Deployment Issue, External Issue, Capacity Issue, and
Others. Furthermore, we summarize them into 16 subcategories.
From Table 4.3, we can see that Network Issue with hardware
failures and Human Error with code defects are the two domi-
nant root causes, accounting for 22.95% and 19.23%, respectively.
Meanwhile, Human Error with configuration issues and Capacity
Issue are another two important causes.

4.3 Incident Management Understanding

In the management of high-impact incidents, we have observed
an inefficient workflow of the system. Particularly, we have seen
cases where a small-scale issue in one service yielded a more severe
impact across multiple services before its official declaration. A
natural problem then arises: why is the issue not detected in
the first place? In the incident triage phase, we have noticed
that incidents often require a long routine to find the correct
responsible team, especially for incidents with high-level severity.
Similar pain points can be seen in the incident mitigation phase.
The connection between issue, cause, and impact can sometimes
take a long time to establish.

In this section, we first summarize the key challenges that
lead to the aforementioned pain points of incident management.
Then, we investigate the reasons behind these challenges from
the perspective of cloud system design and operations. Partic-
ularly, we design a series of validation experiments to derive
statistical evidence from the raw dataset. The results are in
relative value due to company policy. Moreover, to facilitate
a better understanding of the challenges, we provide some in-
teresting real-world incident examples, which are suggested by
on-call engineers during field studies. Similarly, we hide sensitive
information for privacy protection.

CHAPTER 4. INTELLIGENT INCIDENT MANAGEMENT 46

4.3.1 Key Challenges of Incident Management

We identify two fundamental challenges of incident management
and the associated pain points, which are general across different
cloud vendors because of the high resemblance in the design
principles of cloud systems.

1) Service/Resource Dependency Discovery. Dependency is
the relationship that an application relies on multiple services/micro-
services/APIs and physical/logical resources to function correctly.
The dependencies can be either static or dynamic, which play
an important role in the troubleshooting of distributed systems.
However, thus far, the only proven approach to discovering these
dependencies, especially fine-grained ones, is by gathering human
expert knowledge across different service teams. More often than
not, the dependency requires the confirmation of two related
teams. This approach is not only inefficient, but also unscalable
due to the numerous services and resources in large enterprises.
In incident management, the absence of a complete and real-time
dependency graph will mainly bring about two critical problems.

Imprecise Impact Estimation. When an incident occurs,
OCEs need to estimate the impact scope of the failure and un-
derstand how the failure is propagated across the system. Such
information is essential as a high-layer service (e.g., Database)
needs to know which low-layer services (e.g., Storage) it depends
upon are problematic for running corresponding diagnostic tools.
However, delay happens as we are missing the whole fine-grained
graph of how cloud systems are connected and affecting each
other. Although upstream dependencies can be easily gathered
(e.g., the Database knows which Storage nodes its components
are deployed on and what services they call), downstream de-
pendencies could be vague (e.g., Storage is not aware of how its
APIs/resources are visited by other services). Precise impact es-
timation for an incident plays an important role in automatically
identifying the affected customers, which is the main criterion

CHAPTER 4. INTELLIGENT INCIDENT MANAGEMENT 47

for deciding an incident’s severity. Workarounds or solutions
can then be delivered to the customers suffering from the failure
promptly and proactively.

Meanwhile, impact estimation can accelerate the procedure
of service restoration. Specifically, due to the complexity of
distributed systems, even if the incident is resolved, the im-
pacted services may not return back to normal automatically
and demand manual checking and recovery for sick cloud re-
sources. Improper planning of resource recovery would delay the
restoration of critical high-layer services. The example shown in
Figure 4.1 demonstrates that even if the root cause is found, we
still need a big picture of which and how services/customers are
impacted to prioritize the recovery of cloud resources. Precise
service hierarchical dependencies can dramatically facilitate this
process.

To understand how the estimation of an incident’s impact is
delayed, we carefully study the postmortem report of impactful
incidents. Particularly, we define Time to Broadcast (TTB) as
the time it takes to broadcast a failure to all impacted services
and compare it with other incident management phases, i.e.,
TTD, TTE, and TTM. Table 4.4 presents the results, where,
again, the absolute values are concealed. We can see that TTB
has comparable values with TTM in almost all services, and they
are the two dominant TTx in incident management workflow.
Particularly, DCM, serving as a fundamental support to many
services, owns the largest TTB. This is because serious failures
happened to it often have a widespread impact.

Lesson Learned 1. Enumerating all impacted services
based on dependencies and prioritizing the cloud resource
recovery are as important as locating the root cause of
high-impact incidents.

Redundant Engineering Efforts. Services usually report

CHAPTER 4. INTELLIGENT INCIDENT MANAGEMENT 48

Incident ID
Resolved
Critical

Multiple air handling unit failure

Service: DCM
Datacenter: DC #1

of impacted requests: ~1,000,000
of impacted accounts: ~1,500

Summary 
An air conditioning system failure caused device clusters overheating, which
brought down tens of thousands of storage nodes.

Diagnosis 
When the air conditioning system was restored, a small portion of failure storage
nodes (<1%) failed to recover automatically due to different errors (e.g., main
board broken, CPU overheating, data inconsistency, etc.). These nodes demanded
manual checking and recovery one by one. With the gradual recovery of storage
nodes, many high-layer services confirmed mitigation. However, a Cloud Resource
Management (CRM) service serving a large number of users failed to reconnect. It
took some time to figure out that a specific node hosting Software Load Balancer
(SLB) service was not back to normal. This caused impact to CRM as its load
balancing was governed by the SLB node, which therefore deserved a higher
priority when planning the order of node recovery. However, this was not the case
because: (1) SLB team was not aware of which service instances were running on
which SLB nodes, and (2) CRM team attributed the failures to Storage (instead of
SLB) at the beginning. Although the dependencies between storage nodes and
SLB service were clear, the second-degree dependency that SLB could constitute
a single point of failure for CRM was not.

Figure 4.1: Incident Example 1

their own failures independently. The design purpose is to cover
missing failures of other services. However, when separate inci-
dents are being handled by different teams, it may not be immedi-
ately obvious that there exists a caused-by relation among some
of them. This may lead to not only delay in mitigation, but also
redundant engineering efforts as different teams are addressing
the same problem. Figure 4.2 presents one such incident. A
fine-grained dependency graph can dramatically improve the sit-
uation as we can correlate incidents by, for example, comparing
their origins and tracing their impact. Another circumstance
where redundant effort often happens is dealing with historically
repeated incidents. In this case, incident correlation can also
help by providing similar solutions.

CHAPTER 4. INTELLIGENT INCIDENT MANAGEMENT 49

Incident ID
Resolved
Critical

A high error rate of operation [API] has been seen

Service: CRM
Datacenter: DC #2

of impacted requests: ~1,000,000
of impacted accounts: ~10,000

Summary 
Monitor has detected multiple VMs and web applications unavailable.

Diagnosis 
Some operations of Cloud Resource Management (CRM) service suffered from a
high error rate. Engineering team found the frontend web service was in a loop of
crash and reboot. This resulted in customer requests being held for an extended
period of time in web server request queue, leading to slow responses and request
timeouts. More than five other services suffered from different failures such as login
failures, request timeout errors, etc. The cascading effects and implicit service
dependencies made the engineering team hard to know and notify all impacted ser-
vice teams, especially during busy bug fixing time. Therefore, many impacted ser-
vices received failure reports and diagnosed their services independently. Particu-
larly, an IT Management Software (ITMS) service attributed the failures to DNS ser-
vice due to the direct dependency. However, the DNS service was managed by the
CRM service (the true root cause), which took ITMS team some time to figure out.

Figure 4.2: Incident Example 2

Table 4.4: Distribution of TTx from Postmortem Reports

DCM Network Storage Compute Database WS
TTD 15.17x 5.24x 1x 13.63x 18.47x 5.72x
TTE 15.91x 11.23x 9.82x 7.27x 13.35x 1.57x
TTM 10.95x 12.13x 14.71x 16.21x 15.51x 14.84x
TTB 17.91x 13.59x 11.06x 12.59x 13.09x 8.69x

To understand the situation of redundant efforts at Microsoft,
we calculate the number of incidents that are redundantly han-
dled by more than one service team and the average number
of teams involved in such incidents. Particularly, we make use
of the links between incidents to identify the incidents of in-
terest. These links are marked by OCEs during the incident
investigation, and the caused-by relations can be deduced from
them. Specifically, for each incident, we first find its responsi-
ble team and the incident that triggers it (if any), called the

CHAPTER 4. INTELLIGENT INCIDENT MANAGEMENT 50

DCM Network Storage Compute Database WS
0

1

2

3

4

5

of

 in
cid

en
ts

0

1

2

3

4

5

Av
g

of

 te
am

s

of incidents (1x)
Avg # of teams (1x)

Figure 4.3: The No. of Incidents Incurring Redundant Effort and the Average
No. of Involved Service Teams (with different bases)

parent incident. Then, for incidents with the same parent, the
associated teams will be considered as addressing the same root
cause, i.e., the parent incident. Since the links are incomplete,
this selection criteria is quite conservative, yet we still notice a
serious situation of redundant effort across different services. In
Figure 4.3, we can see Database has both the least number of
redundant effort-inducing incidents and the average number of
teams. However, Network and Storage generate nearly five times
more such incidents and involve more service teams.

Lesson Learned 2. Merging separate maintenance work
from dependent service teams is vital for quick incident
mitigation and effort saving.

To facilitate failure impact estimation and repetitive effort
saving, we propose an alert aggregation framework Girdle in
Chapter 7. Girdle leverages multi-source information (i.e.,
alerts, metrics, and topologies) to characterize the behavioral
similarity among services during failures. A high similarity
indicates that services are suffering from the same failure. In
this way, we can measure the failure impact scope and determine
whether different teams are fixing a common fault.

2) Resource Health Assessment. In cloud systems, it is an art
to design monitoring mechanisms that are able to cover different

CHAPTER 4. INTELLIGENT INCIDENT MANAGEMENT 51

Incident ID
Resolved
Critical

High Storage resource utilization detected

Service: Storage
Datacenter: DC #3

of impacted requests: ~100,000
of impacted accounts: ~10,000

Summary 
Monitor has detected an anomalous high storage resource utilization, impacting
multiple properties in [Region].

Diagnosis 
The root cause found was the misconfiguration on the request throttling threshold
for a specific group of storage nodes. The storage nodes were therefore overload-
ed. In addition, an OS upgrade by management service was underway at the same
time, which further increased the number of transactions and pushed the CPU uti-
lization to an overwhelming level. As many services rely on virtual storage service,
12 other services got impacted, triggering a large number of alerts although they
were already aggregated. For example, a web app service reported high failure
rate, long response time of some APIs, etc.; a business app service reported SLA
drop for different job types, high ratio of unhealthy nodes, etc. Besides, the cloud
storage service reported even more types of incidents, such as customer low
availability, high impacted counts on VM, different API requests in low availability,
high error rate of different container types, etc.

Figure 4.4: Incident Example 3

types of failures for numerous resources and APIs. Particularly,
it includes a signal (time-series telemetry data from resources)
capturing and anomaly detection. On the one hand, too-sensitive
alerts would cause flooding alarms; on the other hand, too-
tolerant alerts would cause the missing of potentially impactful
failures. The following highlights the pain points that we have
observed.

Flooding Alarms. Normally, the alerting threshold of mon-
itors is set to be static and conservative, which will inevitably
produce a large number of non-critical alarms. Moreover, due to
cloud applications’ multi-tiered structure, services in each tier
will generate alerts for their failed components. Such a chain
effect will trigger a flood of homologous incidents. To alleviate
this situation, cloud systems adopt aggregation policies to merge
duplicated alerts in appropriate resource levels. Each individ-

CHAPTER 4. INTELLIGENT INCIDENT MANAGEMENT 52

Incident ID
Resolved
Critical

Disk firmware update disabled disk cache

Service: Storage
Datacenter: DC #4

of impacted requests: ~100,000
of impacted accounts: ~10,000

Summary 
Writing to a big data storage platform experienced high failure counts.

Diagnosis 
Firmware upgrade to a game drive service inadvertently disabled write cache. At
the beginning, there was no direct impact on the service because the number of
machines getting into bad state was small and the system was built to tolerate
such instances. However, as more and more machines were getting upgraded, the
overall latency of the service stack was slowly accumulating and at some point got
tipped. It took quite some time to detect the incident which unfortunately deterio-
rated into a critical issue.

Figure 4.5: Incident Example 4

ual level may contain failures that happened to a finer level of
resources. For example, let us assume that a data center has
the following toy resource hierarchy: data center > row > rack
> node (there are more logical layers in real-world systems).
When a failure happens, instead of generating incidents for each
separate node, incidents should be created at the data center
level to merge the failures of impacted rows, at the row level to
merge failed racks, and so forth. Such fine-grained aggregation
rules should be carefully kept, as merging all failures only at the
highest possible level would mislead the diagnosis. We have seen
cases where similar failures of hardware devices in a data center
were coincidentally caused by distinct reasons (power failure and
firmware bug). In general, to profile service failures more com-
prehensively, cloud systems apply aggregation to the following
monitoring aspects:

• Resource/API : Cloud entities associated with the failures.
• Failure type: Error type, error code, etc.
• Impact type: Availability, performance, task error rate, etc.
• Customer : Users experiencing the failures.

CHAPTER 4. INTELLIGENT INCIDENT MANAGEMENT 53

• Location: Regions where service failures happen.

The goal of alert aggregation is to provide engineers and
operators with a clear and integrated view of service health status.
However, there are still entities from identical aspects that cannot
be merged (e.g., multiple APIs impacted and multiple failure
types). Thus, the number of incidents is still overwhelming the
incident management system. Figure 4.4 presents a case showing
that a failure could trigger a large number of incidents even if
aggregations have been applied.

Lesson Learned 3. Monitoring cloud systems in different
resource levels is proven to be effective for improving the
coverage of failure detection in the early stage. However, this
may induce flooding alarms even if signal aggregations have
been applied. More sophisticated signal aggregation strategies
are in high demand.

Gray Failures. Different from fail-stop failures, the mani-
festations of gray failures are fairly subtle and thus defy quick
and definitive detection, which is quite common for large-scale
services. Huang et al. [74] conducted a systematic study on gray
failures. For example, if a system’s request-handling module is
stuck but its heartbeat module is not, an error-handling mod-
ule dependent on heartbeats will perceive the system as healthy,
while a client seeking service will regard it as failed. We have also
observed such gray failure incidents in cloud systems (Figures 4.5
and 4.6). In both cases, the error rate reported by monitors is
in a reasonable level, so the issues are mistakenly tolerated by
the monitoring systems.

We design the following experiments to study the problem of
incident false detection. For flooding alarms, although falsely
detected incidents will be marked in our system, we also consider
incidents that never get handled and mitigate automatically as

CHAPTER 4. INTELLIGENT INCIDENT MANAGEMENT 54

Incident ID
Resolved
Critical

High latency and timeouts on blob writes

Service: Network
Datacenter: DC #5

of impacted requests: ~100,000
of impacted accounts: ~100

Summary 
A Storage blob write API was suffering from long latency (95 quantile latency
exceeds threshold). Auto log analysis showed the bottleneck of most requests
were on a storage frontend service API.

Diagnosis 
Storage team found there were no failures in the storage API, but some network
errors in related APIs. The first glance of Network team did not find any bad links.
The incident was transferred back to Storage team. However, further checking
uncovered a rise on CRC (Cyclic Redundancy Check) error counter on some core
regional router devices. One link from router to the regional hub was flapping,
which was caused by an unstable cable. Replacing the cable fixed the problem.
The issue was not reported immediately, because: (1) the CRC error counter of
the router was too small to hit the alerting threshold, and (2) Network service had
enough redundant devices and alternative routers to tolerate the errors; therefore,
such a small proportion of bad links (<0.1%) was hidden in network UI tool by
default. However, the impacted service happened to be very sensitive to jitters,
so problem got triggered.

Figure 4.6: Incident Example 5

flooding cases. Another type of flooding alarm is the incidents
generated due to the chain effect of cloud failures. We adopt
redundant effort-inducing incidents (Figure 4.3) as such cases, as
they stem from identical issues. Particularly, duplicated incidents
found by different criteria are removed. Regarding gray failure,
our system does not explicitly mark them because: (1) trivial
mistakes can be safely ignored as they have no impact on services;
(2) serious failures will eventually be found when they manifest
themselves, but there is no need to mark them as technically they
are all failed detection. To tackle this problem more reasonably,
we make use of the incident’s severity. Specifically, during the
lifetime of an incident, if its severity level ever gets upgraded,
it will be considered a gray failure because it is not correctly
identified regarding how serious it is at the beginning. Again,

CHAPTER 4. INTELLIGENT INCIDENT MANAGEMENT 55

DCM Network Storage Compute Database WS
0

5

10

15

20

25

of

 fl
oo

di
ng

 a
la

rm
s

0

5

10

15

20

25

of

 g
ra

y
fa

ilu
re

s# of flooding alarms (20x)
of gray failures (1x)

Figure 4.7: The No. of Flooding Alarms and Gray Failures

the designed rules for discovering false incident detection are
pretty conservative, but we can still see it is a ubiquitous problem
in cloud services. As shown in Figure 4.7, compared to DCM
and WS, other services have a much more serious situation of
flooding alarms. Regarding gray failure, other services encounter
much more cases than WS does, especially Network. This aligns
with the results in Table 4.3, demonstrating the complexity of
Network-related failures.

Lesson Learned 4. Large-scale cloud systems are prone to
gray failures. Setting insensitive alarms to avoid flooding
alerts may cause missing critical issues.

To suppress flooding alarms and gray failures, we delve into
service anomaly detection based on logs and metrics. Specifically,
in Chapter 5, we conduct a systematic review and evaluation of
deep learning techniques for log anomaly detection. By knowing
the characteristics of the representative methods, the industry
is able to select appropriate ones for different problems. In
Chapter 6, we propose ADSketch, an interpretable and adaptive
performance anomaly detection algorithm. ADSketch gains en-
gineers’ trust in its outputs by explaining anomalies’ type, and
updates its knowledge of the anomalies online to combat system
dynamicity.

CHAPTER 4. INTELLIGENT INCIDENT MANAGEMENT 56

4.3.2 Understand the Key Challenges

This section details the fundamental reasons behind the afore-
mentioned key challenges. Specifically, we believe the dependency
issues are essentially brought by system modular design and the
virtualization of physical infrastructure; the difficulty of resource
health assessment is twofold: (1) the system’s fault-tolerant
property and (2) a series of monitor design and distribution
problems.

Software System Modularity. In cloud systems, applica-
tions follow a microservice-based architecture that decomposes
the application logic into several interacting component services.
These components are often independently developed in a cloud
hosting environment, making cloud systems much more compli-
cated than conventional ones. The complexity of the dependency
graph would grow exponentially with the number of services.
One important reason is that there is no general way to identify
from which source an API is called. The capacity planner and
load balancer used in the architecture further complicate the API
calling, as shown in Figure 4.8. Therefore, we need to start from
the source side to collect respective dependency sub-graphs and
integrate them into a global one. In this manner, it might seem
that the graph can be easily constructed if the service designer
can generate rules to specify its dependencies. However, typical
challenges include the diversity of different services, fast system
evolution, and rule unavailability of legacy systems, which are
also mentioned by Bahl et al. [7].

Physical Infrastructure Virtualization. Virtualization
allows the abstraction of physical infrastructure, which however
makes it difficult to identify the dependency graph from an inci-
dent to the problematic physical component(s). There are mainly
two reasons. First, the dependencies are dynamically constructed
due to system reconfiguration and/or resource migration. For
example, if one VM is temporarily stopped on its host machine, it

CHAPTER 4. INTELLIGENT INCIDENT MANAGEMENT 57

Fault
tolerance

Geographically
distributed

Load
balancer

Dynamic
dependency

Dynamic
dependency

Service dependencies

Dynamic
deployment

Capacity
planner

Cloud
Management
System

Virtual
Machines

Physical
Hardware

Datacenter 3Datacenter 3Datacenter 2Datacenter 2Datacenter 1Datacenter 1

Cluster 1Cluster 1 Cluster 2Cluster 2

Fault
tolerance

Geographically
distributed

Load
balancer

Dynamic
dependency

Service dependencies

Dynamic
deployment

Capacity
planner

Cloud
Management
System

Virtual
Machines

Physical
Hardware

Datacenter 3Datacenter 2Datacenter 1

Cluster 1 Cluster 2

Figure 4.8: A Typical Cloud Computing Architecture

can be moved to a new host without disrupting its users. There-
fore, services can be dynamically deployed in different VMs, and
the dependencies between VMs and physical machines are also
dynamic, as shown in Figure 4.8. Second, logically related re-
sources can be highly geographically-distributed. For example,
many modern cloud applications use clusters of virtual machines
to implement load-balancing and ensure resilience for critical
tasks. The physical nodes that host the VMs in the same cluster
could be in different data centers or regions, which increase the
difficulty of problem localization, as illustrated in Figure 4.8.

Fault Tolerance. Fault tolerance is critical for cloud plat-
forms to provide highly stable availability and business continuity
of mission-critical systems or applications. In cloud computing,
availability zone is one of the best practices of fault tolerance,
which protects service availability from data center failures by
replicating applications and data. The resiliency is ensured by
its physical separation in terms of power, data, networking, etc.
However, in some cases, fault tolerance hinders the assessment

CHAPTER 4. INTELLIGENT INCIDENT MANAGEMENT 58

of resource health by hiding problems in the early stage. These
small issues have the potential to incur fatal consequences if
not handled seriously and timely. Figure 4.5 presents such a
potential threat, demonstrating the need for more sophisticated
fault-tolerant mechanisms.

Monitor Design and Distribution. Monitor design and
monitor distribution are two important factors affecting the
performance of assessing resource health. Specifically, monitor
design refers to what signals should be monitored and the cor-
responding alerting logic; monitor distribution describes what
resources should be monitored to pursue accurate and timely
incident detection.

When designing monitors, we need to identify what metrics
and events that are most representative of resource health status.
More often than not, a set of metrics collectively can consti-
tute a stronger performance predictor as they provide more
complete and comprehensive information. This is a typical fea-
ture engineering problem that relies on IT practitioners’ domain
knowledge. Another issue of monitor design is the alerting rules
determining when to raise incidents. One widely-adopted rule
is setting thresholds on the time-series signals of resources and
checking whether any of them is violated. However, this kind
of rule is too simple, which causes a large number of flooding
alarms. To address this problem, some monitors incorporate
dynamic thresholds, multi-dimension-metrics-based diagnostics,
and others. However, despite the advances in monitor design,
there are still far too many flooding alarms.

In cloud systems, how monitors should be distributed still
remains an unexplored problem. Typical challenges include: (1)
resources can be either physical or virtual; (2) granularity prob-
lem, i.e., and sometimes a single computer should be monitored,
sometimes a single process is appropriate [7]. For the case in
Figure 4.6, as there is no monitor monitoring per-service errors, it

CHAPTER 4. INTELLIGENT INCIDENT MANAGEMENT 59

System Input Signals

Feature Selection

Raw Incident Tickets

Entity Extraction

Incident detection

Incident correlation

* Event-based method
* Resource-guided
 method

Feature Repair

* Bayesian network

* Regular expression
* Existing resource
 base

Incident auto-triage

* GRU-based model
* CNN-based text
 encoder

Data preprocessing Techniques

* LSTM model
* Random forest

* Monitor setting
* Manual correction

Data & Feature

Figure 4.9: The Framework of BRAIN

is hard to provide tailored troubleshooting for individual services.
However, it is not saying that we should deploy as many monitors
as possible, which is practically infeasible and will incur system
performance degradation.

4.4 BRAIN: An AIOps Framework

As shown by our previous study, critical cloud incidents often
occur in an unexpected manner, and thus, dedicated approaches
could fail. Nevertheless, we notice the root causes of critical
incidents share many similar features. This is where we see
AI/ML techniques can help by extracting patterns from recurrent
incident symptoms and providing actionable recommendations.

We present BRAIN, an AIOps framework aiming at improving
the entire pipeline of incident management at Microsoft. As
shown in Figure 4.9, BRAIN consists of three modules: Data
and Features, Data Preprocessing, and Techniques.

CHAPTER 4. INTELLIGENT INCIDENT MANAGEMENT 60

4.4.1 Design Principles

Based on our experience and empirical analysis, we first describe
the design principles of BRAIN, i.e., how BRAIN addresses the
identified key challenges (Section 4.3.1).

Regarding dependency discovery, attempts have been made
to track the run-time dependencies of applications by standard-
izing the middleware infrastructure [14, 8, 27]. However, as
applications come from a wide variety of vendors, it is impracti-
cal that all vendors will instrument their services in a common
fashion [7]. Log analysis [181, 106, 9] would be a non-intrusive
way to construct dependencies across different servers, processes,
and third-party services. However, this solution cannot meet
the real-time needs of extremely large-scale distributed systems
due to data explosion, log heterogeneity, dynamic changes of
dependencies, etc. On the other hand, we notice that before
the occurrence of a critical cloud issue, many related incidents
would have happened in a short period of time. In this process,
individual service teams are alerting and mitigating incidents sep-
arately. Being able to provide OCEs with related incidents can
dramatically save redundant engineering effort and facilitate root
cause localization. Therefore, instead of tracking fine-grained
service dependencies, BRAIN resorts to incident correlation to
pursue reliable cloud services.

The accuracy of resource health assessment is crucial to cloud
systems. However, it cannot be achieved by pursuing the perfec-
tion and completeness of a purely rule-based monitoring system.
As in Figure 4.6, the fundamental reason for such failure is the
absence of per-service monitors. Given the system’s dynamicity
and the intransparency between different application tiers, it
is extremely hard to formulate the problem of monitor design
and distribution mathematically. In contrast, BRAIN develops a
series of incident detection algorithms on top of various system
signals, e.g., service health data and infrastructure signals. More-

CHAPTER 4. INTELLIGENT INCIDENT MANAGEMENT 61

over, the resource hierarchy relationship is used to understand
topologies, resiliency models, and dependencies among the entire
cloud system.

4.4.2 Data and Features

Two sources of data are utilized in BRAIN, namely, raw incident
tickets and various system input signals.

1) Raw incident tickets. In BRAIN, we utilize all incident
tickets that have been reported to the incident management
system at Microsoft. These incidents come from different service
teams and therefore can provide us with a global view of the
service health state across the cloud system.

2) System input signals. BRAIN runs 24×7 non-stop, analyz-
ing the signals and patterns to detect anomalies in the systems.
Particularly, the input to BRAIN includes the following cate-
gories:

• Near Real Time (NRT) health signals. The health signals
are collected from each cloud resource, individual services’
monitors, and system-deployed active monitors.

• NRT metrics. Service availability, performance metrics,
request volume, etc.

• System topology. The hierarchy information of different
resources across the entire cloud system.

• Infrastructure signals. Low-level infrastructure sensors sens-
ing data center traffic volume, temperature, power consump-
tion, local weather, etc.

• Customer input. Customer Service & Support reports which
consist of many categorical attributes such as product ver-
sion, the problematic product feature, product configuration,
client OS, service package, etc. [196, 100].

• Historical data. Change history, metric history, etc.

CHAPTER 4. INTELLIGENT INCIDENT MANAGEMENT 62

4.4.3 Data Preprocessing

The incident management system at Microsoft is a hub system
that involves thousands of service teams. Particularly, different
teams may have their own platforms for monitoring and process-
ing service failures. The tools for incident diagnosis may also
vary. Consequently, incident tickets in the system are rendered
by different monitoring platforms with different diagnostic tools
and thus contain various data types. Poor signal-to-noise ratio
and data inconsistency are therefore inevitable. Moreover, the
incident management system is essentially a ticketing system
that only records relevant information throughout the lifecycle
of incidents. Such a system is not dedicated to facilitating data
analysis in the postmortem phase regarding its design. Therefore,
we value the procedure of data preprocessing and propose the
following three methods to improve data quality.

1) Entity Extraction. For large-scale cloud enterprises, differ-
ent service teams and monitors usually have distinct standards
for rendering incident tickets, such as different abbreviations for
locations, different incident title templates, etc. Consequently,
it is challenging to design an incident ticket parser generally
applicable for raw feature extraction. Therefore, to profile inci-
dents in a unified manner, we maintain global dictionaries for
different entities in incidents, e.g., resource, device name, etc.
Particularly, entities are extracted through regular expressions
combined with the existing resource base at Microsoft. Such
dictionaries can assist us in recognizing special terms with low
occurrence frequency [161].

2) Feature Repair. Incorrect and empty features are two
common data quality issues in incident management. To tackle
them, we propose to conduct feature repair for incidents before
consuming them. Specifically, we first search empty fields in
an incident ticket and check whether each non-empty field has
a valid value. This is done by querying the global dictionaries

CHAPTER 4. INTELLIGENT INCIDENT MANAGEMENT 63

built in entity extraction stage. Then, problematic fields will be
auto-filled or -corrected by borrowing the setting of the alerting
monitors or mining the right features from its textual descriptions
(i.e., title, summary, and discussions) with predefined regular
expressions. Meanwhile, for impactful incidents, due to their
significance and minority, we perform manual correction for their
features.

3) Signal Selection. When diagnosing failures for cloud ser-
vices, engineers usually start by hunting for a small subset of
system signals that are symptoms incurred by the causes of the
incidents, called service-incident beacons [107]. However, the
manual signal selection is too inefficient and relies heavily on
domain expertise. To tackle this problem, we develop a Bayesian
network inference method [26] to model the relationship between
system signals and impactful incidents. The most relevant signals
will be selected as the features for model training.

4.4.4 Techniques of BRAIN

1) Incident Detection. Incident detection is to identify service
issues based on various system signals. It pursues an early detec-
tion of gray failures and recognizes important issues from trivial
ones. In cloud systems, time series and event sequence are two
major types of telemetry data, where anomalies often manifest
as having a large magnitude of upward/downward changes. Be-
sides traditional martingale methodologies [72, 45], BRAIN also
exploits sophisticated characteristics of the signals. Particularly,
signals are classified as temporal or spatial, tackled by an LSTM
model and a Random Forest model, respectively [99]. To enhance
the interaction among different signals, BRAIN calculates a series
of statistical features for a set of data points in a rolling window,
e.g., mean and variance [188]. In BRAIN, significant progress
(e.g., a ∼0.7 F1 score [26]) has been made when detecting certain

CHAPTER 4. INTELLIGENT INCIDENT MANAGEMENT 64

types of cloud failures, e.g., unplanned VM reboot, node failure,
and API throttling.

2) Incident Auto-triage. In the incident triage phase, OCEs
continuously hold discussions until the correct service team is
found. During this process, knowledge is accumulated with the
number of discussions. BRAIN tries to automate the triage of
incidents with fewer discussions such that problem investigation
can be triggered earlier. Specifically, we design a GRU-based
model [21] to effectively utilize incremental discussions by con-
sidering their temporal relationship. Three types of data are
fed into our model: 1) incident title and summary, 2) incident
raw discussions, and 3) environment information, e.g., incident
type, monitor and device reporting the incident, etc. The global
entity dictionaries can be used to ensure the correctness and
consistency of this information. However, since discussions are
conducted by engineers, it tends to introduce noise. We propose
an attention-based mask strategy [21] to bypass the noise. In
this way, different weights can be automatically assigned to dif-
ferent discussion information, and noise can be masked out by
assigning trivial weights. Due to low frequency, special terms
(e.g., API and component names) cannot be adequately encoded
by traditional text encoding methods. We adopt a CNN-based
neural-language model [84, 79] to perform domain-specific text
encoding. Our model [21] has achieved a remarkable accuracy
of 0.64-0.73, which outperforms the state-of-the-art bug triage
approach [89] by a significant margin of 12.2%-35.5%.

3) Incident Correlation. Incident correlation tries to alleviate
the situation of redundant efforts and assist the impact estima-
tion of failures. We propose two algorithms: event-based and
resource-guided methods. In the event-based method, due to
the high resemblance between the incident title and log, we use
an automatic log parsing method [50] to extract templates from
the repaired incident titles. Based on word-level similarity, tem-

CHAPTER 4. INTELLIGENT INCIDENT MANAGEMENT 65

plates are grouped to form incident events, representing different
types of service issues. The relationship among incident events
is deduced from incidents’ historical links, which are marked
by OCEs during incident investigation. Such links are used for
model training and evaluation. During the evaluation, incidents
will be connected if their representing events are ever linked
before. Although this is an effective way of using OCEs’ domain
knowledge, in some cases, log parsing methods cannot meet our
needs. It is because in titles, special terms with small frequency
are often erased, and the extracted events are indistinguishable
in terms of identifying which resource is unhealthy. Thus, we de-
velop a resource-guided method to perform incident correlation in
a fine-grained manner. Specifically, two incidents are considered
correlated if they are tagged with identical or related resources
(with appropriate location and time constraints). In particular,
there are two ways for identifying related resources: (1) lever-
aging existing hierarchy information of resources at Microsoft,
and (2) mining their spatial and temporal co-occurrences in in-
cidents. Combining these two methods, we are able to achieve
¿0.89 precision, recall, and F1 score for incident correlation.

4.4.5 Evaluation

BRAIN features have been continuously deployed in the incident
management system at Microsoft. To evaluate its effectiveness
so far, we collected impactful incidents captured in the past one
year and split them into two groups. The first group, referred
to as “No BRAIN,” contains 55.2% of the total incidents that
were not engaged with BRAIN. The second group, referred to as
“BRAIN,” contains the rest 44.8% incidents engaged with BRAIN.
Particularly, we compare the time spent in different phases of
incident management. The bar chart in Figure 4.10 shows the
75th percentile TTx of the two groups, and it clearly shows

CHAPTER 4. INTELLIGENT INCIDENT MANAGEMENT 66

TTD TTE TTM TTB TTF
0.0

0.2

0.4

0.6

0.8

1.0

75
th

 P
er

ce
nt

ile
 T

Tx No BRAIN
BRAIN

Figure 4.10: BRAIN’s Effect on TTx (normalized)

Table 4.5: Non-parametric Hypothesis Test on TTx reduction

Null Hypothesis p-value Decision
BRAIN has no effect on the shorter TTD 3.38E-08 Reject
BRAIN has no effect on the shorter TTE 5.44E-08 Reject
BRAIN has no effect on the shorter TTM 5.90E-03 Reject
BRAIN has no effect on the shorter TTB 4.81E-16 Reject
BRAIN has no effect on the shorter TTF 8.93E-15 Reject

impactful incidents engaged with BRAIN have shorter TTD,
TTE, TTM, TTB (Section 4.3.1), and TTF (Section 4.2.2).

To account for the sample-to-sample variation, we performed
a non-parametric hypothesis test (Mann-Whitney-Wilcoxon test).
The null hypothesis is that the reduction TTx seen here is due
to the randomness in the data. The p-value measures how
probable the null hypothesis is, given the observed trend in the
sample. If the p-value is low (i.e., ¡0.05, at the 95% significance
level), we would claim that the null hypothesis is improbable
and reject it in favor of the alternative hypothesis - the observed
reduction of TTx is indeed related to BRAIN. The key results are
summarized in Table 4.5. Supported by this testing, we conclude
that BRAIN’s associations with shorter TTx are statistically
significant. Therefore, BRAIN manifests itself as an effective
facilitator for TTx reduction.

CHAPTER 4. INTELLIGENT INCIDENT MANAGEMENT 67

4.5 Summary

In this chapter, we summarize two main challenges of incident
management at large-scale service providers: (1) the lack of
a fine-grained service/resource dependency graph; and (2) the
imprecision of health assessment for cloud resources. Particularly,
the dependency graph is dramatically complicated by system
modularity and visualization technology. While the fault-tolerant
mechanism could sometimes impede the detection of unhealthy
resources, the imperfection of monitor design and distribution
further compound the problem. We conduct a quantitative
analysis of incidents from six core services at Microsoft and
provide five real-world incident examples as well as four lessons
learned. We also present BRAIN, our AIOps framework, which
is able to reduce the time cost in different incident management
phases effectively.

We believe our work could shed light on future research and
engineering effort towards failure-resilient cloud systems, for ex-
ample, high-performance algorithms for accelerating different
incident management phases, design of efficient incident manage-
ment workflow, and more advanced cloud architecture.

2 End of chapter.

Chapter 5

Deep Log Anomaly Detection

Logs faithfully reflect the runtime status of a software system,
which are of great importance for the monitoring, administering,
and troubleshooting of a system. Therefore, log-based anomaly
detection, which aims to uncover abnormal system behaviors,
has become an essential means to ensure system reliability and
service quality. To leverage this technique for assessing resource
health condition (Chapter 4), in this chapter, we provide an
evaluation of existing DL-based log anomaly detection methods.
We compare their performance regarding accuracy, robustness,
and efficiency on two representative log datasets. A toolkit is
released for public reuse. This chapter is organized as follows.
Section 5.1 introduces the problem background and our contri-
butions. Section 5.2 summarizes the problem formulation of log
anomaly detection and reviews six representative methods lever-
aging neural networks. Section 5.3 presents the experiments and
experimental results. Section 5.4 shares our industrial practices.
Finally, Section 5.5 summarizes this chapter.

5.1 Problem and Contributions

For traditional on-premise software systems, engineers usually
perform simple keyword searches (such as “failed,” “exception,”

68

CHAPTER 5. DEEP LOG ANOMALY DETECTION 69

and “error”) or rule matching [64, 134] to locate suspicious logs
that might be associated with system problems. Due to the
ever-increasing volume, variety, and velocity of logs produced
by modern software systems, such manual approaches fall short
for being labor-intensive and error-prone. Thus, many studies
resort to statistical and traditional machine learning algorithms
to incorporate more automation into this process. Exemplary
algorithms are principal component analysis (PCA) [169], log
clustering [101], etc. Although these methods have made remark-
able performance gains, they still face the following limitations
in terms of practical deployments:

• Insufficient interpretability. For log anomaly detection,
interpretable results are critical for admins and analysts to
trust and act on the automated analysis, e.g., which logs
are important or which system components are problematic.
However, many traditional methods only make a simple
prediction for input with no further details. Engineers need
to conduct a manual investigation for fault localization,
which, in large-scale systems, is like finding a needle in a
haystack.

• Weak adaptability. During feature extraction, these meth-
ods often require the set of distinct log events to be known
beforehand [189]. However, as modern systems continuously
undergo feature addition and system upgrade, unseen log
events could constantly emerge. To embrace the new log
events, some models need to be retrained from scratch.

• Handcrafted features. As an essential part of traditional
ML workflow, many ML-based methods, e.g., [200, 95],
require tailored features. Due to the variety of different
systems, some of the selected features might not always be
applicable, and other critical ones could be missing. Feature
engineering is time-consuming and demands human domain
knowledge.

CHAPTER 5. DEEP LOG ANOMALY DETECTION 70

Due to the exceptional ability to model complex relationships,
deep learning has produced results comparable to and in some
areas surpassing human expert performance. It often adopts
a multiple-layer architecture called neural networks to progres-
sively extract features from inputs with different layers dealing
with different levels of feature abstraction. Typical architectures
include recurrent neural networks (RNNs), convolutional neural
networks (CNNs), autoencoders, etc. They have been widely ap-
plied to various fields, including computer vision, neural language
processing, etc. In recent years, there has been an explosion
of interest in applying neural networks to log-based anomaly
detection. For example, Du et al. [40] employed long short-term
memory (LSTM) networks for this purpose. On top of their work,
Zhang et al. [189] and Meng et al. [114] further considered the
semantic information of logs to improve the model’s adaptability
to unprecedented logs.

Given such fruitful achievements in the literature, we, however,
observe a gap between academic research and industrial practices.
One important reason is that site reliability engineers may not
have fully realized the advances of DL techniques in log-based
anomaly detection [37]. Thus, they are not aware of the existence
of some state-of-the-art anomaly detection methods. This issue
is further compounded by the fact that engineers may not have
enough ML/data science background and skills. As a result, it
would be cumbersome for them to search through the literature
and select the most appropriate method(s) for the problems
at hand. Another important reason is that, to the best of our
knowledge, there is currently no open-source toolkit available that
applies DL techniques for log-based anomaly detection. Thus,
if the code of the original paper is not open-source (which is
not uncommon), engineers need to re-implement the model from
scratch. In this process, bias and errors can be easily introduced
because 1) the papers may not provide enough implementation

CHAPTER 5. DEEP LOG ANOMALY DETECTION 71

details (e.g., parameter settings), and 2) engineers may lack
experience developing DL models with relevant frameworks such
as PyTorch [135] and TensorFlow [157].

He et al. [70] have conducted a systematic comparative study
in this area, covering only traditional ML-based methods. Com-
pared to them, DL-based methods possess the following merits:
1) more interpretable results, which are vital for engineers and
analysts to take remediation actions, 2) better generalization abil-
ity to unseen logs which constantly appear in modern software
systems, and 3) automated feature engineering which requires
little human intervention. These merits render the necessity of
a complementary study of DL-based solutions. In this chapter,
we conduct a comprehensive review and evaluation of five rep-
resentative neural networks used by six log anomaly detection
methods. To facilitate reuse, we also release an open-source
toolkit1 containing the studied models. We believe researchers
and practitioners can benefit from our work in the following two
aspects: 1) they can quickly understand the characteristics of
popular DL-based anomaly detectors and the differences with
their traditional ML-based counterparts, and 2) they can save
enormous efforts on re-implementations and focus on further
customization or improvement.

The log anomaly detectors selected in this work include four
unsupervised methods (i.e., two LSTMs [40, 114], the Trans-
former [122], and Autoencoder [44]) and two supervised methods
(i.e., CNN [108] and attentional BiLSTM [189]). As labels are
often unobtainable in real-world scenarios [29], unsupervised
methods are more favored. When a system runs in a healthy
state, the generated logs often exhibit stable and normal pat-
terns. An abnormal instance usually manifests as an outlier that
significantly deviates from such patterns. Based on this observa-
tion, unsupervised methods try to model logs’ normal patterns

1https://github.com/logpai/deep-loglizer

https://github.com/logpai/deep-loglizer

CHAPTER 5. DEEP LOG ANOMALY DETECTION 72

and measure the deviation for each data instance. On the other
hand, supervised methods directly learn the features that can
best discriminate between normal and abnormal cases based on
the labels. All selected methods are evaluated on two widely-
used log datasets that are publicly available, i.e., HDFS and
BGL, containing nearly 16 million log messages and 0.4 million
anomaly instances in total. The evaluation results are reported
in accuracy, robustness, and efficiency. We believe our work can
prompt industrial applications of more recent log-based anomaly
detection studies and provide guidelines for future research.

5.2 Log Anomaly Detection

To leverage neural networks for log anomaly detection, the net-
work architecture as well as its loss function should be properly
decided. Particularly, the loss function guides how the model
learns the log patterns. In this section, we first elaborate on how
existing work formulates the model loss. Then, we introduce six
state-of-the-art methods, including four unsupervised methods
(i.e., DeepLog [40], LogAnomaly [114], Logsy [122], and Autoen-
coder [44]) and two supervised methods (i.e., LogRobust [189]
and CNN [108]).

5.2.1 Loss Formulation

The task of log anomaly detection is to uncover anomalous
samples in a large volume of log data. A loss should be set for a
model with respect to the characteristics of the log data, which
serves as the goal to optimize. Generally, each neural network has
its typical loss function(s). However, we can set a different goal
for it with proper modification in its architecture (e.g., [189]).
We have summarized the following three representative types of
model losses.

CHAPTER 5. DEEP LOG ANOMALY DETECTION 73

Forecasting Loss

Forecasting loss guides the model to predict the next appear-
ing log event based on previous observations. A fundamental
assumption behind an unsupervised method is that the logs
produced by a system’s normal executions often exhibit certain
stable patterns. When failures happen, such normal log patterns
may be violated. For example, erroneous logs appear, the order
of log events shifts incorrectly, log sequences become incomplete
due to early termination, etc. Therefore, by learning log pat-
terns from normal executions, the method can automatically
detect anomalies when the log pattern deviates from normal
cases. Specifically, for a log event ei which shows up at time
step t, an input window W is first composed, which contains m
log events preceding ei, i.e., W = [et−m, . . . , et−2, et−1]. This is
done by dividing log sequences (generated by some log partition
strategy) into smaller subsequences. The division process is
controlled by two parameters called window size and step size,
which are similar to the partition size and stride of the sliding
partitioning (Section 2.4.3). A model is then trained to learn
a conditional probability distribution P (et = ei|W) for all ei in
the set of distinct log events E = {e1, e2, . . . , en} [40]. In the
detection stage, the trained model makes a prediction for a new
input window, which will be compared against the actual log
event. An anomaly is alerted if the ground truth is not one
of the most k probable log events predicted by the model. A
smaller k imposes more demanding requirements on the model’s
performance.

Reconstruction Loss

Reconstruction loss is mainly used in autoencoders, which trains
a model to copy its input to its output. Specifically, given an
input window W and the model’s output W ′

, the reconstruction

CHAPTER 5. DEEP LOG ANOMALY DETECTION 74

loss can be calculated as sim(W ,W ′
), where sim is a similarity

function such as the Euclidean norm. By allowing the model
to see normal log sequences, it will learn how to reconstruct
them properly. However, when faced with abnormal samples,
the reconstruction may not go well, leading to a large loss.

Supervised Loss

Supervised loss requires anomaly labels to be available before-
hand. It drives the model to automatically learn the features
that can help distinguish abnormal samples from normal ones.
Specifically, given an input window W and its label yw, a model
is trained to maximize a conditional probability distribution
P (y = yw|W). Commonly-used supervised losses include cross-
entropy and mean squared error.

5.2.2 Existing Methods

In this section, we introduce six existing methods which utilize
popular neural networks to conduct log-based anomaly detection.
They have a particular choice of model loss and whether to employ
the semantic information of logs. We would like to emphasize
different combinations (with respect to the model’s characteristics
and the problem at hand) would yield different methods. For
example, by incorporating different loss functions, LSTM models
can be either unsupervised [40, 114] or supervised [189]; one
method uses the index of log events purely may also accept their
semantics; model combinations are also possible as demonstrated
by Yen et al [180], i.e., a combination of CNN and LSTM.

Unsupervised Log-based Anomaly Detection

The selected four unsupervised methods are introduced as follows:
DeepLog. Du et al. [40] proposed DeepLog, which is the first

work to employ LSTM for log anomaly detection. Particularly,

CHAPTER 5. DEEP LOG ANOMALY DETECTION 75

the log patterns are learned from the sequential relations of log
events, where each log message is represented by the index of
its log event. It is also the first work to detect anomalies in a
forecasting-based fashion, which is widely used in many follow-up
studies.

LogAnomaly. To consider the semantic information of logs,
Ma et al. [114] proposed LogAnomaly. Specifically, they proposed
template2Vec to distributedly represent the words in log tem-
plates by considering the synonyms and antonyms therein. For
example, the representation vector of the word “down” and “up”
should be distinctly different as they own opposite meanings. To
this end, template2Vec first searches synonyms and antonyms in
log templates and then applies an embedding model, dLCE [123],
to generate word vectors. Finally, the template vector is calcu-
lated as the weighted average of the word vectors of the words in
the template. Similarly, LogAnomaly adopts forecasting-based
anomaly detection with an LSTM model. In this chapter, we
follow this work to evaluate whether log semantics can bring
performance gain to DeepLog.

Logsy. Logsy [122] is the first work utilizing the Trans-
former [159] to detect anomalies in log data. It is a classification-
based method that learns log representations in a way to better
distinguish between normal data from the system of interest and
abnormal samples from auxiliary log datasets. The auxiliary
datasets help learn a better representation of the normal data
while regularizing against overfitting. Similarly, in this work,
we employ the Transformer with the multi-head self-attention
mechanism. The procedure of anomaly detection follows that of
DeepLog [40], i.e., forecasting-based. Particularly, we use two
types of log event sequences: one only contains the indices of log
events as in DeepLog [40], while the other is encoded with log
semantic information as in LogAnomaly [114].

Autoencoder. Farzad et al. [44] were the first to employ

CHAPTER 5. DEEP LOG ANOMALY DETECTION 76

the autoencoder [144] combined with isolation forest [102] for
log-based anomaly detection. The autoencoder is used for feature
extraction, while the isolation forest is used for anomaly detection
based on the produced features. In this chapter, we employ
an autoencoder to learn representation for normal log event
sequences. The trained model is able to encode normal log
patterns properly. When dealing with anomalous instances, the
reconstruction loss becomes relatively large, which serves as an
important signal for anomalies. We also evaluate whether the
model performs better with logs’ semantics.

Supervised Log-based Anomaly Detection

The selected two supervised methods are introduced as follows:
LogRobust. Zhang et al. [189] observed that many existing

studies of log anomaly detection fail to achieve the promised
performance in practice. Particularly, most of them carry a
closed-world assumption, which assumes: 1) the log data is stable
over time; 2) the training and testing data share an identical set
of distinct log events. However, log data often contain previously
unseen instances due to the evolution of logging statements and
log processing noise. To tackle such a log instability issue, they
proposed LogRobust to extract the semantic information of log
events by leveraging off-the-shelf word vectors, which is one of
the earliest studies to consider logs’ semantics, as done by Meng
et al. [114].

More often than not, different log events have distinct impacts
on the prediction result. Thus, LogRobust incorporates the
attention mechanism [6] into a Bi-LSTM model to assign different
weights to log events, called attentional BiLSTM. Specifically,
LogRobust adds a fully-connected layer as the attention layer
to the concatenated hidden state ht. It calculates an attention
weight (denoted as at), indicating the importance of the log event
at time step t as at = tanh(W a

t · ht), where W a
t is the weight of

CHAPTER 5. DEEP LOG ANOMALY DETECTION 77

the attention layer. Finally, LogRobust sums all hidden states
at different time steps with respect to the attention weights and
employs a softmax layer to generate the classification result (i.e.,
anomaly or not) as prediction = softmax(W · (

∑T
t=1 at · ht)),

where W is the weight of the softmax layer, and T is the length
of the log sequence.

CNN. Lu et al. [108] conducted the first work to explore the
feasibility of CNN [88] for log-based anomaly detection. The au-
thors first constructed log event sequences by applying identifier-
based partitioning (Section 2.4.3), where padding or truncation
is applied to obtain consistent sequence lengths. Then, to per-
form convolution calculation which requires a two-dimensional
feature input, the authors proposed an embedding method called
logkey2vec. Specifically, they first created a trainable matrix
whose shape equals #distinct log events × embedding size (a
tuneable hyperparameter). Then, different convolutional layers
(with different shape settings) are applied, and their outputs are
concatenated and fed to a fully-connected layer to produce the
prediction result.

5.2.3 Tool Implementation

In the literature, tremendous efforts have been devoted to the
development of DL-based log anomaly detection. While they have
achieved remarkable performance, they have not yet been fully
integrated into industrial practices. This gap largely comes from
the lack of publicly available tools that are ready for industrial
usage. For site reliability engineers who have limited expertise
and experience in ML techniques, re-implementation requires
non-trivial efforts. Moreover, they are often busy with emerging
issue mitigation and resolution. Yet, the implementation of DL
models is usually time-consuming and involves the process of
parameter tuning. This motivates us to develop a unified toolkit

CHAPTER 5. DEEP LOG ANOMALY DETECTION 78

that provides out-of-the-box DL-based log anomaly detectors.
We implemented the studied six anomaly detection meth-

ods in Python with around 3,000 lines of code and packaged
them as a toolkit with standard and unified input/output in-
terfaces. Moreover, our toolkit aims to provide users with the
flexibility for model configuration, e.g., different loss functions
and whether to use logs’ semantic information. For DL model
implementation, we utilize a popular machine-learning library,
namely PyTorch [135]. PyTorch provides basic building blocks
(e.g., recurrent layers, convolution layers, Transformer layers) for
the construction of a variety of neural networks such as LSTM,
CNN, the Transformer, etc. For each model, we experiment with
different architecture and parameter settings. We employ the
setting that constantly yields a good performance across different
log datasets.

5.3 Evaluation

In this section, we evaluate six DL-based log anomaly detectors
on two widely-used datasets [71] and report the benchmarking
results in terms of accuracy, robustness, and efficiency. They
represent the key quality of interest to consider during industrial
deployment.

• Accuracy measures the ability of a method to distinguish
anomalous logs from normal ones. This is the main focus
of this field. A large false-negative rate would miss critical
system failures, while a large false-positive rate would incur
a waste of engineering effort.

• Robustness measures the ability of a method to detect
anomalies with the presence of unknown log events. As
modern software systems involve rapidly, this issue starts to
gain more attention from both academia and industry. One

CHAPTER 5. DEEP LOG ANOMALY DETECTION 79

common solution is leveraging logs’ semantic information
by assembling word-level features.

• Efficiency gauges the speed of a model to conduct anomaly
detection. We evaluate the efficiency by recording the time
an anomaly detector takes in its training and testing phases.
Nowadays, terabytes and even petabytes of data are being
generated on a daily basis, imposing stringent requirements
on the model’s efficiency.

5.3.1 Experiment Design

Log Dataset

He et al. [71] released Loghub, a large collection of system log
datasets. We report results evaluated on two popular datasets,
namely, HDFS [169] and BGL [125]. Our toolkit can be easily
extended to other datasets. Table 5.1 summarizes the dataset
statistics.

HDFS. HDFS dataset contains 11,175,629 log messages, which
are generated by running map-reduce tasks on more than 200
Amazon’s EC2 nodes [40]. Particularly, each log message contains
a unique block id for each block operation such as allocation, writ-
ing, replication, and deletion. Thus, identifier-based partitioning
can be naturally applied to generate log event sequences. After
preprocessing, we end up with 575,061 log sequences, among
which 16,838 samples are anomalous. A log sequence will be
predicted as anomalous if any of its log windows,W , is identified
as an anomaly.

BGL. BGL dataset contains 4,747,963 log messages, which
are collected from a BlueGene/L supercomputer at Lawrence
Livermore National Labs. Unlike HDFS, logs in this dataset
have no identifier to distinguish different job executions. Thus,
timestamp-based partitioning is applied to slice logs into log
sequences. The number of the resulting sequences depends on

CHAPTER 5. DEEP LOG ANOMALY DETECTION 80

the partition size (and stride). In the BGL dataset, 348,460 log
messages are labeled as failures. A log sequence is marked as an
anomaly if it contains any failure logs.

Evaluation Metrics

Since log anomaly detection is a binary classification problem,
we employ precision, recall, and F1 score for accuracy evalua-
tion. Specifically, precision measures the percentage of anoma-
lous log sequences that are successfully identified as anoma-
lies over all the log sequences that are predicted as anomalies:
precision = TP

TP+FP ; recall calculates the portion of anomalies
that are successfully identified by a model over all the actual
anomalies: recall = TP

TP+FN ; F1 score is the harmonic mean of

precision and recall: F1 score = 2 × precision×recall
precision+recall . TP is the

number of anomalies that are correctly disclosed by the model,
FP is the number of normal log sequences that are wrongly pre-
dicted as anomalies by the model, FN is the number of anomalies
that the model misses.

Experiment Setup

For a fair comparison, all experiments are conducted on a machine
with 4 NVIDIA Titan V Pascal GPUs (12GB of RAM), 20
Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz, and 256GB of
RAM. The parameters of all methods are fine-tuned to achieve
the best results. To avoid bias from randomness, we run each
method five times and report the best result.

For all datasets, we first sort logs in chronological order and
apply log partition to generate log sequences, which will then be
shuffled. Note we do not shuffle the input windows,W , generated
from log sequences. Next, we utilize the first 80% of the data for
model training and the remaining 20% for testing. Particularly,
for unsupervised methods that require no anomalies for training,

CHAPTER 5. DEEP LOG ANOMALY DETECTION 81

Table 5.1: Dataset Statistics

Dataset Time span #Logs #Anomalies

HDFS 38.7 hrs 11,175,629 16,838
BGL 7 mos 4,747,963 348,460

we remove them from the training data. This is because many
unsupervised methods try to learn the normal log patterns and
alert anomalies when such patterns are violated. Thus, they
require anomaly-free log data to yield the best performance.
Nevertheless, we will evaluate the impact of anomaly samples
in training data. For log partition, we apply identifier-based
partitioning to HDFS and fixed partitioning with six hours of
partition size to BGL. The default values of window size and
step size are ten and one, which are set empirically based on
our experiments. For HDFS and BGL, we set k as ten and 50,
respectively. In particular, a log event sequence will be regarded
as an anomaly if any one of its log windows, W , is predicted as
anomalous.

5.3.2 Accuracy of Log Anomaly Detection

In this section, we explore the models’ accuracy. We first show
the results when log event sequences are composed of log events’
indices. Then, we evaluate the effectiveness of logs’ semantics by
incorporating it into the log sequences. Finally, we control the
ratio of anomalies in the training data to see its influence.

Accuracy without Log Semantics

The performance of different methods is shown in Table 5.2 (the
left-side figures). It is not surprising that supervised methods
generally achieve better performance than their unsupervised
counterparts do. For HDFS and BGL, the best F1 scores (here-

CHAPTER 5. DEEP LOG ANOMALY DETECTION 82

Table 5.2: Accuracy of DL-based Log Anomaly Detection Methods

HDFS (w/o and w/ semantics) BGL (w/o and w/ semantics)
Models Precision Recall F1 score Precision Recall F1 score

LSTM [40, 114] 0.96/0.965 0.928/0.904 0.944/0.945 0.935/0.946 0.989/0.989 0.961/0.967
Transformer [122] 0.946/0.86 0.867/1.0 0.905/0.925 0.935/0.917 0.977/1.0 0.956/0.957
Autoencoder [44] 0.881/0.892 0.878/0.869 0.88/0.881 0.791/0.942 0.773/0.92 0.782/0.931

Attn. BiLSTM [189] 0.933/0.934 0.989/0.995 0.96/0.964 0.989/0.989 0.977/0.977 0.983/0.983
CNN [108] 0.946/0.943 0.995/0.995 0.97/0.969 0.966/1.0 0.977/0.977 0.972/0.989

after, we mainly talk about this metric unless otherwise stated)
that unsupervised methods can attain are 0.944 and 0.961, re-
spectively, both of which come from the LSTM model [40]. On
the other hand, supervised methods have pushed them to 0.97
(by CNN [108]) and 0.983 (by attentional BiLSTM [189]), achiev-
ing noticeable improvements. Among all unsupervised methods,
Autoencoder, the only construction-based model, performs rela-
tively poorly, i.e., 0.88 in HDFS and 0.782 in BGL. Nevertheless,
it possesses the merit of great resistance against anomalies in
training data, as we will show later. LSTM shows outstanding
overall performance, demonstrating its exceptional ability to
capture normal log patterns. On the supervised side, CNN and
attentional BiLSTM achieve comparable results in both datasets,
outperforming unsupervised methods by around 2%.

We also present the results of traditional ML-based methods
in Table 5.3 using the toolkit released by He et al. [70], which
contains three unsupervised methods, i.e., Log Clustering (LC),
Principal Component Analysis (PCA), Invariant Mining (IM),
and three supervised methods, i.e., Logistic Regression (LR),
Decision Tree (DT), and Support Vector Machine (SVM). For
HDFS, Decision Tree achieves a remarkable performance, i.e.,
0.998, ranking the best among all. Other traditional ML-based
methods are generally defeated by their DL-based counterparts.
This is also the case for BGL. Moreover, traditional unsupervised
methods seem to be inapplicable for BGL, e.g., the F1 score of

CHAPTER 5. DEEP LOG ANOMALY DETECTION 83

Table 5.3: Accuracy of Traditional ML-based Methods

HDFS BGL
Meth. Prec. Rec. F1 Prec. Rec. F1

LC 1.0 0.728 0.843 0.975 0.443 0.609
PCA 0.971 0.628 0.763 0.52 0.619 0.56
IM 0.895 1.0 0.944 0.86 0.489 0.623

LR 0.95 0.921 0.935 0.791 0.818 0.804
DT 0.997 0.998 0.998 0.964 0.92 0.942
SVM 0.956 0.913 0.934 0.988 0.909 0.947

PCA is only 0.56, while unsupervised DL-based methods yield
much better results. Particularly, compared with the experiments
conducted by He et al. [70], we achieve better results on BGL
when running both DL-based and traditional ML-based methods.
This attributes to the fact that we apply shuffling to the dataset,
which alleviates the issue of unseen logs in BGL’s testing data.
Note that this is done at the level of log sequences. The order of
log events in each input window is preserved.

Accuracy with Log Semantics

To leverage logs’ semantics, some work, e.g., [189], adopts off-the-
shelf word vectors, e.g., pre-trained on Common Crawl Corpus
dataset using the FastText algorithm [80]. Different from them,
in our experiments, we randomly initialize the embedding vector
for each word as we did not observe much improvement when
following their configurations. An important reason is that many
words in logs are not covered in the pre-trained vocabulary.
Table 5.2 (the second figures) presents the performance when
models have access to logs’ semantic information for anomaly
detection. We can see almost all methods benefit from logs’
semantics, e.g., Autoencoder obtains nearly 15% of performance
gain. Particularly, the best F1 scores achieved by unsupervised

CHAPTER 5. DEEP LOG ANOMALY DETECTION 84

and supervised methods on the BGL dataset become 0.967 (by
LSTM [40]) and 0.989 (by CNN [108]), respectively, while the
best F1 scores on the HDFS dataset remain almost unchanged.
Nevertheless, the Decision Tree is still undefeated on the HDFS
dataset. Logs’ semantics not only promotes the accuracy of
anomaly detection but also brings other kinds of benefits to the
models, as we will show in the next sections.

Finding 1. Supervised methods generally achieve superior
performance than unsupervised methods do. Logs’ semantics
indeed contributes to the detection of anomalies, especially
for unsupervised methods.

Accuracy with Varying Anomaly Ratio

In this experiment, we evaluate how the anomalies in training
data will impact the performance of unsupervised DL-based
methods. The motivation is that some works claim that a small
amount of noise (i.e., anomalous instances) in training data only
has a trivial impact on the results. This is because normal data
are dominant, and the model will forget the anomalous patterns.
In our previous experiments, we remove all anomalies from the
training data such that the normal patterns could be best learned.
However, in reality, anomalies are inevitable. We simulate this
situation by randomly putting a specific portion of anomalies
(from 1% to 10%) back into the training data. The results on
HDFS are shown in Figure 5.1, where we experiment without and
with logs’ semantics. Clearly, even with just 1% of anomalies, the
F1 score of both LSTM and the Transformer drops significantly to
0.634 and 0.763, respectively. Logs’ semantics safeguards around
10% of performance against anomalies. When the percentage
of anomalies reaches 10%, the F1 score of LSTM even degrades
to less than 0.4. Interestingly, Autoencoder exhibits remarkable

CHAPTER 5. DEEP LOG ANOMALY DETECTION 85

resilience against noisy training data, which demonstrates that
compared with forecasting-based methods, construction-based
methods are indeed able to forget anomalous log patterns.

Finding 2. For forecasting-based methods, anomalies in
training data can quickly deteriorate performance. Different
from them, reconstruction-based methods are more resistant
to training data containing anomalies.

5.3.3 Robustness of Log Anomaly Detection

In this section, we study the robustness of the selected anomaly
detectors, i.e., the accuracy with the presence of unseen logs. We
also compare them against traditional ML-based methods. To
simulate the log instability issue, we follow Zhang et al. [189] to
synthesize new log data. Given a randomly sampled log event
sequence in the testing data, we apply one of the following four
noise injection strategies: randomly injecting a few pseudo log
events (generated by trivial word addition/removal or synonym
replacement) or deleting/shuffling/duplicating a few existing log
events in the sequence. We inject the synthetic log sequences
into the original log data according to a specific ratio (from
5% to 20%). With the injected noises, DL-based methods that
leverage logs’ semantics can continue performing anomaly pre-
diction without retraining. However, their traditional ML-based
counterparts need to be retrained because the number of distinct
log events is fixed. We follow Zhang et al. [189] to append an
extra dimension to the log count vector (for both training and
testing data) to host all pseudo log events.

The results of DL-based methods on HDFS are presented in
Figure 5.2. Clearly, the performance of all models is harmed
by the injected noises. In particular, unsupervised methods are
much more vulnerable than supervised methods. For LSTM and

CHAPTER 5. DEEP LOG ANOMALY DETECTION 86

the Transformer, 5% of noisy logs suffice to degrade their F1
score by more than 20%. Logs’ semantics offers little help in this
case. Autoencoder again demonstrates good robustness against
noise and benefits more from logs’ semantics. The situations
of supervised models are much better. With the access to logs’
semantics, they successfully maintain an F1 score of around 0.9
even with 20% noises injected, while that of LSTM and the
Transformer are both lower than 0.5. This proves that logs’
semantic information indeed helps DL-based models adapt to
unprecedented log events. On the side of traditional ML-based
methods in Figure 5.3, unsupervised methods are also more
sensitive than their supervised counterparts. In particular, SVM
and Logistic Regression achieve the best performance, i.e., around
0.8 of the F1 score is retained when the testing data contains
20% noise. Under the same setting, PCA and Invariant Mining
have the worst results, i.e., around 0.4 of the F1 score.

Finding 3. Unprecedented logs have a significant impact on
anomaly detection. Supervised methods exhibit better
robustness against such logs than unsupervised methods.
Moreover, logs’ semantics can further promote robustness.

5.3.4 Efficiency of Log Anomaly Detection

In this section, we evaluate the efficiency of different models by
recording the time spent on the training and testing phases for
both datasets. The results are given in Figure 5.4, where we
do not consider logs’ semantics. We can see that each model
generally requires tens of seconds for model training and around
five seconds for testing. BGL consumes less time due to its smaller
volume. For HDFS, LSTM and Autoencoder are the most time-
consuming models for training, while for BGL, supervised models
demand more time. On the other hand, some traditional ML-

CHAPTER 5. DEEP LOG ANOMALY DETECTION 87

0 2 4 6 8 10
Anomaly rate (%)

0.4

0.5

0.6

0.7

0.8

0.9
F1

 sc
or

e
w/

o
Se

m
an

tic
s

0 2 4 6 8 10
Anomaly rate (%)

0.4

0.5

0.6

0.7

0.8

0.9

F1
 sc

or
e

w/
 S

em
an

tic
s

LSTM Transformer Autoencoder

Figure 5.1: Accuracy w/ Varying Anomaly Ratio in Training Data

0 5 10 15 20
Injection Ratio (%)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1
 sc

or
e

w/
o

se
m

an
tic

s

0 5 10 15 20
Injection Ratio (%)

0.4

0.5

0.6

0.7

0.8

0.9

1.0
F1

 sc
or

e
w/

 se
m

an
tic

s
LSTM
Transformer

Autoencoder
Attn. BiLSTM

CNN

Figure 5.2: Robustness of DL-based Methods on HDFS

based methods, i.e., Logistic Regression, Decision Tree, SVM,
and PCA show superior performance over DL-based models,
which only take seconds for model training. SVM and PCA can
even produce results in a real-time manner. However, Invariant
Mining consumes thousands of seconds for pattern mining on
HDFS. Regarding model testing, except for Log Clustering, other
methods only require tens of milliseconds.

CHAPTER 5. DEEP LOG ANOMALY DETECTION 88

0 5 10 15 20
Injection Ratio (%)

0.4

0.5

0.6

0.7

0.8

0.9

1.0
F1

 sc
or

e
(u

ns
up

er
vi

se
d)

0 5 10 15 20
Injection Ratio (%)

0.6

0.7

0.8

0.9

1.0

F1
 sc

or
e

(s
up

er
vi

se
d)

Log Clustering
Invariant Mining

PCA
SVM

Logistic Regression
Decision Tree

Figure 5.3: Robustness of ML-based Methods on HDFS

Figure 5.4: Efficiency on Both HDFS and BGL Datasets

Finding 4. Compared to traditional ML-based methods,
DL-based methods often require more time for training and
testing. Some ML-based methods demonstrate outstanding
efficiency.

5.4 Industrial Practices

In this section, we present an industrial case study of deploying
automated log-based anomaly detection in production at Huawei
Cloud. The model is an optimized version based on DeepLog [40].
DeepLog was selected for its simplicity and superior performance

CHAPTER 5. DEEP LOG ANOMALY DETECTION 89

(see Table 5.2). It is one of the most highly-cited papers in the
field and serves as the prototype for many follow-up models.
Services in Huawei Cloud serve hundreds of millions of users
worldwide and produce terabytes of log data on a daily basis.
Such a large volume of data is impractical for engineers to detect
anomalies manually. Thus, automated log anomaly detection is
in high demand.

To share our industrial practices, we first introduce the de-
ployment architecture of our model. Then, we summarize the
real-world challenges that we met during its usage in production.
Finally, we discuss some promising future improvements that
can push this field forward beyond current practices.

5.4.1 Industrial Deployment

Based on our experience of model deployment and operations, we
have summarized the following challenges in production systems,
which are ubiquitous in the entire industry [37]. We conclude
that although some successful adoptions have been made, the
current research on log-based anomaly detection is inadequate to
combat the challenges of pursuing highly intelligent and reliable
log-based anomaly detection.

Data-Specific Challenges

Fundamental support for the human-surpassing capabilities of
deep learning is adequate and high-quality log data, which how-
ever is not always available, especially in cloud environments.

High Complexity. The production logs present great complex-
ity. For example, logs can be interleaving [120, 68] due to the
concurrent execution of multiple tasks. There can be multiple
types of logs across a software system, e.g., testing logs, trace
logs, and business logs. They profile the system’s performance
and health status from different perspectives and thus may need

CHAPTER 5. DEEP LOG ANOMALY DETECTION 90

tailored model design. The possibility of combining them also
remains an unexplored problem.

Large-Volume and Low-Quality Data. Although a massive
amount of log data has been generated, a significant portion of
logs only records plain system runtime information. Moreover,
there is currently a lack of rigorous guides and specifications
on developer logging behaviors. Thus, logs exhibit different
styles across different service teams and often contain meaning-
less tokens, making it hard to design an appropriate log parser
for feature extraction. Production logs may possess limited se-
mantics, i.e., containing only the service resources in a REST
style [163]. As a result, only superficial features (e.g., count) of
log events are used [194, 70].

Concept Drift. Modern software systems continuously un-
dergo feature upgrades, which may incur concept drift [52]. For
example, new log events may emerge, log patterns may change.
As a result, the threshold for anomaly assertion may need ad-
justment from time to time after the model has been deployed.
The optimal setting obtained in offline training may not always
be applicable for online deployment. Moreover, without proper
online learning capability, frequent model retraining is required.

Data Management Issues. Large-scale software systems can
produce terabytes of log data on a daily basis [116]. How to
efficiently manage such a large amount of data become very
challenging. Common data management tasks include data stor-
ing, sharing, querying, etc. In the literature, efforts have been
devoted to fast logging infrastructure [111, 110], log compres-
sion [103, 178], and scalable search on compressed logs [141].
However, the fundamental question - of which logs are important
and should be kept, is still hard to answer. Ding et al. [39]
made a good attempt to identify useful logs by considering the
execution time of code blocks.

CHAPTER 5. DEEP LOG ANOMALY DETECTION 91

Model-Specific Challenges

While DL techniques are transforming the whole industry, we
recognize some challenges when driving their adoption in the
company.

Insufficient Interpretability. Although DL-based methods
possess better interpretability, e.g., specifically locating the prob-
lematic logs, they are still unable to explain the occurrence of
anomalies from the system perspective. Learning logs’ semantics
can be a promising direction to enhance interpretability further.
However, many logs themselves are meaningless. Tokens like
abbreviations and self-defined words are hardly understandable
to other engineers.

Difficult Model Selection. There are mainly two types of
anomalies in log data [18, 164], i.e., point anomalies and con-
textual anomalies. The first type talks about the occurrence of
particular error logs, while the second can be the unexpected
order of log events. We found some engineers have a strong
AI-solves-everything mindset and lean towards AI solutions re-
gardless of the specific problem scenarios. However, for point
anomalies, simply maintaining a set of important log events would
be sufficient. Even if AI solutions indeed suit better the problem
at hand, the selection of an appropriate model architecture is
painful. This is what motivates our work.

Operational Challenges

We also present some operational issues regarding the promotion
of DL-based log anomaly detection.

Immature Engineering Support. AI-oriented engineering best
practices and principles are not established. Building AI solutions
requires substantial engineering support, e.g., model selection,
important feature identification, and data labeling. On the
other hand, to facilitate the manual labeling effort, some tools

CHAPTER 5. DEEP LOG ANOMALY DETECTION 92

should be developed to infer the label automatically based on
engineers’ responses to different system statuses. For example,
IBM Cloud has designed a help-desk software solution [124]
to record and track how engineers react to the problems that
occur in the monitored system. The labels can then be obtained
programmatically based on the temporal and spatial correlation
of this information source.

Privacy Issues. Due to privacy policies, it is prohibitive to
access some customers’ logs. Without some detailed log infor-
mation, prompt anomaly detection becomes a more significant
challenge. We encounter log privacy issues when trying to access
customers’ logs, which is required for proactive failure detec-
tion. Without proper access rights, we cannot conduct failure
diagnoses for customers.

5.4.2 Future Directions

Closer Engineering Collaboration

Companies need to establish and align on a clear objective at
the executive level. The infrastructure development, service
architecture design, and engineers’ mindsets should serve this
clear objective collaboratively. In current practices, logs are
collected from different services in an ad-hoc manner and used
for independent model development. A pipeline of log data
generation, collection, labeling, and usage should be built. In
this process, the engineering principles should include data/label
sanity check and continuous model-quality validation.

Better Logging Practices

Good-quality log data play an essential role in many downstream
log analytics tasks, including anomaly detection, failure diagno-
sis, performance optimization, user profiling, etc. Thus, better
logging practices should be established to guide the writing of

CHAPTER 5. DEEP LOG ANOMALY DETECTION 93

logging statements. Some examples are: 1) a logging state-
ment should include a timestamp, a proper verbosity level, etc.;
2) the context should be made clear by including critical vari-
ables, components, process IDs, etc.; 3) a log message should
be meaningful and understandable to its audience; 5) apply
template-based logging [35] that is human-friendly and machine-
readable; 6) the number of logging statements should be kept
in a proper level. Other studies include rule-based logging [90],
diagnosability-oriented logging [184, 183], and log statement
auto-completion [113].

Log Quality Assessment

Being able to assess the quality of logs [172, 83] could be a
promising solution to boost the performance of log data man-
agement and downstream tasks. We have summarized the fol-
lowing properties that good-quality logs should possess: 1) less
performance overhead (e.g., small CPU resources, little energy
consumption) [186]; 2) long survival unless feature upgrades (i.e.,
the logs will not be modified or removed across different software
versions) [19, 65, 148]; 3) a good system failure indicator (i.e.,
effectively tell the occurrence and root cause of failures). The
last property can be evaluated via fault injection [34].

5.5 Summary

In this chapter, we conduct a detailed review of five popular
neural networks for log-based anomaly detection and evaluate six
state-of-the-art methods in terms of accuracy, robustness, and effi-
ciency. Particularly, we explore whether logs’ semantics can bring
performance gain and whether they can help alleviate the issue of
log instability. We also compare DL-based methods against their
traditional ML-based counterparts. The results demonstrate

CHAPTER 5. DEEP LOG ANOMALY DETECTION 94

that logs’ semantics indeed improves models’ robustness against
noises in both training and testing data. Furthermore, we release
an open-source toolkit of the studied methods to pave the way
for model customization and improvement for both academia
and industry.

2 End of chapter.

Chapter 6

Adaptive Performance Anomaly
Detection

Online service systems are closely monitored with various metrics
(e.g., service response delay) on a 24×7 basis. This is because
they often serve as the most direct and fine-grained signals that
flag the occurrence of service performance issues. In addition,
they provide informative clues for engineers to pinpoint the root
causes. However, due to the large scale and complexity of online
service systems, the number of metrics is overwhelming the exist-
ing troubleshooting systems [29]. Automated anomaly detection
over the metrics, which aims to discover the unexpected or rare
behaviors of the metric time series, is therefore important for
reliability assurance. In this chapter, we present ADSketch, a so-
lution to address the main shortcomings of previous approaches,
i.e., the lack of interpretability and adaptability. ADSketch aims
to tackle the pain points of flooding alarms and gray failures
introduced in Chapter 4. The remainder of this chapter is orga-
nized as follows. Section 6.1 introduces the problem background
and the contributions we made. Section 6.2 elaborates on the
algorithms for adaptive performance anomaly detection. Sec-
tion 6.3 presents the experiments and results. Section 6.4 shares
our success stories and some case studies. Finally, Section 6.5
summarizes this chapter.

95

CHAPTER 6. ADAPTIVE PERFORMANCE ANOMALYDETECTION96

6.1 Problem and Contributions

Although many efforts, e.g., [190, 153, 69], have been devoted to
performance anomaly detection, most of the existing work does
not possess the merit of interpretability. Specifically, at each
timestamp, they calculate a probability indicating the likelihood
of anomalies. A threshold is then chosen to convert the probabil-
ity into a binary label – normal vs. anomaly. However, in reality,
a simple recommendation of the suspicious anomalies might not
be of much interest to engineers. This is because they need to
manually investigate the problematic metrics (recommended by
the model) for fault localization. For large-scale online services,
this process is like finding a needle in a haystack. The problem
is compounded by the fact that false alerts are not rare. More-
over, many state-of-the-art methods train models with historical
metric data in an offline setting. As online services continuously
undergo feature upgrades and system renewal, the patterns of
metrics may evolve accordingly [52, 62]. Without adaptabil-
ity, these models are unable to accommodate the ever-changing
services and user behaviors.

In this Chapter, we present ADSketch1, a performance anomaly
detection approach for online service systems based on pattern
sketching, which is interpretable and adaptive. The main idea is
to identify discriminative subsequences from metric time series
that can represent classes of service performance issues. This
is similar to the problem of shapelet discovery in time series
data [138, 179]. Particularly, for multiple subsequences that de-
scribe the same type of performance issue, we take the average of
them and regard the result as a metric pattern for the issue. For
example, services may be experiencing performance degradation
when we observe a level shift down in Service Throughput or a
level shift up in CPU Utilization. The advantages of such metric

1https://github.com/OpsPAI/ADSketch

https://github.com/OpsPAI/ADSketch

CHAPTER 6. ADAPTIVE PERFORMANCE ANOMALYDETECTION97

patterns are twofold. First, the normality of the incoming metric
subsequences can be quickly determined through a comparison
with the metric patterns. Second, by associating the patterns
with typical anomaly symptoms, we can immediately understand
the ongoing performance issues when the metric subsequences
exhibit known patterns. This is similar to failure/issue profil-
ing [133, 101, 109]. In this way, ADSketch provides a novel
mechanism to characterize service performance issues with met-
ric time series. Previous work on failure/issue profiling often
requires handcrafted features, which suffers from limited gen-
eralization. For example, Brandon et al. [13] manually defined
a set of features collected from metrics, logs, and anomalies to
characterize failures. Pattern sketching with metrics enjoys the
advantages of automation and accuracy. Moreover, ADSketch
is able to adaptively embrace new anomalous patterns when de-
tecting anomalies on the fly. Experimental results demonstrate
the superiority of our design over the existing state-of-the-art
time series anomaly detectors on both public and industrial data.
In particular, we have achieved an average F1 score of over 0.8
in production systems.

The goal of this work is to detect performance anomalies for
modern software systems, especially online service systems, based
on monitoring metrics. To facilitate issue understanding and
problem mitigation, we intend to improve the interpretability of
the detection results. To this end, we propose to sketch perfor-
mance issues with metrics based on our observation that similar
issues often exhibit alike patterns. By extracting such anomalous
metric patterns, we can conduct performance anomaly detection
by examining whether the incoming metric subsequences match
the known patterns. Moreover, by associating the extracted
metric patterns with specific performance issues, we can obtain
a quick understanding of the ongoing issues in online scenarios.
Additionally, as online services are continuously evolving, un-

CHAPTER 6. ADAPTIVE PERFORMANCE ANOMALYDETECTION98

precedented metric patterns may emerge. Thus, our algorithm
should be adaptive to the new patterns. The problem can be
formally defined as follows.

The input of a metric time series can be represented as T ∈
Rl = [t1, t2, ..., tl], where l is the number of observations. tmi =
[ti, ..., ti+m−1] is a consecutive subsequence of T starting from ti
with length m, where i ∈ [0, l−m]. The objective of performance
anomaly detection is to determine whether or not a given tmi is
anomalous, i.e., whether there are performance issues happening
from timestamp i to i+m−1. Particularly, we also try to explain
the type of performance issues associated with tmi . The anomalous
subsequences will be used to construct abnormal metric patterns,
while the benign ones will be regarded as normal patterns. Both
the normal and abnormal metric patterns will be updated as
anomaly detection proceeds.

6.2 Methodology

6.2.1 Overview

In online service systems, performance anomalies often serve as
the (early) signals for critical failures, which should be detected
effectively. However, accuracy alone is far from satisfactory, as it
will be labor-intensive to manually investigate the problematic
metrics for issue understanding. ADSketch facilitates this process
by providing prompt anomaly alerts with explanations.

The overall framework of ADSketch is shown in Figure 6.1,
which consists of two phases, namely, offline anomaly detection
and online anomaly detection. In the offline phase, ADSketch
takes as input a pair of metric time series. One metric time
series is anomaly-free, which serves as the basis for detecting
anomalies in the other metric (if any). In this process, a set of
metric patterns will be automatically learned. A metric pattern

CHAPTER 6. ADAPTIVE PERFORMANCE ANOMALYDETECTION99

Adaptive Pattern
Learning

Anomaly-free metric

Metric for anomaly
detection

Metric Pattern
Discovery

New metrics
in online scenarios

Normal
Patterns

Abnormal
Patterns

O
ffl

in
e

Ph
as

e
O

nl
in

e
Ph

as
e

Offline Prediction

Online Prediction

Figure 6.1: The Overall Framework of ADSketch

is essentially the mean of a set of similar metric subsequences
representing similar service behaviors. The identified metric
patterns are divided into two types, i.e., normal and abnormal.
The abnormal patterns often characterize some particular types
of performance issues, as discussed in Section 2.5.1. Thus, by
investing manual efforts to link them to the corresponding is-
sues, a clearer picture of the underlying problems can be easily
obtained if similar patterns are encountered again. In the online
phase, we leverage the metric patterns built in the offline phase
to conduct anomaly detection in online scenarios, where metrics
arrive in streams. Particularly, in production environments, un-
precedented patterns could appear. Thus, we design an adaptive
learning algorithm to capture the new patterns continuously.

Before formally introducing our algorithms, we have summa-
rized the variables involved in Table 6.1.

6.2.2 Offline Anomaly Detection

Metric Pattern Discovery

The idea for discovering abnormal patterns follows the basic
definition of an anomaly: if a metric subsequence deviates signif-
icantly from those collected during a service’s normal executions,

CHAPTER 6. ADAPTIVE PERFORMANCE ANOMALYDETECTION100

Table 6.1: Summary of Variables

Variable Meaning

Tn An anomaly-free metric time series
Ta An input metric time series for anomaly detection
t A subsequence of metric time series
m The length of the metric subsequence t
p The percentile threshold to find deviated subseqs
Pn The index set of normal metric patterns
Pa The index set of anomalous metric patterns
µC The vector of cluster mean vectors
SC The vector of cluster sizes
RC The vector of cluster radii

it is likely that the subsequence captures some misbehaving
moments of the service. To measure how deviated a metric sub-
sequence is, we calculate its distance to other subsequences and
search for the smallest distance score. Intuitively, metric subse-
quences which have large scores to others tend to be anomalous.
The function for distance measure is customizable, and we adopt
Euclidean distance, which is a popular choice.

Given a metric time series with l observations, the number of
all possible subsequences is l −m+ 1, where m is the length of
its subsequences. A näıve solution for calculating the smallest
pair-wise distance (which we refer to as SPW distance here-
after) would be brute force searching. However, this algorithm
owns a quadratic time complexity, which is practically infeasible
for large time series. Fortunately, some novel scalable algo-
rithms [177, 179, 205] have been proposed in the literature to
attack such all-pairs-similarity-search problems for time series
subsequences. Particularly, Yeh et al. [179] proposed STAMP,
which has achieved orders of magnitude faster compared to state-
of-the-art methods. For exceptionally large datasets, an ultra-fast
approximate solution is also provided. An illustrating example

CHAPTER 6. ADAPTIVE PERFORMANCE ANOMALYDETECTION101

0 2000 4000 6000 8000 10000
Time

0.0

0.5

1.0

Interface Throughput

0 2000 4000 6000 8000 10000
Metric subsequence index

0.0

0.5

1.0 SPW Distance

Figure 6.2: The SPW Distance of Different Metric Subsequences

is provided in Figure 6.2, where we can see the misbehaving
metric subsequences have larger SPW distances. In particular,
the original STAMP algorithm adopts z-normalization for data
preprocessing. However, we found that min-max normalization
yields more meaningful results in our scenario. For a subsequence
tmi in a metric time series T , we record the index and distance
score of another subsequence having the SPW distance to it.
Such index and score of all subsequences, i.e., tmi (i ∈ [0, l −m]),
constitute two vectors I and S. In particular, for tmi , its closest
subsequence can either come from the same time series (i.e.,
self-union) or another time series (i.e., cross-union). In the first
case, a trivial match region around tmi will be excluded to avoid
self-matches [179].

The proposed algorithm for metric pattern discovery is pre-
sented in Algorithm 1, which is illustrated in Figure 6.3. Algo-
rithm 1 takes as input two metric time series, i.e., Tn and Ta (Tn
is anomaly-free and Ta may contain anomalies to be detected),
and two hyper-parameters, i.e., m and p (m is the length of
subsequences and p is the percentile threshold to find the devi-
ated subsequences). As production service systems are mostly
running in normal status [29], the anomaly-free input is easily
obtainable (we discuss how we address the violating cases in

CHAPTER 6. ADAPTIVE PERFORMANCE ANOMALYDETECTION102

Anomaly-free metric time series !!

Metric time series for anomaly detection !"

Break due to percentile
threshold unfulfillment

Apply self-union and cross-union STAMP
to get the most similar subsequences

Apply Affinity
Propagation to
the mean of each
subgraph

The mean of each cluster

Metric patterns, and
is the only abnormal pattern

Apply Affinity Propagation to get globally similar
subsequences and calculate the metric patterns

Construct a graph based on subsequences’
similarity and find the connected subgraphs

Isolated subgraphs,
also the anomaly
candidates

Metric subsequences The most similar subsequenceA group of similar subsequences Subsequence graph link

"#

#$
#%

Figure 6.3: The Algorithm of Performance Anomaly Pattern Discovery

Section 6.4.3). In line 1 of Algorithm 1, we apply STAMP to Tn
with self-union (i.e., similar subsequences come from Tn), and
obtain the index and score vectors Inn and Snn. In line 2, we
search similar subsequences for Ta from Tn, i.e., cross-union, and
get Ina and Sna. Intuitively, given the fact that Tn is anomaly-
free, subsequences in Ta having large SPW distances to their
closest peers in Tn are suspected to be anomalous. Interestingly,
we later learn that Mercer et al. [115] proposed a similar idea
concurrently. We introduce a percentile threshold (i.e., p) on Sna
to find such deviated subsequences. In particular, p is loosely set
to avoid missing anomalies, i.e., false negatives. Such a setting
will inevitably produce false positives. We next discuss how we
alleviate this issue.

A metric pattern is defined as the mean of a group of similar
subsequences, which represents some typical behaviors of the
metric time series. To mine similar subsequences, we propose to
leverage their similarity connections. Specifically, in line 3, we
construct a graph G whose nodes correspond to the subsequences.
Two nodes will be linked if any one of them is deemed as the
most similar subsequence to the other, as indicated by Inn and
Ina. Note such a relationship is not mutual, i.e., tmi is the most
similar to tmj does not necessarily imply the opposite case. We
break the edges whose distance score fails to meet the threshold

CHAPTER 6. ADAPTIVE PERFORMANCE ANOMALYDETECTION103

Algorithm 1 Performance Anomaly Pattern Discovery

Input: Tn, Ta, m, and p
Output: Two disjoint sets of Pn and Pa

1 Inn,Snn ← STAMP(Tn, Tn,m)
2 Ina,Sna ← STAMP(Tn, Ta,m)
3 G← ConnectedSubgraphs(Inn + Ina,Sna, p)
4 Ni ← IsolatedNodes(G)
5 µG ← GraphWiseMean(G)
6 C ← AffinityPropagation(µG)
7 µC ← ClusterWiseMean(C)
8 Pn ← EmptyArray,Pa ← EmptyArray
9 for each idx in 1 : Size(C) do

// C[idx]: all subsequences in the cluster

10 if C[idx] ⊂ Ni then
11 Pa ← Append Pa with idx
12 else
13 Pn ← Append Pn with idx
14 end

15 end

requirement p. The above operations are depicted in the first
part of Figure 6.3. Next, we find the connected subgraphs of G,
each of which is composed of subsequences resembling each other.
Particularly, there will be some isolated nodes, i.e., subgraphs
with a single node, which are collected at line 4. Such deviated
subsequences constitute a set of anomaly candidates, i.e., Ni.
The second part of Figure 6.3 illustrates this process.

Up to this point, we have divided the subsequences of Tn
and Ta into different parts, each of which is represented as a
subgraph. However, each subgraph cannot be directly regarded
as a metric pattern because: 1) the graph construction criteria
can be too strict (i.e., only the most similar pairs are connected),
so some subgraphs might still be similar; 2) the loosely set
percentile threshold p may flag some normal subsequences as
abnormal (i.e., false positives). To further combine the similar
subsequences, we apply the Affinity Propagation algorithm [49]

CHAPTER 6. ADAPTIVE PERFORMANCE ANOMALYDETECTION104

Algorithm 2 Performance Anomaly Detection

Input: t, Pa, and µC

Output: Anomaly detection result for t
16 Dt ← PairWiseDistance(t, µC)
17 idx← MinIndex(Dt)
18 if idx ∈ Pa then
19 return True
20 else
21 return False
22 end

to cluster the mean vector of each subgroup (line 5-6). We choose
this algorithm because of its superior performance and efficiency,
and it requires no pre-defined cluster number. As a result,
similar normal subgraphs can be merged together, and abnormal
subgraphs have a chance to embrace their normal communities.
Thus, each cluster will contain all similar subsequences across the
two time-series inputs, and different clusters represent distinct
patterns. The mean of clusters (i.e., µC) will form the set of
metric patterns (line 7). For each cluster, we check whether or
not all its members come from the set of anomaly candidates Ni

(line 9-15). If yes, the mean of the cluster will be regarded as
an abnormal metric pattern and otherwise normal, indexed by
Pa and Pn, respectively. The third part of Figure 6.3 presents
the above operations. Finally, all subsequences in the anomalous
clusters will be predicted as an anomaly to be the output of this
phase.

Metric Pattern Interpretability

In this section, we expound on how to label the performance
issues that each metric pattern represents. By allowing metric
patterns to have semantics, the understanding and mitigation
of service problems can be greatly accelerated. Given the fact
that the duration of different performance issues may vary, our

CHAPTER 6. ADAPTIVE PERFORMANCE ANOMALYDETECTION105

fixed-length metric patterns may over-represent (i.e., the met-
ric pattern is much larger than the issue’s duration) or under-
represent (i.e., the metric pattern is only an excerpt of the issue)
the corresponding issues. To alleviate the first problem, we select
a relatively small m, which turns out to be aligned with the goal
of better performance. For the second problem, we adopt the
following strategy to group clusters which are actually describing
a common issue. For each pair of clusters, we check whether they
have some subsequences that share some parts in common. All
clusters sharing such overlaps together can recover the complete
picture of the issue. Thus, we regard them as describing an
identical issue. Finally, for each metric pattern, domain engi-
neers will label the type of performance issue that triggers it.
Particularly, one pattern can have multiple labels simultaneously.
The metric patterns with overlaps will share the same set of
performance issue labels.

6.2.3 Online Anomaly Detection

Anomaly Detection on the Fly

Based on the metric patterns identified in Algorithm 1, we now
describe our algorithm (Algorithm 2) for anomaly detection in
online scenarios. The idea is straightforward: given a new metric
subsequence t with lengthm, we search for its most similar metric
pattern (line 1-2) and check which pattern pool it comes from. If
t is more similar to an abnormal pattern, it will be predicted as
anomalous; otherwise, normal (line 3-7). In real-world systems
where monitoring metrics are generated in a stream manner,
this process is continuously running for all coming subsequences.
When an anomaly is identified, we would like to provide more
interpretation about it, e.g., what kinds of performance issues
have happened. This is done by simply recommending the issues
associated with the most similar metric pattern for all involved

CHAPTER 6. ADAPTIVE PERFORMANCE ANOMALYDETECTION106

!!
!![#$%]

"

#"

##ℛ![#$%]

metric subsequence mean vector

!!
!![#$%]

"

#"

##
ℛ![#$%]

tangent

normal

tangent

!!
!![#$%]

"

#"

##
ℛ![#$%]

normal

"$ "$

Figure 6.4: The Update of the Radius of a Cluster

metrics. Particularly, in Algorithm 1, each cluster (i.e., C at line
6) contains all subsequences that are deemed as similar. The
design of our online anomaly detection only requires the mean
vector of each cluster, i.e., µC . Thus, instead of keeping all its
members (which is storage-intensive), the clusters can be simply
represented by their mean vectors.

Note that offline and online anomaly detection can work
collaboratively as a performance anomaly detector without the
interpretability component, which requires human intervention.

So far the metric patterns for anomaly detection are discov-
ered based on historical data. However, due to the dynamics of
online service systems (e.g., software upgrade, customer behav-
ior change), the metrics may experience concept drift [62, 52],
which produces brand-new patterns. Thus, an adaptive learning
mechanism is desirable to help adapt to such unprecedented
patterns and update the metric patterns accordingly. In the
next section, we will introduce the algorithm to this end called
adaptive pattern learning.

CHAPTER 6. ADAPTIVE PERFORMANCE ANOMALYDETECTION107

Algorithm 3 Adaptive Pattern Learning

Input: t, Pn, Pa, µC , SC , and RC

Output: Updated variables: Pn, Pa, µC , SC , and RC

23 Dt ← PairWiseDistance(t, µC)
24 idx← MinIndex(Dt)

25 µ
′ ← (µG[idx]× SC [idx] + t)/(SC [idx] + 1)

26 dw ← Distance(µC [idx], µ
′
) +RC [idx]

27 dt ← Distance(t, µ
′
)

28 d
′ ← Max(dt, dw)

29 dn, da ← Max(RC [Pn]),Max(RC [Pa])
30 if idx ∈ Pa then d← da else d← dn end
31 if Dt[idx] < d then

// add t to the most similar cluster

32 µC [idx],SC [idx],RC [idx]← µ
′
,SC [idx] + 1, d

′

33 if SC [idx] > Max(SC [Pa]) and idx is a new cluster then
34 Pn ← Append Pn with idx
35 Pa ← Remove idx from Pa

36 else
37 d← Max(d, d

′
)

// d will be assigned to dn or da accordingly

38 end

39 else
// create a new anomalous cluster for t

40 Pa ← Append Pa with Length(µC) + 1
41 µG ← Append µG with t
42 RC ← Append RC with 0
43 SC ← Append SC with 1

44 end

CHAPTER 6. ADAPTIVE PERFORMANCE ANOMALYDETECTION108

Adaptive Pattern Learning

The algorithm of adaptive pattern learning is presented in Al-
gorithm 3, which automatically updates metric patterns during
streaming anomaly detection. To start with, for each cluster, we
calculate its size and the maximum distance between its mean
vector and all members (which we refer to as radius), denoted
as SC and RC , respectively. In particular, the size and radius of
clusters with only a single member are one and zero. For adaptive
pattern learning, all clusters can be sufficiently represented with
the following properties: µC , SC , and RC . All subsequences can
be discarded.

The main idea is that given a new subsequence t, we determine
whether it possesses a known metric pattern carried by an existing
cluster. If yes, the cluster will absorb t as a new member and
update its properties; otherwise, a brand-new anomalous cluster
with only t itself will be created, representing an unseen metric
pattern. Specifically, we first search for the closest pattern of
t (line 1-2). Then, we determine whether t should become a
new member to the corresponding cluster by checking if the
distance Dt[idx] is smaller than the largest radius recorded in all
clusters, i.e., Dt[idx] ≤ Max(RC). If it is the case, t should be
considered as an old pattern; otherwise, it should be expressing
a new pattern.

When a cluster accepts a new member (line 9-16), we need
to update its mean vector µC [idx] (i.e., the metric pattern), size
SC [idx], and radius RC [idx]. For µC [idx], it can be precisely
updated by the equation at line 3 (i.e., µ

′
). SC [idx] can be

trivially updated by increasing itself by one. The update of the
radius RC [idx] is a bit problematic. We cannot directly calculate
the new radius as the original subsequences are not available.
To address this problem, we employ the worst-case distance for
approximation. As shown in Figure 6.4, the new radius reaches
its maximum value when t lies in the (inward-pointing) normal

CHAPTER 6. ADAPTIVE PERFORMANCE ANOMALYDETECTION109

of the tangent space at the member yielding the radius (denoted
as tr) [11], which can be calculated by the equation at line 4. We
omit the proof, which is standard. Two cases are possible. The
first (the left subfigure) is that tr continues to be the farthest
member from the new mean µ

′
. The second (the right subfigure)

is that t takes the place of tr and becomes the farthest one.
Therefore, besides dw, we also compute the distance between t
and µ

′
, i.e., dt, and compare them (line 4-6). The bigger one

will be the new radius (line 10). Recall we need to check if
Dt[idx] ≤ Max(RC) to decide whether or not t should be taken
as a new member. Considering the high imbalance between
normal and abnormal clusters, we maintain two maximum radii
for them, denoted as dn and da, respectively (line 7). Once a
cluster alters its radius, we reset the maximum radius of its
kind (dn or da as determined by line 8) if it is exceeded by d

′

(line 15). On the other hand, if the cluster rejects t, we form a
new anomalous cluster containing only t by properly setting its
properties (line 18-21).

An issue with this strategy is that false positives will accu-
mulate in Pa as the unseen patterns can also be normal. We
alleviate it by setting a threshold to the size of the newly-formed
anomalous clusters (line 11). The role of the cluster will be
switched from abnormal to normal if its size exceeds the thresh-
old (line 12-13). The rationale is that performance anomalies are
generally rare events. A large anomalous cluster would mean the
particular type of issue it represents occurs too often. However,
a pattern with a large frequency tends to be the metric’s normal
behavior. We simply set the default threshold as the largest
size of the anomalous clusters identified in the offline stage, i.e.,
Max(SC [Pa]). Nevertheless, more sophisticated strategies can be
applied by, for example, considering the distribution of clusters’
sizes.

CHAPTER 6. ADAPTIVE PERFORMANCE ANOMALYDETECTION110

6.2.4 Time and Space Complexity

Time Complexity

For Algorithm 1, the theoretical time complexity of operation
STAMP is O(n2). Thus, line 1-2 require O(l2n) and O(l2a), re-
spectively, where ln and la are the length of Tn and Ta. Another
operation with an interesting time complexity is the affinity prop-
agation algorithm (line 7), whose complexity is quadratic in the
number of clusters (which is often small), i.e., O(|C|2). Other
operations are of trivial linear time complexity, which is also the
case for Algorithm 2 and Algorithm 3. Overall, ADSketch owns a
time complexity of O(n2) (O(l2n+ l2a+ |C|2)). Fortunately, unlike
other models such as deep neural networks, STAMP can be em-
barrassingly parallelized by distributing its unit operation (SPW
distance calculation) to multi-core processors [179]. Moreover,
STAMP has an ultra-fast approximation to generate results in
an anytime fashion.

Space Complexity

As described in Section 44, pattern clusters have a lightweight
representation, i.e., µC , SC , and RC . We also need Pn and Pa to
distinguish anomalous patterns from the normal ones. Besides
µC whose space complexity is O(m× |C|), other vectors are of
O(|C|). Therefore, the dominant term of space complexity is
O(m× |C|). Since both m and |C| are usually small, the space
overhead of ADSketch can be considered trivial.

6.3 Experiments

In this section, we evaluate ADSketch using both public data and
real-world metric data collected from the industry. Particularly,
we aim to answer the following research questions.

RQ1: How effective is ADSketch’s offline anomaly detection?

CHAPTER 6. ADAPTIVE PERFORMANCE ANOMALYDETECTION111

Table 6.2: Dataset Statistics

Dataset #Curves #Points Anomaly Ratio

Yahoo 67 94,866 1.8%
AIOps18 58 5,922,913 2.26%
Industry 436 4,394,880 1.07%

RQ2: How effective is ADSketch’s online anomaly detection?
RQ3: How effective is ADSketch’s adaptive pattern learning?
The evaluation process of much existing work, e.g., [153, 139],

essentially corresponds to the process adopted in RQ1 (i.e., the
offline anomaly detection phase), because the threshold they
select for anomaly alerting is determined by iterating the full
range of its possible values. The best results achieved during the
iteration process are reported. To fully examine the performance
of different methods in online scenarios, we fix models’ data and
parameters (including the threshold learned in offline mode) as
if they are deployed in production systems, i.e., RQ2. The online
adaptability of ADSketch will be evaluated in RQ3.

6.3.1 Experiment Setting

Dataset

To evaluate the effectiveness of ADSketch in performance anomaly
detection, we conduct experiments on two publicly available
datasets. Moreover, to confirm its practical significance, we
collect a production dataset from a large-scale online service
of Huawei Cloud. Table 6.2 summarizes the statistics of the
datasets.

Public dataset. The public datasets for experiments are
Yahoo [140] and AIOps18 [2, 139]. Particularly, we do not
conduct online anomaly detection on Yahoo due to its limited
number of anomalies.

CHAPTER 6. ADAPTIVE PERFORMANCE ANOMALYDETECTION112

• Yahoo. Yahoo released by Yahoo! Research [140] is a bench-
mark dataset for time series anomaly detection. Part of the
dataset is synthetic (which is simulated by algorithmically
injecting anomalies), and part of the dataset is collected
from the real traffic of Yahoo services. The anomalies in
the real dataset are manually labeled. All time series are
sampled every hour. In particular, as our goal is detecting
performance anomalies for online services, we only use the
real dataset, which reflects the real-world service perfor-
mance issues. For each time series, we select the first 300
data points as the anomaly-free input (any anomalies in it
are ignored), and the remaining part as the input for offline
anomaly detection. Therefore, for offline anomaly detection,
the data are split into training and testing sets in a ratio of
0.2:0.8.

• AIOps18. AIOps18 dataset was released by an interna-
tional AIOps competition held in 2018 [1]. The dataset is
composed of multiple metric time series collected from the
web services of large-scale IT companies. Particularly, the
dataset contains two types of metrics, i.e., service metrics
and machine metrics. The service metrics record the scale
and performance of the web services, including response
time, traffic, and connection errors, while the machine met-
rics reflect the health status of physical machines, including
CPU usage and network throughput. Some metric time
series has a sampling interval of one minute, while that
of others is five minutes. Each metric has a training and
a testing time series, which follows a roughly 1:1 split ra-
tio. Thanks to its large quantity, we follow the following
procedure to separate the data for ADSketch offline and
online anomaly detection. First, we extract a small part of
the training time series that is anomaly-free, which often
contains thousands of data points. Then, we use the remain-

CHAPTER 6. ADAPTIVE PERFORMANCE ANOMALYDETECTION113

der of the training time series for offline anomaly detection.
Finally, the whole testing time series will be employed for
online anomaly detection. We also compare the performance
of online anomaly detection with and without the adaptive
learning component.

Industrial dataset. To evaluate ADSketch in production
scenarios, we collect various metrics (e.g., Application CPU
Usage, Interface Throughput, Request Timeout Number, and
Round-trip Delay) from a large-scale online service (we conceal
the name for privacy concerns) of Huawei Cloud. The system
under study produces millions of metric time series, which contain
an abundance of different metric patterns. The number of metric
curves collected is 436, which come from multiple instances of
virtual machines, containers, and applications of the selected
service system. For each metric, we collect one week of data
with a sampling interval of one minute, resulting in more than
four million data points in total. The anomalies representing
the performance issues of the service are labeled by experienced
domain engineers. From Table 6.2, we can see that the anomaly
ratio is very low. Specifically, we use the first day as the anomaly-
free input, whose anomalies (if any) are simply ignored. The next
three days are used for offline anomaly detection. Finally, we
conduct online anomaly detection on the remaining three days,
where we also evaluate the adaptability of different approaches
to unseen anomaly patterns. Therefore, for offline anomaly
detection, the split ratio for training and testing sets is 0.25:0.75
(1:4), while for online and adaptive anomaly detection, the split
ratio is 0.57:0.43 (4:3).

Evaluation Metrics

As anomaly detection is essentially a binary classification prob-
lem, i.e., normal and abnormal, we employ precision, recall,

CHAPTER 6. ADAPTIVE PERFORMANCE ANOMALYDETECTION114

and F1 score for evaluation. They can gauge the performance
of an anomaly detection algorithm at a fine-grained level. A
satisfactory algorithm should be able to quickly and precisely
detect both the occurrence and duration of performance anoma-
lies. Specifically, precision measures the percentage of anoma-
lous metric points that are successfully identified as anoma-
lies over all the metric points that are predicted as anomalous:
precision = TP

TP+FP . Recall calculates the portion of anoma-
lous metric points that are successfully identified by ADSketch
over all the actual anomalous points: recall = TP

TP+FN . Fi-
nally, the F1 score is the harmonic mean of precision and recall:
F1 Score = 2×precision×recall

precision+recall . TP is the number of anomalous
metric points that are correctly discovered by ADSketch; FP is
the number of normal metric points that are wrongly predicted
as an anomaly by ADSketch; FN is the number of anomalous
metric points that ADSketch fails to notice. Since there are mul-
tiple metrics in each dataset, we report their average weighted
by the size of each metric time series.

Comparative Methods

We select the following state-of-the-art unsupervised approaches
for the comparative evaluation of ADSketch. As all baselines have
open-sourced their code, we directly borrow the implementations
and follow the procedure of model training and parameter tuning
introduced in each method.

• LSTM [75, 190]. This method employs Long Short-Term
Memory (LSTM) network to capture the normal behaviors
of metrics in a forecasting-based manner. Specifically, it
predicts the next values of a metric based on its past ob-
servations. The predicted values are then compared with
the actual values. Anomaly warnings will be raised if the
differences exceed the pre-defined thresholds.

CHAPTER 6. ADAPTIVE PERFORMANCE ANOMALYDETECTION115

• Donut [167]. Donut adopts the Variational Autoencoder
(VAE) framework to properly reconstruct the normal metric
subsequences. The trained model will have a large recon-
struction loss when it meets anomalous instances, which
serves as the signal to alert anomalies.

• LSTM-VAE [127]. Similar to Donut, this work detects
anomalies based on metric subsequence reconstruction. It
combines LSTM and VAE in the model design.

• DAGMM [206]. DAGMM utilizes a deep autoencoder to
generate a low-dimensional representation for each input
data point, which is further fed into a Gaussian Mixture
Model to estimate the anomaly score.

• SR-CNN [139]. SR-CNN first applies Spectral Residual to
highlight the most important regions for seasonal metric
data where anomalies often reside. It then trains a Convolu-
tional Neural Network (CNN) through synthetic anomalies
to detect the real anomalies.

• iForest [102]. An Isolation Forest (iForest) is composed of a
collection of isolation trees, which isolates anomalies based
on random subsets of the input features. The height of
an input sample, averaged over the trees, is a measure of
its normality. Samples with noticeably shorter heights are
likely to be anomalies. We use metric subsequences as the
input samples.

• LODA [132]. LODA is an online anomaly detector based
on the ensemble of a series of one-dimensional histograms.
Each histogram approximates the probability density of
input data projected onto a single projection vector. LODA
calculates the likelihood of an anomaly based on the joint
probability of the projections.

• Extreme Value Theory [150]. Extreme Value Theory (EVT)
is an anomaly detection approach in streaming data, which
requires no hand-set thresholds and makes no assumption on

CHAPTER 6. ADAPTIVE PERFORMANCE ANOMALYDETECTION116

Table 6.3: Experimental Results of Offline Anomaly Detection

Yahoo AIOps18 Industry
Method precision recall F1 score precision recall F1 score precision recall F1 score

LSTM 0.598 0.706 0.530 0.499 0.531 0.518 0.704 0.656 0.632
LSTM-VAE 0.622 0.634 0.484 0.510 0.625 0.537 0.717 0.639 0.622

Donut 0.530 0.658 0.524 0.405 0.527 0.382 0.693 0.628 0.604
LODA 0.754 0.583 0.428 0.553 0.429 0.401 0.583 0.498 0.529
iForest 0.713 0.597 0.437 0.555 0.439 0.413 0.616 0.567 0.538

DAGMM 0.643 0.517 0.401 0.590 0.477 0.461 0.597 0.542 0.530
SR-CNN 0.433 0.618 0.307 0.424 0.387 0.363 0.519 0.471 0.434
ADSketch 0.511 0.673 0.541 0.744 0.670 0.677 0.811 0.813 0.740

the data distribution. It bases on the theorem stating that
under a weak condition, extreme events have the same kind
of distribution (Extreme Value Distributions), regardless
of the original one [46, 55]. Therefore, by inferring the
distribution of the extreme values, we can compute them as
anomalies.

6.3.2 Experimental Results

In this section, we conduct experiments to answer the research
questions.

RQ1 The Effectiveness of ADSketch’s Offline Anomaly Detection

To answer this research question, we compare ADSketch with
the baselines in the offline setting. The results are shown in
Table 6.3, where we can see the average F1 score of ADSketch
outperforms all baseline methods in all datasets. In AIOps18
and Industry, the improvement achieved by ADSketch is more
significant. In particular, the patterns of anomalies in Yahoo
are relatively simple. By iterating over all possible values of
the anomaly threshold, the baselines can find the best setting
for the dataset under study. Among them, LSTM [75, 190]
and Donut [167] achieve comparable performance compared to
that of ADSketch (i.e., 0.541), whose average F1 scores are 0.53

CHAPTER 6. ADAPTIVE PERFORMANCE ANOMALYDETECTION117

and 0.524, respectively. Moreover, LSTM [75, 190] has the best
recall (i.e., 0.706), while the best precision (i.e., 0.754) goes to
LODA [132]. DAGMM and SR-CNN turn out to be the worst
methods in this dataset. In terms of AIOps18 and Industry
datasets, we can see ADSketch surpasses the baselines by a
larger margin. Specifically, the average F1 score of ADSketch
in AIOps18 is 0.677, while that of the second-best method (i.e.,
LSTM-VAE) is 0.537. ADSketch also attains the best precision
and recall. In AIOps18, the anomaly patterns are much more
complicated. Baselines tend to predict more data points as
anomalous, leading to a lower precision. Different from them,
ADSketch is able to precisely capture them and outperforms other
methods. The situation is similar in Industry. Particularly, this
dataset is collected from online services, and many of its metric
curves possess more perceivable and regular patterns. Thus, all
methods perform better in this dataset than in the other two.
The average F1 scores of ADSketch and the second-best method
(i.e., LSTM) are 0.740 and 0.632, respectively.

In Table 6.3, we can see among all comparative methods,
LSTM and LSTM-VAE have better overall performance, which
are forecasting-based and reconstruction-based methods, respec-
tively. They both try to model the normal patterns of a metric
time series and alert anomalies once the metric significantly
deviates from the learned patterns. The difference is that a
forecasting-based method aims to predict the following metric
values and a reconstruction-based method tries to encode and re-
generate metric subsequences. We can see, except for LSTM-VAE
in Yahoo, these two methods attain the best results compared
to other baseline counterparts in the other two datasets. How-
ever, LSTM lacks the ability to explicitly detect anomalies in
the level of subsequence. Many anomalies are composed of a
collection of anomalous points corresponding to the period of
performance issues. LSTM-VAE does not take into account the

CHAPTER 6. ADAPTIVE PERFORMANCE ANOMALYDETECTION118

Table 6.4: Experimental Results of Online Anomaly Detection

AIOps18 Industry
Method prec. rec. F1 prec. rec. F1

LSTM 0.425 0.462 0.408 0.612 0.606 0.592
LSTM-VAE 0.336 0.521 0.389 0.624 0.598 0.601

Donut 0.431 0.326 0.376 0.662 0.581 0.590
LODA 0.407 0.397 0.355 0.653 0.526 0.503
iForest 0.397 0.334 0.322 0.576 0.507 0.487

DAGMM 0.392 0.367 0.378 0.557 0.538 0.502
SR-CNN 0.329 0.288 0.307 0.438 0.422 0.410
ADSketch 0.543 0.575 0.507 0.705 0.603 0.606

relationship among subsequences. Many suspicious subsequences
are not necessarily anomalies if they often occur in the history
of the service systems. Compared to them, ADSketch is able to
simultaneously learn the subsequence-level features and consider
the context of metric time series.

RQ2 The Effectiveness of ADSketch’s Online Anomaly Detection

We also compare ADSketch against the selected methods for
online anomaly detection. Table 6.4 presents the experimental
results. Except for Donut in AIOps18, all models and algorithms
encounter an obvious performance degradation in both datasets.
Nevertheless, ADSketch manages to maintain the best ranking
(0.507 in AIOps18 and 0.606 in Industry), which is followed
by LSTM (0.408 in AIOps18) and LSTM-VAE (0.601 in Indus-
try). Particularly, in AIOps18, the average F1 score of different
methods drops by 11%-27%. This observation demonstrates
the existence of unprecedented metric patterns in online scenar-
ios. By relying on the “outdated” data and parameters (e.g.,
ADSketch’s metric patterns and baselines’ anomaly thresholds)
learned from the offline stage, the methods cannot accommodate
them. In addition, by plotting the metric time series, we observe

CHAPTER 6. ADAPTIVE PERFORMANCE ANOMALYDETECTION119

Table 6.5: Experimental Results of Adaptive Pattern Learning

AIOps18 Industry
Method prec. rec. F1 prec. rec. F1

LODA 0.424 0.405 0.387 0.623 0.512 0.548
EVT 0.455 0.528 0.406 0.710 0.612 0.458

ADSketch 0.594 0.557 0.548 0.882 0.856 0.832

the emergence of new patterns in metrics. This can be caused by
software upgrades or the integration of new service components
(e.g., virtual machines, containers). In the industrial dataset,
the evaluation results of the baselines are more promising (i.e.,
the average F1 score drops by less than 10%). This is because
the anomalies are triggered by real-world performance issues.
The issues have a more natural distribution, and the collected
metrics exhibit relatively stable patterns. ADSketch presents a
significant performance degradation. We found it is because in
some cases, the two metric time series fed to the offline stage are
often both anomaly-free. Consequently, no abnormal patterns
will be learned, disabling ADSketch to detect anomalies in the
online stage. Therefore, when designing an anomaly detection
algorithm, adaptability is indispensable.

RQ3 The Effectiveness of ADSketch’s Adaptive Pattern Learning

This research question looks into the issue of online adaptability
to identify new metric patterns that have not been encountered
in the offline stage. We compare ADSketch with two baseline
methods with the design of online learning, i.e., LODA and EVT.
Similar to RQ2, we only conduct experiments with AIOps18
and Industry datasets. Table 6.5 shows the experimental results,
where we can see performance gains in all methods. With more
anomalous patterns identified, ADSketch is able to detect anoma-
lies more accurately, i.e., a better precision (0.594 in AIOps18

CHAPTER 6. ADAPTIVE PERFORMANCE ANOMALYDETECTION120

and 0.882 in Industry). The average F1 score also enjoys some
improvements, i.e., 0.548 in AIOps18 and 0.832 in Industry. Par-
ticularly, in the industrial case, adaptive ADSketch achieves a
performance of over 0.8 in all evaluation metrics (even in some
cases without any abnormal patterns learned from the offline
stage). Such an achievement indicates its potential to meet the
industrial requirements of performance anomaly detection.

On the other hand, the online version of LODA shows little
performance improvement (i.e., an average F1 score of 0.387 in
AIOps18 and 0.548 in Industry), which even falls behind some
methods without the capability of online learning. EVT achieves
good performance. By fitting the Extreme Value Distributions
with the extreme values, it can capture the distribution of anoma-
lies. However, in many cases, anomalies manifest as a group
of consecutive points, especially in the AIOps18 dataset. For
example, a long-lasting spike deserves attention even if it does
not contain any extreme values. ADSketch considers such cases.

Parameter Sensitivity

In ADSketch, there are only two parameters to tune (both in Al-
gorithm 1), i.e., the pattern lengthm and the percentile threshold
p for identifying deviated metric subsequences. We evaluate the
sensitivity of ADSketch to these two parameters by conducting
experiments with different settings. Due to space limitations, we
only show the results of the Industry dataset. The default value
of m and p for the dataset is 15 and 99.5th, respectively. We fix
one parameter and employ a different setting for the other one.
Specifically, m ranges from 9 to 21, and p varies from 97th to
99.8th. Figure 6.5 presents the results. Performance degradation
is observed in both offline and online stages when the two param-
eters deviate from their default setting. The offline stage exhibits
a greater sensitivity, and thus, less anomalous metric patterns are
captured. Nevertheless, both the online anomaly detection and

CHAPTER 6. ADAPTIVE PERFORMANCE ANOMALYDETECTION121

8 10 12 14 16 18 20 22
Pattern Length (m)

0.4

0.5

0.6

0.7

0.8

0.9
Av

g.
 F

1
Sc

or
e

97.0 97.5 98.0 98.5 99.0 99.5 100.0
Percentile Threshold (p)

0.4

0.5

0.6

0.7

0.8

0.9
Offline Online Adaptive Online

Figure 6.5: Parameter Sensitivity

adaptive pattern learning algorithms achieve stable performance
with a smaller set of abnormal patterns. This further confirms
ADSketch’s capability of new pattern discovery.

6.4 Industrial Practices

6.4.1 Online Deployment

Since October 2020, ADSketch has been successfully incorporated
into the performance anomaly detection system of a large-scale
online service system in Huawei Cloud. The deployment process
can be easily done by leveraging the existing data analytics
pipeline, for example, data consumption by Apache Kafka [48],
and online parallel execution by Apache Flink [47]. After months
of usage, ADSketch has demonstrated its effectiveness in metric-
based system troubleshooting. A lot of positive feedback has
been received from on-site engineers. Particularly, engineers
confirmed its superiority in anomaly detection over the current
algorithms (e.g., fixed thresholding, moving average) in operation.
One typical case is multiple benign spikes arriving suddenly
and consecutively. ADSketch is able to quickly figure out that
such recurrent spikes have happened before, which reduces the
number of false alerts. In terms of issue understanding, engineers

CHAPTER 6. ADAPTIVE PERFORMANCE ANOMALYDETECTION122

benefited from ADSketch by having readily-available descriptions
of the anomaly symptoms. Therefore, we have initialized a
project of metric pattern database construction. ADSketch is
continuously accumulating anomalous patterns in the database.
Moreover, engineers also expressed the need for metric pattern
auto-correlation across different metrics. This is because multiple
anomalies collectively could constitute a stronger performance
issue indicator. We leave the identification of such correlations
to our future work.

6.4.2 Case Study

We provide some case studies of ADSketch collected from pro-
duction systems in Figure 6.6, where anomalies are indicated
by the red lines. Due to space limitations, we only showcase
three metric time series. Clearly, all anomalous metric patterns
have been successfully located regardless of shape, scale, and
length. Each metric time series possesses at least two types of
anomalous patterns, e.g., level shifts and spikes. Interestingly,
we found the depression in the second metric can help catch a
similar pattern in the third metric, demonstrating the feasibility
of cross-metric pattern sharing. Moreover, engineers confirmed
that these patterns are typical, based on which they can make
a good guess about the ongoing issues. For example, the spikes
often come from user request surges or network attacks; the
depressions in the second and third metrics often indicate service
restart or link flap. To quantify the interpretability of ADSketch,
we label the recurrent performance issues and employ the learned
metric patterns to identify them. As performance issues may
contain uncertainty [158], we allow one pattern to be associated
with multiple labels simultaneously (Section 22). During the
evaluation, an anomaly interpretation is considered correct if
the predicted performance issue appears in the label set. In our

CHAPTER 6. ADAPTIVE PERFORMANCE ANOMALYDETECTION123

0 2000 4000 6000 8000 10000
0.0

0.5

1.0

Application CPU Usage

0 2000 4000 6000 8000 10000
0.0

0.5

1.0

Interface Throughput

0 2000 4000 6000 8000 10000
Time

0.0

0.5

1.0

Requests Per Minute

Figure 6.6: Case Study of ADSketch

experiments, ADSketch attains a promising F1 score of 0.825.
This demonstrates the potential of ADSketch in providing inter-
pretable results to engineers, which can greatly accelerate the
investigation of service performance issues.

6.4.3 Threats to Validity

We have identified the following major threats to validity.
Internal threats. The implementation and parameter selec-

tion are two critical internal threats to the validity. To reduce
the implementation threat, we directly borrow the codes released
by the baseline approaches. For the proposed approach, we em-
ploy peer code review, i.e., the authors are invited to carefully
check the implementation for mistakes. In terms of parameter
selection, we conduct multiple comparative experiments with
different parameters for all methods. We choose the parameter
settings empirically based on the best results.

External threats. The selection of the service system and
the baselines are two main external threats to validity. We choose
a large-scale online service of Huawei Cloud, which produces
millions of metrics with diverse patterns. Moreover, we detect

CHAPTER 6. ADAPTIVE PERFORMANCE ANOMALYDETECTION124

anomalies by following the basic definition of an anomaly, i.e.,
the data point that deviates from the majority in a dataset.
Thus, ADSketch is generalizable to other systems. For baselines,
we select the representative ones in the literature, covering a
wide spectrum of techniques.

Construct threats. The main construct threat to validity
is that the anomaly-free input (i.e., Tn) to Algorithm 1 actu-
ally contains anomalies. Although anomaly-free data are easily
obtainable in reality, false negatives could happen if the data
are contaminated. We alleviate this issue by applying percentile
thresholding to Tn. Specifically, after obtaining the closest sub-
sequence pairs in Tn, we break the connection between those
having a distance above the percentile threshold. Thus, the set
of anomaly candidates, i.e., Ni, becomes larger. If Tn is indeed
clean, this operation is harmless as the (isolated) normal metric
subsequences can be grouped with other similar ones again; if not,
they will stay isolated and eventually be recognized as anomalies.
We have also conducted experiments on some cases where Tn
contains anomalies, and the results show its effectiveness.

6.5 Summary

In this chapter, we introduce ADSketch, a performance anomaly
detection approach based on pattern sketching. By extracting
normal and abnormal patterns from metric time series, anoma-
lies can be quickly detected through a comparison with the
identified patterns. By associating metric patterns with typical
performance issues, ADSketch can provide interpretable results
when any known patterns appear again. Moreover, we design
an adaptive learning algorithm to help ADSketch embrace un-
precedented metric patterns during online anomaly detection.
We have conducted experiments on two public datasets and one
production dataset collected from a representative online service

CHAPTER 6. ADAPTIVE PERFORMANCE ANOMALYDETECTION125

system of Huawei Cloud. For offline anomaly detection where
models’ parameters are still being tuned, ADSketch has achieved
the highest F1 score, outperforming the existing methods by a
significant margin. For online anomaly detection where models
are fixed, ADSketch safeguards its best rankings. Finally, the
adaptive pattern learning brings noticeable performance gains,
especially in the industrial dataset. From our industrial practice,
we have witnessed it shedding light on accurate and interpretable
performance anomaly detection, which confirms its practical ben-
efits conveyed to Huawei Cloud. We believe ADSketch is able to
assist engineers in service failure understanding and diagnosis.

For future work, we will extend our algorithms to multivariate
metric time series. We will also try to provide more detailed
information about failures by exploring the correlations among
the metric patterns.

2 End of chapter.

Chapter 7

Graph-based Alert Aggregation

Alerts capture service and system anomalies that deserve en-
gineers’ immediate attention. A failure could result in a large
number of alerts across the entire cloud system. In this chapter,
we introduce Girdle, an alert aggregation framework based on
graph representation learning. By gathering related alerts, Gir-
dle helps engineers understand the failure, estimate its impact
scope, and save duplicate engineering efforts as mentioned in
Chapter 4. The remainder of this chapter is organized as follows.
Section 7.1 introduces the problem background and our contribu-
tions. Section 7.2 describes the proposed framework. Section 7.3
shows the experiments and experimental results. Section 7.4
presents our success story and lessons learned from practice.
Finally, Section 7.5 summarizes this chapter.

7.1 Problem and Contributions

When a failure happens, system monitors will render a large
number of alerts to capture different failure symptoms [29, 25,
191], which can help engineers quickly obtain a big picture of
the failure and pinpoint the root cause. For example, “Special
instance cannot be migrated” is a critical network failure in
Virtual Private Cloud (VPC) service. Alert “Tunnel bearing

126

CHAPTER 7. GRAPH-BASED ALERT AGGREGATION 127

network pack loss” is a signal for this network failure, which
is caused by the breakdown of a physical network card on the
tunnel path. Due to the large scale and complexity of online
service systems, the number of alerts is overwhelming the existing
alert management systems [28, 29, 191]. When a service failure
occurs, aggregating related alerts can greatly reduce the number
of alerts that need to be investigated. For example, linking alerts
caused by a hardware issue can provide engineers with a clear
picture of the failure, e.g., the type of the hardware error or the
specific malfunctioning components. Without automated alert
aggregation, engineers may need to go through each alert to
discover the existence of such a problem and collect all related
alerts to understand it. Moreover, alert aggregation can also
facilitate failure diagnosis. In cloud systems, some trivial alerts
are being generated continuously, and multiple (independent)
failures can happen simultaneously. Identifying correlated alerts
can therefore accelerate the process of root cause localization.

To aggregate related alerts, one straightforward way is to
measure their textual similarity [191, 25]. For example, alerts
that share similar titles are likely to be related. Besides textual
similarity, system topology (e.g., service dependency, network
IP routing) is also an important feature to resort to. Due to
the dependencies among online services, failures often have a
cascading effect on other interdependent services. A service
dependency graph can help track related alerts caused by such
an effect. However, as cloud systems often possess a certain fault-
tolerant capability, some services may not report alerts, impeding
the tracking of failures’ impact (as introduced in Section 2.6).
This issue is ubiquitous in production systems, which has not yet
been properly addressed in existing work. Moreover, the patterns
of alerts are collectively influenced by different factors, such as
their topological and temporal locality. Existing work [191, 25]
combine them by a simple weighted sum, which may not be able

CHAPTER 7. GRAPH-BASED ALERT AGGREGATION 128

to reveal the latent correlations among alerts.
In this chapter, we present Girdle (which stands for Graph

representatIon leaRning-baseD aLert aggrEgation), which is
an alert aggregation framework to assist engineers in failure
understanding and diagnosis. Different from the existing work
of alert storm handling [191] and linked alert identification [25],
we do not rely on alerts’ textual similarity. Moreover, we learn
alerts’ topological and temporal correlations in a unified manner
(instead of by a weighted combination). Traditional applications
of graph representation learning often learn the semantics of
a fixed graph. Unlike them, we propose to learn a feature
representation for each unique type of alert, which can appear
in multiple places on the graph. The representation encodes the
historical co-occurrence of alerts and their topological structure.
Thus, they can be naturally used for alert aggregation in online
scenarios. To track the impact graph of a failure (i.e., the
alerts triggered by the failure), we exploit more fine-grained
system signals, i.e., metrics, as auxiliary information to discover
the scope of its cascading effect. Metrics profile the impact of
failures in a more sophisticated way. Therefore, if two services
exhibit similar abnormal behaviors (characterized by alerts and
metrics), they should be suffering from the same problems even
if no alerts have been reported. Finally, we apply community
detection algorithms to find the scope of different failures.

This work aims to assist engineers in failure understanding
and diagnosis with online alert aggregation, which is to aggre-
gate alerts caused by the same failure. When services encounter
failures, alerts that capture different failure symptoms constitute
an essential source for engineers to conduct a diagnosis. How-
ever, it is time-consuming and tedious for engineers to manually
examine each alert for failure investigation when faced with such
an overwhelming number of alerts. Online alert aggregation is
to cluster relevant alerts when they come in a streaming man-

CHAPTER 7. GRAPH-BASED ALERT AGGREGATION 129

Table 7.1: Examples of Alert Aggregation

No. Alert Title Time Pod Severity

1

 A

le
rt

gr
ou

p
1

Virtual machine is in abnormal state 2020/10/09 19:40 pod01 Low

2 Virtual network interface receive lost ratio over 20% 2020/10/09 19:40 pod02 High

3 Traffic burst seen in Nginx node 2020/10/09 19:40 pod02 Low

4 Traffic burst seen in LVS (Linux Virtual Server) node 2020/10/09 19:41 pod09 Medium

5 OSPF (Open Shortest Path First) protocol state change 2020/10/09 19:41 pod04 Medium

6

 A

le
rt

gr
ou

p
2

Excessive I/O delay of storage disk 2020/10/12 14:34 pod09 Medium

7 Component failure 2020/10/12 14:34 pod05 High

8 Hard disk failure 2020/10/12 14:34 pod09 Medium

9 Database account login error 2020/10/12 14:34 pod18 Medium
10 Monitor detected customer-impacting alerts for Storage in [AZ1] 2020/10/12 14:35 pod10 Medium

ner (i.e., continuously reported by the system). Examples are
presented in Table 7.1, where items in blue and gray belong to
two groups of aggregated alerts. The first group shows a virtual
network failure. Note that only the No.3 and No.4 alerts share
some words in common, while others do not. Meanwhile, the
second group describes a hardware failure and, more specifically,
a storage disk error. Engineers can benefit from such alert ag-
gregation as the problem scope is narrowed down to each alert
group. However, accurately aggregating alerts for online service
systems is challenging. We have identified three main reasons:

• Background noise. Although related alerts are indeed
generated around the same time, many other cloud compo-
nents are also constantly rendering alerts. These alerts are
primarily trivial issues and therefore become background
noise. Alert aggregation based on temporal similarity would
suffer from a high rate of false positives.

• Dissimilar textual description. Text (e.g., alert title and
summary) similarity is an essential metric for alert correla-
tion, which has been widely used in existing work [191, 25].
However, in reality, related alerts, especially critical ones,
do not necessarily have similar titles. Failing to correlate

CHAPTER 7. GRAPH-BASED ALERT AGGREGATION 130

failure-impact graph 1 failure-impact graph 2

0.90.7

0.7 0.3

A

B

C

D

E F

HG

0.8

0.8

Service failure detection Failure-impact graph completion Graph representation learning Online alert aggregation

B F

A

C

D

E

G H

Figure 7.1: The Overall Framework of Girdle

such critical alerts greatly hinders root cause diagnosis.
• Unclear failure-impact graph. To correlate alerts ac-
curately, we need to estimate the impact graph of service
failures. As discussed in Section 2.6.2, this task is challeng-
ing. alerts alone are insufficient to completely reflect the
impact of failures on the entire system. Therefore, we need
to utilize more fine-grained information about the failures.

7.2 Methodology

7.2.1 Overview

In cloud systems, a large number of monitors are configured
to continuously monitor the state of its services from different
aspects. Many alerts rendered by the monitors tend to co-
occur due to their underlying dependencies. For example, some
failure symptoms often appear together, and some alerts may
develop a causal relationship. Our main idea is to capture the co-
occurrences among alerts by learning from historical failures. In
online scenarios, such correlations can be leveraged to distinguish
correlated alerts that are generated in streams.

The overall framework of Girdle is illustrated in Figure 7.1,
which consists of four phases, i.e., service failure detection, failure-
impact graph completion, graph representation learning, and
online alert aggregation. The first phase tries to identify the

CHAPTER 7. GRAPH-BASED ALERT AGGREGATION 131

occurrence of service failures and retrieves different types of
monitoring data, including alerts, metric time series, and service
system topology. In the second phase, we try to identify the
alerts that are triggered by each individual failure detected above.
More often than not, it is hard to precisely identify the impact
scope of failures (as discussed in Section 2.6.2), which hinders the
learning of alerts’ correlations. Therefore, we utilize the trends
observed in metric curves to auto-complete the failure-impact
graphs. After obtaining the set of alerts associated with each
failure, in the third phase, an embedding vector is learned for
different types of alerts by leveraging existing graph representa-
tion learning models [60, 198]. Such representation encodes not
only the temporal locality of alerts, but also their topological
relationship. In the final phase, the learned alert representation
will be employed for online alert aggregation by considering their
cosine similarity and topological distance. In particular, we do
not explicitly consider the dynamic change of a system topology
because the changes often happen to a small area of the topol-
ogy, e.g., container creation or kill. Girdle essentially learns
the correlations among alerts, which are also applicable to the
changed portion of the topology. Nevertheless, when the system
topology goes through a significant alteration, our framework is
efficient enough to support quick model retraining.

7.2.2 Service Failure Detection

Due to the cascading effect, when service failures occur, a large
number of alerts are often reported in a short period of time.
Thus, setting a fixed threshold for the average number of reported
alerts (e.g., #alerts/min>50) could be a reasonable criterion to
detect failures. However, such a design suffers from a trade-off
between false positives and false negatives due to online service
systems’ complex and ever-changing nature [191]. For example,

CHAPTER 7. GRAPH-BASED ALERT AGGREGATION 132

different services have distinct sensitivity to the number of alerts,
and continuous system evolution/feature upgrades could change
the threshold. Thus, a self-adaptive algorithm is more desirable.

For time-series data, anomalies often manifest themselves as
having a large magnitude of upward/downward changes. Ex-
treme Value Theory (EVT) [150] is a popular statistical tool to
identify data points with extreme deviations from the median
of a probability distribution. It has been applied to predicting
unusual events, e.g., severe floods and tornado outbreaks [38], by
finding the law of extreme values that usually reside at the tail
of a distribution. Moreover, it requires no hand-set thresholds
and makes no assumptions about data distribution. In this work,
we follow [150, 191] to detect bursts in time series of the number
of alerts per minute. As a typical time series anomaly detection
problem, other approaches (e.g., [99, 75]) in this field are also
applicable. The bursts are regarded as the occurrence of service
failures. This algorithm can automatically learn the normality
of the data in a dynamic environment and adapt the detection
method accordingly. Figure 7.1 (phase one) presents an example
of service failure detection, where all abnormal spikes are success-
fully found by the decision boundary (the orange dashed line).
For consecutive bins that are marked as anomalies, we regard
them as one failure because failures may last for more than one
minute. The next phase will distinguish multiple (independent)
failures that happen simultaneously. Particularly, the detection
algorithm is only required to have a high recall, and the precision
is of less importance. It is because the goal of the follow-up two
phases is to find the correlations between alerts. Such correlation
rules will not be violated even if alerts are not appearing together
during actual cloud failures.

CHAPTER 7. GRAPH-BASED ALERT AGGREGATION 133

7.2.3 Failure-Impact Graph Identification

In the first phase, the number of alerts per minute is calculated,
and alert bursts are regarded as the occurrence of service failures.
For each failure, the alerts collected from the entire system are not
necessarily related to it. This is because: 1) while some services
are suffering from the failure, others may continuously report
alerts (could be trivial and unrelated issues); and 2) multiple
service failures could happen simultaneously. Therefore, we need
to identify the set of alerts for each individual failure that is
generated due to the cascading effect.

To this end, the concept of community detection is exploited.
Community detection algorithms aim to group the vertices of a
graph into distinct sets, or communities, such that there exist
dense connections within a community and sparse connections
between communities. Each community represents a collection
of alerts rendered by the common service failure, in which the
correlations among alerts can be explored. A comparative review
of different community detection algorithms is available in [176].
In this work, we employ the well-known Louvain algorithm [10],
which is based on modularity maximization. The modularity of a
graph partition measures the density of links inside communities
compared to links between communities. For weighted graphs,
the modularity can be calculated as follows [10]:

M =
1

2m

∑
i,j

[Wi,j −
kikj
2m

]δ(ci, cj) (7.1)

where Wij is the weight of the link between node i and j, ki =∑
j Wij sums the weights of the links associated with node i, ci

is the community to which node i is assigned to, m = 1
2

∑
ij Wij,

and the δ(u, v) = 1 if u = v and 0 otherwise.
To better understand the identification of failure-impact graphs

using community detection, an illustrating example is depicted

CHAPTER 7. GRAPH-BASED ALERT AGGREGATION 134

in Figure 7.1 (phase two). In this case, except for nodes B and
F , other nodes all report alerts. By conducting community de-
tection, we obtain two communities: {A,B,C} and {C,E, F,G},
which are regarded as the complete impact graph of their respec-
tive failure. The weight between nodes is provided with their
link. We can see that intra-community links all have a relatively
large weight. Such a partition can achieve the best modularity
score for this example. Particularly, node H is excluded from
the second community due to the small weight of its connection
to node F .

To apply community detection, the weight between two nodes
should be defined. Inspired by [104], we combine metrics with
alerts to calculate the behavioral similarity between two nodes
and use the similarity value as the weight. Specifically, the weight
is composed of two parts, i.e., alert similarity and metric trend
similarity.

Alert similarity

Th alert similarity is to compare the alerts reported by two nodes.
Typically, if two nodes encounter similar errors, they will render
similar types of alerts. Jaccard index is employed to quantify
such similarity, which is defined as the size of the intersection
divided by the size of the union of two alert sets:

Jaccard(i, j) =
|inc(i) ∩ inc(j)|
|inc(i) ∪ inc(j)|

(7.2)

where inc(i) is the alerts reported by node i. In particular, we
allow duplicate types of alerts in each set by assigning them a
unique number. This is because the distribution of alert types
also characterizes the failure symptoms.

CHAPTER 7. GRAPH-BASED ALERT AGGREGATION 135

0 200 400 600 800 1000
Time point

0

20

40

60

80

100

CP
U

Ut
iliz

at
io

n
(%

) server one
server two
server three
server four

Figure 7.2: CPU Usage Curve of Four Servers

Metric trend similarity

As discussed in Section 2.6, some services may remain silent
when failures happen, hindering the tracking of related alerts.
To bridge this gap, we resort to metrics, which are more sophisti-
cated monitoring signals. Intuitively, the metric trend similarity
measures the underlying consistency of cloud components’ ab-
normal behaviors, which cannot be captured by alerts alone.
An example is shown in Figure 7.2, which records the CPU
utilization of four servers. Clearly, the curve of the first three
servers exhibits a highly similar trend, while such a trend cannot
be observed in server four. The implication is that the first
three servers are likely to be suffering from the same issue and
thus should belong to the same community. We adopt dynamic
time warping (DTW) [81] to measure the similarity between
two temporal sequences with varying speeds. We observe the
issue of temporal drift between two time series, which is common
as different cloud components may not be affected by a failure
simultaneously during its propagation. Also, the clock of two
nodes may not always synchronized, so their metric may not
aligned. Therefore, DTW fits our scenario.

The remaining problem is which metrics should be utilized for

CHAPTER 7. GRAPH-BASED ALERT AGGREGATION 136

similarity evaluation. Normal metrics which record the system’s
normal status should be excluded as they provide trivial and
noisy information. Therefore, EVT introduced in phase one is
utilized again to detect anomalies for each metric. Only the
abnormal metrics shared by two connected cloud components
will be compared. In particular, we can incorporate ADSketch
proposed in Chapter 6 to make the metric similarity more inter-
pertable. Specifically, with the help of ADSketch, we are able
to figure out what anomalies two services are experiencing to
determine whether they should be correlated. However, this
requires building a knowledge pool of the correlations between
anomalies. As metric similarity can serve as a good indicator of
whether two services are suffering from the same problem, the
exploration of interpretability is left for future work. Finally,
when there exists more than one type of abnormal metric, we
use the average similarity score calculated as follows:

DTW (i, j) =
1

K

K∑
k=1

dtw(tik, t
j
k) (7.3)

where K is the number of metrics to compare for node i and
j, tik is the kth metric of node i, and dtw(u, v) measures the
DTW similarity between two metric time series u and v, which
is normalized for path length. The weight Wij between node i
and j is computed by taking the weighted sum of the two types
of similarities as follows:

Wij = α× Jaccard(i, j) + (1− α)×DTW (i, j) (7.4)

where the balance weight α is a hyper-parameter. In our experi-
ments, if two nodes both report alerts, we set it as 0.5; otherwise,
it is set to be 0, i.e., only the metric trend similarity is considered.

Finally, for each discovered community, the alerts inside it
form the complete impact graph of the service failure. Note

CHAPTER 7. GRAPH-BASED ALERT AGGREGATION 137

that in online scenarios, we cannot directly adopt the techniques
introduced in this phase for alert aggregation. This is because
they involve a comparison between different metrics, which are
not complete until the failures fully manifest themselves. Thus,
the comparison is often delayed and inefficient. Moreover, they
can be error-prone without fully considering the historical cases.

7.2.4 Graph-based Alert Representation Learning

After obtaining the impact graph for each service failure (i.e., the
actual alerts triggered by it), we can learn the correlations among
alerts. Such correlations describe the sets of alerts that tend to
appear together. FP-Growth proposed by Han et al. [61] is a
standard algorithm to mine such frequent item sets. However,
our analysis reveals the following drawbacks it possesses for our
problem:

• It is vulnerable to background noise. In production envi-
ronments, some simple alerts are constantly being reported,
e.g., “High CPU utilization rate”. These alerts will appear
in many transactions (a collection of items that appear to-
gether) for FP-Growth. As a result, unrelated alerts might
be put into the same frequent item set due to sharing such
alerts. These simple alerts cannot be trivially removed as
they provide necessary information about a system, and a
burst of such alerts can also indicate serious problems.

• It cannot handle alerts with a low frequency. FP-Growth
has a parameter called support, which describes how fre-
quently an item set is in the dataset. Alert sets with a low
support value will be excluded to guarantee the statistical
significance of the results. However, more often than not,
such alert sets are more important, as they report some
critical failures that do not happen frequently.

In online service systems, different resources (e.g., microser-

CHAPTER 7. GRAPH-BASED ALERT AGGREGATION 138

vices and devices) are naturally structured in graphical forms,
such as service dependency and network IP routing. Therefore,
graph representation learning [60] can be an ideal solution to
deal with the above issues. Graph representation learning is an
essential and ubiquitous task with applications ranging from drug
design to friendship recommendation in social networks. It aims
to find a representation for graph structure that preserves the
semantics of the graph. A typical graph representation learning
algorithm learns an embedding vector for all nodes of a graph.
For example, Chen et al. [25] employed node2vec [56] to learn
a feature representation for cloud components. Different from
them, we propose to learn a representation for each unique type
of alert, which can appear in multiple places on the graph. In our
framework, we employ DeepWalk [130] because of its simplicity
and superior performance. DeepWalk belongs to the class of
shallow embedding approaches that learn the node embeddings
based on random walk statistics. The basic idea is to learn an
embedding ϑi for node vi in graph G such that:

EMB(ϑi, ϑj) ≜
eϑi·ϑj∑

vk∈V e
ϑi·ϑk
≈ pG,T (vj|vi) (7.5)

where V is the set of nodes in the graph and pG,T (vj|vi) is the
probability of visiting vj within T hops of distance starting at vi.
The loss function to maximize such probability is:

L =
∑

(vi,vj)∈D

−log(EMB(ϑi, ϑj)) (7.6)

where D is the training data generated by sampling random walks
starting from each node. Readers are referred to the original
paper [130] for more details.

For each failure-impact graph, alert sequences are generated
through random walks starting from every node inside. In reality,
each node usually generates more than one alert when failures

CHAPTER 7. GRAPH-BASED ALERT AGGREGATION 139

happen. Our tailored random walk strategy therefore contains
two hierarchical steps. In the first step, a node is chosen by
performing random walks on the node level; in the second step,
an alert will be randomly selected from those reported by the
chosen node. Duplicate types of alerts in a node will be kept
because the frequency is also an essential feature of alerts (it
impacts the probability of being selected). Following the original
setting of [56], we set the walk length as 40, i.e., each alert
sequence will contain 40 samples. Finally, the alert sequences
will be fed into a Word2Vec model [118] for embedding vector
learning. The Word2Vec model has two crucial hyper-parameters:
the window size and the dimension of the embedding vector. We
set the window size as ten by following [56] and the dimension
as 128. In particular, by considering the topological distance
between alerts, we can alleviate the problem of background noise.
This is because as the distance increases, the impact of noisy
alerts gradually weakens, while in FP-Growth, all alerts play an
equivalent role in a transaction.

7.2.5 Online Alert Aggregation

With the learned alert representation from the last phase, we can
conduct alert aggregation in production environments, where
the alerts come in a streaming manner. Each group of aggre-
gated alerts represents a specific type of service issue, such as
a hardware issue, network traffic issue, network interface down,
etc. The EVT-based method also plays a role in this phase by
continuously monitoring the number of alerts per minute. If it
alerts a failure, the online alert aggregation will be triggered.
When two alerts, say i and j, appear consecutively, Girdle
measures their similarity. If the similarity score is greater than a
predefined threshold, they will be grouped together immediately.
In particular, the similarity score consists of two parts, i.e., his-

CHAPTER 7. GRAPH-BASED ALERT AGGREGATION 140

torical closeness (HC) and topological rescaling (TR), which are
defined as follows:

HC(i, j) =
ϑi · ϑj

∥ϑi∥ × ∥ϑj∥

TR(i, j) =
1

max(1, d(i, j)− T)

(7.7)

where ϑi and ϑj are the embedding vectors of alert i and j (as
described in Section 7.2.4), respectively; d(i, j) is the topological
distance between i and j, which is the number of hops along their
shortest path in the system topology; and T is the threshold for
considering the penalty of long distance. That is, the topological
rescaling becomes effective (i.e., <1) only if their distance is
larger than T . In our experiments, T is set as four. Incorrect
correlations will be learned if T is too large, while important
correlations will be missed if T is too small. Our experiments
show similar results when T is in [3, 6]. Cosine similarity is
adopted to calculate the historical closeness, which is related to
their co-occurrences in the past. Finally, the similarity between
i and j can be obtained by taking the product of TR(i, j) and
HC(i, j):

sim(i, j) = TR(i, j)×HC(i, j)

=
1

max(1, d(i, j)− T)
× ϑi · ϑj

∥ϑi∥ × ∥ϑj∥
(7.8)

We set an aggregation threshold λ for sim(i, j) to consider
whether or not two alerts are correlated:

cor(i, j) =

{
1, if sim(i, j) ≥ λ

0, otherwise
(7.9)

In our experiments, λ is empirically set as 0.7. In particular, the

CHAPTER 7. GRAPH-BASED ALERT AGGREGATION 141

distance of an alert to a group of alerts is defined as the largest
value obtained through element-wise comparison.

7.3 Experiments

In this section, we evaluate our framework using real-world alerts
collected from industry. Particularly, we aim to answer the
following research questions.

RQ1: How effective is the service failure detection module of
Girdle?

RQ2: How effective is Girdle in alert aggregation?
RQ3: Can the failure-impact graph help alert aggregation?

7.3.1 Experiment Setting

Dataset

Alert aggregation is a typical problem across different online
service systems. In this experiment, we select a representative,
large-scale system, i.e., the Networking service of Huawei Cloud,
to evaluate the proposed framework. Besides offering traditional
services such as Virtual Network, VPN Gateway, it also fea-
tures intelligent IP networks and other next-generation network
solutions. In particular, the service system comprises a large
and complex topological structure. In the layer of infrastruc-
ture, platform, and software, it has multiple instances of virtual
machines, containers, and applications, respectively. In each
layer, their dependencies form a topology graph. The cross-layer
topology is mainly constructed by their placement relationships,
i.e., the mappings between applications, containers, and virtual
machines. Like other cloud enterprises, Huawei Cloud’s resources
are hosted in multiple regions and endpoints worldwide. Each
region is composed of several availability zones (isolated locations
within regions from which public online services originate and

CHAPTER 7. GRAPH-BASED ALERT AGGREGATION 142

operate) for service reliability assurance. The alert management
of the Networking service is also conducted in a multi-region way,
with each region having relatively isolated issues. We collect
alerts generated between May 2020 and November 2020, during
which the Networking service reported a large number of alerts.
Although we conduct the evaluation of a single online service
system, we believe Girdle can be easily applied to other online
service systems and bring them benefits.

To evaluate the effectiveness of Girdle, experienced domain
engineers manually labeled related alerts. Thanks to the well-
designed alert management system with user-friendly interfaces,
the engineers can quickly perform the labeling. Note that the
manual labels are only required for evaluating the effectiveness
of our framework, which is unsupervised. To calculate the met-
ric trend similarity, we adopt the following metrics, which are
suggested by the engineers:

• CPU utilization refers to the amount of processing resources
used.

• Round-trip delay records the amount of time it takes to
send a data packet plus the time it takes to receive an
acknowledgment of that data packet.

• Port in-bound/out-bound traffic rate refers to the average
amount of data coming-in to/going-out of a port.

• In-bound packet error rate calculates the error rate of the
packet that a network interface receives.

• Out-bound packet loss rate calculates the loss rate of the
packet that a network interface sends.

These metrics are representative that characterize the basic
states of the Networking service system. In particular, CPU
utilization is monitored for different containers and virtual ma-
chines, while the remaining metrics are monitored for the virtual
interfaces of each network device. Each metric is calculated or

CHAPTER 7. GRAPH-BASED ALERT AGGREGATION 143

Table 7.2: Dataset Statistics

Dataset Training period Testing period #alerts #failures

Dataset1 2020 May - July 2020 Aug. ∼18k/∼8k 105/46
Dataset2 2020 May - Aug. 2020 Sept. ∼26k/∼10k 151/52
Dataset3 2020 May - Sept. 2020 Oct. ∼36k/∼8k 203/38

sampled every minute. We collect two hours of data to measure
the metric trend similarity. Note that the set of metrics can be
tailored for different systems. For example, a database service
may also care about the number of failed database connection
attempts, the number of SQL queries, etc.

We select the largest ten availability zones for experiments,
each of which contains a large system topology. Six months
of production alerts are collected from the Networking service
of Huawei Cloud. The number of distinct alert types is more
than 3,000. Similar to [191, 69, 99], we conduct three groups of
experiments using alerts reported in the first four months, the
first five months, and all months, respectively. In all periods,
alert aggregation is applied to the failures that happened in
the last month based on the alert representations learned from
previous months. Table 7.2 summarizes the dataset. For column
#alerts (resp. #failures), the first figure calculates the alerts
(resp. failures) captured during the training period, while the
second figure shows that of the testing period. Particularly,
some failures are of small scale and can be quickly mitigated,
while others are cross-region and become an expensive drain on
the company’s revenue. We can see each failure is associated
with roughly 200 alerts, demonstrating a strong need for alert
aggregation.

CHAPTER 7. GRAPH-BASED ALERT AGGREGATION 144

Evaluation Metrics

For RQ1, which is a binary classification problem, we employ
precision, recall, and F1 score for evaluation. Specifically, preci-
sion measures the percentage of alert bursts that are successfully
identified as service failures over all the alert bursts that are
predicted as failures: precision = TP

TP+FP . Recall calculates
the portion of service failures that are successfully identified by
Girdle over all the actual service failures: recall = TP

TP+FN .
Finally, F1 score is the harmonic mean of precision and recall:
F1 score = 2×precision×recall

precision+recall . TP is the number of service failures
that are correctly discovered by Girdle; FP is the number of
trivial alert bursts (i.e., no failure is actually happening) that
are wrongly predicted as service failures by Girdle; FN is the
number of service failures that Girdle fails to discover.

For RQ2 and RQ3, we choose Normalized Mutual Information
(NMI) [152], which is a widely used metric for evaluating the
quality of clustering algorithms. The value of NMI ranges from
0 to 1 with 0 indicating the worst result (no mutual information)

and 1 the best (perfect correlation): NMI(Ω,C) = 2×I(Ω;C)
H(Ω)+H(C) ,

where Ω is the set of clusters, C is the set of classes, H(·) is the
entropy, and I(Ω;C) calculates and mutual information between
Ω and C.

Implementation

Our framework is implemented in Python. We parallelize our
experiments by assigning availability zones to different processors.
The output of each processor is a list of alert sequences generated
through a random walk, which we merge and feed to a Word2Vec
model implemented with Gensim [207], an open-source library
for topic modeling and natural language processing. We run
our experiments on a machine with 20 Intel(R) Xeon(R) Gold
6148 CPU @ 2.60GHz, and 256GB of RAM. The results show

CHAPTER 7. GRAPH-BASED ALERT AGGREGATION 145

that each phase of our framework takes only a few seconds. The
last phase can even produce results in a real-time manner as it
only involves simple vector calculation. Thus, our framework
can quickly respond in online scenarios. This demonstrates that
Girdle is of high efficiency.

7.3.2 Comparative Methods

The following methods are selected for comparative evaluation.

• FP-Growth [61]. FP-Growth is a widely-used algorithm for
association pattern mining. It is utilized as an analytical
process that finds a set of items that frequently co-occur
in datasets. In our experiments, each impact graph is re-
garded as a transaction for this algorithm. Given a set of
impact graphs, it searches alerts that often appear together,
regardless of their distance.

• UHAS [191]. This approach is proposed by Zhao et al.
aiming at handling alert storms for online service systems.
Similar to alert bursts, alert storms also serve as a signal
for service failures. Particularly, UHAS employs DBSCAN
for alert clustering based on their textual and topological
similarity. The textual similarity between the two alerts is
measured by Jaccard distance. The topological similarity
considers two types of topologies, i.e., software topology
(service) and hardware topology (server). The topological
distance is computed by the shortest path length between
two nodes. Finally, a weighted combination of the two types
of similarities yields the final similarity score.

• LiDAR [25]. LiDAR is a supervised method proposed by
Chen et al. to identify linked alerts in large-scale online ser-
vice systems. Specifically, LiDAR is composed of two mod-
ules, i.e., the textual encoding module and the component
embedding module. The first module produces similar rep-

CHAPTER 7. GRAPH-BASED ALERT AGGREGATION 146

resentations for the text description of linked alerts, which
are labeled by engineers. In the evaluation stage, the tex-
tual similarity between two alerts is measured by the cosine
distance of their representations. The second module learns
a representation of the system topology (instead of alerts).
The final similarity is calculated by taking a weighted sum
of both parts. As LiDAR is supervised, it would be unfair to
compare it with other unsupervised methods. Considering
the success of the Word2Vec model [118, 117] in identifying
semantically similar words (in an unsupervised manner),
we alter LiDAR to be unsupervised to fit our scenario by
representing the text of alerts with off-the-shelf word vec-
tors [80].

7.3.3 Experimental Results

RQ1: The Effectiveness of Girdle’s Service Failure Detection

To answer this research question, we compare Girdle with the
fixed thresholding method on three datasets and report precision,
recall, and F1 score. Thresholding remains an effective way for
anomaly detection in production systems and serves as a baseline
in much existing work. Since both methods require no parameter
training, we use them to detect failures for both the training
data and evaluation data. Particularly, the threshold of the
baseline method is #alerts/min>50, which is recommended by
field engineers. Moreover, the ground truth is obtained directly
from the historical failure tickets, which are stored in the alert
management system.

The results are shown in Table 7.3, where Girdle outper-
forms the fixed thresholding in all datasets and metrics. In
particular, Girdle achieves an F1 score of more than 0.93 in dif-
ferent datasets, demonstrating its effectiveness in service failure
detection. Indeed, we observe that some failures may not always

CHAPTER 7. GRAPH-BASED ALERT AGGREGATION 147

Table 7.3: Experimental Results of Service Failure Detection

Dataset Metric Thresholding Girdle

Dataset1
Precision 0.711 0.917
Recall 0.913 0.957

F1 Score 0.799 0.937

Dataset2
Precision 0.831 0.944
Recall 0.942 0.981

F1 Score 0.883 0.962

Dataset3
Precision 0.648 0.925
Recall 0.921 0.974

F1 Score 0.761 0.949

Table 7.4: Experimental Results of Alert Aggregation

Method Dataset1 Dataset2 Dataset3

FP-Growth 0.481 0.523 0.546
UHAS 0.697 0.71 0.707
LiDAR 0.742 0.758 0.826
Girdle 0.831 0.866 0.912

incur a large number of alerts at the beginning. However, if ig-
nored, they could become worse and end up yielding more severe
impacts across multiple services. Fixed thresholding does not
possess the merit of threshold adaptation based on the context
and thus produces many false positives. Girdle outperforms it
for being able to adjust the threshold automatically.

RQ2: The Effectiveness of Girdle in Alert Aggregation

We compare the performance of Girdle against a series of
baseline methods for alert aggregation. Table 7.4 shows the NMI
values of different experiments. From dataset 1 to 3, Girdle
achieves an NMI score of 0.831, 0.866, and 0.912, respectively,

CHAPTER 7. GRAPH-BASED ALERT AGGREGATION 148

while the best results from the baseline methods are 0.742, 0.758,
and 0.826, all attained by LiDAR. LiDAR outperforms UHAS
by explicitly considering the entire system topology. Except for
UHAS, all approaches achieve better performance with more
training data available. This is because UHAS directly works
on alert storms when failures are detected. Without learning
from history, it cannot handle complicated scenarios. Recall that
both UHAS and LiDAR rely on the textual similarity between
alerts. However, in our system, related alerts do not necessarily
possess similar text descriptions. For example, there is a clear
correlation between the alert “Traffic drops sharply in vRouter”
and “OS network ping abnormal” in VPC service, which tends
to be missed by them. Moreover, monitors that render alerts are
configured by multiple service teams, which further damages the
credit of textual similarity. This is particularly true for some
critical alerts because they are often tailored for special system
errors, which may not be shared across different services. On the
other hand, although Girdle does not explicitly leverage the
alert’s textual features, our experiments show that it is capable
of correlating alerts that share some common words, e.g., “VPC
service tomcat port does not exist” and “VPC service tomcat
status is dead.” This is because such a relationship is reflected
in their temporal and topological locality, which can be precisely
captured by alerts’ representation vectors.

Another observation is that FP-Growth does not fit the task of
alert aggregation, whose best NMI score is 0.546. As discussed in
Section 7.2.4, this method is not robust against background noise.
Indeed, in the system, some trivial alerts (e.g., “Virtual machine
is in abnormal state”) are continuously being reported, which
may connect alerts from distinct groups. Furthermore, many
essential alerts are excluded by this method due to low frequency,
which is undesirable. This problem can be effectively alleviated
by leveraging the topological relationship between alerts as done

CHAPTER 7. GRAPH-BASED ALERT AGGREGATION 149

by other approaches. According to Equation 7.5, the impact
of background noise weakens with distance. However, in FP-
Growth, each alert co-occurrence will be counted equally towards
the final association rules. UHAS considers the topological
similarity by simply calculating the distance. LiDAR employs a
more expressive machine learning model, i.e., node2vec [56], an
algorithmic framework for learning a continuous representation
of a network’s nodes. However, they both ignore the problem
of incomplete failure-impact graph, which is a common issue
in online service systems according to our study. The necessity
of completing the impact graph will be demonstrated in RQ3.
Moreover, different from the traditional applications of graph
representation learning, we learn a representation for each unique
type of alert, compactly encoding its relationship with others.

RQ3: The Necessity of the Failure-Impact Graph for Alert Aggre-
gation

We demonstrate the importance of impact graphs by creating
a variant of Girdle without the phase of failure-impact graph
completion (i.e., phase two in Figure 7.1), denoted as Girdle′.
We follow LiDAR to remove this feature, which considers two
alerts as related only when they are directly connected in the
system topology. The experimental results are presented in
Table 7.5, where we can see a noticeable drop in the NMI score
for all datasets. Due to the high complexity and large scale of
online service systems, monitors are often configured in an ad-
hoc manner. These monitors may not be able to accommodate
the ever-changing systems and environments. Thus, some alerts
are not successfully captured by them. System engineers may
incorrectly perceive the service as healthy, which is a typical
situation of gray failures [74]. Without completing the impact
graph of failures, the true correlations among alerts cannot be
fully recovered.

CHAPTER 7. GRAPH-BASED ALERT AGGREGATION 150

Table 7.5: Experimental Results of Alert Aggregation using Girdle (w/ and
w/o failure-impact graph completion)

Method Dataset1 Dataset2 Dataset3

Girdle 0.831 0.866 0.912
Girdle′ 0.782 0.808 0.846

7.3.4 Threats to Validity

During our study, we have identified the following major threats
to the validity.

Labeling noise. Our experiments are conducted based on
six months of real-world alerts collected from Huawei Cloud.
The evaluation requires engineers to inspect and label the alerts
manually. Label noises (false positives/false negatives) may be
introduced during the manual labeling process. However, the
engineers we invite are cloud system professionals and have years
of system troubleshooting experience. Moreover, the labeling
work can be done quickly and confidently thanks to the alert man-
agement system, which has user-friendly interfaces. Therefore,
we believe the amount of noise is small (if it exists).

Selection of study subjects. In our experiments, we only
collect alerts from one online service of Huawei Cloud, i.e., the
Networking service. This is a large-scale service that supports
many upper-layer services, such as web application, virtual ma-
chine. Sufficient data can be collected from this service system.
Another benefit we can enjoy is that the topology of the Network-
ing service system is readily available and accurate. Although we
use the Networking service as the subject, our proposed frame-
work is generalizable, as this service is a typical, representative
online service. Thus, we believe Girdle can be applied to other
services and cloud computing platforms and benefit them.

The second type of subject that could threaten the validity

CHAPTER 7. GRAPH-BASED ALERT AGGREGATION 151

is the metric. In production systems, there is a large number
of metrics available to gauge the similarity between two nodes.
Although we only select six representative metrics (as presented
in Section 7.3.1), they record the basic and critical states of a
service component. Thus, we believe they are able to profile the
service system comprehensively.

Implementation and parameter setting. The implemen-
tation and parameter setting are two critical internal threats
to the validity. To reduce the threat of implementation, we
employ peer code review. Specifically, the authors are invited to
carefully check others’ code for mistakes. In terms of parameter
setting, we conduct many groups of comparative experiments
with different parameters. We choose the parameters by following
the original work or empirically based on the best experimental
results. In particular, we found Girdle is not very sensitive to
the parameter setting.

7.4 Discussion

7.4.1 Success Story

Girdle has been successfully incorporated into the alert man-
agement system of Huawei Cloud. Based on the positive feedback
we have received, on-site engineers (OSEs) highly appreciated
the novelty of our approach and benefited from it during their
daily system maintenance. Specifically, OSEs confirmed the dif-
ficulty of the auto-detection of service failures in the existing
monitoring system. This is because simple detection techniques
(e.g., fixed thresholding) are widely adopted. Girdle introduces
more intelligence and automation by leveraging EVT-based alert
burst detection. Interestingly, OSEs found problems for some
monitors by comparing their configurations with the aggregated
alerts, including wrong names, missing information, etc. Mean-

CHAPTER 7. GRAPH-BASED ALERT AGGREGATION 152

while, during failure diagnosis, alert aggregation assists OSEs
in reducing their investigation scope. Before the deployment of
Girdle, they would have to examine a large number of alerts
to locate the failures.

To quantify the practical benefits conveyed to the Networking
service system, we further collect failure tickets generated during
November 2020. In total, 26 failures are recorded. We calculate
the average failure handling time in November and compare it
with that in August, September, and October. Results show that
the time reduction rate is 24.8%, 21.9%, and 18.6%, respectively,
demonstrating the effectiveness of Girdle in accelerating the
alert management of Huawei Cloud.

7.4.2 Lessons Learned

Optimizing monitor configurations. Today, popular online
services are serving tens of millions of customers. During daily
operations, they can produce terabytes and even petabytes of
telemetry data such as metrics, logs, and alerts. However, the
majority of these data do not contain much valuable information
for service failure analysis. For example, a significant portion
of metrics only record plain system runtime states; most of the
alerts are trivial and likely to mitigate automatically with time.
The configuration of system monitors should be optimized to
report more important yet fewer alerts. In the meantime, monitor
configurations show different styles across different service teams,
making the monitoring data heterogeneous. Standards should
be established for monitor configurations so that high-quality
alerts can be created to facilitate the follow-up system analysis,
e.g., fault localization.

Building data collection pipeline. In online service sys-
tems, IT operations play a critical role in system maintenance.
Since it is data-driven by nature, modern cloud service providers

CHAPTER 7. GRAPH-BASED ALERT AGGREGATION 153

should build a complete and efficient pipeline for monitoring
data collection. Common data quality issues include extremely
imbalanced data, a small quantity of data, poor signal-to-noise
ratio, etc. In general, we are facing the following three chal-
lenges: 1) What data should be collected? We need to identify
what metrics and events that are most representative of cloud
resource health. Not everything that can be measured needs
to be monitored. 2) How to collect and label data? Labeling
alerts (e.g., alert linkages, culprit alerts) requires OSEs to have a
decent knowledge of the cloud systems. Since they often devote
themselves to emerging issue mitigation and resolution, tools
should be developed to facilitate the labeling process, such as
label recommendations and friendly interfaces. 3) How to store
and query data? Today’s cloud monitoring data are challenging
conventional database systems. To save space, domain-specific
compression techniques should be developed, for example, log
compression [103, 33, 66].

7.5 Summary

In this chapter, we propose Girdle, an alert aggregation frame-
work based on graph representation learning. The representation
for different types of alerts is learned in an unsupervised and
unified fashion, which encodes the interactions among alerts in
both temporal and topological dimensions. Online alert aggrega-
tion can be efficiently performed by calculating their distance.
We have conducted experiments with real-world alerts collected
from Huawei Cloud. Compared with fixed thresholding, Girdle

achieves better performance in failure detection by being able
to adjust the threshold automatically. In terms of online alert
aggregation, Girdle also outperforms existing methods by a
noticeable margin, confirming its effectiveness. Furthermore,
our framework has been successfully incorporated into the alert

CHAPTER 7. GRAPH-BASED ALERT AGGREGATION 154

management system of Huawei Cloud. Feedback from on-site
engineers confirms its practical usefulness. We believe our pro-
posed alert aggregation framework can assist engineers in failure
understanding and diagnosis.

2 End of chapter.

Chapter 8

Conclusion and Future Work

8.1 Conclusion

Recent decades have witnessed an increasing prevalence of online
services providing a variety of applications in our daily lives,
e.g., search engines, social media, and translation applications.
Different from traditional on-premises software, online services
often serve hundreds of millions of customers worldwide with a
goal of 24x7 availability. With such an unprecedented scale and
complexity, how service incidents and performance degradation
are managed becomes a core competence in the market. This
thesis describes our research of intelligent reliability monitoring
and engineering for online service systems based on various IT
data, i.e., logs, metrics, alerts/events, and topologies.

In Chapter 4, we investigate the current status of incident
management at Microsoft based on over two years of production
incident tickets. Our study reveals some key challenges of inci-
dent handling, which we try to address in this thesis. Specifically,
to alleviate flooding alarms and gray failures, we delve into log-
and metric-based anomaly detection in Chapter 5 and Chapter 6.
To facilitate failure impact estimation and duplicate effort saving,
we perform alert aggregation in Chapter 7. We also present the
following main findings regarding the key challenges: (1) the
modularity design of software systems prevents quick root cause

155

CHAPTER 8. CONCLUSION AND FUTURE WORK 156

localization; (2) the virtualization of physical infrastructure fur-
ther complicates this problem; (3) the system’s fault-tolerant
capability leads to a trade-off between system availability and
service management efficiency; and (4) system monitoring needs
a top-down design, which should consider how and what service
resources to monitor. We also present Microsoft’s incident man-
agement framework based on AIOps techniques, emphasizing the
essential role played by various monitoring data.

In Chapter 5, we systematically compare six representative
log anomaly detectors which draw support from neural networks.
Researchers and practitioners can obtain a deep understanding of
their characteristics and limitations. Our main findings include:
(1) logs’ semantics is a useful feature, especially for unsupervised
methods; (2) forecasting-based methods are vulnerable to the
noises in the training data, while reconstruction-based ones have
more resilience; (3) when it comes to unseen logs, supervised
methods exhibit better robustness against such logs than unsuper-
vised methods. We also release a toolkit containing the studied
methods, which has attracted attention from both academia and
industry. Finally, we summarize the key challenges of pursuing
more intelligent and reliable log-based anomaly detection, as well
as interesting future directions toward industrial deployment.

In Chapter 6, we introduce ADSketch, a metric-based per-
formance anomaly detection method with the merits of inter-
pretability and adaptability. Our key observation is that similar
and repetitive unusual metric patterns often indicate similar
types of performance anomalies. By capturing such patterns,
we can immediately recognize what anomaly has happened if it
corresponds to a known pattern. To embrace unseen patterns
in online scenarios, we carefully compare the distance between
the new metric inputs and the extracted patterns. If a new
input is close to a known pattern, it will be fused into the pat-
tern. Otherwise, it will be regarded as a brand-new anomalous

CHAPTER 8. CONCLUSION AND FUTURE WORK 157

pattern. ADSketch is evaluated on both public and industrial
datasets from Huawei Cloud. The results have demonstrated
its state-of-the-art performance. Moreover, ADSketch has been
incorporated into Huawei Cloud, serving hundreds of millions of
service instances and devices.

In Chapter 7, we present Girdle, an unsupervised and uni-
fied alert aggregation framework based on graph representation
learning. Girdle automatically gathers alerts stemming from
the same failure. This helps engineers understand what problems
have happened and which services get impacted, based on which
they can plan proper recovery operations. To this end, existing
work assumes that related alerts are similar in text. However,
experience shows that this may not always be the case. Thus, we
resort to measuring services’ behavioral similarity during failures
by integrating multi-source information. This can help us pre-
cisely track the propagation of failures and, thus, related alerts.
Graph representation learning further unifies the temporal and
topological correlations between alerts. Experiments conducted
on the data from Huawei Cloud demonstrate the effectiveness of
Girdle. Moreover, Girdle has been deployed in the network
infrastructure of Huawei Cloud. Feedback from on-site engineers
confirms its practical benefits.

In summary, we have conducted studies to address some im-
portant problems in online service monitoring, including an em-
pirical study on the industrial practices of incident management,
a systematic review of deep learning techniques for log anomaly
detection, an interpretable and adaptive performance anomaly
detection algorithm based on metrics, and an unsupervised and
unified alert aggregation framework. We closely collaborate with
the industry to pursue practicality. We also release our codes
and data whenever possible to benefit the community.

CHAPTER 8. CONCLUSION AND FUTURE WORK 158

8.2 Future Work

Service reliability monitoring and engineering have been a long-
standing research topic. In this thesis, we present our effort
toward intelligent online service monitoring. Although the tech-
niques and algorithms that we developed can quickly detect
problems that deserve engineers’ attention, they do so in a pas-
sive manner. That is, they need to collect various monitoring
data and analyze them to identify the problems. Moreover, we
focus more on the software aspect of the cloud system, i.e., the
SaaS and PaaS layers. To further prompt the resilience of cloud
systems such that customers can enjoy always-on services, the
performance monitoring should be done in a proactive way and
extended to the lower stack of the cloud systems, i.e., the IaaS
layer, and particularly, the cloud network infrastructure. To this
end, we propose to explore two lines of future work, aiming to
ultimately realize the full-stack monitoring for cloud systems.

The first is performance monitoring and diagnosis for cloud
overlay networks. Cloud overlay networks allow tenants to con-
struct sophisticated virtual networks for service deployment.
Performance issues, e.g., packet losses and delay spikes, could
severely compromise tenants’ experiences. Therefore, cloud
providers are keen to proactively monitor and quickly deter-
mine the root cause of such problems. The second is cross-layer
failure propagation modeling in cloud systems. Nowadays, vari-
ous algorithms and systems have been developed to monitor the
health state of different parts of a cloud system, regardless of
SaaS, PaaS, or IaaS. However, more often than not, they limit
the problem scope to a specific service or layer by assuming that
others function normally, which we refer to as “single-point” mon-
itoring. In reality, the propagation of failures could be cross-layer
and cross-service, which should be taken into consideration.

CHAPTER 8. CONCLUSION AND FUTURE WORK 159

8.2.1 Performance Monitoring and Diagnosis for Cloud
Overlay Networks

Cloud overlay networks are created by abstracting the under-
lying physical infrastructure with network virtualization tech-
nologies [77, 85]. They enable running isolated virtual private
networks (VPCs) for multi-tenants on a shared physical network.
In cloud networks, tenants’ traffic is transmitted by both physical
forwarding devices (PFDs, e.g., switches, routers) and virtual net-
work gateways (VGWs). VGWs implement the traffic forwarding
rules using software and run as network services in end-hosts. A
VGW can act as a switch, a router, a proxy server, a firewall, etc.
Compared to physical networks, overlay networks exhibit more
complexity in two aspects. First, there could be tens of VGWs
designed for various business needs. The production traffic of
tenants’ VMs is transmitted among different VGWs. Such traf-
fic is called virtual flows [42], which could have more than one
hundred different types. Second, they experience more frequent
updates for a version upgrade or routing table modification. This
renders their proneness to faults. However, comparatively little
effort has been made regarding the monitoring and diagnosing
of cloud overlay networks [142, 42]. To ensure the availability of
cloud networking services, it is essential to proactively monitor
the performance of virtual flows and automatically diagnose the
problems, instead of passively starting analysis tasks upon the
arrival of user complaints [42].

In different application scenarios, virtual flows may cross differ-
ent types of VGWs in distinct and determined orders. Figure 8.1
briefs some typical types of virtual flows. In physical network
monitoring, active probing [156, 128, 195] employs end-hosts to
inject and trace probing packets in the network to infer its inter-
nal characteristics (e.g., loss rates, delays, bandwidth), which is
called network tomography. The performance of a link/device
(e.g., packet loss ratio, delay) can be uniquely inferred with

CHAPTER 8. CONCLUSION AND FUTURE WORK 160

vRouter LVS Nginx

vRouter LVS Nginx

Forward path

Backward path

vRouter

Dst VM

VPC Layer 2
Gateway

vRouter

Firewall

VPC

EIP

ECS Internet

vRouter CVS L2GW

CROSS VPC ELBv3 TCP

VPC ELB HTTP SAME

VPC Peering

ELB

NAT
Gateway

Firewall

EIP

The Internet

vRouter LVS

… Nginx

…

Nginx

…
The Internet

VPC

VPC

VPC

VPC Peering

ELB

EIP

vRouterVPC

NAT
Gateway

Firewall
The Internet

vRouter LVS

… Nginx

Nginx

…

…

VPC

VPC

VPC

vRouter Layer 2
Gateway

VPC

NAT
Gateway

Firewall
The Internet

vRouter LVS

… Nginx

Nginx

…

…

VPC

VPC

The Internet
VPC

vRouter Layer 2
Gateway

VPC

NAT
Gateway

Firewall
The Internet

vRouter LVS

… Nginx

Nginx

…

…

VPC

VPC

The Internet
VPC

VPC

(a) VPC Peering. VPC peering is a network-
ing connection between two VPCs, which
enables traffic between them as if they are
within the same network. The traffic between
them is routed by a virtual router (vRouter).

vRouter LVS Nginx

vRouter LVS Nginx

Forward path

Backward path

vRouter

Dst VM

VPC Layer 2
Gateway

vRouter

Firewall

VPC

EIP

ECS Internet

vRouter CVS L2GW

CROSS VPC ELBv3 TCP

VPC ELB HTTP SAME

VPC Peering

ELB

NAT
Gateway

Firewall

EIP

The Internet

vRouter LVS

… Nginx

…

Nginx

…
The Internet

VPC

VPC

VPC

VPC Peering

ELB

EIP

vRouterVPC

NAT
Gateway

Firewall
The Internet

vRouter LVS

… Nginx

Nginx

…

…

VPC

VPC

VPC

vRouter Layer 2
Gateway

VPC

NAT
Gateway

Firewall
The Internet

vRouter LVS

… Nginx

Nginx

…

…

VPC

VPC

The Internet
VPC

vRouter Layer 2
Gateway

VPC

NAT
Gateway

Firewall
The Internet

vRouter LVS

… Nginx

Nginx

…

…

VPC

VPC

The Internet
VPC

VPC

(b) VPC Accessing the Internet. The traffic between the
Internet and VPC traverses through two VGWs, i.e., Fire-
wall for security monitoring and NAT Gateway for public
IP and private IP replacement.

vRouter LVS Nginx

vRouter LVS Nginx

Forward path

Backward path

vRouter

Dst VM

VPC Layer 2
Gateway

vRouter

Firewall

VPC

EIP

ECS Internet

vRouter CVS L2GW

CROSS VPC ELBv3 TCP

VPC ELB HTTP SAME

VPC Peering

ELB

NAT
Gateway

Firewall

EIP

The Internet

vRouter LVS

… Nginx

…

Nginx

…
The Internet

VPC

VPC

VPC

VPC Peering

ELB

EIP

vRouterVPC

NAT
Gateway

Firewall
The Internet

vRouter LVS

… Nginx

Nginx

…

…

VPC

VPC

VPC

vRouter Layer 2
Gateway

VPC

NAT
Gateway

Firewall
The Internet

vRouter LVS

… Nginx

Nginx

…

…

VPC

VPC

The Internet
VPC

vRouter Layer 2
Gateway

VPC

NAT
Gateway

Firewall
The Internet

vRouter LVS

… Nginx

Nginx

…

…

VPC

VPC

The Internet
VPC

VPC

(c) Load Balancing. The traffic from the source VPC is routed to the destination
VPC by vRouter, which then goes through two VGWs for load balancing. The
LVS (Linux Virtual Server) balances Layer 4’s traffic, while Nginx does Layer 7’s.

Figure 8.1: Virtual Flows in Cloud Overlay Networks

multiple coordinated probing paths, i.e., identifiable link/device.
Similarly, we can deploy VMs in the overlay network to send
probes along virtual flows to measure the flow state. By leverag-
ing the algebraic relations among virtual flows, we can also make
a VGW identifiable by probing appropriate paths. Figure 8.2
demonstrates some examples. Virtual flow f1 alone suffices to
tell the performance of VGW v3. f1, f2, and f3 can constitute a
linear system. Solving it can give us the performance of v5.

Similar to previous work [59, 128, 195, 24, 156] in physical

CHAPTER 8. CONCLUSION AND FUTURE WORK 161

VFD A VFD B

VFD D

vRouter LVS Nginx

Forward path

Backward path

VFD C

VFD C

VFD A

VFD B

VFD D
flow 1

flow 2

flow 3

flow 4

𝐹 =

0 0 1 0
1 1 0 0
1 0 1 0
1 0 1 1
1 1 0 1

ℳ′ =

0 0 1 0
1 1 0 0
1 0 1 0
1 0 1 1

flow 1
flow 2
flow 3
flow 4
flow 5

𝐹 =

0 0 1 0
1 1 0 0
1 0 1 0
1 1 0 1

VFD C

VFD A

VFD B

VFD D

𝑓!

flow 1

flow 2

flow 4

flow 3

ℳ =

0 0 1 0
1 1 0 0
1 0 1 0
1 1 0 1

0 0 1 0
1 1 0 0
1 0 1 0

0 0 0 0
1 1 0 0
1 0 0 0

1 1 0 0
1 0 0 0

1 0 0 0
1 1 0 0

flow 1

flow 2
flow 3

flow 4

VFD A

VFD A

VFD A

VFD A

flow 1

flow 2
flow 3

flow 4

VGW A

VGW B

VGW D

VGW C

ℳ′ =

0 0 1 0
1 1 0 0
1 0 1 0
1 0 1 1

flow 5

flow 1

flow 6

flow 7

VGW A

VGW B

VGW D

VGW C

VGW A’

ℳ =

0 0 1 0
1 1 0 0
1 0 1 0
1 0 1 1

flow 1
flow 2

flow 3

flow 4

VGW A

VGW B

VGW D

VGW C

flow 5

flow 1

flow 6

flow 7

VGW A

VGW B

VGW D

VGW C

VGW A′

flow 4
flow 1

flow 3

VGW A

VGW B

VGW D

VGW C

flow 2

ℱ =

0 0 2 0 0
2 0 2 0 0
2 0 0 0 2
2 1 0 1 0
0 1 0 1 2

VGW 𝑣!
flow 𝑓"

flow 𝑓#

flow 𝑓!

flow 𝑓$
flow 𝑓%

VGW 𝑣"

VGW 𝑣# VGW 𝑣$

VGW 𝑣%

flow 𝑓"

flow 𝑓#
flow 𝑓! flow 𝑓$

flow 𝑓%

𝑣!
𝑣"

𝑣#
𝑣$ 𝑣%

ℱ =

0 0 2 0 0
2 0 2 0 0
2 0 0 0 2
2 1 0 1 0
0 1 0 1 2

flow 𝑓"

flow 𝑓#
flow 𝑓! flow 𝑓$

flow 𝑓%

𝑣!
𝑣"

𝑣#
𝑣$ 𝑣%

ℱ =

0 0 1 0 0
1 0 1 0 0
1 0 0 0 1
1 1 0 1 0
0 1 0 1 1

Figure 8.2: Examples of Identifiable VGWs. A virtual flow fi is represented
as a binary row vector (ai1, . . . , ai5). aij=1 if fi traverses through VGW vj.

networks, minimizing the number of probing paths is desirable.
This is to reduce network resource (e.g., end-host memory/CPU
and network bandwidth) consumption and analysis overhead.
However, active probing in the overlay network has its unique
challenges. First, the network of virtual flows does not possess
the topological regularity as the physical network, e.g., the Clos
network [3]. Such a property is required by [59, 156]. Moreover,
to balance tenants’ traffic and increase fault tolerance, each VGW
instance has multiple replicas running in virtual machines (VMs).
Tenants’ traffic is distributed to these replicas via load balancing.
This should be considered as it may result in different probing
paths having distinct probing results, even though they pass the
same VGW. There are two promising directions to delve into.
The first is network telemetry [204, 154], which provides us with
enough insights into the virtual flows. The second is passive
monitoring [143], which resorts to machine-learning techniques
for fault detection and localization.

8.2.2 Cross-layer Failure Propagation Modeling in Cloud
Systems

In the area of cloud system reliability, tremendous efforts have
been devoted to the monitoring and diagnosis of physical net-
works [143, 59, 156, 155, 5], virtual/overlay/SDN networks [42,

CHAPTER 8. CONCLUSION AND FUTURE WORK 162

142, 171], microservices [200, 199, 136, 22], compute nodes [99,
92], disks [62, 63, 170], databases [109], etc. by leveraging differ-
ent types of runtime data such as network telemetry data [204,
201], logs [30, 68, 66, 43, 70], metrics [31, 188, 109], traces [200,
199], alerts [162, 191], incident tickets [91, 32, 29, 20, 100], etc.
These works have achieved remarkable performance. However,
when performing root cause localization or failure diagnosis, some
of them may hold an assumption that may not be realistic in
production systems: the fault scope is restricted to the subject
under discussion and other dependent components are assumed
to function normally. For example, when inferring the causes of
performance problems in microservices systems, it is assumed
that the culprit(s) is meant to be one microservice or two. How-
ever, the genuine faults could be a network issue, a hardware
issue, or a user-side issue. As a result, the problem investiga-
tion has to continue even if the “culprit” microservice has been
located. Therefore, it is essential to model the propagation of
failure across different layers and components in cloud systems.

In this context, some existing work has been carried out. For
example, [7, 29, 93] have pointed out that the dependencies be-
tween multiple services/microservices/APIs and physical/logical
resources play an important role in anomaly detection, fault
localization, service migration planning, etc. Qiu et al. [137]
organized as a knowledge graph the interactions among routers,
switches, physical servers, containers, and microservices in cloud
systems to perform causality mining. Roy et al. [142] discovered
that different layers of the Microsoft Azure stack could compli-
cate the latency measurement of the logical overlay networks and
their interpretation. Such a tangle of different cloud layers is
hard to tease apart. The authors identified some patterns in the
latency measurements to distinguish virtual-network issues from
the ones in the physical network. Lapukhov et al. [131] adopted
a similar idea for the troubleshooting of data center networks

CHAPTER 8. CONCLUSION AND FUTURE WORK 163

at Meta. Rusek et al. [145] made an attempt to estimate the
mean delay and jitter of traffic flows by considering the complex
relationship between network topology, routing, and input traffic.

To precisely model how failures propagate in a cloud system,
we need to explore two orthogonal directions of dependency
mining and how different dependencies transfer the failure impact.
The first direction is intra-layer, which captures the dependencies
in each individual layer of the cloud, including SaaS, PaaS, and
IaaS. In SaaS and PaaS, failures often propagate along the
dependency chains among services. Typical sources for mining
service dependencies are codes, traces, and API documentation.
In IaaS, the network topology (i.e., the connections between
different physical devices such as switches, routers, and servers)
is a typical example of such intra-layer dependency. The second
direction is inter-layer, which reveals the interactions of different
cloud system stacks. For example, the placement between servers
and services (i.e., which server is hosting the service) can clearly
indicate the failure propagation from hardware to software. In the
first line of our future work (Section 8.2.1), we can also consider
the identifiability of physical devices by tracking how virtual
flows traverse through physical switches (or switch clusters) based
on flow-level telemetry [201, 204, 165], routing protocols, switch
configurations, etc., or directly controlling the path of virtual
flows using techniques such as IP-in-IP [156, 16]. By doing so,
we can unify the performance monitoring and diagnosis of both
physical and overlay networks without manually defining failure
patterns for fault attribution as done in [142, 131].

The scale of today’s cloud systems has imposed considerable
complexity on system reliability assurance. Being able to model
the propagation of failures in a full-stack manner plays a vital
role in bringing cloud system monitoring to the next generation.

2 End of chapter.

Chapter 9

List of Publications

1. He, Pinjia, Zhuangbin Chen, Shilin He, and Michael R.
Lyu. “Characterizing the natural language descriptions in
software logging statements.” In 2018 33rd IEEE/ACM In-
ternational Conference on Automated Software Engineering
(ASE), pp. 178-189. IEEE, 2018.

2. Bai, Haoli, Zhuangbin Chen, Michael R. Lyu, Irwin King,
and Zenglin Xu. “Neural relational topic models for sci-
entific article analysis.” In Proceedings of the 27th ACM
International Conference on Information and Knowledge
Management, pp. 27-36. 2018.

3. Xu, Hui, Zhuangbin Chen, Weibin Wu, Zhi Jin, Sy-yen
Kuo, and Michael Lyu. “NV-DNN: towards fault-tolerant
DNN systems with N-version programming” In 2019 49th
Annual IEEE/IFIP International Conference on Dependable
Systems and Networks Workshops (DSN-W), pp. 44-47.
IEEE, 2019.

4. Zhuangbin Chen, Yu Kang, Feng Gao, Li Yang, Jeffrey
Sun, Zhangwei Xu, Pu Zhao et al. “Aiops innovations of
incident management for cloud services” (2020).

5. Zhuangbin Chen, Yu Kang, Liqun Li, Xu Zhang, Hongyu
Zhang, Hui Xu, Yangfan Zhou et al. “Towards intelligent

164

CHAPTER 9. LIST OF PUBLICATIONS 165

incident management: why we need it and how we make it”
In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pp. 1487-1497. 2020.

6. He, Shilin, Pinjia He, Zhuangbin Chen, Tianyi Yang,
Yuxin Su, and Michael R. Lyu. “A survey on automated
log analysis for reliability engineering” ACM Computing
Surveys (CSUR) 54, no. 6 (2021): 1-37.

7. Zhuangbin Chen, Jinyang Liu, Wenwei Gu, Yuxin Su, and
Michael R. Lyu. “Experience report: deep learning-based
system log analysis for anomaly detection” arXiv preprint
arXiv:2107.05908 (2021).

8. Xu, Hui, Zhuangbin Chen, Mingshen Sun, Yangfan Zhou,
and Michael R. Lyu. “Memory-Safety Challenge Considered
Solved? An In-Depth Study with All Rust CVEs” ACM
Transactions on Software Engineering and Methodology
(TOSEM) 31, no. 1 (2021): 1-25.

9. Zhuangbin Chen, Jinyang Liu, Yuxin Su, Hongyu Zhang,
Xuemin Wen, Xiao Ling, Yongqiang Yang, and Michael R.
Lyu. “Graph-based Incident Aggregation for Large-Scale
Online Service Systems” In 2021 36th IEEE/ACM Inter-
national Conference on Automated Software Engineering
(ASE), pp. 430-442. IEEE, 2021.

10. Zhuangbin Chen, Jinyang Liu, Yuxin Su, Hongyu Zhang,
Xiao Ling, Yongqiang Yang, and Michael R. Lyu. “Adaptive
performance anomaly detection for online service systems via
pattern sketching” In Proceedings of the 44th International
Conference on Software Engineering (ICSE), pp. 61–72.
2022.

CHAPTER 9. LIST OF PUBLICATIONS 166

11. Li, Yichen, Xu Zhang, Shilin He, Zhuangbin Chen, Yu
Kang, Jinyang Liu, Liqun Li et al. “An Intelligent Frame-
work for Timely, Accurate, and Comprehensive Cloud Inci-
dent Detection” ACM SIGOPS Operating Systems Review,
pp. 1-7. 2022.

12. Li, Baitong, Tianyi Yang, Zhuangbin Chen, Yuxin Su,
Yongqiang Yang, and Michael R. Lyu. “Heterogeneous
Anomaly Detection for Software Systems via Attentive
Multi-modal Learning” arXiv preprint arXiv:2207.02918
(2022).

Chapter 4 is an adapted reprint of publication “Towards
intelligent incident management: why we need it and how we
make it,” which was published in ACM ESEC/FSE 2020. The
thesis author was the primary author of this paper. The paper is
co-authored with Yu Kang, Liqun Li, Xu Zhang, Li Yang, Jeffrey
Sun, Zhangwei Xu, Yingnong Dang, Feng Gao, Pu Zhao, Bo
Qiao, Qingwei Lin, and Dongmei Zhang from Microsoft, Hongyu
Zhang from The University of Newcastle, Hui Xu and Yangfan
Zhou from Fudan University, and Michael R. Lyu from The
Chinese University of Hong Kong.

Chapter 5 is an adapted reprint of arXiv preprint “Experience
report: deep learning-based system log analysis for anomaly
detection.” The thesis author was the primary author of this
paper. This paper is collaborated with Jinyang Liu, Wenwei Gu,
and Michael R. Lyu from The Chinese University of Hong Kong,
Yuxin Su from Sun Yat-sen University, and Jieming Zhu and
Yongqiang Yang from Huawei.

Chapter 6 is an adapted reprint of publication “Adaptive
performance anomaly detection for online service systems via
pattern sketching,” which was published in IEEE/ACM ICSE
2022. The thesis author is the primary author of this paper. This
is a joint work with Jinyang Liu and Michael R. Lyu from The

CHAPTER 9. LIST OF PUBLICATIONS 167

Chinese University of Hong Kong, Yuxin Su from Sun Yat-sen
University, Hongyu Zhang from The University of Newcastle,
and Xiao Ling and Yongqiang Yang from Huawei.

Chapter 7 is an adapted reprint of publication “Graph-based
Incident Aggregation for Large-Scale Online Service Systems,”
which was published in IEEE/ACM ASE 2021. The thesis
author was the primary author of this paper. This paper is
co-authored with Jinyang Liu, Yuxin Su, and Michael R. Lyu
from The Chinese University of Hong Kong, Hongyu Zhang from
The University of Newcastle, and Xuemin Wen, Xiao Ling, and
Yongqiang Yang from Huawei.

2 End of chapter.

Bibliography

[1] Kpi anomaly detection competition, 2018. Avail-
able online at: http://iops.ai/competition_detail/

?competition_id=5&flag=1, last accessed in April, 2021.

[2] Kpi anomaly detection dataset, 2018. Available online at:
http://iops.ai/dataset_detail/?id=10, last accessed
in April, 2021.

[3] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable,
commodity data center network architecture. In V. Bahl,
D. Wetherall, S. Savage, and I. Stoica, editors, Proceedings
of the ACM SIGCOMM 2008 Conference on Applications,
Technologies, Architectures, and Protocols for Computer
Communications, Seattle, WA, USA, August 17-22, 2008,
pages 63–74. ACM, 2008.

[4] A. Arcuri. Restful api automated test case generation with
evomaster. ACM Transactions on Software Engineering
and Methodology (TOSEM), 28(1):1–37, 2019.

[5] B. Arzani, S. Ciraci, L. Chamon, Y. Zhu, H. H. Liu, J. Pad-
hye, B. T. Loo, and G. Outhred. 007: Democratically
finding the cause of packet drops. In 15th USENIX Sym-
posium on Networked Systems Design and Implementation
(NSDI 18), pages 419–435, 2018.

168

http://iops.ai/competition_detail/?competition_id=5&flag=1
http://iops.ai/competition_detail/?competition_id=5&flag=1
http://iops.ai/dataset_detail/?id=10

BIBLIOGRAPHY 169

[6] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine
translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473, 2014.

[7] V. Bahl, P. Barham, R. Black, R. Chandra, M. Goldszmidt,
R. Isaacs, S. Kandula, L. Li, J. MacCormick, D. Maltz,
et al. Discovering dependencies for network management.
2006.

[8] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Using
magpie for request extraction and workload modelling. In
Proceedings of the 6th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages 18–18,
2004.

[9] S. Basu, F. Casati, and F. Daniel. Toward web service
dependency discovery for soa management. In Proceedings
of the 2008 IEEE International Conference on Services
Computing (SCC), pages 422–429. IEEE, 2008.

[10] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefeb-
vre. Fast unfolding of communities in large networks.
Journal of statistical mechanics: theory and experiment,
2008(10):P10008, 2008.

[11] S. Boyd, S. P. Boyd, and L. Vandenberghe. Convex opti-
mization. Cambridge university press, 2004.

[12] M. Braei and S. Wagner. Anomaly detection in univariate
time-series: A survey on the state-of-the-art. arXiv preprint
arXiv:2004.00433, 2020.

[13] Á. Brandón, M. Solé, A. Huélamo, D. Solans, M. S. Pérez,
and V. Muntés-Mulero. Graph-based root cause analysis
for service-oriented and microservice architectures. Journal
of Systems and Software, 159:110432, 2020.

BIBLIOGRAPHY 170

[14] A. Brown, G. Kar, and A. Keller. An active approach to
characterizing dynamic dependencies for problem determi-
nation in a distributed environment. In Proceedings of the
2001 IEEE/IFIP International Symposium on Integrated
Network Management. Integrated Network Management
VII. Integrated Management Strategies for the New Millen-
nium (Cat. No. 01EX470), pages 377–390. IEEE, 2001.

[15] J. Candido, M. Aniche, and A. van Deursen. Contemporary
software monitoring: A systematic literature review. arXiv
e-prints, pages arXiv–1912, 2019.

[16] J. Cao, R. Xia, P. Yang, C. Guo, G. Lu, L. Yuan, Y. Zheng,
H. Wu, Y. Xiong, and D. Maltz. Per-packet load-balanced,
low-latency routing for clos-based data center networks.
In Proceedings of the ninth ACM conference on Emerg-
ing networking experiments and technologies, pages 49–60,
2013.

[17] M. J. Chambers and M. A. Thornton. Discrete time repre-
sentation of continuous time arma processes. Econometric
Theory, pages 219–238, 2012.

[18] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detec-
tion: A survey. ACM computing surveys (CSUR), 41(3):1–
58, 2009.

[19] B. Chen and Z. M. Jiang. Characterizing and detecting
anti-patterns in the logging code. In 2017 IEEE/ACM 39th
International Conference on Software Engineering (ICSE),
pages 71–81. IEEE, 2017.

[20] J. Chen, X. He, Q. Lin, Y. Xu, H. Zhang, D. Hao, F. Gao,
Z. Xu, Y. Dang, and D. Zhang. An empirical investigation
of incident triage for online service systems. In Proceedings

BIBLIOGRAPHY 171

of the 41st International Conference on Software Engineer-
ing: Software Engineering in Practice (ICSE-SEIP), pages
111–120. IEEE Press, 2019.

[21] J. Chen, X. He, Q. Lin, H. Zhang, D. Hao, F. Gao, Z. Xu,
Y. Dang, and D. Zhang. Continuous incident triage for
large-scale online service systems. In Proceedings of the
34th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 364–375. IEEE, 2019.

[22] P. Chen, Y. Qi, P. Zheng, and D. Hou. Causeinfer: Au-
tomatic and distributed performance diagnosis with hier-
archical causality graph in large distributed systems. In
IEEE INFOCOM 2014-IEEE Conference on Computer
Communications, pages 1887–1895. IEEE, 2014.

[23] X. Chen, M. Zhang, Z. M. Mao, and P. Bahl. Automating
network application dependency discovery: Experiences,
limitations, and new solutions. In OSDI, volume 8, pages
117–130, 2008.

[24] Y. Chen, D. Bindel, H. H. Song, and R. H. Katz. An alge-
braic approach to practical and scalable overlay network
monitoring. In R. Yavatkar, E. W. Zegura, and J. Rex-
ford, editors, Proceedings of the ACM SIGCOMM 2004
Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communication, August 30 -
September 3, 2004, Portland, Oregon, USA, pages 55–66.
ACM, 2004.

[25] Y. Chen, X. Yang, H. Dong, X. He, H. Zhang, Q. Lin,
J. Chen, P. Zhao, Y. Kang, F. Gao, et al. Identifying
linked incidents in large-scale online service systems. In
Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 304–314, 2020.

BIBLIOGRAPHY 172

[26] Y. Chen, X. Yang, Q. Lin, H. Zhang, F. Gao, Z. Xu,
Y. Dang, D. Zhang, H. Dong, Y. Xu, et al. Outage predic-
tion and diagnosis for cloud service systems. In Proceedings
of the 2019 International Conference on World Wide Web
(WWW), pages 2659–2665, 2019.

[27] Y.-Y. M. Chen, A. J. Accardi, E. Kiciman, D. A. Patterson,
A. Fox, and E. A. Brewer. Path-based failure and evolution
management. University of California, Berkeley, 2004.

[28] Z. Chen, Y. Kang, F. Gao, L. Yang, J. Sun, Z. Xu, P. Zhao,
B. Qiao, L. Li, X. Zhang, et al. Aiops innovations of
incident management for cloud services. 2020.

[29] Z. Chen, Y. Kang, L. Li, X. Zhang, H. Zhang, H. Xu,
Y. Zhou, L. Yang, J. Sun, Z. Xu, et al. Towards intelligent
incident management: why we need it and how we make it.
In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 1487–1497,
2020.

[30] Z. Chen, J. Liu, W. Gu, Y. Su, and M. R. Lyu. Experience
report: deep learning-based system log analysis for anomaly
detection. arXiv preprint arXiv:2107.05908, 2021.

[31] Z. Chen, J. Liu, Y. Su, H. Zhang, X. Ling, Y. Yang, and
M. R. Lyu. Adaptive performance anomaly detection for
online service systems via pattern sketching. arXiv preprint
arXiv:2201.02944, 2022.

[32] Z. Chen, J. Liu, Y. Su, H. Zhang, X. Wen, X. Ling, Y. Yang,
and M. R. Lyu. Graph-based incident aggregation for large-
scale online service systems. In 2021 36th IEEE/ACM In-
ternational Conference on Automated Software Engineering
(ASE), pages 430–442. IEEE, 2021.

BIBLIOGRAPHY 173

[33] R. Christensen and F. Li. Adaptive log compression for
massive log data. In SIGMOD Conference, pages 1283–
1284, 2013.

[34] M. Cinque, D. Cotroneo, R. Natella, and A. Pecchia. Assess-
ing and improving the effectiveness of logs for the analysis
of software faults. In 2010 IEEE/IFIP International Con-
ference on Dependable Systems & Networks (DSN), pages
457–466. IEEE, 2010.

[35] M. T. Community. Message templates, 2011. Available on-
line at: https://messagetemplates.org/, last accessed
in October, 2021.

[36] H. Dai, H. Li, C. S. Chen, W. Shang, and T.-H. Chen.
Logram: Efficient log parsing using n-gram dictionaries.
TSE, 2020.

[37] Y. Dang, Q. Lin, and P. Huang. Aiops: real-world chal-
lenges and research innovations. In 2019 IEEE/ACM 41st
International Conference on Software Engineering: Com-
panion Proceedings (ICSE-Companion), pages 4–5. IEEE,
2019.

[38] L. De Haan and A. Ferreira. Extreme value theory: an
introduction. Springer Science & Business Media, 2007.

[39] R. Ding, H. Zhou, J.-G. Lou, H. Zhang, Q. Lin, Q. Fu,
D. Zhang, and T. Xie. Log2: A cost-aware logging mecha-
nism for performance diagnosis. In 2015 USENIX annual
technical conference (USENIX ATC 15), pages 139–150,
2015.

[40] M. Du, F. Li, G. Zheng, and V. Srikumar. Deeplog:
Anomaly detection and diagnosis from system logs through
deep learning. In Proceedings of the 2017 ACM SIGSAC

https://messagetemplates.org/

BIBLIOGRAPHY 174

Conference on Computer and Communications Security,
pages 1285–1298, 2017.

[41] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-
based algorithm for discovering clusters in large spatial
databases with noise. In E. Simoudis, J. Han, and U. M.
Fayyad, editors, Proceedings of the Second International
Conference on Knowledge Discovery and Data Mining
(KDD-96), Portland, Oregon, USA, pages 226–231. AAAI
Press.

[42] C. Fang, H. Liu, M. Miao, J. Ye, L. Wang, W. Zhang,
D. Kang, B. Lyv, P. Cheng, and J. Chen. Vtrace: Auto-
matic diagnostic system for persistent packet loss in cloud-
scale overlay network. In H. Schulzrinne and V. Misra,
editors, SIGCOMM ’20: Proceedings of the 2020 Annual
conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architec-
tures, and protocols for computer communication, Virtual
Event, USA, August 10-14, 2020, pages 31–43. ACM, 2020.

[43] M. Farshchi, J.-G. Schneider, I. Weber, and J. Grundy.
Experience report: Anomaly detection of cloud application
operations using log and cloud metric correlation analysis.
In 2015 IEEE 26th international symposium on software
reliability engineering (ISSRE), pages 24–34. IEEE, 2015.

[44] A. Farzad and T. A. Gulliver. Unsupervised log message
anomaly detection. ICT Express, 6(3):229–237, 2020.

[45] V. Fedorova, A. Gammerman, I. Nouretdinov, and V. Vovk.
Plug-in martingales for testing exchangeability on-line. In
Proceedings of the 29th International Conference on Ma-
chine Learning (ICML), pages 923–930, 2012.

BIBLIOGRAPHY 175

[46] R. A. Fisher and L. H. C. Tippett. Limiting forms of the
frequency distribution of the largest or smallest member of
a sample. In Mathematical proceedings of the Cambridge
philosophical society, volume 24, pages 180–190. Cambridge
University Press, 1928.

[47] A. Flink, 2011. Available online at: https://flink.

apache.org/, last accessed in October, 2021.

[48] A. S. Foundation. Apache kafka, 2011. Available online at:
https://kafka.apache.org/, last accessed in October,
2021.

[49] B. J. Frey and D. Dueck. Clustering by passing messages
between data points. science, 315(5814):972–976, 2007.

[50] Q. Fu, J.-G. Lou, Y. Wang, and J. Li. Execution anomaly
detection in distributed systems through unstructured log
analysis. In Proc. of ICDM’09, pages 149–158. IEEE, 2009.

[51] Q. Fu, J. Zhu, W. Hu, J.-G. Lou, R. Ding, Q. Lin, D. Zhang,
and T. Xie. Where do developers log? an empirical study
on logging practices in industry. In Proc. of ICSE-C’14,
pages 24–33, 2014.

[52] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and
A. Bouchachia. A survey on concept drift adaptation.
ACM computing surveys (CSUR), 46(4):1–37, 2014.

[53] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi,
N. Katarki, A. Bruno, J. Hu, B. Ritchken, B. Jackson,
et al. An open-source benchmark suite for microservices
and their hardware-software implications for cloud & edge
systems. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 3–18, 2019.

https://flink.apache.org/
https://flink.apache.org/
https://kafka.apache.org/

BIBLIOGRAPHY 176

[54] J. Gao, N. Yaseen, R. MacDavid, F. V. Frujeri, V. Liu,
R. Bianchini, R. Aditya, X. Wang, H. Lee, D. Maltz, et al.
Scouts: Improving the diagnosis process through domain-
customized incident routing. In Proceedings of the Annual
conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architec-
tures, and protocols for computer communication, pages
253–269, 2020.

[55] B. Gnedenko. Sur la distribution limite du terme maximum
d’une serie aleatoire. Annals of mathematics, pages 423–
453, 1943.

[56] A. Grover and J. Leskovec. node2vec: Scalable feature
learning for networks. In Proceedings of the 22nd ACM
SIGKDD international conference on Knowledge discovery
and data mining, pages 855–864, 2016.

[57] J. Gu, C. Luo, S. Qin, B. Qiao, Q. Lin, H. Zhang, Z. Li,
Y. Dang, S. Cai, W. Wu, et al. Efficient incident identifica-
tion from multi-dimensional issue reports via meta-heuristic
search. In Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pages 292–303,
2020.

[58] H. S. Gunawi, M. Hao, R. O. Suminto, A. Laksono, A. D.
Satria, J. Adityatama, and K. J. Eliazar. Why does the
cloud stop computing?: Lessons from hundreds of service
outages. In Proceedings of the 7th ACM Symposium on
Cloud Computing (SoCC), pages 1–16. ACM, 2016.

[59] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. A.
Maltz, Z. Liu, V. Wang, B. Pang, H. Chen, Z. Lin, and
V. Kurien. Pingmesh: A large-scale system for data center
network latency measurement and analysis. In S. Uhlig,

BIBLIOGRAPHY 177

O. Maennel, B. Karp, and J. Padhye, editors, Proceedings
of the 2015 ACM Conference on Special Interest Group on
Data Communication, SIGCOMM 2015, London, United
Kingdom, August 17-21, 2015, pages 139–152. ACM, 2015.

[60] W. L. Hamilton, R. Ying, and J. Leskovec. Representation
learning on graphs: Methods and applications. arXiv
preprint arXiv:1709.05584, 2017.

[61] J. Han, J. Pei, and Y. Yin. Mining frequent patterns
without candidate generation. ACM sigmod record, 29(2):1–
12, 2000.

[62] S. Han, P. P. Lee, Z. Shen, C. He, Y. Liu, and T. Huang.
Toward adaptive disk failure prediction via stream mining.
In Proceedings of IEEE ICDCS, 2020.

[63] S. Han, J. Wu, E. Xu, C. He, P. P. Lee, Y. Qiang, Q. Zheng,
T. Huang, Z. Huang, and R. Li. Robust data preprocessing
for machine-learning-based disk failure prediction in cloud
production environments. arXiv preprint arXiv:1912.09722,
2019.

[64] S. E. Hansen and E. T. Atkins. Automated system moni-
toring and notification with swatch. In Proc. of LISA’93,
volume 93, pages 145–152, 1993.

[65] M. Hassani, W. Shang, E. Shihab, and N. Tsantalis. Study-
ing and detecting log-related issues. Empirical Software
Engineering, 23(6):3248–3280, 2018.

[66] P. He, Z. Chen, S. He, and M. R. Lyu. Characterizing
the natural language descriptions in software logging state-
ments. In 2018 33rd IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 178–189.
IEEE, 2018.

BIBLIOGRAPHY 178

[67] S. He, P. He, Z. Chen, T. Yang, Y. Su, and M. R. Lyu. A
survey on automated log analysis for reliability engineering.
arXiv preprint arXiv:2009.07237, 2020.

[68] S. He, P. He, Z. Chen, T. Yang, Y. Su, and M. R. Lyu. A
survey on automated log analysis for reliability engineering.
CSUR, 54(6):1–37, 2021.

[69] S. He, Q. Lin, J.-G. Lou, H. Zhang, M. R. Lyu, and
D. Zhang. Identifying impactful service system problems
via log analysis. In Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering,
pages 60–70, 2018.

[70] S. He, J. Zhu, P. He, and M. R. Lyu. Experience report:
System log analysis for anomaly detection. In Proc. of
ISSRE’16, pages 207–218. IEEE, 2016.

[71] S. He, J. Zhu, P. He, and M. R. Lyu. Loghub: a large
collection of system log datasets towards automated log
analytics. arXiv preprint arXiv:2008.06448, 2020.

[72] S.-S. Ho and H. Wechsler. A martingale framework for
detecting changes in data streams by testing exchangeabil-
ity. IEEE transactions on pattern analysis and machine
intelligence, 32(12):2113–2127, 2010.

[73] H. Hu, H. Zhang, J. Xuan, and W. Sun. Effective bug triage
based on historical bug-fix information. In Proceedings of
the 25th International Symposium on Software Reliability
Engineering (ISSRE), pages 122–132. IEEE, 2014.

[74] P. Huang, C. Guo, L. Zhou, J. R. Lorch, Y. Dang, M. Chin-
talapati, and R. Yao. Gray failure: The achilles’ heel of
cloud-scale systems. In Proceedings of the 16th Workshop
on Hot Topics in Operating Systems, pages 150–155, 2017.

BIBLIOGRAPHY 179

[75] K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and
T. Soderstrom. Detecting spacecraft anomalies using lstms
and nonparametric dynamic thresholding. In Proceedings
of the 24th ACM SIGKDD international conference on
knowledge discovery & data mining, pages 387–395, 2018.

[76] M. Inc. Everything you need to know about aiops,
2019. Available online at: https://www.moogsoft.com/

resources/aiops/guide/everything-aiops/.

[77] R. Jain and S. Paul. Network virtualization and software
defined networking for cloud computing: a survey. IEEE
Communications Magazine, 51(11):24–31, 2013.

[78] G. Jiang, H. Chen, K. Yoshihira, and A. Saxena. Ranking
the importance of alerts for problem determination in large
computer systems. 14(3):213–227.

[79] R. Johnson and T. Zhang. Deep pyramid convolutional neu-
ral networks for text categorization. In Proceedings of the
55th Annual Meeting of the Association for Computational
Linguistics (ACL), pages 562–570, 2017.

[80] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou,
and T. Mikolov. Fasttext. zip: Compressing text classifica-
tion models. arXiv preprint arXiv:1612.03651, 2016.

[81] E. Keogh and C. A. Ratanamahatana. Exact indexing
of dynamic time warping. Knowledge and information
systems, 7(3):358–386, 2005.

[82] S. Khan, A. Gani, A. W. A. Wahab, M. A. Bagiwa, M. Shi-
raz, S. U. Khan, R. Buyya, and A. Y. Zomaya. Cloud
log forensics: foundations, state of the art, and future
directions. CSUR, 49(1):1–42, 2016.

https://www.moogsoft.com/resources/aiops/guide/everything-aiops/
https://www.moogsoft.com/resources/aiops/guide/everything-aiops/

BIBLIOGRAPHY 180

[83] M. O. Kherbouche, N. Laga, and P.-A. Masse. Towards
a better assessment of event logs quality. In 2016 IEEE
Symposium Series on Computational Intelligence (SSCI),
pages 1–8. IEEE, 2016.

[84] Y. Kim. Convolutional neural networks for sentence classifi-
cation. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), page
1746–1751, 2014.

[85] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig. Software-defined network-
ing: A comprehensive survey. Proceedings of the IEEE,
103(1):14–76, 2014.

[86] M. Landauer, F. Skopik, M. Wurzenberger, and A. Rauber.
System log clustering approaches for cyber security ap-
plications: A survey. Computers & Security, 92:101739,
2020.

[87] V.-H. Le and H. Zhang. Log-based anomaly detection with
deep learning: How far are we? In Proceedings of the 44th
International Conference on Software Engineering, pages
1356–1367, 2022.

[88] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proc. of
the IEEE, 86(11):2278–2324, 1998.

[89] S.-R. Lee, M.-J. Heo, C.-G. Lee, M. Kim, and G. Jeong.
Applying deep learning based automatic bug triager to
industrial projects. In Proceedings of the 11th Joint Meeting
on Foundations of Software Engineering, pages 926–931,
2017.

BIBLIOGRAPHY 181

[90] H. Li, W. Shang, and A. E. Hassan. Which log level should
developers choose for a new logging statement? Empirical
Software Engineering, 22(4):1684–1716, 2017.

[91] L. Li, X. Zhang, X. Zhao, H. Zhang, Y. Kang, P. Zhao,
B. Qiao, S. He, P. Lee, J. Sun, et al. Fighting the fog
of war: Automated incident detection for cloud systems.
In 2021 USENIX Annual Technical Conference (USENIX
ATC 21), pages 131–146, 2021.

[92] Y. Li, Z. M. Jiang, H. Li, A. E. Hassan, C. He, R. Huang,
Z. Zeng, M. Wang, and P. Chen. Predicting node failures
in an ultra-large-scale cloud computing platform: an aiops
solution. ACM Transactions on Software Engineering and
Methodology (TOSEM), 29(2):1–24, 2020.

[93] Y. Li, X. Zhang, S. He, Z. Chen, Y. Kang, J. Liu, L. Li,
Y. Dang, F. Gao, Z. Xu, et al. An intelligent framework for
timely, accurate, and comprehensive cloud incident detec-
tion. ACM SIGOPS Operating Systems Review, 56(1):1–7,
2022.

[94] Z. Li, Q. Cheng, K. Hsieh, Y. Dang, P. Huang, P. Singh,
X. Yang, Q. Lin, Y. Wu, S. Levy, et al. Gandalf: An
intelligent,{End-To-End} analytics service for safe de-
ployment in {Large-Scale} cloud infrastructure. In 17th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI 20), pages 389–402, 2020.

[95] Y. Liang, Y. Zhang, H. Xiong, and R. Sahoo. Failure pre-
diction in ibm bluegene/l event logs. In Proc. of ICDM’07,
pages 583–588. IEEE, 2007.

[96] M.-H. Lim, J.-G. Lou, H. Zhang, Q. Fu, A. B. J. Teoh,
Q. Lin, R. Ding, and D. Zhang. Identifying recurrent

BIBLIOGRAPHY 182

and unknown performance issues. In R. Kumar, H. Toivo-
nen, J. Pei, J. Z. Huang, and X. Wu, editors, 2014 IEEE
International Conference on Data Mining, ICDM 2014,
Shenzhen, China, December 14-17, 2014, pages 320–329.
IEEE Computer Society.

[97] D. Lin, R. Raghu, V. Ramamurthy, J. Yu, R. Radhakr-
ishnan, and J. Fernandez. Unveiling clusters of events for
alert and incident management in large-scale enterprise
it. In S. A. Macskassy, C. Perlich, J. Leskovec, W. Wang,
and R. Ghani, editors, The 20th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data
Mining, KDD ’14, New York, NY, USA - August 24 - 27,
2014, pages 1630–1639. ACM.

[98] J. Lin, P. Chen, and Z. Zheng. Microscope: Pinpoint
performance issues with causal graphs in micro-service
environments. In International Conference on Service-
Oriented Computing, pages 3–20. Springer, 2018.

[99] Q. Lin, K. Hsieh, Y. Dang, H. Zhang, K. Sui, Y. Xu, J.-G.
Lou, C. Li, Y. Wu, R. Yao, et al. Predicting node failure
in cloud service systems. In Proceedings of the 2018 26th
ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software
Engineering, pages 480–490, 2018.

[100] Q. Lin, J.-G. Lou, H. Zhang, and D. Zhang. idice: problem
identification for emerging issues. In Proceedings of the 38th
International Conference on Software Engineering, pages
214–224, 2016.

[101] Q. Lin, H. Zhang, J.-G. Lou, Y. Zhang, and X. Chen. Log
clustering based problem identification for online service
systems. In 2016 IEEE/ACM 38th International Confer-

BIBLIOGRAPHY 183

ence on Software Engineering Companion (ICSE-C), pages
102–111. IEEE, 2016.

[102] F. T. Liu, K. M. Ting, and Z.-H. Zhou. Isolation forest. In
2008 eighth ieee international conference on data mining,
pages 413–422. IEEE, 2008.

[103] J. Liu, J. Zhu, S. He, P. He, Z. Zheng, and M. R. Lyu.
Logzip: extracting hidden structures via iterative clustering
for log compression. In Proc. of ASE’19, pages 863–873.
IEEE, 2019.

[104] P. Liu, Y. Chen, X. Nie, J. Zhu, S. Zhang, K. Sui, M. Zhang,
and D. Pei. Fluxrank: A widely-deployable framework to
automatically localizing root cause machines for software
service failure mitigation. In 2019 IEEE 30th International
Symposium on Software Reliability Engineering (ISSRE),
pages 35–46. IEEE, 2019.

[105] C. Lou, P. Huang, and S. Smith. Understanding, detecting
and localizing partial failures in large system software. In
17th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 20), pages 559–574, 2020.

[106] J.-G. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li. Mining
invariants from console logs for system problem detection.
In Proc. of USENIXATC’10, pages 1–14, 2010.

[107] J.-G. Lou, Q. Lin, R. Ding, Q. Fu, D. Zhang, and T. Xie.
Software analytics for incident management of online ser-
vices: An experience report. In 2013 28th IEEE/ACM
International Conference on Automated Software Engineer-
ing (ASE), pages 475–485. IEEE, 2013.

[108] S. Lu, X. Wei, Y. Li, and L. Wang. Detecting anomaly in
big data system logs using convolutional neural network. In

BIBLIOGRAPHY 184

Proc. of DASC/PiCom/DataCom/CyberSciTech’18, pages
151–158. IEEE, 2018.

[109] M. Ma, Z. Yin, S. Zhang, S. Wang, C. Zheng, X. Jiang,
H. Hu, C. Luo, Y. Li, N. Qiu, et al. Diagnosing root causes
of intermittent slow queries in cloud databases. Proceedings
of the VLDB Endowment, 13(10):1176–1189, 2020.

[110] S. Ma, J. Zhai, Y. Kwon, K. H. Lee, X. Zhang, G. Ciocarlie,
A. Gehani, V. Yegneswaran, D. Xu, and S. Jha. Kernel-
supported cost-effective audit logging for causality tracking.
In 2018 USENIX Annual Technical Conference (USENIX
ATC 18), pages 241–254, 2018.

[111] S. Ma, X. Zhang, and D. Xu. Protracer: Towards practical
provenance tracing by alternating between logging and
tainting. In NDSS, volume 2, page 4, 2016.

[112] S.-P. Ma, C.-Y. Fan, Y. Chuang, W.-T. Lee, S.-J. Lee, and
N.-L. Hsueh. Using service dependency graph to analyze
and test microservices. In 2018 IEEE 42nd Annual Com-
puter Software and Applications Conference (COMPSAC),
volume 2, pages 81–86. IEEE, 2018.

[113] A. Mastropaolo, L. Pascarella, and G. Bavota. Using
deep learning to generate complete log statements. arXiv
preprint arXiv:2201.04837, 2022.

[114] W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen,
R. Zhang, S. Tao, P. Sun, et al. Loganomaly: Unsuper-
vised detection of sequential and quantitative anomalies in
unstructured logs. In IJCAI, volume 7, pages 4739–4745,
2019.

[115] R. Mercer, S. Alaee, A. Abdoli, S. Singh, A. Murillo, and
E. Keogh. Matrix profile xxiii: Contrast profile: A novel

BIBLIOGRAPHY 185

time series primitive that allows real world classification.
In The IEEE International Conference on Data Mining,
2021.

[116] H. Mi, H. Wang, Y. Zhou, M. R.-T. Lyu, and H. Cai. To-
ward fine-grained, unsupervised, scalable performance diag-
nosis for production cloud computing systems. IEEE Trans-
actions on Parallel and Distributed Systems, 24(6):1245–
1255, 2013.

[117] T. Mikolov, E. Grave, P. Bojanowski, C. Puhrsch, and
A. Joulin. Advances in pre-training distributed word rep-
resentations. arXiv preprint arXiv:1712.09405, 2017.

[118] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and
J. Dean. Distributed representations of words and phrases
and their compositionality. In Advances in neural informa-
tion processing systems, pages 3111–3119, 2013.

[119] V. I. Munteanu, A. Edmonds, T. M. Bohnert, and T.-F.
Fortis. Cloud incident management, challenges, research
directions, and architectural approach. In Proceedings
of the 7th International Conference on Utility and Cloud
Computing (UCC), pages 786–791. IEEE Computer Society,
2014.

[120] A. Nandi, A. Mandal, S. Atreja, G. B. Dasgupta, and
S. Bhattacharya. Anomaly detection using program con-
trol flow graph mining from execution logs. In Proc. of
SIGKDD’16, pages 215–224, 2016.

[121] A. Natarajan, P. Ning, Y. Liu, S. Jajodia, and S. E.
Hutchinson. NSDMiner: Automated discovery of network
service dependencies. IEEE, 2012.

[122] S. Nedelkoski, J. Bogatinovski, A. Acker, J. Cardoso, and
O. Kao. Self-attentive classification-based anomaly detec-

BIBLIOGRAPHY 186

tion in unstructured logs. arXiv preprint arXiv:2008.09340,
2020.

[123] K. A. Nguyen, S. S. i. Walde, and N. T. Vu. Inte-
grating distributional lexical contrast into word embed-
dings for antonym-synonym distinction. arXiv preprint
arXiv:1605.07766, 2016.

[124] D. Ohana, B. Wassermann, N. Dupuis, E. Kolodner,
E. Raichstein, and M. Malka. Hybrid anomaly detec-
tion and prioritization for network logs at cloud scale. In
Proceedings of the Seventeenth European Conference on
Computer Systems, pages 236–250, 2022.

[125] A. Oliner and J. Stearley. What supercomputers say: A
study of five system logs. In Proc. of DSN’07, pages 575–
584. IEEE, 2007.

[126] G. Pang, K. M. Ting, and D. W. Albrecht. Lesinn: De-
tecting anomalies by identifying least similar nearest neigh-
bours. In IEEE International Conference on Data Mining
Workshop, ICDMW 2015, Atlantic City, NJ, USA, Novem-
ber 14-17, 2015, pages 623–630. IEEE Computer Society,
2015.

[127] D. Park, Y. Hoshi, and C. C. Kemp. A multimodal anomaly
detector for robot-assisted feeding using an lstm-based
variational autoencoder. IEEE Robotics and Automation
Letters, 3(3):1544–1551, 2018.

[128] Y. Peng, J. Yang, C. Wu, C. Guo, C. Hu, and Z. Li. detec-
tor: a topology-aware monitoring system for data center
networks. In D. D. Silva and B. Ford, editors, 2017 USENIX
Annual Technical Conference, USENIX ATC 2017, Santa
Clara, CA, USA, July 12-14, 2017, pages 55–68. USENIX
Association, 2017.

BIBLIOGRAPHY 187

[129] J. Pennington, R. Socher, and C. D. Manning. Glove:
Global vectors for word representation. In Proc. of
EMNLP’14, pages 1532–1543, 2014.

[130] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online
learning of social representations. In Proceedings of the
20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 701–710, 2014.

[131] A. A. Petr Lapukhov. Netnorad: Troubleshooting
networks via end-to-end probing, 2016. Available online at:
https://engineering.fb.com/2016/02/18/core-data/

netnorad-troubleshooting-networks-via-end-to-end-probing/.

[132] T. Pevnỳ. Loda: Lightweight on-line detector of anomalies.
Machine Learning, 102(2):275–304, 2016.

[133] A. Podgurski, D. Leon, P. Francis, W. Masri, M. Minch,
J. Sun, and B. Wang. Automated support for classifying
software failure reports. In 25th International Conference
on Software Engineering, 2003. Proceedings., pages 465–475.
IEEE, 2003.

[134] J. E. Prewett. Analyzing cluster log files using logsurfer.
In Proc. of the 4th Annual Conference on Linux Clusters.
Citeseer, 2003.

[135] PyTorch, 2016. Available online at: https://pytorch.

org/, last accessed in May, 2021.

[136] H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk, and
R. K. Iyer. {FIRM}: An intelligent fine-grained resource
management framework for {SLO-Oriented} microservices.
In 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20), pages 805–825, 2020.

https://engineering.fb.com/2016/02/18/core-data/netnorad-troubleshooting-networks-via-end-to-end-probing/
https://engineering.fb.com/2016/02/18/core-data/netnorad-troubleshooting-networks-via-end-to-end-probing/
https://pytorch.org/
https://pytorch.org/

BIBLIOGRAPHY 188

[137] J. Qiu, Q. Du, K. Yin, S.-L. Zhang, and C. Qian. A
causality mining and knowledge graph based method of
root cause diagnosis for performance anomaly in cloud
applications. Applied Sciences, 10(6):2166, 2020.

[138] T. Rakthanmanon and E. Keogh. Fast shapelets: A scal-
able algorithm for discovering time series shapelets. In
proceedings of the 2013 SIAM International Conference on
Data Mining, pages 668–676. SIAM, 2013.

[139] H. Ren, B. Xu, Y. Wang, C. Yi, C. Huang, X. Kou, T. Xing,
M. Yang, J. Tong, and Q. Zhang. Time-series anomaly
detection service at microsoft. In Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 3009–3017, 2019.

[140] Y. Research. A benchmark dataset for time series
anomaly detection, 2015. Available online at: https:

//yahooresearch.tumblr.com/post/114590420346/

a-benchmark-dataset-for-time-series-anomaly, last
accessed in August, 2021.

[141] K. Rodrigues, Y. Luo, and D. Yuan. Clp: Efficient and
scalable search on compressed text logs. In 15th USENIX
Symposium on Operating Systems Design and Implementa-
tion (OSDI 21), pages 183–198, 2021.

[142] A. Roy, D. Bansal, D. Brumley, H. K. Chandrappa,
P. Sharma, R. Tewari, B. Arzani, and A. C. Snoeren. Cloud
datacenter SDN monitoring: Experiences and challenges. In
Proceedings of the Internet Measurement Conference 2018,
IMC 2018, Boston, MA, USA, October 31 - November 02,
2018, pages 464–470. ACM, 2018.

[143] A. Roy, H. Zeng, J. Bagga, and A. C. Snoeren. Passive
realtime datacenter fault detection and localization. In

https://yahooresearch.tumblr.com/post/114590420346/a-benchmark-dataset-for-time-series-anomaly
https://yahooresearch.tumblr.com/post/114590420346/a-benchmark-dataset-for-time-series-anomaly
https://yahooresearch.tumblr.com/post/114590420346/a-benchmark-dataset-for-time-series-anomaly

BIBLIOGRAPHY 189

14th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 17), pages 595–612, 2017.

[144] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learn-
ing internal representations by error propagation. Technical
report, California Univ San Diego La Jolla Inst for Cogni-
tive Science, 1985.

[145] K. Rusek, J. Suárez-Varela, A. Mestres, P. Barlet-Ros, and
A. Cabellos-Aparicio. Unveiling the potential of graph
neural networks for network modeling and optimization
in SDN. In Proceedings of the 2019 ACM Symposium on
SDN Research, SOSR 2019, San Jose, CA, USA, April
3-4, 2019, pages 140–151. ACM, 2019.

[146] B. Russo, G. Succi, and W. Pedrycz. Mining system logs to
learn error predictors: a case study of a telemetry system.
Empirical Software Engineering, 20(4):879–927, 2015.

[147] R. K. Sahoo, A. J. Oliner, I. Rish, M. Gupta, J. E. Mor-
eira, S. Ma, R. Vilalta, and A. Sivasubramaniam. Critical
event prediction for proactive management in large-scale
computer clusters. In Proc. of SIGKDD’03, pages 426–435,
2003.

[148] W. Shang, M. Nagappan, and A. E. Hassan. Studying
the relationship between logging characteristics and the
code quality of platform software. Empirical Software
Engineering, 20(1):1–27, 2015.

[149] J. Shen, T. Yang, Y. Su, Y. Zhou, and M. R. Lyu. Defuse:
A dependency-guided function scheduler to mitigate cold
starts on faas platforms. In 2021 IEEE 41st International
Conference on Distributed Computing Systems (ICDCS),
pages 194–204. IEEE, 2021.

BIBLIOGRAPHY 190

[150] A. Siffer, P. Fouque, A. Termier, and C. Largouët. Anomaly
detection in streams with extreme value theory. In Proceed-
ings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, Halifax, NS,
Canada, August 13 - 17, 2017, pages 1067–1075. ACM,
2017.

[151] J. Sillito and E. Kutomi. Failures and fixes: A study of
software system incident response. In 2020 IEEE Interna-
tional Conference on Software Maintenance and Evolution
(ICSME), pages 185–195. IEEE, 2020.

[152] Stanford. Evaluation of clustering, 2008 [Online; accessed
November-2020]. https://nlp.stanford.edu/IR-book/
html/htmledition/evaluation-of-clustering-1.

html.

[153] Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei. Ro-
bust anomaly detection for multivariate time series through
stochastic recurrent neural network. In Proceedings of the
25th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, pages 2828–2837, 2019.

[154] P. Tammana, R. Agarwal, and M. Lee. Simplifying dat-
acenter network debugging with {PathDump}. In 12th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 233–248, 2016.

[155] P. Tammana, R. Agarwal, and M. Lee. Distributed net-
work monitoring and debugging with switchpointer. In
S. Banerjee and S. Seshan, editors, 15th USENIX Sympo-
sium on Networked Systems Design and Implementation,
NSDI 2018, Renton, WA, USA, April 9-11, 2018, pages
453–466. USENIX Association, 2018.

https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html
https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html

BIBLIOGRAPHY 191

[156] C. Tan, Z. Jin, C. Guo, T. Zhang, H. Wu, K. Deng, D. Bi,
and D. Xiang. Netbouncer: Active device and link failure
localization in data center networks. In J. R. Lorch and
M. Yu, editors, 16th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2019, Boston,
MA, February 26-28, 2019, pages 599–614. USENIX Asso-
ciation, 2019.

[157] Tensorflow, 2015. Available online at: https://www.

tensorflow.org/, last accessed in May, 2021.

[158] C. Trubiani, P. Jamshidi, J. Cito, W. Shang, Z. M. Jiang,
and M. Borg. Performance issues? hey devops, mind the
uncertainty. IEEE Software, 36(2):110–117, 2018.

[159] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. u. Kaiser, and I. Polosukhin. Attention is
all you need. In Proc. of NIPS’17, 2017.

[160] E. Viglianisi, M. Dallago, and M. Ceccato. Resttestgen:
automated black-box testing of restful apis. In 2020 IEEE
13th International Conference on Software Testing, Valida-
tion and Verification (ICST), pages 142–152. IEEE, 2020.

[161] C. Wang, X. Peng, M. Liu, Z. Xing, X. Bai, B. Xie, and
T. Wang. A learning-based approach for automatic con-
struction of domain glossary from source code and documen-
tation. In Proceedings of the 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE),
pages 97–108, 2019.

[162] H. Wang, Z. Wu, H. Jiang, Y. Huang, J. Wang, S. Kopru,
and T. Xie. Groot: An event-graph-based approach for
root cause analysis in industrial settings. In 2021 36th

https://www.tensorflow.org/
https://www.tensorflow.org/

BIBLIOGRAPHY 192

IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), pages 419–429. IEEE, 2021.

[163] Wikipedia. Representational state transfer, 2022.
Available online at: https://en.wikipedia.org/wiki/

Representational_state_transfer.

[164] T. Wittkopp, P. Wiesner, D. Scheinert, and O. Kao.
A taxonomy of anomalies in log data. arXiv preprint
arXiv:2111.13462, 2021.

[165] W. Wu, G. Wang, A. Akella, and A. Shaikh. Virtual
network diagnosis as a service. In Proceedings of the 4th
annual Symposium on Cloud Computing, pages 1–15, 2013.

[166] B. Xia, Y. Bai, J. Yin, Y. Li, and J. Xu. Loggan: A log-
level generative adversarial network for anomaly detection
using permutation event modeling. Information Systems
Frontiers, 23(2):285–298, 2021.

[167] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu,
Y. Zhao, D. Pei, Y. Feng, et al. Unsupervised anomaly
detection via variational auto-encoder for seasonal kpis in
web applications. In Proceedings of the 2018 World Wide
Web Conference, pages 187–196, 2018.

[168] J. Xu, Y. Wang, P. Chen, and P. Wang. Lightweight
and adaptive service api performance monitoring in highly
dynamic cloud environment. In X. F. Liu and U. Bellur,
editors, 2017 IEEE International Conference on Services
Computing, SCC 2017, Honolulu, HI, USA, June 25-30,
2017, pages 35–43. IEEE Computer Society.

[169] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan.
Detecting large-scale system problems by mining console
logs. In Proc. of SOSP’09, pages 117–132, 2009.

https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer

BIBLIOGRAPHY 193

[170] Y. Xu, K. Sui, R. Yao, H. Zhang, Q. Lin, Y. Dang, P. Li,
K. Jiang, W. Zhang, J.-G. Lou, et al. Improving service
availability of cloud systems by predicting disk error. In
Proceedings of the 2018 USENIX Annual Technical Con-
ference (USENIX ATC), pages 481–494, 2018.

[171] G. Yang, H. Jin, M. Kang, G. J. Moon, and C. Yoo. Net-
work monitoring for sdn virtual networks. In IEEE INFO-
COM 2020-IEEE Conference on Computer Communica-
tions, pages 1261–1270. IEEE, 2020.

[172] H. Yang, L. Wen, and J. Wang. An approach to evaluate
the local completeness of an event log. In 2012 IEEE 12th
International Conference on Data Mining, pages 1164–1169.
IEEE, 2012.

[173] L. Yang, J. Chen, Z. Wang, W. Wang, J. Jiang, X. Dong,
and W. Zhang. Semi-supervised log-based anomaly detec-
tion via probabilistic label estimation. In Proc. of ICSE’21,
pages 1448–1460. IEEE, 2021.

[174] N. Yang, R. Schiffelers, and J. Lukkien. An interview study
of how developers use execution logs in embedded software
engineering. In Proc. of ICSE-SEIP’21, pages 61–70. IEEE,
2021.

[175] T. Yang, J. Shen, Y. Su, X. Ling, Y. Yang, and M. R.
Lyu. Aid: Efficient prediction of aggregated intensity of
dependency in large-scale cloud systems. In 2021 36th
IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE), pages 653–665. IEEE, 2021.

[176] Z. Yang, R. Algesheimer, and C. J. Tessone. A comparative
analysis of community detection algorithms on artificial
networks. Scientific reports, 6:30750, 2016.

BIBLIOGRAPHY 194

[177] D. Yankov, E. Keogh, and U. Rebbapragada. Disk aware
discord discovery: Finding unusual time series in ter-
abyte sized datasets. Knowledge and Information Systems,
17(2):241–262, 2008.

[178] K. Yao, H. Li, W. Shang, and A. E. Hassan. A study of the
performance of general compressors on log files. Empirical
Software Engineering, 25(5):3043–3085, 2020.

[179] C.-C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A.
Dau, D. F. Silva, A. Mueen, and E. Keogh. Matrix profile i:
all pairs similarity joins for time series: a unifying view that
includes motifs, discords and shapelets. In 2016 IEEE 16th
international conference on data mining (ICDM), pages
1317–1322. IEEE, 2016.

[180] S. Yen, M. Moh, and T.-S. Moh. Causalconvlstm: Semi-
supervised log anomaly detection through sequence mod-
eling. In Proc. of ICMLA’19, pages 1334–1341. IEEE,
2019.

[181] J. Yin, X. Zhao, Y. Tang, C. Zhi, Z. Chen, and Z. Wu.
Cloudscout: A non-intrusive approach to service depen-
dency discovery. IEEE Transactions on Parallel and Dis-
tributed Systems, 28(5):1271–1284, 2016.

[182] D. Yuan, H. Mai, W. Xiong, L. Tan, Y. Zhou, and S. Pa-
supathy. Sherlog: error diagnosis by connecting clues from
run-time logs. In Proc. of ASPLOS’10, pages 143–154,
2010.

[183] D. Yuan, S. Park, P. Huang, Y. Liu, M. M. Lee, X. Tang,
Y. Zhou, and S. Savage. Be conservative: Enhancing failure
diagnosis with proactive logging. In Proc. of OSDI’12,
pages 293–306, 2012.

BIBLIOGRAPHY 195

[184] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage. Im-
proving software diagnosability via log enhancement. ACM
Transactions on Computer Systems (TOCS), 30(1):1–28,
2012.

[185] T. S. Zaman, X. Han, and T. Yu. Scminer: Localiz-
ing system-level concurrency faults from large system call
traces. In 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE), pages 515–526.
IEEE, 2019.

[186] Y. Zeng, J. Chen, W. Shang, and T.-H. P. Chen. Studying
the characteristics of logging practices in mobile apps: a
case study on f-droid. Empirical Software Engineering,
24(6):3394–3434, 2019.

[187] H. Zhang, L. Gong, and S. Versteeg. Predicting bug-fixing
time: an empirical study of commercial software projects.
In Proceedings of the 35th International Conference on
Software Engineering: Software Engineering in Practice
(ICSE-SEIP), pages 1042–1051. IEEE Press, 2013.

[188] X. Zhang, Q. Lin, Y. Xu, S. Qin, H. Zhang, B. Qiao,
Y. Dang, X. Yang, Q. Cheng, M. Chintalapati, et al. Cross-
dataset time series anomaly detection for cloud systems. In
Proceedings of the 2019 USENIX Annual Technical Con-
ference (USENIX ATC), pages 1063–1076, 2019.

[189] X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang,
C. Xie, X. Yang, Q. Cheng, Z. Li, et al. Robust log-
based anomaly detection on unstable log data. In Proc. of
ESEC/FSE’19, pages 807–817, 2019.

[190] G. Zhao, S. Hassan, Y. Zou, D. Truong, and T. Corbin.
Predicting performance anomalies in software systems at

BIBLIOGRAPHY 196

run-time. ACM Transactions on Software Engineering and
Methodology (TOSEM), 30(3):1–33, 2021.

[191] N. Zhao, J. Chen, X. Peng, H. Wang, X. Wu, Y. Zhang,
Z. Chen, X. Zheng, X. Nie, G. Wang, et al. Understanding
and handling alert storm for online service systems. In Pro-
ceedings of the ACM/IEEE 42nd International Conference
on Software Engineering: Software Engineering in Practice,
pages 162–171, 2020.

[192] N. Zhao, J. Chen, Z. Wang, X. Peng, G. Wang, Y. Wu,
F. Zhou, Z. Feng, X. Nie, W. Zhang, et al. Real-time inci-
dent prediction for online service systems. In Proceedings
of the 28th ACM Joint Meeting on European Software En-
gineering Conference and Symposium on the Foundations
of Software Engineering, pages 315–326, 2020.

[193] N. Zhao, P. Jin, L. Wang, X. Yang, R. Liu, W. Zhang,
K. Sui, and D. Pei. Automatically and adaptively iden-
tifying severe alerts for online service systems. In 39th
IEEE Conference on Computer Communications, INFO-
COM 2020, Toronto, ON, Canada, July 6-9, 2020, pages
2420–2429. IEEE.

[194] N. Zhao, H. Wang, Z. Li, X. Peng, G. Wang, Z. Pan, et al.
An empirical investigation of practical log anomaly detec-
tion for online service systems. In Proc. of ESEC/FSE’21,
pages 1404–1415, 2021.

[195] Q. Zheng and G. Cao. Minimizing probing cost and achiev-
ing identifiability in probe-based network link monitoring.
IEEE Trans. Computers, 62(3):510–523, 2013.

[196] W. Zheng, H. Lu, Y. Zhou, J. Liang, H. Zheng, and Y. Deng.
ifeedback: Exploiting user feedback for real-time issue de-
tection in large-scale online service systems. In Proceedings

BIBLIOGRAPHY 197

of the 34th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), pages 352–363. IEEE,
2019.

[197] H. Zhou, J.-G. Lou, H. Zhang, H. Lin, H. Lin, and T. Qin.
An empirical study on quality issues of production big
data platform. In Proceedings of the 37th International
Conference on Software Engineering (ICSE), pages 17–26.
IEEE Press, 2015.

[198] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li,
and M. Sun. Graph neural networks: A review of methods
and applications. arXiv preprint arXiv:1812.08434, 2018.

[199] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and D. Ding.
Fault analysis and debugging of microservice systems: In-
dustrial survey, benchmark system, and empirical study.
IEEE Transactions on Software Engineering, 47(2):243–260,
2018.

[200] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, D. Liu, Q. Xiang,
and C. He. Latent error prediction and fault localization
for microservice applications by learning from system trace
logs. In Proc. of ESEC/FSE’19, pages 683–694, 2019.

[201] Y. Zhou, C. Sun, H. H. Liu, R. Miao, S. Bai, B. Li, Z. Zheng,
L. Zhu, Z. Shen, Y. Xi, P. Zhang, D. Cai, M. Zhang, and
M. Xu. Flow event telemetry on programmable data plane.
In H. Schulzrinne and V. Misra, editors, SIGCOMM ’20:
Proceedings of the 2020 Annual conference of the ACM
Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols for
computer communication, Virtual Event, USA, August 10-
14, 2020, pages 76–89. ACM, 2020.

BIBLIOGRAPHY 198

[202] J. Zhu, P. He, Q. Fu, H. Zhang, M. R. Lyu, and D. Zhang.
Learning to log: Helping developers make informed logging
decisions. In Proc. of ICSE’15, volume 1, pages 415–425.
IEEE, 2015.

[203] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R.
Lyu. Tools and benchmarks for automated log parsing. In
Proc. of ICSE-SEIP’19, pages 121–130. IEEE, 2019.

[204] Y. Zhu, N. Kang, J. Cao, A. G. Greenberg, G. Lu, R. Ma-
hajan, D. A. Maltz, L. Yuan, M. Zhang, B. Y. Zhao, and
H. Zheng. Packet-level telemetry in large datacenter net-
works. In S. Uhlig, O. Maennel, B. Karp, and J. Padhye,
editors, Proceedings of the 2015 ACM Conference on Spe-
cial Interest Group on Data Communication, SIGCOMM
2015, London, United Kingdom, August 17-21, 2015, pages
479–491. ACM, 2015.

[205] Y. Zhu, C.-C. M. Yeh, Z. Zimmerman, K. Kamgar, and
E. Keogh. Matrix profile xi: Scrimp++: time series motif
discovery at interactive speeds. In 2018 IEEE International
Conference on Data Mining (ICDM), pages 837–846. IEEE,
2018.

[206] B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu,
D. Cho, and H. Chen. Deep autoencoding gaussian mixture
model for unsupervised anomaly detection. In International
Conference on Learning Representations, 2018.

[207] R. Řeh̊uřek. Gensim: topic modelling for humans,
2009. Available online at: https://radimrehurek.com/

gensim/.

https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/

	Abstract
	Acknowledgement
	Introduction
	Overview
	Thesis Contributions
	Thesis Organization

	Online Service Systems and Monitoring
	Online Service Systems
	Online Service Monitoring Data
	Incident Management for Online Services
	Incidents
	Incident Management

	Log-based Anomaly Detection
	Log Collection
	Log Parsing
	Log Partition and Feature Extraction
	Anomaly Detection

	Metric-based Performance Anomaly Detection
	Performance Anomaly Patterns
	Metric Pattern Mining

	Alert Aggregation for Online Services
	Topologies in Large-scale Cloud Systems
	Cascading Effect of Service Failures

	Literature Survey on Intelligent Service Monitoring
	Intelligent Incident Management
	Reliability and Resilience of Online Services
	Empirical Study on Incident Management

	Log-based Anomaly Detection
	Log analysis
	Empirical studies on logs

	Metric-based Anomaly Detection
	Statistical and ML-based Approaches
	Deep Learning-based Approaches

	Alert Management in Cloud Systems
	Problem Identification and Diagnosis
	Intelligent Alert Management

	Intelligent Incident Management
	Problem and Contributions
	Incident Ticket Analysis
	Methodology
	Characteristics of Incident Tickets

	Incident Management Understanding
	Key Challenges of Incident Management
	Understand the Key Challenges

	BRAIN: An AIOps Framework
	Design Principles
	Data and Features
	Data Preprocessing
	Techniques of BRAIN
	Evaluation

	Summary

	Deep Log Anomaly Detection
	Problem and Contributions
	Log Anomaly Detection
	Loss Formulation
	Existing Methods
	Tool Implementation

	Evaluation
	Experiment Design
	Accuracy of Log Anomaly Detection
	Robustness of Log Anomaly Detection
	Efficiency of Log Anomaly Detection

	Industrial Practices
	Industrial Deployment
	Future Directions

	Summary

	Adaptive Performance Anomaly Detection
	Problem and Contributions
	Methodology
	Overview
	Offline Anomaly Detection
	Online Anomaly Detection
	Time and Space Complexity

	Experiments
	Experiment Setting
	Experimental Results

	Industrial Practices
	Online Deployment
	Case Study
	Threats to Validity

	Summary

	Graph-based Alert Aggregation
	Problem and Contributions
	Methodology
	Overview
	Service Failure Detection
	Failure-Impact Graph Identification
	Graph-based Alert Representation Learning
	Online Alert Aggregation

	Experiments
	Experiment Setting
	Comparative Methods
	Experimental Results
	Threats to Validity

	Discussion
	Success Story
	Lessons Learned

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work
	Performance Monitoring and Diagnosis for Cloud Overlay Networks
	Cross-layer Failure Propagation Modeling in Cloud Systems

	List of Publications
	Bibliography

