
Randomized Algorithms for

Machine Learning

CHEN, Xixian

A Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Doctor of Philosophy

in

Computer Science and Engineering

The Chinese University of Hong Kong

July 2018

Thesis Assessment Committee

Professor ZHANG Shengyu (Chair)

Professor KING Kuo Chin Irwin (Thesis Supervisor)

Professor LYU Rung Tsong Michael (Thesis Co-supervisor)

Professor YOUNG Fung Yu (Committee Member)

Professor KWOK Tin Yau James (External Examiner)

Abstract of thesis entitled:

Randomized Algorithms for Machine Learning

Submitted by CHEN, Xixian

for the degree of Doctor of Philosophy

at The Chinese University of Hong Kong in July 2018

The power of machine learning techniques has benefited from the

explosion of available information involved in big data, whereas

the solution of learning problems is typically computationally

intractable in the presence of the rapidly increasing data volume.

Therefore, the development of approaches to make learning

efficient is urgently needed. In recent years, randomized algo-

rithms have received much attention for facilitating computation

and yielding approximate outputs for many learning problems.

They utilize randomization, including random projection and

random sampling, to create a compact data representation for

the learning problems, so that a little learning accuracy is

sacrificed, while high computational efficiency is achieved. In

this thesis, we develop randomized algorithms for three fun-

damental machine learning problems, and improve the tradeoff

between the efficiency in the computation and the accuracy of

the approximate solution.

The central contribution of this thesis is divided into three

parts. In the first part, we propose a training-efficient feature

map to approximate the kernel matrix and accelerate the kernel

learning, in which we rely on random projection to derive a fast

i

data-dependent subspace embedding for feature generation. We

describe two algorithms with different tradeoffs regarding the

running speed and accuracy, and prove that the O(`) features

they induce are able to perform as accurately as the O(`2)

features of other feature map methods.

In the second part, we propose a faster unsupervised online

hashing by leveraging fast random projection to transform data

in a more compact manner in the PCA (Principal Component

Analysis) based online hashing. In particular, we derive inde-

pendent transformations to guarantee the sketching accuracy,

and design a novel implementation to make such transformations

applicable to the current PCA based online hashing without

increasing the space cost. We rigorously prove that our method

can yield a comparable learning accuracy with less time com-

plexity and an equal space cost.

In the final part, we present an efficient and accurate co-

variance matrix estimation for which we leverage a data-aware

sampling method to construct low-dimensional data. We rigor-

ously prove that our proposed estimator is unbiased and requires

fewer data to achieve the same accuracy with specially designed

sampling distributions compared with all other methods. In

addition, we depict that the computational procedures in our

algorithm are efficient regarding communication, storage, and

calculation time. All achievements imply an improved tradeoff

between the estimation accuracy and computational costs.

ii

論文摘要：

標題：隨機算法在大規模機器學習的應用研究

提交者：陳錫顯

學位：博士

香港中文大學，二零壹八年二月

大數據所蘊含的豐富信息給予了機器學習強大的學習能

力，然而不斷增長的大數據體積使得機器學習問題的求解計算

愈加困難。因此，設計出適當的方法達到有效快速的學習變的

非常重要。近些年，隨機算法獲得了大量的關註，因為它有助

於快速計算同時能夠獲得和原來求解問題的相似的結果。隨機

算法的核心思想是使用隨機化包括隨機投影和隨機抽樣，為原

來的學習問題構造出壹個更加緊湊的數據表達形式。在本論文

裏，我們主要為三種根本的機器學習問題設計了相應的隨機算

法，同時提高求解效率和結果準確度上的平衡。

本篇論文的主要貢獻可以分為三個部分。在第壹個部分，

我們提出了壹種特征生成方法用來近似核矩陣進而加快核學習

的訓練。其中，我們依賴隨機投影去設計壹種快速的數據敏感

的子空間嵌入方法用來產生最終所需的特征。我們描述了兩種

在計算效率和結果準確度上不同平衡的兩種算法，並且都證明

了相對於其他方法我們的方法可以用少很多的特征數量去達到

同等規模的結果準確度。

在第二個部分，我們提出了壹種更快的無監督在線的哈希

方法，主要是通過使用壹種快速的隨機投影來壓縮數據並且用

於基於主成分分析的在線哈希上。特別的，我們提出使用獨立

同分布的投影方式來保證壓縮的準確性，同時設計出有效的實

現方式使得這種投影在不增加空間消耗的要求下依然適用於當

前經典的基於主成分分析的在線哈希。我們嚴格的證明出我們

的方法能夠很大的減少時間和空間的消耗，同時產生同等的準

確度。在壹些實驗結果中，更好的結果準確度也有被觀察到。

iii

在論文的最後部分，我們描述了壹種計算方便結果準確的

協方差矩陣的估計方法。其中，我們采用了權重抽樣去壓縮數

據用來進行估計。我們嚴格證明了我們的估計是無偏的，同時

依靠專門設計的抽樣概率，相較其它所有的方法我們的估計能

夠使用更少的數據量來達到同等準確的估計。同時，計算量上

我們的算法也是很有效的。因此，我們的方法有著更好的結果

準確度和計算效率上的平衡。

iv

Acknowledgement

I would like to thank my supervisors, Prof. Irwin King and

Prof. Michael R. Lyu, for their advice, encouragements, pa-

tience, and supports at all levels. I am deeply indebted to all

the time and effort they have devoted towards my research here

at the Chinese University of Hong Kong.

I would like to thank my thesis assessment committee mem-

bers, Prof. Shengyu Zhang and Prof. Fung Yu Young for their

constructive comments and valuable suggestions to this thesis

and all my term presentations. Great thanks to Prof. James

Tin Yau Kwok from Hong Kong University of Science and

Technology who kindly serves as the external examiner for this

thesis.

I would like to thank the support from Hong Kong PhD

Fellowship Scheme.

I would like to thank Haiqin Yang, Shenglin Zhao, Hongyi

Zhang, Tong Zhao, Yuxin Su, Xiaotian Yu, Jiani Zhang, Hou-

Pong Chan, Guangyong Chen, Xiaowei Chen, and Chuangwen

Liu for their contributions and suggestions for my research work.

I would also like to thank my other group fellows, Baichuan Li,

Shouyuan Chen, Guang Ling, Chen Cheng, Han Shao, Wang

Chen, Yue Wang, Pengpeng Liu, Yifan Gao, Wenxiang Jiao,

Jingjing Li, Haoli Bai, Yaoman Li, Jieming Zhu, Jichuan Zeng,

Hui Xu, and Pinjia He. I am grateful for all the enjoyable times

v

together with them.

I would like to thank my girlfriend for all her love and

support. I would like to thank my parents, without whom none

of these would be possible.

vi

To my family.

vii

Contents

Abstract i

Acknowledgement v

1 Introduction 1

1.1 Motivation . 1

1.1.1 Machine Learning with Big Data 1

1.1.2 Challenges 2

1.1.3 Solutions and Our Focus 5

1.2 Thesis Contribution 7

1.3 Thesis Organization 10

2 Background 13

2.1 Preliminaries . 13

2.2 Randomized Algorithms 14

2.3 Techniques on Randomization 18

2.3.1 Random Projection 19

2.3.2 Random Sampling 24

2.4 Learning Problems of Interest 25

2.4.1 Kernel Methods 26

2.4.2 Unsupervised Online Hashing 28

2.4.3 Covariance Matrix Estimation 29

viii

3 Training-Efficient Feature Map for Shift-Invariant

Kernels 32

3.1 Introduction . 33

3.2 Related Work . 35

3.2.1 Random Feature Maps for Shift-Invariant

Kernels 35

3.2.2 Subspace Embedding 37

3.3 Training-Efficient Feature Map 38

3.3.1 Methods and Algorithms 38

3.3.2 Kernel Approximation Analysis 40

3.3.3 Impact on Learning Tasks 41

3.3.4 Computational Analysis 43

3.4 Empirical Studies 43

3.4.1 Kernel Approximation Quality 44

3.4.2 Performance on KRR 47

3.5 Conclusion . 48

3.6 Proofs . 49

3.6.1 Preliminaries 49

3.6.2 Proof of Theorem 3.4 49

3.6.3 Proof of Theorem 3.5 52

3.6.4 Proof of Theorem 3.7 53

4 Faster Online Sketching Hashing 54

4.1 Introduction . 55

4.2 Related Work . 58

4.2.1 Online Sketching Hashing 58

4.2.2 Frequent Directions for Sketching 61

4.2.3 Fast JL Transform 62

4.3 Faster Online Sketching Hashing 63

4.3.1 Motivation, Method and Results 64

ix

4.3.2 Implementation of the Fast JL Trasform

in FFD . 69

4.4 Empirical Studies 70

4.4.1 Numerical Studies on Sketching 71

4.4.2 Comparisons with LSH and OSH 73

4.4.3 Comparisons with Batch Solutions 76

4.5 Conclusion . 78

4.6 Proofs . 79

4.6.1 Preliminaries 79

4.6.2 Proof of Lemma 4.2 80

4.6.3 Proof of Theorem 4.1 81

4.6.4 Proof of Theorem 4.2 85

4.6.5 Proof of Corollary 4.1 86

5 Toward Efficient and Accurate Covariance Matrix

Estimation on Compressed Data 88

5.1 Introduction . 89

5.2 Related Work . 93

5.3 Efficient and Accurate Covariance Estimation . . 96

5.3.1 Method and Algorithm 96

5.3.2 Primary Provable Results 98

5.3.3 Computational Complexity 104

5.4 Empirical Studies 105

5.4.1 Experiments on Synthetic Datasets 105

5.4.2 Experiments on Real-World Datasets . . . 110

5.5 Conclusion . 111

5.6 Proofs . 112

5.6.1 Preliminaries 112

5.6.2 Proof of Lemma 5.5 115

5.6.3 Proof of Lemma 5.6 130

x

5.6.4 Proof of Theorem 5.1 132

5.6.5 Proof of Theorem 5.2 133

5.6.6 Proof of Corollary 5.1 143

5.6.7 Proof of Corollary 5.2 143

5.6.8 Proof of Corollary 5.3 146

5.7 Details for Counterparts 146

5.7.1 Theorems for Gauss-Inverse and UniSample-

HD . 146

5.7.2 Discussion 147

5.8 Details for Computational Complexity 151

5.9 Impact of the Parameter α for Our Approach . . 156

5.9.1 Discussion 156

5.9.2 Experiments 158

6 Conclusions and Future Work 160

6.1 Conclusion . 160

6.2 Future Work . 161

6.2.1 Randomized Algorithms and Implicit Reg-

ularization 161

6.2.2 Randomized Algorithms for Deep Neural

Networks 162

6.2.3 Randomized Algorithms for Parallel/Distributed

Computation 163

Bibliography 163

xi

List of Figures

2.1 Framework of the randomized algorithm for ma-

chine learning. 16

2.2 Kernel method and random feature map. 27

2.3 Dimension reduction via hashing. 28

2.4 Covariance matrix estimation. 30

3.1 Kernel approximation. 46

3.2 Accuracy comparision and time comparison on

regression. 48

4.1 Space-efficient implementation of ΦF = SHDF.

We set m/p = 2c with c = 2 for clarity. 70

4.2 Accuracy comparisons of sketching methods. . . . 72

4.3 Time comparisons of sketching methods. 73

4.4 MAP at each round with 32, 64, and 128 bits. . . 74

4.5 MAP comparisons at different code lengths. . . . 76

5.1 Accuracy comparisons of covariance matrix es-

timation on synthetic datasets. The estimation

error is measured by ‖Ce − C‖2/‖C‖2 with Ce

calculated by all compared methods, and cf =

m/d is the compression ratio. 106

xii

5.2 Time comparisons of covariance matrix estima-

tion on synthetic datasets. Rescaled time results

from the running time normalized by that spent

in the Standard way of calculating C = XXT/n

without data compression, and it is plotted in log

scale. 108

5.3 Convergence rates of our method for the settings

in Corollaries 5.2 and 5.3. 109

5.4 Accuracy comparisons of covariance matrix esti-

mation on real-world datasets. 111

5.5 Accuracy comparison by decreasing α from 1 to

0 with a step size of 0.1. The error at each α is

normalized by that at α = 1 on y-axis, and m/d

varies from 0.005 to 0.2 with a step size of 0.005

on x-axis. Roughly, α = 0.9 is a good choice, and

the smaller parameter like α = 0 usually leads to

a poorer accuracy and higher variance compared

with the other α values. 159

xiii

List of Tables

2.1 Key notations used throughout this thesis. 15

3.1 Time complexity of M1 to M4 representing 4

methods respectively, i.e., Kernel method, RKS,

TEFM-G and TEFM-S. 44

3.2 Details of datasets in our experiments. 45

4.1 Time cost and error bounds of the compared

frequent direction methods, where the space cost

is O(d`) for all methods. 66

4.2 Accumulated training time of OSH and FROSH

after all rounds (in sec.). 75

4.3 Comparisons of the training time (in sec.). We

report the accumulated time after all rounds for

OSH and FROSH and provide the time con-

sumptions of training SGH and OCH only on all

observed data. 78

5.1 Computational costs on the storage, communica-

tion, and time. 104

xiv

Chapter 1

Introduction

This thesis presents our research into learning with randomized

algorithms, which is an important research field to make learning

tractable on big data. In this chapter, we provide a brief

overview of the research motivation in Section 1.1, and highlight

the main contribution of this thesis in Section 1.2. Finally,

Section 1.3 outlines the thesis structure.

1.1 Motivation

1.1.1 Machine Learning with Big Data

Big data, a result of the internetization and computerization of

our society, are now routinely collected from sources including

social media, imaging devices, sensors, businesses, financial

institutions, medical platforms, etc. For instance, there are

trillions of websites are indexed by the Google search engine,

and billions of queries per month are received and handled [48].

In e-commerce, petabytes of data are generated by e-commerce

companies every day, and their analysis requires millions of

operations [80].

These vast data bring substantial opportunities for machine

1

CHAPTER 1. INTRODUCTION 2

learning. Naturally, big data afford great possibilities to discover

subtle population patterns and heterogeneities that would be

nearly impossible to identify with small-scale data [65]. Thus,

even simple learning models can still be used to obtain informa-

tive outputs. Logistic regression is currently widely applied in

industry for classification in tasks like recommendation because,

in addition to the training and inference efficiency, it indeed

owns the ability to improve the user experience and bring

more profits with big data [112, 120, 183]. Moreover, the

large data samples in big data allow us to develop complicated

learning models to improve learning accuracy. Deep neural

networks have recently achieved great success in many areas

such as computer vision, and the success of deeper and wider

networks must rely upon big data such as ImageNet [108]. In

contrast, complicated models on small-scale data usually suffer

from over-fitting problems because the amount of data required

for learning typically grows exponentially with the model’s

complexity [99, 110].

1.1.2 Challenges

The most talked-about characteristic of big data is its huge

volume [65]; in the machine learning community, this huge data

volume is reflected by the large sample size corresponding to the

number of data samples and the data dimensionality concerned

with the number of features or attributes. Accordingly, although

learning ability can be improved by big data, as stated previ-

ously, the involved computational efficiency tends to decrease.

As mentioned by [64], a 1% reduction in process inefficiency in

health care would lead to a saving of 63 billion dollars over 15

years. Below, we summarize the major computational challenges

CHAPTER 1. INTRODUCTION 3

for learning on big data regarding three aspects that are not

exhaustive but representative.

Time complexity. Time complexity mainly results from

the floating-point operations in the training and inference on

learning models. Generally, the time is at a cost of polynomial

of the sample size and data dimensionality. For example,

considering n samples in the d-dimensional space, linear least

square regression and linear ridge regression require O(nd2)

and O(n2d) training time, respectively [53, 128]. Because

n, d � 1, such training time is prohibitive. Moreover, for high

dimensional data, the structure of the model to be estimated is

complicated and thus more parameters must be evaluated. If

at the same time we cannot engage enough data, the accurate

statistical inference will be intractable. According to [85], we

know that to estimate the data distribution to a certain level of

confidence, the amount of data usually grows exponentially with

the dimensionality [99, 110]. Thus, in recent years, we prefer

complicated learning models like deep networks whose learning

ability relies on the massive amounts of data with millions [108]

or billions [87] of parameters; training a toy network for 90 cycles

through 1.2 million images with two GPUs could take more than

5 days [108] let alone other advanced networks [87]. This time

challenge creates a computational bottleneck for time-sensitive

application domains and power-limited devices.

Space requirement. Storage of data in an external space

allows multiple accesses, and loading all data into a memory

space provides fast access to data during the computation.

Because external space is limited only for mobile devices and

sensors, but memory space can be limited for many platforms,

we concentrate more on the cost of memory space in some

CHAPTER 1. INTRODUCTION 4

contexts. In fact, the required amount of storage can easily

exceed the available memory. A 24-hour video with 30 fps at a

resolution of 1024× 768 produces 570-GB of data, which is too

large to fit into the memory. Taking the recommender system

as another instance, billions of new user-item interactions are

generated every day on Alibaba that cannot be accommodated

entirely in the memory [98]. People may choose to load only a

small batch of data into memory, but multiple passes to move

the entire database between external space and memory is time-

consuming. In other words, the speed of processing data could

be very slow due to limitations in the main memory [20, 46].

Moreover, many existing learning methods require the entire

dataset to be stored in the memory; for example, calculation of

the inverse operations for linear least square regression demands

O(d2) memory.

Communication cost. When data are gathered from many

distributed remote sites, such as sensor networks, surveillance

equipment, and distributed databases, a communication cost is

introduced because the data must be transmitted to a fusion

center for the complex data analysis [37]. For a parallel or

distributed learning scheme, the data or the model parame-

ters must be updated across multiple cores or all distributed

machines [112]. In addition to the tremendous bandwidth

and power consumption, expensive communication costs lead

to extremely large time burdens, which can dominate the

time taken in the model training and consequently becomes a

bottleneck for tractable learning on big data. Therefore, tackling

the challenge of communication cost is indispensable.

In addition, big data exhibit some other characteristics

including that data come in a streaming fashion or that labeled

CHAPTER 1. INTRODUCTION 5

data are difficult to access. These characteristics also introduce

challenges for the learning [111].

1.1.3 Solutions and Our Focus

Several approaches have been used to tackle the computational

issues mentioned above and to make it feasible to build the

learner efficiently. These methods are proposed from the per-

spective of either system design or algorithm design, as discussed

below.

Distributed and parallel learning. Distributed learning is

likely to be a promising direction because the allocation of the

learning operations among several machines is a natural method

to scale up learning algorithms [149]. With the advantage

of managing big volumes of data, distributed learning saves

time and power by avoiding the necessity of storing data or

model parameters in a single machine for central processing.

All distributed machines require communication in either a syn-

chronous or an asynchronous way to share necessary information

to update the learning model. Like distributed learning, parallel

machine learning is a widely-used learning technique to increase

the efficiency of learning algorithms [173]. Due to the power

of the cloud computing systems and multicore processors, dis-

tributed and parallel computing platforms have recently become

rather accessible [149], whose detailed description can be found

in [19]. However, the need to perform asynchronous updates of

model parameters tends to lead to suboptimal accuracy in the

example case, in which an individual model replica is trained

based on a stale copy of the model parameters. Conversely,

the use of fully synchronous updates suffers from the slow

computational speed that equals the slowest model replica. In

CHAPTER 1. INTRODUCTION 6

addition, due to the limited bandwidth, the communications

for updating models among distributed platforms could greatly

reduce the computational efficiency [149].

Online learning. Generally, online learning stands for the pro-

cess of answering a sequence of questions based on full or partial

knowledge of the correct answers to previous questions [12]. In

the machine learning context, online learning typically repre-

sents the learning process in the setting of streaming data [68]

(i.e., training a learning model in consecutive rounds as each

instance arrives). After achieving a prediction on one instance,

the algorithm will verify the correctness of this prediction

and feed the information back into the model updating for

the next instance. Instead of an offline or batch learning

fashion, which requires the collection of the full information

of training data, online learning is currently a well-established

learning paradigm [161]. This sequential learning mechanism

works well for big data because current machines cannot hold

the entire data in their memory and the calculation of one

instance is efficient. More general algorithms can be used in an

online setting such as stochastic gradient descent and perception

learning algorithms.

Learning with randomized algorithms. Randomized

algorithms have recently received a great deal of attention [130],

and this line of research is the focus of this thesis. This approach

is motivated by the observation that the solution of universal

learning algorithms involves many matrix computations and

that randomization can lead to efficient matrix computations.

Specifically, randomization is performed to obtain a smaller or

sparser matrix that represents the essential information in the

original matrix for the execution of learning algorithms. Thus,

CHAPTER 1. INTRODUCTION 7

a little learning accuracy might be sacrificed to significantly

reduce the computational burden such that the matrix compu-

tations and machine learning can be approximated with great

efficiency. Admittedly, in most cases, randomized algorithms

cannot receive an optimal result in terms of learning accuracy.

From another perspective, we can guarantee the performance for

all categories of data with high probability, which is amazing,

wonderful, and powerful. In both theoretical and practical

views, great learning accuracy can still be guaranteed with

carefully designed randomized algorithms. Moreover, practically

randomized algorithms also lead to algorithms with more inter-

pretable output and implicitly result in regularization and more

robust output.

1.2 Thesis Contribution

In this thesis, we tackle the computational challenges of learning

with big data with the advantages of randomized algorithms,

which is orthogonal to and applicable to many other learning

paradigms, such as the distributed learning and online learning

discussed above. We design and evaluate efficient randomized

algorithms for fundamental machine learning problems including

kernel methods, unsupervised online hashing, and covariance

matrix estimation. The main contribution of this thesis can

be described as follows.

1. In Chapter 3, we derive a feature map method to achieve

efficient training on shift-invariant kernels. Kernel methods

are well known to be powerful because they can achieve

excellent performance when learning the nonlinear rela-

tionship embedded in the training data. However, they

CHAPTER 1. INTRODUCTION 8

are typically computationally prohibitive in the training

procedure, and a classical random feature map is still not

sufficiently satisfactory to scale up kernel methods because

a large number of mapped features must be included in

the training to ensure an accurate approximation. Because

the kernel matrix is the most important to the learning

accuracy, we then leverage randomized data-dependent

subspace embedding to refine the aforementioned mapped

features, which can guarantee an excellent approximation

to the kernel matrix with much fewer features. The-

oretically, we prove that O(`) features induced by our

randomized algorithms are able to perform as accurately as

O(`2) features by the classical random feature map. This

superior result can significantly reduce the computational

burdens in the training that might be at least quadratic

proportional to the number of features.

2. In Chapter 4, we present a faster unsupervised online

hashing method. Hashing aims to gain the efficiency to

conduct an approximate nearest neighbor search, which

is critical for machine learning and applications such as

clustering, retrieval, and matching [177]. Many hashing

methods with good learning accuracy are still inefficient

when handling big data, and the state-of-the-art unsu-

pervised online hashing method (i.e., PCA-based online

hashing) does not require large amounts of space for the

computation and multiple passes to read data. Although its

training procedure is faster than that of the standard PCA-

based hashing, it still suffers from a high time complexity.

To alleviate this issue, we turn to a randomized algorithm.

In particular, we leverage fast JL transform to sketch

CHAPTER 1. INTRODUCTION 9

data more compactly in the PCA-based online hashing.

We derive independent transformations to guarantee the

sketching accuracy, and design a novel implementation

to make such transformations applicable to the current

PCA-based online hashing without increasing the space

cost. We rigorously prove that our method can yield

comparable learning accuracy with a lower time complexity

and an equal space cost. Our method also has better

learning accuracy in some real datasets, as observed in the

experiments.

3. In Chapter 5, we propose an efficient and accurate covari-

ance matrix estimation. Estimation of covariance matrices

plays a fundamental role in machine learning owing to

their capability to retain the second-order information

of data samples [67]. The estimation requires only the

multiplication of the input data matrix and its transpose,

which seems to be simple. However, the computation

is practically nontrivial due to the challenges of exten-

sive communication costs, large storage capacity require-

ments, and high processing time complexity when handling

massive high-dimensional and distributed data. Previous

randomized algorithms perform covariance estimation via

data-oblivious compression schemes on the input data. In-

stead, we leverage a data-aware weighted sampling method

to construct low-dimensional data for such estimation. We

rigorously prove that our proposed estimator is unbiased

and requires smaller data to achieve the same accuracy with

specially designed sampling distributions. In addition, we

depict that the computational procedures in our algorithm

are efficient regarding the calculation time, storage, and

CHAPTER 1. INTRODUCTION 10

communication. All achievements imply the best tradeoff

between the estimation accuracy and computational costs.

1.3 Thesis Organization

The remainder of this thesis is organized as follows.

• Chapter 2

In this chapter, we review the background for randomized

algorithms. In Section 2.1, we introduce the notations on

matrix operations. In Section 2.2, we give the description

and problem statement on randomized algorithms. In

particular, we also discuss the randomization techniques

including random projection and random sampling in Sec-

tion 2.3, which are the key components of randomized

algorithms. Finally, Section 2.4 briefly introduces three

fundamental learning problems in which we are interested.

• Chapter 3

In this chapter, we design randomized algorithms to scale

up kernel learning problem. In Section 3.1, we present the

background and computational problems of the classical

kernel learning method. In Section 3.2, we review and

discuss several existing feature map methods. Then, we

outline the subspace embedding approach. In Section 3.3,

we present our randomized algorithms in the kernel ap-

proximation with the provable results on the learning

accuracy. In Section 3.4, we empirically demonstrate the

superiority of the proposed methods on the kernel matrix

approximation and related regression task. In Section 3.5,

we conclude the whole work. Finally, in Section 3.6, we

CHAPTER 1. INTRODUCTION 11

append the detailed theoretical analysis to support our

provable results.

• Chapter 4

In this chapter, we demonstrate the improved efficiency

induced by randomized algorithms for the unsupervised

online hashing. In Section 4.1, we introduce the hashing

methods along with its unsupervised online category, and

give a sense of the context and challenges in this field. In

Section 4.2, we review the prior work and techniques. In

Section 4.3, we present our randomized hashing algorithms

and emphasize its advantages from various aspects. In Sec-

tion 4.4, we conduct three sets of experiments to empirically

verify the properties and demonstrate the superiority of

our proposed method, and Section 4.5 concludes the whole

work. In Section 4.6, we present the detailed proofs to the

theoretical results.

• Chapter 5

In this chapter, we study the covariance matrix estimation

under the framework of randomized algorithms. In Sec-

tion 5.1, we discuss the computational challenges of the

covariance matrix. In Section 5.2, we review several prior

randomized algorithms for covariance matrix, and make

detailed comparisons on their advantages and disadvan-

tages. In Section 5.3, we present our method along with

theoretical results and emphasize the achievements. In

Section 5.4, we demonstrate the effectiveness via extensive

empirical results. In Section 5.5, we conclude the whole

work. As an appendix, we give the entire theoretical

proofs in Section 5.6, make detailed theoretical comparisons

CHAPTER 1. INTRODUCTION 12

among different randomized algorithms in Section 5.7,

detail the derivation for the computational comparisons in

Section 5.8, and show how to perform parameter selection

for our proposed method in Section 5.9.

• Chapter 6

In this chapter, we summarize the thesis and point out the

future work direction. Particularly, we conclude this thesis

in Section 6.1. Then, in Section 6.2, we point out the

future work direction in three aspects: randomized algo-

rithms and implicit regularization, randomized algorithms

for deep neural networks, and randomized algorithms for

parallel/distributed computation.

2 End of chapter.

Chapter 2

Background

Randomized algorithms have potential as a powerful strategy

to tackle the computational challenges in the algorithm exe-

cution [130, 131]. In this chapter, we detail the framework

and research problems of randomized algorithms for machine

learning. We then review and discuss the core randomization

techniques. Finally, we briefly introduce the three fundamental

learning problems upon which this thesis concentrates.

2.1 Preliminaries

Matrices along with vectors arise in machine learning algorithms

in many guises, and they provide a natural structure with

which to model data and perform computations in modern

machines [130]. One broad class of matrices is the feature-

instance or instance-feature matrix. A feature-instance matrix

X ∈ Rd×n provides a natural structure for encoding information

about n instances, each of which is described by d features

that can be denoted by a vector x ∈ Rd. Depending on the

context, X ∈ Rd×n can also represent an instance-feature matrix,

containing d instances in the n-dimensional space. Modern large

13

CHAPTER 2. BACKGROUND 14

datasets are often viewed as feature-instance or instance-feature

matrices; for example, genetic datasets contain thousands of

dimensions associated with experimental conditions [69], and

image or video datasets consist of millions of pixels arranged as

matrices.

There are other representations of matrix-based data [130,

131]. The kernels and similarity matrices that are popular in the

machine learning community characterize the pairwise relation-

ships among data points. Laplacian matrices or the adjacency

matrices of graphs [82] play a crucial role in spectral graph

theory, where the graph structure is accurately characterized via

the eigenvectors, eigenvalues and related quantities of matrices

associated with a graph.

The fundamental operations among data points then boil

down to the basic mathematical operations on matrices along

with vectors. For instance, as the standard Euclidean struc-

ture, the data relationships can be expressed by the Euclidean

distance between data vectors in the matrix. To describe

more fundamental concepts and make the notations clear, we

present some important notations and explain their meaning in

Table 2.1.

2.2 Randomized Algorithms

Randomized algorithms have a long history in theoretical com-

puter science, and a randomized algorithm is described as one

that receives both the input data and some random bits to make

choices in the algorithm execution [90, 104]. Here, the process

of making something random corresponds to randomization. A

randomized algorithm on a fixed input makes the output or

CHAPTER 2. BACKGROUND 15

Table 2.1: Key notations used throughout this thesis.

Notations Description

X, x Bold capital and small letters denote matrices and

vectors, respectively

[k] A set of k integers consisting of 1, 2, . . . , k

xi (xj, or xij) The i-th row (the j-th column, or the (i, j)-th

element) of X, where xi ∈ R1×n and xj ∈ Rd

for the matrix X ∈ Rd×n and i ∈ [d], j ∈ [n]

{At}kt=1 A set of k matrices consisting of A1,A2, . . . ,Ak

xt,ij (xt,i) The (i, j)-th element (the i-th column) of matrix

Xt

XT The transpose of X

X† The Moore-Penrose inverse of X

Tr(X) The trace of X

|x| The absolute value of a value x

‖X‖2 (‖X‖F) The spectral (Frobenius) norm of X

‖x‖q = (
∑d

j=1 |aj|q)1/q The `q-norm of x ∈ Rd, where q ≥ 1

‖x‖∞ = maxdj=1 |xj| The `∞-norm of x ∈ Rd

D(X) The square diagonal matrix whose main diagonal

has only the main diagonal elements of X

D(x) (D({xj})) The square diagonal matrix with the elements of

vector x on the main diagonal

X = UΣVT =
∑ρ

i=1 σiuiv
T
i

= UkΣkV
T
k + U⊥k Σ⊥k V⊥k

T
The SVD of X, where rank(X) = ρ, Xk =

UkΣkV
T
k represents the best rank k approxima-

tion to X, and σi denotes the i-th largest singular

value of X

Y � X X−Y is positive semi-definite

CHAPTER 2. BACKGROUND 16

computational stages different even when re-running algorithms,

which indicates the involvement of probabilistic statements.

This property is distinguished with a deterministic algorithm

that always produces the same output on the fixed input

following the same computational stages [90, 104]; hence, a

randomized algorithm can be viewed as a non-deterministic

algorithm that has a probability distribution for every non-

deterministic choice [90].

Figure 2.1: Framework of the randomized algorithm for machine learning.

The idea of randomized algorithms has recently been adopted

by the machine learning community, and the basic framework

of a randomized algorithm for machine learning is described in

Figure 2.1 [130, 131, 198]. Specifically, given an input data

matrix X, we first construct a sketch X̂ by randomization, where

a sketch is simply a smaller or sparser matrix that can represent

the essential information (i.e., the underlying structures and

patterns) in the original matrix X. We then leverage the sketch

as a surrogate for the classical learning algorithm Alg.A, and

finally we obtain an output Ŷ that is expected to approximate

Y well. This framework has wide applications in machine

learning because the solutions of many learning algorithms (e.g.,

CHAPTER 2. BACKGROUND 17

regression [128], covariance estimation [38], principal competent

analysis [101], singular value decomposition [204], low-rank

matrix/tensor approximation [71], hashing [111], and second-

order gradient descent [192]) involve matrix computations. Note

that the classical learning algorithm Alg.A in Figure 2.1 can

also represent only a portion of the computational components

instead of the entire learning algorithm. For example, solving

the regression requires several computational steps concerning

on matrix multiplication and matrix inverse, and we may only

need to design a randomized algorithm only for one specific

computational step instead of the entire set of computational

steps [128, 192].

Now, it is necessary and important to discuss the efficiency

and accuracy of the framework in Figure 2.1. Considering that

the randomization in Figure 2.1 is computationally cheap and

that the data volume of a sketch for the algorithm execution

becomes smaller, learning with randomized algorithms tends to

be more efficient (faster, more space-efficient, etc.) and simpler

to handle (implement) than the classical learning algorithms.

However, the efficiencies of various randomization techniques

also vary, as explained in Section 2.3. Different randomization

techniques lead to various qualities of sketches. In other

words, randomization techniques also have a great impact on

the learning accuracy. In addition, assuming that we only

use one certain randomization technique, if the volume of the

sketch becomes smaller, the learning efficiency to obtain Ŷ

increases, whereas the accuracy typically decreases. Therefore,

randomized algorithm trades the accuracy and efficiency in the

algorithm design, and we can greatly reduce the computational

requirements with good outputs.

CHAPTER 2. BACKGROUND 18

To characterize whether the tradeoff of a randomized al-

gorithm in Figure 2.1 is satisfactory, we usually measure the

goodness by ensuring that

P(Diff.(Y, Ŷ) ≤ ε) ≥ 1− δ (2.1)

holds in low computational burdens [130, 131, 198]. Here,

Diff.(Y, Ŷ) returns a value that characterizes the error of Ŷ

for the target Y, ε > 0 is the error bound, and 0 < δ < 1

means the failure probability. This measurement is motivated

by the involvement of randomized algorithms in random data

reduction and probabilistic statements, so we simply expect

that a randomized algorithm performs well with low failure

probability on every possible input. Note that low failure

probability means that δ = O(1
αβ

) is polynomially small, where α

denotes some kind of key variable associated with Y and Ŷ, and

β > 0 is a positive constant. Moreover, randomly perturbing

the fixed input and reducing its size in Figure 2.1 cannot

usually obtain that ε = 0, which shows random correctness

that corresponds to the Monte Carlo algorithm [151]. Therefore,

in addition to guaranteeing learning accuracy and reducing the

computational burden as far as possible, a good randomized

algorithm also indicates that bad worst-case behavior in classical

learning algorithms can be avoided with high probability.

2.3 Techniques on Randomization

As discussed previously, the efficiency of the randomization

procedure and the property of a sketch that result from the

randomization significantly determine the efficiency and ac-

curacy of the learning via randomized algorithms. In this

CHAPTER 2. BACKGROUND 19

section, we focus on the core techniques of randomization,

including random projection and random sampling, and make

comparisons regarding both the efficiency and accuracy.

2.3.1 Random Projection

Random projection is a simple method of dimension reduction.

It says that in Euclidean space, one could randomly linearly

map data points from the high dimension to the low dimension

without significantly distorting the pairwise distance for all data.

This truth is first discovered by Johnson and Lindenstrauss

when managing to extend Lipschitz mapping to Hilbert spaces,

and this discovery is called Johnson-Lindenstrauss lemma (JL

lemma) [100]. Clearly, it is of vital importance because of

theoretically reflecting the feasibility of random projection.

Lemma 2.1 (JL lemma). Consider a data set S ⊆ Rd containing

n data points, and assume 0 < ε < 1 and m = Ω(log n
ε2). There

exists a linear mapping Φ: Rd → Rm, for any x,y ∈ S, we have

(1− ε)‖x− y‖2 ≤ ‖Φx−Φy‖2 ≤ (1 + ε)‖x− y‖2. (2.2)

This lemma concerns a low-distortion embedding of points

from the high dimensional Euclidean space into the low dimen-

sional one, showing the pairwise distance up to a factor 1 ± ε

can be preserved if with m = Ω(log n
ε2). More importantly, this

lemma has a close association with only the amount of original

dataset but not the dimension, which is a little counter-intuitive.

Unfortunately, through this lemma, we do not know how to find

the mapping and how to relate it to the characteristic to different

specific datasets.

There are several elementary proofs of the JL lemma [3, 47,

100]. Here, we briefly describe the probability method, which

CHAPTER 2. BACKGROUND 20

is directly associated with randomization. The key idea is to

construct a potential linear mapping randomly and to show

there exists a positive probability that this mapping can preserve

the pairwise distance to some extent. Then, we can always

generate a mapping that indeed works, or perform probability

amplification so that the probability of success can be arbitrarily

close to 1. Before proceeding, let us first introduce another

version of JL lemma [100] as shown below.

Lemma 2.2 (Randomized JL lemma). Assume 0 < ε, δ < 1 and

m = Ω(log(1/δ)
ε2). There exists a linear mapping Φ: Rd → Rm,

for any x ∈ Rd, with a failure probability at most δ we have

(1− ε)‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + ε)‖x‖2
2. (2.3)

The proof sketch of Lemma 2.2 is to replace the linear

mapping with a projection matrix Φ ∈ Rm×d, where each entry

is drawn independently from Gaussian distribution 1√
m
N (0, 1).

Then, we consider the distortion of `2 norm for one vector x

that is to be mapped from the d-dimensional space to the m-

dimensional space via Φ, and characterize the distortion by

using a standard Chernoff-bounding approach [47].

Then, the proof of the existence of a suitable linear mapping

Φ in Lemma 2.1 follows by applying randomized JL lemma and

taking log(δ) = O(log 1
n). Specifically, as the original data set

in Lemma 2.1 has n points, n(n−1)
2 pairwise distances need to be

preserved. If we take δ = 1
n2 and apply the union bound, the

pairwise distance of all the points in the projected space will be

approximately kept with a failure probability less than 1
2 . This

result means such kind of projection must exist in principle, and

Lemma 2.1 is proved.

CHAPTER 2. BACKGROUND 21

Projection Matrices

To implement the random projection for practical usage, one

must have a feasible projection matrix. In the following, we

review three representative projection matrices that satisfy the

accuracy in JL lemma.

Gaussian matrix. Each entry in the centered Gaussian

matrix Φ ∈ Rm×d satisfies that φij ∼ 1√
m
N (0, 1). From the

aforementioned proof sketch, we see that the centered Gaussian

random matrix satisfies JL lemma that can preserve geometric

structure in data. A simple explanation is that it is easier to

keep much information of original data if the projected subspace

is isometric and orthogonal. Again, for this Gaussian random

projection, E[ΦTΦ] = Id holds and with high probability each

column is approximately isometric and orthogonal to each other.

However, for a Gaussian matrix, projecting vector via com-

puting Φx takes O(dm) time, which is not sufficiently efficient.

Then, we have to utilize the following random projection matri-

ces.

Achlioptas matrix. The work in [3] proposes another simpler

way to construct an effective projection matrix satisfying JL

lemma. Here, each entry φij is not chosen from the standard

Gaussian distribution, instead, randomly from the following two

kinds of probability distribution:

φij =

{ √
1/m P = 1

2

−
√

1/m P = 1
2

and

φij =

√

3/m P = 1
6

0 P = 2
3

−
√

3/m P = 1
6 .

CHAPTER 2. BACKGROUND 22

For practical usage, the second Achlioptas Matrix above

is a sparse random matrix and can gain a constant speedup

due to the nulls in the matrix. Moreover, regarding matrix-

vector multiplication, when the matrix contains only a constant

number of distinct values, the computational cost can be reduced

further [119].

Fast JL transform. The work [6] has shown that the density

can be reduced by a constant factor via a sparse random matrix,

but one cannot go much further because a sparse matrix typi-

cally distorts a sparse vector. Hadamard transform is utilized as

a precondition of the random projection in order to isometrically

enlarge the support of any sparse vector, in other words, the

mass of vector is spread over many components. To prevent

the converse effect, i.e., the sparsification of dense vectors,

Hadamard transform is also randomized. After this operation, a

typical sparse random projection will be applied. This approach

is named as Fast Johnson-Lindenstrauss Transform (FJLT).

FJLT shares the low-distortion characteristics of a random

projection but with a lower computational complexity. Below is

a standard way to construct FJLT by Φ = PHD that includes

three parts:

• P is a sparse projection matrix whose elements are indepen-

dent mixtures of 0 with a centered Gaussian distribution of

variance q−1. Specifically, pij = N (0, q−1) with probability

q, and pij = 0 with probability 1−q. Sometimes, we replace

the projection matrix P with a sampling matrix whose each

row is chosen randomly without replacement from basic

coordinates [170], and Φ = PHD is called as Subsampled

Randomized Hadamard Transform (SRHT) accordingly.

CHAPTER 2. BACKGROUND 23

• H is a d× d normalized Walsh-Hadamard matrix and it is

orthogonal. It can be defined recursively as H =
√

1
dHd,

where

Hd =

[
Hd/2 Hd/2

Hd/2 −Hd/2

]
and H2 =

[
1 1

1 −1

]
.

• D is a random d × d diagonal matrix with each entry

uniformly assigned by +1 or −1.

It is not hard to check that computing the product HDx

for any vector x ∈ Rd takes only O(d log(d)) time by exploring

the recursive structure of H [7, 60], then computing P(HDx)

requires about O(qmd) time if P is a sparse projection matrix,

and O(d) time if P is a sampling matrix.

As can be seen, (HDx)i =
∑d

i=1 aixi, where each ai = ±d−1/2

is independently and uniformly distributed. With Chernoff-

bounding or Hoeffding inequality, it obtains that (HDx)i is not

larger than d−1/2
√

log d‖x‖2 with high probability [170]. That

is why a sparse vector can be flattened effectively. Specifically,

m = Ω(log(1/δ) log(d/δ)
ε2) is required [170] to guarantee the error

bound in Eq. (2.3), which still satisfies the results in the

randomized JL lemma because the additional factor log(d/δ)

is negligible.

Comparison with PCA

Principal Component Analysis (PCA) is also a popular tech-

nique that is widely employed for dimension reduction. There

are two commonly used definitions of PCA that give rise to the

same algorithm [101]. PCA can be defined as the orthogonal

projection of the data into a lower dimensional linear space,

known as the principal subspace, such that the variance of the

CHAPTER 2. BACKGROUND 24

projected data is maximized. Equivalently, it can be defined as

a linear projection that minimizes the average projection cost,

i.e., the mean squared distance between the data points and their

projections [22]. Moreover, PCA is the best linear approach of

dimension reduction regarding the low-rank approximation.

However, in contrast to random projection, PCA subspace is

strictly orthogonal and determined by the data, while random

projection does not depend on the data, and we cannot know

the accurate number of dimension in the projected space. In

addition, PCA only guarantees the error of the whole data set

among the original space and the projected space, but random

projection can approximate the distance between each pairwise

data point. Finally, the most convenient way to get the principal

components is to implement Singular Value Decomposition

(SVD), which is computationally expensive.

2.3.2 Random Sampling

Another randomization approach is based on random sampling,

which randomly samples a small number of elements, columns,

or rows to create a smaller matrix. For example, given a matrix

X ∈ Rd×n (boils down to a column vector when n=1), m

row vectors {yj}mj=1 are chosen with replacement from {xi ∈
R1×n}di=1 based on the sampling probability {pi}di=1, i.e., P(yj =

xi) = pi. Correspondingly, we can define a sampling matrix

Φ ∈ Rm×d to perform the sampling via ΦX, and each row

vector in the sampling matrix Φ is sampled with replacement

from { 1√
mpi

ei}di=1 with probabilities {pi}di=1, where {ei}di=1 are

the standard basis vectors for R1×d.

A simple way to perform this random sampling is to select

those rows uniformly at random in i.i.d. trials, i.e., performing

CHAPTER 2. BACKGROUND 25

uniform sampling with pi = 1
d ,∀i ∈ [d], which is very efficient.

However, it usually does not work well regarding the accuracy.

Compared with randomized JL lemma, uniform sampling only

results in that m = Ω(log(1/δ)
ε2)d‖x‖

2
∞

‖x‖22
to guarantee the error bound

in Eq. (2.3) [198]. Obviously, it does not satisfy randomized JL

lemma unless when the entries of x tend to be similar with each

other so that d‖x‖2∞
‖x‖22

tends to be 1.

Instead, a more sophisticated and much more powerful way

to perform random sampling is to make different choices of the

sampling distributions {pi}di=1, which is recognized as weighted

sampling (a.k.a., importance sampling). It is popular to con-

struct the sampling distribution by pi = ‖xi‖22
‖X‖2F

. For a matrix,

we also have leverage scores to sample columns or rows [115].

Specifically, Let Uk ∈ Rd×k be the top k left singular vectors of

matrix X ∈ Rd×n. Then, the (rank-k) leverage score of the i-th

row of X is defined as: `ki = ‖(Uk)
i‖2, ∀i ∈ [d], and the leverage

scores of columns can be defined in a similar way.

Weighted sampling typically yields more accurate results

than uniform sampling. However, calculating sampling prob-

abilities requires extra one or more passes over the data matrix,

whereas uniform sampling and random projection matrices are

independent of the data itself. Besides, it costs intensive time

and space to achieve the leverage score sampling probabilities.

2.4 Learning Problems of Interest

The strategy of randomized algorithms has been adopted in nu-

merous machine learning problems such as regression [35, 53, 60,

128, 134, 180, 195, 203], linear discriminant analysis [61, 62, 122],

k-means clustering [24, 26, 179], kernel methods [41, 57, 63, 141,

CHAPTER 2. BACKGROUND 26

147, 154, 187, 200], hashing [34, 102, 111, 199], covariance matrix

estimation [10, 11, 16, 50, 74, 152], deep learning [36, 83, 145],

distributed learning [88, 169, 186, 196], singular value decom-

position [50, 54, 79, 136], CUR matrix decomposition [25, 59,

132, 181], tensor decomposition [18, 39, 133, 167, 178, 182, 184],

optimization [31, 76, 129, 150, 174, 176, 192, 195, 201, 202],

etc. This section describes three fundamental machine learning

problems widely used in data analysis applications, including

kernel methods, unsupervised online hashing, and covariance

matrix estimation. We discuss the major challenges of each

learning problem, which are to be addressed by developing

randomized algorithms in this thesis.

2.4.1 Kernel Methods

Training linear algorithms is very efficient. However, it is often

the case that linear algorithms for regression and classification

cannot obtain a good prediction nor classification because data

usually lie in a nonlinear manifold. For example, when the

classifier (i.e., boundary) between two categories of data is

nonlinear, we cannot expect to leverage a linear algorithm to

learn a nonlinear classifier.

To improve the learning accuracy, kernel methods are pro-

posed [160], which achieve excellent performance in learning

nonlinear relationships embedded in the data. Typically, the

nonlinear relationship is encoded by a kernel function that

defines the pairwise distance of two data points in the mapped

kernel feature space. The kernel functions can be categorized

as shift-invariant kernels, polynomial kernels, sigmoid kernels,

etc. [91]. The representative method for classification is Support

Vector Machine (SVM) that performs a nonlinear classification

CHAPTER 2. BACKGROUND 27

by solving a quadratic optimization on a kernel matrix K ∈
Rn×n, where kij records the pairwise distance in the mapped

kernel feature space of data points xi ∈ Rd and xj ∈ Rd, ∀i, j ∈
[n].

Although kernel methods have been successfully employed in

a variety of learning tasks, yet the scalability is a bottleneck.

Kernel-based learning algorithms could require operations at

least cubic proportional to the amount of training data [160],

which is computationally prohibitive in large datasets. Also,

the involved kernel matrix could take huge space requirement.

To tackle such problems, random feature map [153] has been

proposed as shown in Figure 2.2. It approximates a kernel

matrix K ∈ Rn×n by generating a new vector representation

G ∈ Rn×` which approximates the kernel similarity between

any two pairs of data points so that the nonlinear properties

can still be captured. Then, training linear algorithms on G is

efficient and expected to achieve a good output Ŷ similar with

Y.

Figure 2.2: Kernel method and random feature map.

Chapter 3 focuses on the research on making kernel methods

CHAPTER 2. BACKGROUND 28

efficient. The chapter introduces a more powerful feature map

method due to the advantages of randomized algorithms. The

proposed method significantly improves the efficiency of the

existing random feature map methods.

2.4.2 Unsupervised Online Hashing

Hashing aims to efficiently conduct an approximate nearest

neighbor search, which is critical for machine learning and

applications such as clustering, retrieval, and matching [177].

As shown in Figure 2.3 [114], it compresses the high-dimensional

data into the low-dimensional space and simultaneously yields a

short hash code consisting of a sequence of bits in the Hamming

space. Storing binary hash codes does not demand an intensive

space, and the approximate nearest neighbor search in the low-

dimensional space can be accomplished with less time.

Figure 2.3: Dimension reduction via hashing.

There have been many hashing methods including unsuper-

vised and supervised categories [177], and much focus has been

CHAPTER 2. BACKGROUND 29

spent on the unsupervised methods because label information is

very limited in practice. Particularly, we aim at PCA-based

methods because they can universally achieve good hashing

results compared with other methods. Briefly, it contains two

steps: the first step is to compute the hashing projection

W ∈ Rd×r via PCA on the input data X ∈ Rn×d, where r is

the length of the binary codes; the second step is to use the

hash projection W to compress the data into low dimensional

step via xiW, ∀i ∈ [n], and convert the compressed data to

binary codes.

The problem is that the standard PCA-based hashing is com-

putationally intensive. Moreover, it belongs to batch learning

strategies with the disadvantages of that a batch learner has to

read and process for multiple times while currently data often

become available continuously in a streaming fashion, and that

it is unclear how to adapt the hashing projection as the dataset

continues to grow and new variations appear over time.

Recently, the work in [111] derives an online version of the

standard PCA-based hashing. In addition, the proposed method

therein runs fast and only requires a very limited space.

Chapter 4 continues the research on unsupervised online

hashing. Considering that the proposed method in [111] still

suffers from a high time complexity, the chapter presents a faster

unsupervised online hashing by leveraging randomized strategy

to accelerate the dominated steps in [111].

2.4.3 Covariance Matrix Estimation

Covariance matrices offer second-order information between a

collection of data samples. It plays a fundamental role in

machine learning, and concrete examples include Quadratic

CHAPTER 2. BACKGROUND 30

Discriminant Analysis (QDA) [14], Generalized Least Squares

(GLS), Generalized Method of Moments (GMM) [84], etc. An

important statistical task is covariance estimation, whose goal

is to recover the population covariance matrix of a certain

distribution, provided with i.i.d. data samples.

Given a data matrix X ∈ Rd×n, we empirically calculate

covariance matrix by C , 1
nXXT − x̄x̄T with x̄ = 1

n

∑n
i=1 xi ∈

Rd [67]. It is also straightforward to check that n
n−1C provides

an unbiased estimator to the population covariance matrix. For

simplicity, the empirical mean can be assumed to be zero,

i.e., x̄ = 0. Thus, the covariance matrix can be written as

C = 1
nXXT as shown in Figure 2.4.

Figure 2.4: Covariance matrix estimation.

However, in the presence of big data, calculating C is also

computationally expensive regarding time, space, and com-

munication burdens. To address these challenges, the recent

randomized algorithms for covariance estimation [9, 10, 11, 16]

focus on computing the covariance from the samples that are

observed only through low-dimensional data compressed by ran-

dom projection or random sampling. By leveraging independent

random projection or sampling operators for each data point,

all these randomized algorithms can build consistent covariance

estimators.

Chapter 5 aims to design a more powerful randomized

CHAPTER 2. BACKGROUND 31

algorithm to compute covariance matrix with the best tradeoff

on the accuracy and efficiency. Therein, we give a precise char-

acterization of the effects of data compression in the covariance

estimation problem from both the theoretical and experimental

perspectives.

2 End of chapter.

Chapter 3

Training-Efficient Feature Map

for Shift-Invariant Kernels

Random feature map is popularly used to scale up kernel

methods. However, employing a large number of mapped

features to ensure an accurate approximation will still make

the training time consuming. In this chapter, we aim to

improve the training efficiency of shift-invariant kernels by using

fewer informative features without sacrificing precision. We

propose a novel feature map method by extending Random

Kitchen Sinks through fast data-dependent subspace embedding

to generate the desired features. More specifically, we describe

two algorithms with different tradeoffs on the running speed

and accuracy, and prove that O(`) features induced by them are

able to perform as accurately as O(`2) features by other feature

map methods. In addition, several experiments are conducted

on the real-world datasets demonstrating the superiority of our

proposed algorithms.

32

CHAPTER 3. TRAINING-EFFICIENT FEATURE MAP 33

3.1 Introduction

Kernel methods are powerful since they can achieve excellent

performance when learning the nonlinear relationship embedded

in the training data. Usually, the nonlinear relationship is

encoded by a kernel function, k : k(x,y) = 〈Φ(x),Φ(y)〉,
where Φ(·) : Rm → H maps the training data in the original

m-dimensional feature space to a high-dimensional or even

infinite-dimensional feature space, H. Kernel methods can

then train on the kernel matrix that represents the similarity

of pairs of training data points without explicitly defining the

mapping function Φ(·). This obviously can overcome the curse

of dimensionality.

Although kernel methods have attracted extensive investiga-

tion in the past two decades due to their significant performance

advantage, yet one main issue is that they scale poorly with

the size of the training dataset. Taking the kernel ridge

regression (KRR) [157] as an example, given a data matrix

X ∈ Rn×m consisting of n data points in m dimension, KRR

incurs O(n3 + n2m) time for training, much more than O(nm2)

in the linear counterpart when n � m. Therefore, the huge

time complexity makes kernel methods impractical to use in

large datasets.

To resolve the scalability issue, random feature map is pro-

posed to map the data explicitly to a low-dimensional Euclidean

inner product space using the Fourier transform. Through

the feature map Z : Rm → R`, one can obtain k(x,y) =

〈Φ(x),Φ(y)〉 ≈ 〈Z(x),Z(y)〉. Then instead of KRR, we can

directly employ linear ridge regression with the mapped features,

taking O(n`2 + nm`) time that depends linearly on n.

CHAPTER 3. TRAINING-EFFICIENT FEATURE MAP 34

The number of mapped features `, however, exerts great

influence on the effectiveness and efficiency of random feature

map. Only using a small ` can speed up the training, while this

loses the accuracy in the kernel matrix approximation and the

learning. In contrast, a large ` can ensure the precision, but it

takes more training time. Unfortunately, demonstrated in many

literatures [44, 155], ` should be chosen in the same order of n.

In this regard, even for the linear ridge regression, it will take

O(n3 +n2m) training time, leading to a computation complexity

almost as the same as that in the original kernel methods.

In this chapter, we consider accelerating the training using

an important kernel functions which are shift-invariant, namely

k(x,y) = k(x − y). This kind of kernels (e.g., Gaussian,

Laplacian and Cauchy) is popularly and widely used. Our

contributions in this work are summarized as follows:

• First, we propose a training-efficient feature map (TEFM)

method by extending the Random Kitchen Sinks (RKS) [153,

155] via fast data-dependent subspace embedding (FDSE).

It can enjoy both the advantages of the RKS and FDSE,

where RKS is a much more representative and efficient

feature map for shift-invariant kernels. On the other hand,

FDSE stands for a powerful dimensionality reduction tool

on both the accuracy and speed.

• Second, we specify the proposed method TEFM by two

algorithms: TEFM-G and TEFM-S. The former may be a

bit more accurate, while the latter runs much faster.

• Third, we give provable results indicating thatO(`) features

from TEFM-G or TEFM-S are able to perform almost as

accurately as O(`2) features from other methods, which is

CHAPTER 3. TRAINING-EFFICIENT FEATURE MAP 35

also confirmed by extensive experiments.

The rest of chapter is organized as follows. In Section 2,

we summarize some related work. In Section 3, we present our

method with the theoretical analysis. In Section 4, we provide

empirical results. Finally, in Section 5, we conclude the whole

work.

3.2 Related Work

In this section, we review and discuss several existing feature

map methods for shift-invariant kernels. Then, we outline the

subspace embedding and analyze its properties.

3.2.1 Random Feature Maps for Shift-Invariant Ker-

nels

Existing random feature maps for shift-invariant kernels include

the RKS and its variants. We first spend some efforts on the

RKS, a basic and effective method. The RKS is due to Bochner’s

theorem [156], by which each entry of kernel matrix K ∈ Rn×n

can be approximated as:

kij = k(xi − xj) =

∫
p(z)eiz

T (xi−xj)dz (3.1)

≈ 2

`

`/2∑
s=1

〈eizTs xi, eizTs xj〉

=

`/2∑
s=1

〈 1√
`/2

cos(zTs xi),
1√
`/2

cos(zTs xj)〉

+〈 1√
`/2

sin(zTs xi),
1√
`/2

sin(zTs xj)〉

CHAPTER 3. TRAINING-EFFICIENT FEATURE MAP 36

= 〈Z(xi) ∈ R`,Z(xj) ∈ R`〉 (3.2)

OR

Eq. (3.1) ≈ 1

`

∑̀
s=1

〈eizTs xi, eizTs xj〉

≈
∑̀
s=1

〈
√

2

`
cos(zTs xi + bs),

√
2

`
cos(zTs xj + bs)〉

= 〈Z(xi) ∈ R`,Z(xj) ∈ R`〉, (3.3)

where zs is sampled based on a proper probability density

function p(z) set to be the inverse Fourier transform of shift-

invariant kernel function k(·) and bs is uniformly sampled over

[0, 2π] [153].

Training kernel methods can then gain acceleration by using

linear algorithms incorporated with {Z(xi)}ni=1 and achieve

higher accuracy than the linear algorithms directly operated on

{xi}ni=1, simultaneously. Compared with kernel methods, linear

algorithms using {xi}ni=1 run much more quickly especially in the

low-dimensional data space, but gain less accuracy. However,

this disadvantage can be alleviated by applying {Z(xi)}ni=1 which

contains the information of kernels.

The linear algorithms may be still impractical, since a large

d has to be chosen to ensure a comparable accuracy as the

kernel methods. The performance of kernel approximation using

RKS is given by the proved assertion: |kij − 〈Z(xi),Z(xj)〉| ≤
O(1/

√
`) holds with a constant probability ∀i, j ∈ [n] if drawing

d features [153]. Therefore, RKS converges at the rate of

O(1/
√
`) in the kernel approximation error. Accordingly, this

kernel approximation error degenerates the learning accuracy

by increasing the generation error from O(1/
√
n) in the kernel

CHAPTER 3. TRAINING-EFFICIENT FEATURE MAP 37

methods to O(1/
√
n+1/

√
`) in the linear algorithms trained by

RKS features. This suggests that l should be set on the order

of n to guarantee the generalization performance [44, 155].

There are some follow-up works to improve RKS, but they

still suffer from certain training inefficiency problems. The work

in [109] ideally reduces the feature generation time of RKS

from O(nm`) to O(n` logm) by using fast Hadamard matrix,

while the kernel approximation error is larger than RKS with

the same number of features. Hence, to guarantee the same

accuracy, more features have to be employed requiring more

training time. In [197], an advanced sampling technique Quasi-

Monte Carlo is introduced, but it improves the convergence rate

of kernel approximation error only when the feature number d is

exponential in the data dimension m. This is not well satisfied

in many real-world datasets and thus more features are needed

in the training.

In a conclusion, RKS is still a better choice to reduce training

time. Next, we review subspace embedding to be applied in our

proposed method.

3.2.2 Subspace Embedding

Subspace embedding [188], informally, is able to reduce dimen-

sionality by performing a map f : Rm → R` on the dataset

X = {xi ∈ Rm}ni=1, where ` < m. Briefly, it can be cast into two

categories: data-independent or data-dependent one.

In the data-independent subspace embedding such as random

projection [20], f is predefined without knowing how the dataset

is distributed in the original spaces, and it retains the data

information (e.g., ‖xi‖2, ‖X‖2, ‖X‖F , etc.) by ensuring an

approximate isometry over the embedded subspaces with high

CHAPTER 3. TRAINING-EFFICIENT FEATURE MAP 38

probability. These whole embedding procedures can be quickly

completed, but the dimensionality of the embedded subspaces

cannot be sufficiently low, otherwise it will be impossible to

approximate an isometry accurately [142]. In contrast, the data-

dependent subspace embedding maps the dataset into some

important spaces determined by the data distribution. The

insight is that, typically the dataset is distributed differently in

each space, and most of the distribution lies in only a few spaces

also regarded as important. Therefore, dimensionality can be

substantially reduced without sacrificing much information. The

issue is that getting the important spaces usually takes much

time.

To effectively and efficiently reduce the dimensionality, [79]

proposes a fast and accurate method to find certain impor-

tant space on the dataset, which is referred to as FDSE in

this chapter. This essentially belongs to the data-dependent

category. The difference lies in that the important spaces

are approximated by performing the data-independent subspace

embedding on the data, by which the whole computation time

can be reduced.

3.3 Training-Efficient Feature Map

In this section, first we propose our method together with two

algorithms. Later, we provide error analysis of the proposed

algorithms in the kernel approximation and related learning

tasks. Finally, we compare and discuss the time complexity

of each method on the regression task.

3.3.1 Methods and Algorithms

CHAPTER 3. TRAINING-EFFICIENT FEATURE MAP 39

Algorithm 3.1 TEFM-G

Input: Data XT = {xi ∈ Rm}ni=1, shift-invariant kernel function k(·),
scalars [q, d, `]

1: Form F ∈ Rn×d with each row vector constructed by method as shown

in Eq. (3.2) or Eq. (3.3)

2: Draw Θ ∈ Rn×` from N (0, 1)

3: Construct Y = (FTF)qFTΘ

4: Run QR decomposition on Y such that QR = Y where Q ∈ Rd×` is

column-orthogonal

5: return G = FQ ∈ Rn×`

We summarize this method in Algorithm 3.1. As can be seen,

there are two parts in this algorithm. Step 1 represents a feature

matrix F, where the inverse Fourier transform p(z) of different

k(·) can be found in [153]. Steps 2 to 5 show the FDSE. q is

typically set by 0, 1 or 2, which is used to speed up the decay of

the singular value of F and thus improves the accuracy of the

whole algorithm [79].

Moreover, step 4 in Algorithm 3.1 can still be acceler-

ated by replacing Θ with SRHT (Subsampled Randomized

Hadamard Transform), then running QR decomposition only

requires O(nd log `+ d`2) time. For the details of SRHT, please

refer to [170]. We summarize this method in Algorithm 3.2 that

runs faster than Algorithm 3.1.

Algorithm 3.2 TEFM-S

Input: Data XT = {xi ∈ Rm}ni=1, shift-invariant kernel function k(·),
scalars [d, `]

1: Run step 1 of Algorithm 3.1

2: Draw a SRHT matrix Θ ∈ Rn×`

3: Construct Y = FTΘ

4: Run steps 4, 5 of Algorithm 3.1

5: return G ∈ Rn×`

CHAPTER 3. TRAINING-EFFICIENT FEATURE MAP 40

3.3.2 Kernel Approximation Analysis

In this part, we provide theoretical analysis to show that O(`)

features generated by our algorithms can approximate kernel

matrix as accurately as O(`2) features induced by other existing

methods like RKS and its extensions. Below, we present our

main results.

Theorem 3.1. Suppose we have a kernel matrix K ∈ Rn×n

constructed from shift-invariant functions and run Algorithm 3.1

with d = Ω(`2) to get features G ∈ Rn×`. Then, with probability

at least 1− δ − 6 exp−p we have

‖K−GGT‖2 ≤ Õ(n/`), (3.4)

where Õ(·) hides the logarithmic factors on δ and the power

coefficient on d and p that tend to be 1.

Apparently, this result Eq. (3.4) is tighter than its counter-

part Õ(n/
√
`) [127, 153]. As shown from its proof in Section 3.6,

Eq. (3.4) results from Eq. (3.12), i.e., Õ(n/
√
d) +O(n/`), which

is incurred by RKS and FDSE. The first term of Eq. (3.12)

denotes a spectral norm bound for RKS by Eq. (3.2) or Eq. (3.3),

which is slightly tighter and more general than the expectation

bound in [127], and reflects the same convergence rate on

RKS feature number as the element-wise bound [153]. If

d = Ω(`2), then training on O(`) feature generated by our

two algorithms will be much faster than O(`2) features by RKS

with the approximation error almost on the same scale. In the

experiments, we will see the accuracy versus the computational

time for the training and feature map.

Remark 3.1. The work in [81] tries to approximate the poly-

nomial kernel more concisely and accurately, by which our

CHAPTER 3. TRAINING-EFFICIENT FEATURE MAP 41

approach is motivated similarly but has important differences.

First, we use FDSE instead of random projection to approximate

more accurately while maintaining the computational efficiency.

Second, the theoretical result therein shows that the extent

of approximation improvement relies on the degree of the

polynomial kernel, while ours depends on the number of finally

generated features, which directly demonstrates that we can use

much fewer informative features to train. Third, the experiment

shows that our method can achieve improvement in the shift-

invariant kernels, while [81] even degenerates the performance,

which we conjecture is due to the different sampling procedures

for the feature maps.

Theorem 3.2. Suppose we have a kernel matrix K ∈ Rn×n

constructed from shift-invariant functions and run Algorithm 3.2

with d = Ω(`2) to obtain features G ∈ Rn×`. Then, with

probability at least 1− δ − c
` log ` we have

‖K−GGT‖2 ≤ Õ(n/`), (3.5)

where c is a certain constant, and Õ(·) hides the logarithmic

factors on δ, d, and n.

Usually, the failure probability can be larger than that in

Theorem 3.1, which can be checked in the proof in Section 3.6.

This comparison implies Algorithm 3.1 may perform more

accurately than Algorithm 3.2 although it runs slower.

3.3.3 Impact on Learning Tasks

In this part, we show how our features impact the learning

accuracy on regression and classification tasks. The related

CHAPTER 3. TRAINING-EFFICIENT FEATURE MAP 42

algorithms including KRR and SVM can be unified into the

following optimization problem [193, 194],

min
w

λ

2
‖w‖2

2 +
1

n

n∑
i=1

p{~(wTZ(xi), yi)}, (3.6)

where p(t) means convex loss functions such as p(t) = t2/2,

p(t) = log{1 + exp(−t)} and p(t) = max(0, 1 − t). That t =

~(wTZ(xi), yi) denotes wTZ(xi) − yi or wTZ(xi)yi. We also

assume the magnitude of gradient p′(t) can be upper bounded

by C (nondifferentiable loss function like p(t) = max(0, 1− t) in

SVM can be made differentiable by smoothing techniques [143,

201]).

Theorem 3.3. Suppose we get kernel matrix K ∈ Rn×n by

operating shift-invariant functions on data matrix XT = {xi ∈
Rm}ni=1, and feature matrix GT = {Gi ∈ R`}ni=1 by Algo-

rithm 3.1 or Algorithm 3.2 with d = Ω(`2). Denote by L(w∗) the

optimal value of Eq. (3.6). Let L(w∗G) be the obtained optimal

value by training on Z(xi) = Gi, and L(w∗K) the optimal value

by by training on K (i.e., Z(xi) = Φ(xi)), where w∗G ∈ R` and

w∗K may be infinite-dimensional. Then, with probability defined

in Theorem 3.1 or Theorem 3.2 we have

L(w∗G) ≤ L(w∗K) + Õ(1/`), (3.7)

where Õ(·) hides the logarithmic factors on δ, d, and n.

We can extend the above result to other features with

different kernel approximation performances, showing that a

faster convergence of the kernel approximation error can lead to

faster convergence in the minimized regularized training error.

This can be used as a simplified measurement to quantify the

CHAPTER 3. TRAINING-EFFICIENT FEATURE MAP 43

impact of kernel approximation on the learning accuracy [32, 41].

Therefore, applying the features that ensure a good kernel

approximation favors an accurate learning on the learning tasks.

3.3.4 Computational Analysis

In this part, we compare the computational performance on

ridge regression task written in the form of Eq. (3.6) using the

square loss function. We use ridge regression due to that it

can give a closed-form solutions for the mapped features and

standard kernel, then the computational time does not depend

on some specific optimization techniques.

We summarize the result in Table 5.1, where nnz(·) means

the number of non-zero value and t the number of test points.

As we can see, with d = O(`2) set, our two algorithms take much

less time, and also significantly reduce the the overall time with

the dominant training time decreased.

For RKS, only a ’seed’ is needed for random number generator

to reproduce random sequence for the testing [44]. After

getting w by Eq. (3.6), we practically multiply it with Q of

Algorithm 3.1 or Algorithm 3.2 for the testing. Finally, our

algorithms only stores a ’seed’ and a vector QwT for the testing,

taking comparable storage with other methods.

3.4 Empirical Studies

In this section, we empirically demonstrate the superiority of the

proposed methods on the Gaussian kernel matrix approximation

and related regression task. We compare the following random

feature map methods:

1. Random Kitchen Sinks (denoted by RKS).

CHAPTER 3. TRAINING-EFFICIENT FEATURE MAP 44

Table 3.1: Time complexity of M1 to M4 representing 4 methods respec-

tively, i.e., Kernel method, RKS, TEFM-G and TEFM-S.

Mapping Training Prediction

M1 O(nnz(X)n) O(n3) O(t(m)n)

M2 O(nnz(X)d) O(nd2) O(t(m+ 1)d)

M3
O(nnz(X)d

O(n`2)
O(t(m+ 1)d

+`2d+ n`d) +d`)

M4
O(nnz(X)d

O(n`2)
O(t(m+ 1)d

+`2d+ nd log `) +d`)

2. Quasi-Monte Carlo method [197] (denoted by Quasi). We

use Digital Net to generate QMC sequence, as it yields the

lowest approximation error and supports the high dimensional

data [197].

3. Compact feature maps [81] (denoted by Comp). The

proposed method should not be restricted to the polynomial

kernel, we thus apply it to Gaussian kernel in our experiments.

4. Fastfood method [109] (denoted by Ffood). We use

Hadamard features for its better performance.

5. Our proposed algorithms TEFM-G and TEFM-S.

We use six publicly available real-world datasets listed in Ta-

ble 3.2, and they can be downloaded from LIBSVM website [33]

or UCI machine learning repository. All our experiments are run

on Matlab with single thread mode in order to fairly compare

the running time.

3.4.1 Kernel Approximation Quality

We compare the features generated by above methods on the

kernel approximation. We report the approximation accuracy

of each method measured by ‖K −Kapp‖/‖K‖, where Kapp is

CHAPTER 3. TRAINING-EFFICIENT FEATURE MAP 45

Table 3.2: Details of datasets in our experiments.

Dataset # instances # features

Cpu 6554 21

A9a 48,842 123

BlogFeedback 60,021 280

SliceLocalization 53,500 384

UJIIndoorLoc 21,048 520

Mnist 70,000 784

the approximation matrix reconstructed by the random features.

To facilitate the computation of full kernel matrix K for the

comparison purposes, we randomly sample these datasets so that

only 6554, 8141, 8733, 8917, 6646, and 6006 instances are used,

respectively.

We summarize the results in Figure 3.1. The x-axis stands

for the number of features `. In our two algorithms, typically

approximation error will turn down as d or ` increases, however,

d cannot be very large or even infinite, otherwise our two feature

generation algorithms will be time consuming. Thus, d actually

affects the tradeoff between the accuracy and computation. If

we keep d = 4`, then Figure 3.1 shows that our algorithms

incur nearly half of approximation error compared to others,

which almost coincides with our theoretical result. This implies

that it is possible to train the learning tasks with fewer features

while maintaining the accuracy. In particular, our methods

beat the counterpart Comp which implements data-independent

subspace embedding for original features [81]. This also reflects

that data-independent subspace embedding is not suitable for

the random features on shift-invariant kernels.

We also observe the oscillatory nature in Figure 3.1. The

reason relies on that the randomness incurs the variance (os-

CHAPTER 3. TRAINING-EFFICIENT FEATURE MAP 46

0 100 200 300 400 500 600 700
10−3

10−2

10−1

100

101

number of features

ap
pr

ox
im

at
io

n
er

ro
r

Cpu
RKS
TEFM−G
TEFM−S
Comp
Quasi
Ffood

0 100 200 300 400 500 600 700
10−2

10−1

100

101

number of features

ap
pr

ox
im

at
io

n
er

ro
r

BlogFeedback
RKS
TEFM−G
TEFM−S
Comp
Quasi
Ffood

0 100 200 300 400 500 600 700
10−2

10−1

100

101

number of features

ap
pr

ox
im

at
io

n
er

ro
r

Mnist
RKS
TEFM−G
TEFM−S
Comp
Quasi
Ffood

0 100 200 300 400 500 600 700
10−2

10−1

100

101

number of features
ap

pr
ox

im
at

io
n

er
ro

r

A9a
RKS
TEFM−G
TEFM−S
Comp
Quasi
Ffood

0 100 200 300 400 500 600 700

100

number of features

ap
pr

ox
im

at
io

n
er

ro
r

SliceLocalization
RKS
TEFM−G
TEFM−S
Comp
Quasi
Ffood

0 100 200 300 400 500 600 700
10−2

10−1

100

101

number of features

ap
pr

ox
im

at
io

n
er

ro
r

UJIIndoorLoc
RKS
TEFM−G
TEFM−S
Comp
Quasi
Ffood

Figure 3.1: Kernel approximation.

CHAPTER 3. TRAINING-EFFICIENT FEATURE MAP 47

cillatory), and the kernel matrix approximation is based on the

average of the randomness. When the number of random feature

is small, we cannot make a stable kernel matrix approximation

by averaging the approximated kernel matrices from each ran-

dom feature. Thus, it is easy to observe the oscillatory nature,

and it can also be observed in the empirical results of Quasi-

Monte Carlo feature map [197].

3.4.2 Performance on KRR

First, we compare the prediction ability of different features

on KRR. The parameters are chosen by cross-validation. We

report the relative root mean square error (RMSE) of each

method in the testing datasets. The relative RMSE is defined by

‖y−yo‖/‖y‖, where yo is the predicted value and y is the ground

truth. We consider the regression dataset SliceLocalization and

list the result in the left plot of Figure 3.2. As we can see,

using much fewer informative features, our two algorithms can

obtain the same accuracy as others. Thus, training using our

fewer features can keep the learning accuracy and require much

less time. This also implies that, accurate learning can be

achieved by applying the features that ensure a good kernel

matrix approximation.

Second, we report the prediction error versus the time

(includes feature mapping time and training time) in the right

plot of Figure 3.2. Our algorithms require slightly more feature

map time. They, however, use fewer features to get the

same approximation performance. Therefore, this substantially

decreases the training time. As can be seen, even we consider

the time used for the feature map, our two algorithms still

outperform the other methods with smaller RMSE achieved.

CHAPTER 3. TRAINING-EFFICIENT FEATURE MAP 48

Particularly, the advantage of our methods will be more evident

when we need a much smaller RMSE. The reason is that, to

obtain a much smaller RMSE, more features in other methods

should be generated, and as the feature number grows large, the

time used for training regression task will be dominant compared

to the time for feature map.

0 100 200 300 400 500 600 700
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

number of features

R
M

S
E

SliceLocalization

RKS

TEFM-G

TEFM-S

Comp

Quasi

Ffood

0 5 10 15 20 25 30 35 40 45
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

time

R
M
S
E

SliceLocalization

RKS

Comp

Quasi

F

Figure 3.2: Accuracy comparision and time comparison on regression.

3.5 Conclusion

In this chapter, we describe an effective feature map method that

can generate better features to make the learning tasks trained

accurately and more efficiently. The basic idea of our method

is to combine fast data-dependent subspace embedding with the

RKS. We also present two algorithms TEFM-G and TEFM-S.

Our theoretical analysis indicates these two algorithms achieve

better kernel approximation and faster training on learning tasks

without losing precision. We report extensive empirical results

of our algorithms on several real-world datasets, which support

our analysis and demonstrate a good practical performance.

CHAPTER 3. TRAINING-EFFICIENT FEATURE MAP 49

3.6 Proofs

3.6.1 Preliminaries

Before proceeding, we first state two extracted and reformulated

lemmas. They are our main tools to derive the theoretical

results.

Lemma 3.4 ([171]). Suppose {Si}ni=1 are random square ma-

trices with E[Si] = 0 and ‖Si‖2 ≤ L. Define Z =
∑n

i=1 Si,

Ξ1 and Ξ2 satisfying E[ZZT] 4 Ξ1 and E[ZTZ] 4 Ξ2. Let

ξ = max {‖Ξ1‖2, ‖Ξ2‖2} and r = Tr(Ξ1 + Ξ2)/ξ. Then for

t >
√
ξ + L/3, we have

P {‖Z‖2 > t} ≤ 4r exp(
−t2/2
ξ + Lt/3

). (3.8)

Lemma 3.5 ([79]). Denote the SVD of A ∈ Rm×n by A =

UD(Σ1,Σ2)(V1,V2)
T where Σ1 ∈ Rk×k, Σ2 ∈ R(n−k)×(n−k),

V1 ∈ Rn×k, V2 ∈ Rn×(n−k) and D(Σ1,Σ2) ∈ Rn×n with Σ1

and Σ2 on its main diagonal. Given Ω ∈ Rn×l and construct

Y = (AAT)qAΩ. If VT
1 Ω has full row rank, then we have

‖(I−YY†)A‖2
2 ≤ ‖(I−YY†)(ATA)qA‖2/(2q+1)

2

≤ (‖Σ2‖4q+2
2 + ‖Σ4q+2

2 (VT
2 Ω)(VT

1 Ω)†‖2
2)

1/(2q+1). (3.9)

3.6.2 Proof of Theorem 3.4

Proof. Without loss of generality, we analyze the case in detail

where F in step 1 corresponds to Eq. (3.2) and Gaussian kernel

function k(xi,xj) = exp(−‖xi − xj‖2
2/2σ

2). The theorem and

analysis can be applied in other cases. Revisit the variables and

parameters in Algorithm 3.1, we have

‖K−GGT‖2 = ‖K− FQQTFT‖2

CHAPTER 3. TRAINING-EFFICIENT FEATURE MAP 50

≤ ‖K− FFT‖2 + ‖FFT − FQQTFT‖2

= ‖K− FFT‖2 + ‖F(I−QQT)2FT‖2 (3.10)

= ‖K− FFT‖2 + ‖(I−QQT)FT‖2
2 (3.11)

≤ O(n/
√
d) +O(n/`), (3.12)

where Eq. (3.10) follows from the fact (I−QQT) is an orthogonal

projection matrix and Eq. (3.12) will be proved as follows.

The first term in Eq. (3.12) is proved by Lemma 3.4. Define

a = d/2 and Hi ∈ Rn×2 formed by columns 2i−1 and 2i of F,

i.e., {cos(zTi xj)/
√
a, sin(zTi xj)/

√
a}nj=1 ∈ Rn×2, ∀i ∈ [a].

Let Si = (K − aHiHi
T)/a. Then, K − FFT =

∑a
i=1 Si and

E[Si] = 0. Also, Ei6=j[STi Sj] = 0 holds by that {Hi}ai=1 are

independent. Moreover, ‖K‖2 ≤ n due to Kjj ≤ 1, and ‖Hi‖2
2 =

‖HiH
T
i ‖2 ≤ (

√
1/a)2n = n/a. Thus, ‖Si‖2 ≤ 2n/a = L.

Following the notations in Lemma 3.4, we accordingly define

Ξ1 = Ξ2 = E[ZTZ] = E[(
∑a

i=1 Si)
T (
∑a

i=1 Si)] = aE[STi Si] since

Z =
∑a

i=1 Si is symmetric and Ei6=j[STi Sj] = 0. Then, we have

ξ = ‖Ξ1‖2 = ‖aE[(K− aHiH
T
i)2/a2]‖2

= ‖{a2E[(HiH
T
i)2]−K2}/a‖2

= ‖{a2E[HiH
T
i HiH

T
i]−K2}/a‖2

≤ ‖{a2E[‖Hi‖2
2HiH

T
i]−K2}/a‖2 (3.13)

≤ ‖(nK−K2)/a‖
= ‖{U(nΣ−Σ2)UT}/a‖2

= ‖(nΣ−Σ2)/a‖2

≤ n2/(4a), (3.14)

where UΣUT is the SVD of K with the eigenvalues Σii = σi
listed in the descending order.

CHAPTER 3. TRAINING-EFFICIENT FEATURE MAP 51

In the above inequalities, Eq. (3.13) holds by

0 4 Ξ1 = {a2E[HiH
T
i HiH

T
i]−K2}/a

4 {a2E[‖Hi‖2
2HiH

T
i]−K2}/a, (3.15)

due to that for any x ∈ Rn

xTHiH
T
i HiH

T
i x = ‖xTHiH

T
i ‖2

2

≤ ‖xTHi‖2‖HT
i ‖2

2

= xTHiH
T
i x‖HT

i ‖2
2. (3.16)

Eq. (3.14) follows from that

max
0≤σi≤n

|(nσi − σ2
i)/a| = n2/(4a). (3.17)

In addition to that r = Tr(Ξ1+Ξ2)/ξ usually can satisfy that

1 ≤ r � O(n), we can get the concentration bound

P(‖K− FFT‖2 > t) ≤ 4r exp{ −t2/2
n2/(4a) + 2nt/(3a)

}. (3.18)

Let δ = 4r exp{ −t2/2
n2/(4a)+2nt/(3a)} and θ = 4r/δ. Then, we have

‖K− FFT‖2 ≤ ln θ{2n/3a+
√

4n2/9a2 + n2/(2a ln θ)}
= Õ(n/

√
a) = Õ(n/

√
d), (3.19)

which holds with failure probability at most δ, and we can regard

ln θ as a small value and also easily check that t >
√
ξ + L/3

holds.

To prove the second term in Eq. (3.12), we use Lemma 3.5

and get

‖(I−QQT)FT‖2
2 ≤ ‖(I−YY†)FT‖2

2 (3.20)

≤ (‖Σ2‖4q+2
2 + ‖Σ4q+2

2 (VT
2 Θ)(VT

1 Θ)†‖2
2)

1/(2q+1)

CHAPTER 3. TRAINING-EFFICIENT FEATURE MAP 52

≤ (1 + ‖(VT
2 Θ)(VT

1 Θ)†‖2
2)

1/(2q+1)‖Σ2‖2
2, (3.21)

where F = UΣVT = UD(Σ1,Σ2)(V1,V2)
T with Σ1 ∈ Rk×k

and Σ2 ∈ R(d−k)×(d−k), and Eq. (3.20) holds because span(Y) ⊂
span(Q).

Notice that Θ is a centered Gaussian matrix, thus V̂T
1 Θ has

full row rank with probability one and Lemma 3.5 can be ap-

plied. The derivation for the upper bound of ‖(V2Θ)(VT
1 Θ)†‖2

follows from [79]. Then, combining and reformulating them, we

get that ‖(I−QQT)FT‖2
2 ≤ [k, q, d, p]1/(2q+1)n/(k+ 1) = O(n/`)

holds with failure probability at most 6 exp(−p), where ` = k+p

with p typically set to be a small constant (e.g., 5), [k, q, d, p]

means an expression on variables k, q, d, p, which turns smaller as

p increases and is briefly represented here due to limited space.

[k, q, d, p]1/(2q+1) can be considered as a small value if with a

slightly big q.

By union bound and setting d = Ω(`2), we prove Eq. (3.4)

holds with failure probability at most δ + 6 exp(−p).

3.6.3 Proof of Theorem 3.5

Proof. The proof is similar to that in Theorem 3.1 by setting

q = 0 in Eq. (3.21). Then, with failure probability at most c/k,

‖(V2Θ)(VT
1 Θ)†‖2 has a constant upper bound if ` = Ck log k,

where c and C are some constants [170]. Treating log k as a small

value and using ‖Σ2‖2
2 ≤ n/(k + 1) can complete the proof.

Note that q has to be zero and c/k can be larger than

6 exp(−p) in Theorem 3.1. This implies Algorithm 3.1 may

perform more accurately than Algorithm 3.2 although it runs

slower.

CHAPTER 3. TRAINING-EFFICIENT FEATURE MAP 53

3.6.4 Proof of Theorem 3.7

Proof. Instead of directly applying Representer Theorem [159]

on Eq. (3.6), a desired tight result can be obtained using

its Lagrangian duality. Rewrite Eq. (3.6) into a constrained

convex optimization problem by introducing new variables gT =

{gi = ~(wTZ(xi), yi)}ni=1 ∈ R1×n, and combine the Lagrangian

with KKT conditions, then we get an equivalent dual problem

without duality gap, i.e.,

L(w∗) = max
α

n∑
i=1

p∗(αi)−
1

2λ
αTZ(X)Z(X)Tα−αTy, (3.22)

where αT = {αi}ni=1 ∈ R1×n, yT = {yi}ni=1 ∈ R1×n, each row of

Z(X) is formed by Z(xi), ~(wTZ(xi), yi) = wTZ(xi)−yi without

loss of generality, and p∗(αi) = inf{−αTg +
∑n

i=1 p(gi)/n} is

supposed to be finite with αi = p′(gi)/n, ∀i ∈ [n]. Then,

L(w∗G) = max
α

n∑
i=1

p∗(αi)−
1

2λ
αTGGTα−αTy

≤ L(w∗K) + max
α

1

2λ
αT (K−GGT)α

≤ L(w∗K) +
1

2λ
‖α‖‖K−GGT‖2‖α‖2

≤ L(w∗K) +
n(C/n)2

2λ
‖K−GGT‖2

≤ L(w∗K) +
C2

2nλ
O(
n

`
) = L(w∗K) + Õ(

1

`
),

where λ is assumed to be a certain fixed value and the last

inequality holds with limited failure probability by using Theo-

rem 3.1 or Theorem 3.2.

2 End of chapter.

Chapter 4

Faster Online Sketching

Hashing

Many hashing methods, especially those that are in the data-

dependent category with good learning accuracy, are still ineffi-

cient when dealing with three critical problems in modern data

analysis. First, data usually come in a streaming fashion, but

most of the existing hashing methods are batch-based models.

Second, when data become huge, the extensive computational

time, large space requirement, and multiple passes to load the

data into memory will be prohibitive. Third, data often lack

sufficient label information. Although the recently proposed

Online Sketching Hashing (OSH) is promising to alleviate all

three issues mentioned above, its training procedure still suffers

from a high time complexity. In this chapter, we propose a

FasteR Online Sketching Hashing (FROSH) method to make the

training process faster. Compared with OSH, we leverage fast

JL transform to sketch data more compactly. Particularly, we

derive independent transformations to guarantee the sketching

accuracy, and design a novel implementation to make such

transformations applicable to online data sketching without

increasing the space cost. We rigorously prove that our method

54

CHAPTER 4. FASTER ONLINE SKETCHING HASHING 55

can yield a comparable learning accuracy with a lower time

complexity and an equal space cost compared with OSH. Finally,

extensive experiments on synthetic and real-world datasets

demonstrate the excellent performance of our method.

4.1 Introduction

Hashing is an efficient method to conduct an approximate

nearest neighbor search, which is critical for machine learning

and applications such as clustering, retrieval and matching [177].

It transforms data into a low-dimensional representation, i.e., a

short hash code consisting of a sequence of bits in Hamming

space. The data distance in original space then is approximated

by the Hamming distance that can be calculated extremely

fast in modern CPU. Thus, the approximate nearest neighbor

search can be accomplished with less time and space costs.

Current hashing methods can be categorized broadly as data-

independent and data-dependent techniques. Locality Sensitive

Hashing (LSH) methods [13, 34, 72, 94, 165] are prime examples

of data-independent techniques, which are also unsupervised.

They construct hash functions based on random projection,

which are typically very fast and theoretically guaranteed, but

are developed only for certain distance functions and often

require long code length to achieve acceptable search accuracy

because of ignoring the data distribution. Compared with

data-independent methods, data-dependent hashing techniques

achieve better accuracy performance with shorter binary codes,

while usually incurring a larger computational cost to train

the hashing functions. These data-dependent methods can be

categorized as unsupervised and (semi-)supervised techniques.

CHAPTER 4. FASTER ONLINE SKETCHING HASHING 56

In unsupervised studies [77, 97, 111, 123, 124, 125, 139, 162,

185, 199], hash functions are learned from data distribution

rather than being randomly generated by preserving a metric

induced distance in the Hamming space. Supervised meth-

ods [102, 116, 117, 121, 144, 163, 175] additionally leverage the

label information, and thus often outperform those unsupervised

ones.

Although data-dependent hashing methods have achieved a

promising learning accuracy, yet they suffer from some critical

problems when confronted with the data such as web images,

videos, stocks, genomes and web documents in the big data era.

First, data often become available continuously in a streaming

fashion, and each data point or data chunk can be processed

only once [111, 118]. Hence, batch learning strategies are not

allowed. Moreover, with batch-learners, it is unclear how to

adapt the hash functions as the dataset continues to grow and

new variations appear over time. Second, the data size n and

dimension d can be large with 1 � d � n [53], so that

the high time complexity and O(nd) space cost [111, 118] are

prohibitive. In particular, advanced batch-based unsupervised

hashing solutions such as SGH [97] and OCH [123] can avoid

the O(nd) space cost merely by performing multiple passes

over the data, while the disk IO overhead for loading all data

into memory multiple times will be the major performance

bottleneck [190]. Third, labels are commonly missing, noisy,

and scarce in today’s big data situation, and labeling streaming

data are also expensive and infeasible [166, 189, 191].

To tackle the above challenges, we focus on the most re-

cently proposed online hashing, i.e., online sketching hashing

(OSH) [111], which is data-dependent, space-efficient, unsuper-

CHAPTER 4. FASTER ONLINE SKETCHING HASHING 57

vised, and in a single pass. Note that there have been several

other investigations in online hashing. Such hashing methods

include online kernel-based hashing (OKH) [92], adaptive online

hashing (AOH) [29], and [30] but they all belong to the

supervised category, which require extra label information.

However, given O(d`) space to store and perform calculation

on the streaming data, the OSH method retains a training time

of O(nd` + d`2) to yield r ≤ O(`) hashing bits, where n is the

data size, d is the data dimension, and ` denotes the sketching

size satisfying ` < d � n. Such training time is still expensive

since 1 � d � n [53]. In this chapter, we attempt to reduce

the running time further. Our contributions are summarized as

follows:

• First, we propose a FasteR Online Sketching Hashing

(FROSH) method by improving the data sketching pro-

cedure in the OSH method. Specifically, we employ a fast

JL transform to reduce the data size, in which independent

transformations are applied for different small data chunks

to make the sketching compact and accurate.

• Second, we design a more efficient way to implement

the fast JL transform in our FROSH. Compared with

the standard way, our strategy reduces the space burden

incurred by the fast JL transform for sketching streaming

data while maintaining the same time efficiency.

• Third, we analyze the accuracy of our FROSH, and give an

error bound comparable with OSH. Moreover, our FROSH

has a smaller time complexity of Õ(n`2 + nd) with an

equal space usage. Extensive experiments demonstrate

the computational efficiency with a competitive learning

CHAPTER 4. FASTER ONLINE SKETCHING HASHING 58

accuracy.

The remainder of this chapter is organized as follows. In

Section 2, we review the prior work and techniques. In Section

3, we present our method along with theoretical analysis, and

emphasize its advantages from various aspects. In Section 4, we

provide extensive empirical results, and Section 5 concludes the

whole work.

4.2 Related Work

In this section, we describe the properties of the OSH method.

Then, we outline and discuss the fast JL transforms, especially

the Subsampled Randomized Hadamard Transform (SRHT).

4.2.1 Online Sketching Hashing

We rephrase the background and details of the OSH method [111].

Given data A ∈ Rn×d and the unknown projection matrix

W ∈ Rd×r, the k-th hashing function for a data point ai ∈ R1×d

is defined as

hk(a
i) = sgn((ai − µµµ)wk), (4.1)

where µµµ = Ā = 1
n

∑n
i=1 ai. By dropping the non-differentiable

function sgn(·) for the binary codes [175], the objective can

be reformulated as the same as that of Principal Component

Analysis (PCA)

max
W∈Rd×r

Tr(WT (A− µµµ)T (A− µµµ)W)

s.t. WTW = Ir, (4.2)

where (A−µµµ) denotes a matrix [a1−µµµ; a2−µµµ; . . . ; an−µµµ]. The

CHAPTER 4. FASTER ONLINE SKETCHING HASHING 59

Algorithm 4.1 Online Sketching Hashing (OSH) [111]

Input: Data A = {Aj ∈ Rhj×d}sj=1, sketching size ` < d, positive integer

η, hashing bits r

1: Initialize sketching matrix by B = 0`×d

2: Set µµµ1 as the row mean vector of A1

3: Let ϕϕϕ = µµµ1, τ = h1, ξ = 0

4: Sketch G1 = (A1 − µµµ1) ∈ Rh1×d into B ∈ R`×d

5: for j = 2 : s do

6: Set µµµj as the row mean vector of Aj

7: Set ςςς =
√

τhj
τ+hj

(µµµj −ϕϕϕ) ∈ R1×d

8: Sketch Gj = [(Aj − µµµj); ςςς] ∈ R(hj+1)×d into B ∈ R`×d

9: Set ϕϕϕ = τϕϕϕ
τ+hj

+
hjµµµj
τ+hj

Update the mean vector

10: Set τ = τ + hj # Update the data size

11: Set ξ = ξ + 1

12: if ξ == η then

13: Compute the SVD of B ∈ R`×d, and assign the top r right singular

vectors as WT ∈ Rr×d

14: Set ξ = 0

15: return W

16: end if

17: end for

solution to W ∈ Rd×r in Eq. (4.2) is the top r right eigenvectors

of the covariance matrix (A − µµµ)T (A − µµµ). For d < n, it takes

O(nd2) time and O(nd) space, which is infeasible for large n and

d [101].

To tackle above computational issues, sketching the data

before the training is a promising way. Specifically, a sketch of a

data matrix is another matrix that is significantly smaller than

the original but still approximates it well and preserves the prop-

erties of interest. It implies that the storing and the computing

on the sketch will be much easier than with the original large

matrix, and the downstream learning algorithms on the sketch

can still guarantee the learning accuracy [15, 40, 118, 129, 188].

CHAPTER 4. FASTER ONLINE SKETCHING HASHING 60

Leveraging the effectiveness of sketching in the learning, OSH

is proposed, and its details are presented in Algorithm 4.1. It

aims at efficiently achieving a small matrix B ∈ R`×d for the

centered data (A−µµµ), then computing the SVD on B only takes

O(d`2) time and O(d`) space for ` < d. The difficulty lies in that

sketching cannot be directly applied in each centered data chunk

(Aj − µµµ), since µµµ can only be obtained after observing all data

points in A.

Then, the online centering procedure in steps 3 to 10 are

to ensure that (A[j] − µ̂µµj)T (A[j] − µ̂µµj) = GT
[j]G[j] after the j-th

iteration, where A[j] = [A1; A2; · · · ; Aj] by stacking all observed

Aj vertically, G[j] follows a similar definition, and µ̂µµj is the row

mean vector of A[j]. Steps 4 and 8 are to get a smaller matrix

B via an efficient sketching such that BTB ≈ GT
[j]G[j] after

the j-th iteration. After all iterations, OSH guarantees that

BTB ≈ GT
[s]G[s] = (A[s] − µ̂µµs)T (A[s] − µ̂µµs) = (A− µµµ)T (A− µµµ).

If
∑s

j=1 hj = O(n), the sketching steps in OSH will take

O(nd`) time and O(d`) space. The SVD in step 13 runs for

about ξ/η times. As ξ/η can be manually set to be a small

constant, step 13 takes O(d`2) time and O(d`) space in total.

The computational cost of the online data centering procedure

is negligible. In conclusion, OSH consumes O(nd` + d`2) time

and O(d`) space.

Remark 4.1. To address the problem that most of the infor-

mation can be contained by only a small number of significant

singular vectors in W ∈ Rd×r, OSH also empirically applies a

random orthogonal rotation Υ ∈ Rr×r (the orthonormal bases

of an r × r random Gaussian matrix) to all singular vectors

W ∈ Rd×r in Algorithm 4.1 via WΥ. This step resembles

Iterative Quantization [77] but runs much more efficiently with

CHAPTER 4. FASTER ONLINE SKETCHING HASHING 61

streaming settings maintained and negligible computational cost

incurred.

4.2.2 Frequent Directions for Sketching

Algorithm 4.2 Frequent Directions (FD) [118]

Input: Data A ∈ Rn×d, sketching matrix B ∈ R`×d

1: if B not exists then

2: Set B = 0`×d

3: end if

4: for i ∈ [n] do

5: Insert ai ∈ R1×d into a zero valued row of B

6: if B has no zero valued rows then

7: [U,Σ,V] = SVD(B)

8: Σ̂ =
√

max(Σ2 − σ2
`/2Il, 0)

9: Set B = Σ̂VT

10: end if

11: end for

OSH employs the Frequent Directions (FD) as a black-box to

sketch streaming data, which is summarized in Algorithm 4.2. It

operates by keeping collecting row vectors from the data source.

Once the sketching matrix B ∈ R`×d has ` non-zero rows, the

shrinking procedure as shown in steps 6 to 9 will reduce the size

of the matrix B ∈ R`×d by a half, which repeats throughout the

entire streaming data.

In this part, we assume that FD will process n data points.

The computational cost of the FD algorithm is dominated by

the shrinking procedure that involves computing an exact SVD

on B ∈ R`×d, which takes O(d`2) time and O(d`) space for

` < d. Since the shrinking procedure is operated once nearly

every `/2 iterations of the main loop, the time complexity is

O(d`2 × n/`) = O(nd`) with O(d`) space burden.

CHAPTER 4. FASTER ONLINE SKETCHING HASHING 62

Recently, the Sparse FD (SFD) algorithm [70] is proposed

to take advantage of the sparsity of A by applying a powerful

randomized SVD [140] instead of an exact SVD in each shrinking

procedure. SFD still takes O(d`) space but only requires

Õ(nnz(A)` + n`2) running time, where nnz(A) means the

number of non-zero entries in A. This time cost is much smaller

than O(nd`) if `� d and A ∈ Rn×d is extremely sparse.

Remark 4.2. FD works well for streaming data. For instance,

given two (or more) data chunks like G1 ∈ Rh1×d and G2 ∈
R(h2+1)×d in Algorithm 4.1, we invoke FD and run it on G1

to yield a sketching matrix B = B1 ∈ R`×d. Based on the

current B = B1, we then run FD on G2 to update B and get

B = B2 ∈ R`×d. Such procedures are obviously equivalent to

that we directly invoke FD for once and run it on [G1; G2] ∈
R(h1+h2+1)×d, which also gets an identical B = B2.

4.2.3 Fast JL Transform

For the convenience of reference, we restate the fast JL transform

as described previously in Chapter 2. Given a vector a ∈ Rm,

its compressed representation b ∈ Rq can be obtained by

performing the matrix-vector multiplication like Φa, where q <

m and Φ ∈ Rq×m is a random projection matrix (e.g., a Gaussian

random matrix). Generally, computing Φa takes O(qm) time.

It can be a computational bottleneck of fast implementing

numerous learning tasks that involve data compression.

Fast JL transforms, which are based on the structured

projection matrix like Hadamard matrix or Fourier matrix, then

are employed to overcome the shortcomings of the classical

transformation methods. For Hadamard matrix Hm ∈ Rm×m,

CHAPTER 4. FASTER ONLINE SKETCHING HASHING 63

its entry is defined as

Hij = (−1)〈i−1,j−1〉, (4.3)

where 〈i − 1, j − 1〉 is the dot-product of the b-bit vectors

of integers i − 1 and j − 1 expressed in binary, and b ≤
max(dlog(i+ 1)e , dlog(j + 1)e). It can also be defined recur-

sively as

Hm =

[
Hm/2 Hm/2

Hm/2 −Hm/2

]
and H2 =

[
1 1

1 −1

]
.

The normalized Hadamard matrix is defined by H =
√

1
mHm,

and by exploring the recursive structure of H, computing Ha

only takes O(m logm) time with O(m) space [7].

To compress data, we perform the Subsampled Randomized

Hadamard Transform (SRHT), i.e., data are transformed via a

randomized Hadamard matrix and then uniformly sampled in

the resulting entries. For a q×m SRHT matrix, it is defined as

the form Φ = SHD, where D ∈ Rm×m is a diagonal matrix

with its diagonal elements being i.i.d. Rademacher random

variables (i.e., 1 or −1 with equal probability), S ∈ Rq×m is a

scaled sampling matrix with each row uniformly sampled without

replacement from m rows of the identity matrix Im ∈ Rm×m

multiplied by
√

m
q .

Differently, computing Φa only takes O(m log q) time with

O(m) space [7, 128].

4.3 Faster Online Sketching Hashing

In this section, we motivate and present FROSH, whose sketch-

ing relies on our Faster FD (FFD). To make FROSH maintain

CHAPTER 4. FASTER ONLINE SKETCHING HASHING 64

an equal space efficiency with that of OSH, we also derive a

new implementation of fast JL transform in FFD for sketching

streaming data. The analysis guarantees the performance of our

solution.

4.3.1 Motivation, Method and Results

The computational cost of OSH is dominated by its sketching

method FD. This sketching requires O(nd`) time to obtain

B ∈ R`×d from the data A ∈ Rn×d, which is computationally

expensive for 1 � d � n [53]. Even regarding SFD, its

Õ(nnz(A)`+ nl2) time cost still tends to be Õ(nd`+ n`2) since

the centered data A− µµµ are dense.

We first present an FFD sketching method as stated in

Algorithm 4.3 to tackle above issues. In steps 6 to 9, after

collecting m data points into F ∈ Rm×d, a new SRHT matrix

is generated to compress F with its size reduced to `/2. Then,

the newly compressed data and previously shrunken data form

the B ∈ R`×d. Steps 10 to 11 employ a shrinking procedure

that is similar to that in FD. However, there may exist one

problem in each iteration of step 9, i.e., computing ΦtF in the

standard way has to takeO(md log `) time but withO(md) space

to collect all m data points. For a big m = Θ(d), the space cost

of O(md) = O(d2) is practically prohibitive since space can be

severely limited [118], which is also inferior to FD method whose

advantages includes that only O(d`) space is employed.

Fortunately, we do not have to keep a matrix F ∈ Rm×d

explicitly to store m data points. Instead, F ∈ Rm×d here is

simply used for easily presenting the algorithm. Furthermore,

as data come sequentially, we only take O(d`) space to handle

O(`) data points, save and combine intermediate results. We

CHAPTER 4. FASTER ONLINE SKETCHING HASHING 65

Algorithm 4.3 Faster Frequent Directions (FFD)

Input: Data A ∈ Rn×d, sketching matrix B ∈ R`×d

1: if B not exists then

2: Set t = 1, B = 0`×d

3: Set F = 0m×d with m = Θ(d) # Only needed for notation

4: end if

5: for i ∈ [n] do

6: Insert ai into a zero valued row of F

7: if F has no zero valued rows then

8: Generate a fast JL transform Φt = StHDt ∈ R(`/2)×m in the t-th

trial

9: Insert ΦtF ∈ R(`/2)×d into the last `
2

rows of B

10: [U,Σ,V] = SVD(B)

11: Σ̂ =
√

max(Σ2 − σ2
`/2Il, 0)

12: Set B = Σ̂VT

13: Let Bt = B, Ct = ΦtF # Only needed for proof notations

14: Set F = 0m×d, t = t+ 1

15: end if

16: end for

repeat such procedures until that we have sequentially processed

m data points denoted by F ∈ Rm×d, which finally still only

takes O(md log `) time in total to achieve ΦtF. The detailed

implementation is deferred to the subsequent section.

Moreover, we adopt an independent and distinct Φt in each

iteration of step 9, which benefits the sketching accuracy by

controlling the variance in all sketchings. Below, we formally

characterize the properties of our proposed FFD.

Theorem 4.1 (FFD). Given data A ∈ Rn×d and the sketching

size ` ≤ k = min(m, d), let the small sketch B ∈ R`×d be

constructed by FFD. Then, with probability at least 1 − pβ −

CHAPTER 4. FASTER ONLINE SKETCHING HASHING 66

(2p+ 1)δ − 2n
ek

we have

‖ATA−BTB‖2 ≤ Õ
(1

`
+ Γ(`, p, k)

)
‖A‖2

F (4.4)

where Γ(`, p, k) =
√

k
`p2 +

√
1+
√
k/`

p with p = n
m, and Õ(·) hides

logarithmic factors on (β, δ, k, d,m) as in Eqs. (4.21)(4.25)(4.40).

The running time of the algorithm is Õ(nl2 dm + nd) and its

space cost is O(d`) before taking m = Θ(d).

Table 4.1: Time cost and error bounds of the compared frequent direction

methods, where the space cost is O(d`) for all methods.

Method Time Error Bound

FD [118] O(nd`) 2
`
‖A‖2F

SFD [70] O(nnz(A)`+nl2)
(
O(nd`+

n`2) for dense centers
) Õ(1

`
‖A‖2F)

FFD Õ(nl
2d
m

+ nd)
(
Õ(n`2 + nd)

when m = Θ(d)
) Õ(1

`
+ Γ(`, p, k))‖A‖2F

(
Õ(1

`
‖A‖2F)

when p = Ω(`3/2k1/2)
)

Remark 4.3. For a fixed n, a smaller m improves the sketching

accuracy while taking more time burden. We choose m = Θ(d)

such that the time consumption of FFD is Õ(n`2+nd). If `� d,

it is superior to O(nd`) time cost in FD and Õ(nd`+ n`2) time

usage in SFD for dense centered data.

When data keep coming (i.e., n increases) and/or m de-

creases, p will get larger, which makes the bound in Eq. (4.4)

tighter. If p = Ω(`3/2k1/2), i.e., n = Ω(`3/2d3/2) when m = Θ(d),

then the error bound of FFD becomes Õ(1
`‖A‖

2
F), which is

asymptotically comparable with the bounds 2
`‖A‖

2
F of FD and

Õ(1
`‖A‖

2
F) of SFD.

Thus, FFD is more applicable to the big data situation

1 � d � n with computational cost reduced and accuracy

CHAPTER 4. FASTER ONLINE SKETCHING HASHING 67

guaranteed. Competitive empirical results suggest there is an

opportunity to further tighten our error bound. The detailed

comparisons can be found in Table 4.1

Algorithm 4.4 FasteR Online Sketching Hashing (FROSH)

Input: Data A = {Aj ∈ Rhj×d}sj=1, sketching size ` < d, positive integer

η, hashing bits r

1: Run steps 1 to 3 of Algorithm 4.1

2: Run steps 4 to 10 of Algorithm 4.1 with FFD to sketch the centered data

into B ∈ R`×d

3: Run steps 11 to 15 of Algorithm 4.1 and return W ∈ Rd×r

Based on FFD and OSH, our FROSH is straightforward given

in Algorithm 4.4. Its step 2 contains the online data centering

procedure, which is equivalent to that in OSH. Then, combining

Theorem 4.1 and the properties of the online data centering

procedure yields the next result.

Theorem 4.2 (FROSH). Given data A ∈ Rn×d with its row

mean vector µµµ ∈ R1×d, let the sketch B`×d be generated by

FROSH in Algorithm 4.4. Then, with probability defined in

Theorem 4.1 we have

‖(A− µµµ)T (A− µµµ)−BTB‖2

≤ Õ
(1

`
+ Γ(`, p, k)

)
‖A− µµµ‖2

F , (4.5)

where (A − µµµ) ∈ Rn×d means subtracting each row of A by

µµµ, Γ(`, p, k) is from Theorem 4.1, and the top r right singular

vectors of B ∈ R`×d are used for hashing projections WT ∈ Rr×d

in Remark 4.1.

The algorithm takes Õ(n`2 + nd+ d`2) time and O(d`) space

cost after taking m = Θ(d) in the FFD of FROSH.

CHAPTER 4. FASTER ONLINE SKETCHING HASHING 68

Remark 4.4. This primary analysis resembles that of OSH [111],

which follows the conception that accurate sketching does not

harm the learning accuracy [15, 40, 111, 118, 129, 188]. Hence,

the W from B is expected to well approximate that from

A − µµµ (more illustrations on the approximation for W are

deferred into the appendix), and we use this sketching error

for the centered data A − µµµ to justify if the sketching-based

hashing works properly [111]. Thus, the accuracy comparisons

between OSH and FROSH resemble Remark 4.3. Compared

with Õ(nd`+d`2) time and O(d`) space cost in OSH, we improve

a lot if 1 < `� d� n.

Next, we offer more details to show how the project matrix

WT ∈ Rr×d can be approximated. We letm = Θ(d), and assume

n = Ω(`3/2d3/2) for simplicity, then the error bound of Eq. (5)

in Theorem 4.2 becomes Õ(1
`‖(A−µµµ)‖2

F). Based on it, we give

Corollary 4.1.

Corollary 4.1. Given data A ∈ Rn×d with its row mean vector

µµµ ∈ R1×d, let the sketching matrix B`×d be generated by FROSH

in Algorithm 4.4. Let m = Θ(d), and assume n = Ω(`3/2d3/2)

for simplicity. Given (A − µµµ) ∈ Rn×d that means subtracting

each row of A by µµµ, let h = ‖(A − µµµ)‖2
F/‖(A − µµµ)‖2

2 and σi be

the i-th largest singular value of (A − µµµ). If the sketching size

` = Ω(hσ2
1

εσ2
r+1

), then with probability defined in Theorem 1 we have

‖(A− µµµ)− (A− µµµ)WBWT
B‖2

2

≤ (1 + ε)‖(A− µµµ)− (A− µµµ)WWT‖2
2, (4.6)

where 0 < ε < 1, WT
B ∈ Rr×d contains the top r right singular

vectors of B`×d, and WT ∈ Rr×d contains the top r right singular

vectors of (A− µµµ) ∈ Rn×d.

CHAPTER 4. FASTER ONLINE SKETCHING HASHING 69

Remark 4.5. The bound on ‖(A−µµµ)−(A−µµµ)WBWT
B‖2

2 shows

the similarity between WBWT
B and WWT . If ε = 0, we will

have WBWT
B = WWT . However, it cannot characterize the

similarity between WB ∈ Rd×r and W ∈ Rd×r, because Eq. (4.6)

of Corollary 4.1 may also indicate that WB approximates WΥ,

where Υ ∈ Rr×r is an arbitrary unitary matrix with ΥΥT = Ir
and Ir being an identity matrix so that WΥΥTWT = WWT .

Fortunately, due to that ΥΥT = Ir (i.e., Υ ∈ Rr×r is an

orthogonal rotation), WΥ will still retain all information of W

and even empirically get better hashing accuracy, which has

been mentioned in Remark 4.1. Therefore, Corollary 4.1 shows

how WB approximates W or WΥ, which can be used to show

the effectiveness of the related hashing algorithm.

4.3.2 Implementation of the Fast JL Trasform in FFD

Define q = `/2, then we show how to simply adopt O(qd) space

and perform a single pass through F ∈ Rm×d to achieve ΦF

with O(md log q) time, given Φ = SHD ∈ Rq×m, q ≤ m, and

logm ≤ O(d log q).

To clarify, we choose an m such that m = 2b for a positive

integer b. We can always find a q/2 ≤ p ≤ q to define positive

integers c and p such that m = 2cp.

As shown in Figure 4.1, we divide data matrix F ∈ Rm×d into

2c blocks as {Fi ∈ Rp×d}2c

i=1, and the diagonal matrix D ∈ Rm×m

into 2c square blocks as {Di ∈ Rp×d}2c

i=1. Hadamard matrix

H ∈ Rm×m can also be divided into (2c)2 = 4c square blocks

{Hij ∈ Rp×p}2c

i,j=1.

We take O(pd) space to receive streaming data from F1 ∈
Rp×d. Then, through S[H11; H21; · · · ; H2c1]D1F1 ∈ Rq×d we

perform the matrix multiplication. We first run H11D1F1 ∈

CHAPTER 4. FASTER ONLINE SKETCHING HASHING 70

Figure 4.1: Space-efficient implementation of ΦF = SHDF. We set m/p =

2c with c = 2 for clarity.

Rp×d, taking O(pd log p) time and O(pd) space. We then only

have to get at most q resulting rows from {Hi1F1}2c

i≥2 since

S ∈ Rq×m only selects q rows. Fortunately, H11 = +Hi1 or

H11 = −Hi1 holds for any i ∈ [2c], and the ± sign can be

determined by calculating the first entry of each Hi1 based on

Eq. (4.3) whose running time is at most O(logm). Hence, the

ultimate time complexity is O(pd log p) +O(qd) +O(q logm). It

is also straightforward to check that O(pd + qd) space suffices

for all calculations and saving the compressed data.

Then, we remove F1, receive data from F2, do the similar

calculations, and update current result based on the previous

compressed data from F1. The time and space costs on F2 still

keep asymptotically unchanged.

Finally, the space usage of computing ΦF is O(pd) = O(qd),

and its time cost is 2c[O(pd log p) + O(qd) + O(q logm)] =

O(md log q) given q/2 ≤ p ≤ q, m = 2cp, and logm ≤ O(d log q).

4.4 Empirical Studies

In this section, we conduct three sets of experiments to em-

pirically verify the properties and demonstrate the superiority

CHAPTER 4. FASTER ONLINE SKETCHING HASHING 71

of our proposed FROSH. The experiments are conducted in

MATLAB R2015a and run on a standard workstation with Intel

CPU@2.90GHz and 128GB RAM. The MATLAB is set in single

thread mode to fairly test time. All results are averaged over 10

independent runs.

4.4.1 Numerical Studies on Sketching

First of all, it is necessary to verify the sketching properties

of FD and FFD, which dominate the performance of OSH and

FROSH, respectively. We aim to demonstrate that FFD can

achieve a comparable sketching accuracy with a faster running

speed in comparison with FD.

To make an insightful comparison, we run both algorithms

on the synthetic data A ∈ Rn×d, which is generated as [118] to

verify the sketching methods. Specifically, A ∈ Rn×d is formally

defined as A = GFU + W/γ, where G ∈ Rn×k is the signal

coefficient with gij ∼ N (0, 1), the square diagonal matrix F ∈
Rk×k contains the diagonal entries fii = 1− (i− 1)/k that gives

linearly diminishing signal singular values, U ∈ Rk×d defines

the signal row space with UUT = Ik (k � d), and W ∈ Rn×d

consists of noise wij ∼ N (0, 1).The parameter γ determines if

the noise can dominate the signal. Following [118], we set k =

10 and γ = 10.

In the experiments, we vary the sketching size ` along

(16, 32, 64, 100, 128, 200, 256). We also vary the data size n

and dimension d of A ∈ Rn×d, and the parameter m in FFD.

Such variables can impact the sketching performance in different

degrees.

We plot the relative error ‖ATA − BTB‖2/‖A‖2
F versus

the sketching size ` in Figure 4.2 and compare the running

CHAPTER 4. FASTER ONLINE SKETCHING HASHING 72

Sketching Size

0 100 200 300

E
rr

o
r

0

0.02

0.04

0.06

0.08
A1, n=200000 d=500

FD

FFD m/d=1

FFD m/d=2

FFD m/d=4

FFD m/d=8

Sketching Size

0 100 200 300

E
rr

o
r

0

0.02

0.04

0.06

0.08
A2, n=1000000 d=500

FD

FFD m/d=1

FFD m/d=2

FFD m/d=4

FFD m/d=8

Sketching Size

0 100 200 300

E
rr

o
r

0

0.02

0.04

0.06

0.08
A3, n=200000 d=256

FD

FFD m/d=1

FFD m/d=2

FFD m/d=4

FFD m/d=8

Figure 4.2: Accuracy comparisons of sketching methods.

time given in Figure 4.3. It can be seen that, for data A1,

FFD displays comparable accuracy while enjoying a much lower

time cost compared with FD. Besides, when m increases, the

sketching accuracy of FFD slightly decreases, but its running

speed increases especially for a larger `. Data A2 differs A1

only on n, and we observe that a larger n improves the sketching

accuracy of FFD. Finally, we decrease the dimension d in A3,

and we find that the improvement of running speed for FFD

becomes smaller than that in A1. All these observations are

consistent with the proved results in Theorem 4.1.

All the results indicate that our proposed FFD has the

potential to benefit the sketching-based online hashing.

CHAPTER 4. FASTER ONLINE SKETCHING HASHING 73

Sketching Size

0 100 200 300

T
im

e
 (

s
e

c
.)

0

20

40

60

80
A1, n=200000 d=500

FD

FFD m/d=1

FFD m/d=2

FFD m/d=4

FFD m/d=8

Sketching Size

0 100 200 300

T
im

e
 (

s
e

c
.)

0

100

200

300

400
A2, n=1000000 d=500

FD

FFD m/d=1

FFD m/d=2

FFD m/d=4

FFD m/d=8

Sketching Size

0 100 200 300

T
im

e
 (

s
e

c
.)

0

15

30

45

60
A3, n=200000 d=256

FD

FFD m/d=1

FFD m/d=2

FFD m/d=4

FFD m/d=8

Figure 4.3: Time comparisons of sketching methods.

4.4.2 Comparisons with LSH and OSH

In this part, we compare against online unsupervised hashing

methods including LSH [34] and OSH. We employ four datasets:

CIFAR-10 [107], MNIST [33], GIST-1M [96], and FLICKR-

25600 [199]. For CIFAR-10, it consists of 60,000 images in 10

classes with 6000 images per class. We extract 512-dimensional

GIST descriptor to represent each image. MNIST contains

70,000 images with 784-dimensional features. GIST-1M consists

of one million 960-dimensional GIST descriptors. The FLICKR-

25600 dataset contains 100,000 images sampled from a noisy

Internet image collection, and each image is represented by

a 25,600-dimensional vector normalized to be of unit norm.

CHAPTER 4. FASTER ONLINE SKETCHING HASHING 74

Following the common setting, we take the top 2% nearest

neighbors in Euclidean space as the ground truth for all datasets.

Rounds

0 2 4 6 8 10

M
A

P

0.09

0.15

0.21

0.27

0.33
CIFAR-10, 32bits

LSH

OSH

FROSH

Rounds

0 2 4 6 8 10

M
A

P

0.24

0.36

0.48

0.6

0.72
MNIST, 32bits

LSH

OSH

FROSH

Rounds

0 2 4 6 8 10

M
A

P

0.1

0.14

0.18

0.22

0.26
GIST-1M, 32bits

LSH

OSH

FROSH

Rounds

0 2 4 6 8 10

M
A

P

0

0.09

0.18

0.27

0.36
FLICKR-25600, 32bits

LSH

OSH

FROSH

Rounds

0 2 4 6 8 10
M

A
P

0.09

0.15

0.21

0.27

0.33
CIFAR-10, 64bits

LSH

OSH

FROSH

Rounds

0 2 4 6 8 10

M
A

P

0.24

0.36

0.48

0.6

0.72
MNIST, 64bits

LSH

OSH

FROSH

Rounds

0 2 4 6 8 10

M
A

P

0.1

0.14

0.18

0.22

0.26
GIST-1M, 64bits

LSH

OSH

FROSH

Rounds

0 2 4 6 8 10

M
A

P

0

0.09

0.18

0.27

0.36
FLICKR-25600, 64bits

LSH

OSH

FROSH

Rounds

0 2 4 6 8 10

M
A

P

0.09

0.15

0.21

0.27

0.33
CIFAR-10, 128bits

LSH

OSH

FROSH

Rounds

0 2 4 6 8 10

M
A

P

0.24

0.36

0.48

0.6

0.72
MNIST, 128bits

LSH

OSH

FROSH

Rounds

0 2 4 6 8 10

M
A

P

0.1

0.14

0.18

0.22

0.26
GIST-1M, 128bits

LSH

OSH

FROSH

Rounds

0 2 4 6 8 10

M
A

P

0

0.09

0.18

0.27

0.36
FLICKR-25600, 128bits

LSH

OSH

FROSH

Figure 4.4: MAP at each round with 32, 64, and 128 bits.

In both OSH and FROSH, we set the sketching size ` = 2r,

where r is the code length assigned from {32, 64, 128}. We train

both algorithms in a streaming fashion by evenly dividing each

dataset into 10 parts, and evaluate the mean average precision

(MAP) score after each round. We also empirically set m = 4d

CHAPTER 4. FASTER ONLINE SKETCHING HASHING 75

in FROSH during the training. For LSH, it does not require

training, and we simply report its MAP at the final round [111].

Figure 4.4 shows the MAP scores at different rounds on four

datasets with 32, 64 and 128 bits codes. On all datasets, it is

apparent that our proposed FROSH performs as accurately as

OSH and outperforms LSH with a large margin. In addition,

both OSH and FROSH stably improve the MAP scores when

receiving more data, which demonstrates that a successful

adaption to the data variations has been achieved. Table 4.3

provides the accumulated training time of OSH and FROSH

with 32, 64, 128 bits codes, respectively. FROSH consistently

has the lower training time for each comparison, which achieves

about 10 ∼ 20 times speed-up than OSH. Thus, our method is

highly efficient.

Table 4.2: Accumulated training time of OSH and FROSH after all rounds

(in sec.).

Dataset Method 32bits 64bits 128bits

CIFAR-10
OSH 7.78 11.88 22.09

FROSH 0.63 0.94 2.11

MNIST
OSH 13.25 18.93 30.75

FROSH 1.17 1.49 2.56

GIST-1M
OSH 228 331 520

FROSH 21 27 45

FLICKR- OSH 679 1283 2570

25600 FROSH 72 92 134

CHAPTER 4. FASTER ONLINE SKETCHING HASHING 76

4.4.3 Comparisons with Batch Solutions

We also compare OSH and our FROSH against two leading

methods SGH [97] and OCH [123]. Based on the litera-

ture [125, 97, 123], we know that SGH maintains a superior

tradeoff between the learning accuracy and the scalability, and

OCH is the state-of-the-art regarding the accuracy performance

compared with the other unsupervised hashing methods such as

SpH [185], AGH [126], IsoH [106], DGH [125], and OEH [124].

Bits

32 64 128

M
A

P

0

0.09

0.18

0.27

0.36
CIFAR-10

SGH

OCH

OSH

FROSH

Bits

32 64 128

M
A

P

0

0.09

0.18

0.27

0.36
GIST-1M

SGH

OCH

OSH

FROSH

Bits

32 64 128

M
A

P

0

0.2

0.4

0.6

0.8
MNIST

SGH

OCH

OSH

FROSH

Bits

32 64 128

M
A

P

0

0.09

0.18

0.27

0.36
FLICKR-25600

SGH

OCH

OSH

FROSH

Figure 4.5: MAP comparisons at different code lengths.

In Figure 4.5, we clearly observe that FROSH achieves

comparable or even better accuracy in comparison with the

two leading batch solutions, which suggests that not only does

the online sketching maintain sufficient information necessary

for the hash function training but also it owns a good learning

CHAPTER 4. FASTER ONLINE SKETCHING HASHING 77

ability. In conclusion, considering the properties that FROSH

can adapt the hash functions to the new coming data and enjoy

superior training efficiency (single pass, lowest costs of space

and time), our proposed method is more appropriate for hashing

learning on the big streaming unlabeled data. Note that we defer

the time comparisons in the appendix.

Besides, FROSH enjoys superior training efficiency, i.e.,

single pass, lowest costs of space (O(`d)) and time, while the

unsupervised batch methods such as SGH and OCH require

either O(nd) space or multiple passes over the data to load all

data into memory or both. Regarding the space cost, OSH and

FROSH can throw away the used data and update only on the

newly coming data via O(`d) space while SGH and OCH should

maintain a large extern storage to keep all observed data and the

newly coming data. Moreover, given the 19GB data FLICKR-

25600 that is merely a small subset of the entire FLICKR image

collection, if avoiding multiple passes is required, both the SGH

and OCH methods have to maintain the entire FLICKR-25600

data in the memory and keep the intermediate computational

results (can be several times larger than FLICKR-25600 itself) in

the memory as well, which is infeasible for common computers.

In Table 4.3, we also provide the empirical time comparisons

because it is not clear enough to directly compare the associated

time complexities when all methods have different parameters.

Note that the released OCH codes have been highly optimized

by the authors in contrast to the version used in its original

paper [123]. We report the accumulated time after all rounds for

OSH and FROSH and provide the time consumptions of training

SGH and OCH only on all observed data. Overall, our FROSH

offers about 10 ∼ 70 times speed-up than the other compared

CHAPTER 4. FASTER ONLINE SKETCHING HASHING 78

solutions. If considering the case where batch-learners should

repeatedly do batch learning on both the newly coming data

and the currently observed data, SGH and OCH would require

significantly more training time than that in Table 4.3.

Table 4.3: Comparisons of the training time (in sec.). We report the

accumulated time after all rounds for OSH and FROSH and provide the

time consumptions of training SGH and OCH only on all observed data.

Dataset Method 32bits 64bits 128bits

CIFAR-10

SGH 7.83 11.35 19.49

OCH 26.89 26.95 27.49

OSH 7.78 11.88 22.09

FROSH 0.63 0.94 2.11

MNIST

SGH 10.47 14.59 23.47

OCH 40.45 40.49 41.10

OSH 13.25 18.93 30.75

FROSH 1.17 1.49 2.56

GIST-1M

SGH 231 275 290

OCH 1042 1089 1192

OSH 228 331 520

FROSH 21 27 45

SGH 3032 3541 4903

FLICKR- OCH 4981 5300 5441

25600 OSH 679 1283 2570

FROSH 72 92 134

4.5 Conclusion

In this chapter, we propose an effective hashing method for

streaming unlabeled data. Its basic idea is to reduce the

sketching time that is the dominated cost in the OSH method.

CHAPTER 4. FASTER ONLINE SKETCHING HASHING 79

The analysis shows better time efficiency with accuracy guar-

anteed. The simulations on both synthetic and real-world

datasets support our theoretical findings and demonstrate the

practicability of our method.

The sketching designed in this work also provides an insight-

ful view for accelerating general streaming matrix multiplica-

tions, which then may be helpful for deriving an online version

of OCH. Such extensions can be explored in the future work.

4.6 Proofs

4.6.1 Preliminaries

In our analysis, we turn to series of existing theoretical tools.

We use the Matrix Bernstein inequality on the sum of zero-mean

random matrices given as below.

Theorem 4.3 ([171]). Let {Ai}Li=1 ∈ Rn×d be independent

random matrices with E [Ai] = 0n×d and ‖Ai‖2 ≤ R for all i ∈
[L]. Define σ2 = max{‖

∑L
i=1 E

[
AiA

T
i

]
‖2, ‖

∑L
i=1 E

[
AT
i Ai

]
‖2}

as the variance parameter. Then, for all ε ≥ 0 we have

P(‖
L∑
i=1

Ai‖2 ≥ ε) ≤ (d+ n) exp(
−ε2/2

σ2 +Rε/3
). (4.7)

It is also helpful to provide the next result that characterizes

the property of compressed data via SRHT matrix.

Theorem 4.4 ([128]). Given A ∈ Rm×d, let rank(A) ≤ k ≤
min(m, d) and Φ ∈ Rq×m be the SRHT matrix. Then, with

probability at least 1− (δ + m
ek

) we have

(1−∆)ATA � ATΦTΦA � (1 + ∆)ATA, (4.8)

CHAPTER 4. FASTER ONLINE SKETCHING HASHING 80

where ∆ = Θ(
√

k log(2k/δ)
q).

With Corollary 3 of [10], it is straightforward to have the

next norm bound for compressed data vectors.

Lemma 4.1. Give data matrix A ∈ Rm×d, and the SRHT

matrix Φ ∈ Rq×m. Then, with probability at least 1 − β, we

have

‖Φai‖2 ≤

√
2 log(

2md

β
)‖ai‖2, for all i ∈ [d]. (4.9)

Before proceeding, we first give the following Lemma together

with its proof.

Lemma 4.2. Given data matrix X ∈ Rm×d, and the scaled

sampling matrix S ∈ Rq×m in SRHT. Then, we have

E[XTSTSX] = XTX. (4.10)

4.6.2 Proof of Lemma 4.2

Proof. It is related to sampling without replacement. According

to the definition, each column vector in the scaled sampling

matrix S ∈ Rq×m is sampled without replacement from {si =√
m
q eTi }mi=1 ∈ R1×m uniformly. Note that

E[XTSTSX] = E[XT

q∑
i=1

si
T
siX] (4.11)

= XT

q∑
i=1

E[si
T
si]X. (4.12)

Without loss of generality, we assume that we sample and

determine the value of {si}qi=1 in the order of the smallest to the

CHAPTER 4. FASTER ONLINE SKETCHING HASHING 81

largest index. Then, due to that

P(si =

√
m

q
eTk) = P(si =

√
m

q
eTk |sj 6=

√
m

q
eTk ,∀j ∈ [i− 1])

∗ P(sj 6=
√
m

q
eTk ,∀j ∈ [i− 1]) (4.13)

=
1

m− (i− 1)

m− (i− 1)

m− (i− 2)
· · ·m− 1

m
(4.14)

=
1

m
, (4.15)

we have

E[si
T
si] =

m∑
k=1

P(si =

√
m

q
eTk)

m

q
eke

T
k (4.16)

=
m∑
k=1

1

m

m

q
eke

T
k (4.17)

=
1

q
Im. (4.18)

Thus, substituting Eq. (4.18) into Eq. (4.12) concludes the

proof.

We are now ready to prove our main results: Theorem 4.1,

Theorem 4.2, and Corollary 4.1.

4.6.3 Proof of Theorem 4.1

Proof. To clarify, we let q = `/2, define p as the times that steps

7 to 12 in Algorithm 4.3 have been executed, and assume p = n
m

without loss of generality for the input A = [A1; A2; · · · ; Ap] ∈
Rn×d with {At ∈ Rm×d}pt=1. By the triangle inequality, we have

‖ATA−BTB‖2 ≤ ‖ATA−CTC‖2

+ ‖CTC−BTB‖2, (4.19)

CHAPTER 4. FASTER ONLINE SKETCHING HASHING 82

where C = [C1; C2; · · · ; Cp] ∈ Rpq×d is from compressing each

At by Φt = StHDt in Algorithm 4.3 such that Ct = ΦtAt. Since

B results from running standard FD on C, then with probability

at least 1− pβ, we have

‖CTC−BTB‖2 ≤
2

`
‖C‖2

F (4.20)

≤ 4

`
log(

2md

β
)‖A‖2

F , (4.21)

where Eq. (4.20) directly follows from the error bound of

FD [118], and Eq. (4.21) holds by combing ‖C‖2
F =

∑p
t=1 ‖Ct‖2

F =∑p
t=1

∑d
i=1 ‖ct,i‖2

2 with Lemma 4.1 and the union bound.

We next bound ‖ATA−CTC‖2. Define Xt = HDtAt, then

it follows that

‖ATA−CTC‖2 = ‖
p∑
t=1

(AT
t At −CT

t Ct)‖2 (4.22)

= ‖
p∑
t=1

(AT
t At −XT

t STt StXt)‖2. (4.23)

Let Zt = AT
t At − XT

t STt StXt, then obviously {Zt}pt=1 are

independent random variables. By Lemma 4.2, we perform the

expectation w.r.t. St and Dt to obtain that

E[XT
t STt StXt] = EDt

ESt[X
T
t STt StXt|Dt] (4.24)

= EDt
[XT

t Xt]

= EDt
[AT

t DT
t HTHDtAt]

= AT
t At,

where the second equality follows from Lemma 4.2 with Dt

fixed, and the last equality holds because H and Dt are the

unitary matrices. Thus, {Zt}pt=1 satisfy the setting of the Matrix

Bernstein inequality in Theorem 4.3.

CHAPTER 4. FASTER ONLINE SKETCHING HASHING 83

Hence, due to that ‖Zt‖2 ≤ ∆t‖AT
t At‖2 = ∆t‖At‖2

2 resulted

from Theorem 4.4, we first achieve

R = max
t∈[p]

∆t‖At‖2
2 (4.25)

with probability at least 1− (pδ+
∑p

t=1
m
ekt

) after applying union

bound, where ∆t = Θ(
√

kt log(2kt/δ)
q) and rank(At) ≤ kt ≤

min(m, d).

Regarding σ2, due to the symmetry of each matrix Zt, σ
2 =

‖
∑p

t=1 E[(Zt)
2]‖2 holds. Next, we have

0d×d � E[(Zt)
2] (4.26)

= E[(XT
t STt StXt)

2]− (AT
t At)

2 (4.27)

� E[‖StXt‖2
2X

T
t STt StXt]− (AT

t At)
2 (4.28)

� E[(1 + ∆t)‖At‖2
2X

T
t STt StXt]− (AT

t At)
2 (4.29)

= (1 + ∆t)‖At‖2
2A

T
t At − (AT

t At)
2 (4.30)

with probability at least 1 − (δ + m
ekt

), where Eqs. (4.27)(4.30)

hold because E(XT
t STt StXt) = AT

t At, Eq. (4.29) follows from

Theorem 4.4, and Eq. (4.28) holds because of

0d×d � (XT
t STt StXt)

2 � ‖StXt‖2
2X

T
t STt StXt,

which results from that for any y ∈ Rd,

yT (XT
t STt StXt)

2y = ‖yTXT
t STt StXt‖2

2

≤ ‖yTXT
t STt ‖2

2‖StXt‖2
2

= ‖StXt‖2
2y

TXT
t STt StXty.

Then, we have

‖
p∑
t=1

E[(Zt)
2]‖2 ≤

p∑
t=1

‖E[(Zt)
2]‖2 (4.31)

CHAPTER 4. FASTER ONLINE SKETCHING HASHING 84

≤
p∑
t=1

∥∥∥(1 + ∆t)‖At‖2
2A

T
t At − (AT

t At)
2
∥∥∥

2

(4.32)

=

p∑
t=1

∥∥∥(1 + ∆t)‖At‖2
2UtΣ

2
tUt −UtΣ

4
tUt

∥∥∥
2

(4.33)

=

p∑
t=1

∥∥∥(1 + ∆t)‖At‖2
2Σ

2
t −Σ4

t

∥∥∥
2

(4.34)

=

p∑
t=1

max
j∈[d]
|(1 + ∆t)σ

2
t1σ

2
tj − σ4

tj| (4.35)

≤
p∑
t=1

(1 + ∆t)σ
4
t1 (4.36)

=

p∑
t=1

(1 + ∆t)‖At‖4
2 (4.37)

≤ max
t∈[p]

p(1 + ∆t)‖At‖4
2. (4.38)

where Eq. (4.32) establishes due to Eq. (4.30), and Ut in

Eq. (4.33) is from the SVD of At with At = UtΣtV
T
t and the

eigenvalues σtj , σt,jj listed in the descending order in Σt. By

Theorem 4.3, we have

P(‖
p∑
t=1

Zt‖2 ≥ ε) ≤ 2d exp(
−ε2/2

σ2 +Rε/3
). (4.39)

Denote the RHS of Eq. (4.39) by δ, we then obtain that

ε = log(
2d

δ
)
(R

3
+

√
(
R

3
)2 +

2σ2

log(2d/δ)

)
(4.40)

≤ log(
2d

δ
)
2R

3
+

√
2σ2 log(

2d

δ
) (4.41)

CHAPTER 4. FASTER ONLINE SKETCHING HASHING 85

≤ max
t∈[p]

Õ
(

∆t‖At‖2
2

)
+ max

t∈[p]
Õ
(√

p(1 + ∆t)‖At‖2
2

)
(4.42)

≤ max
t∈[p]

Õ
(

(

√
k

`p2
+

√
1 +

√
k/`

p
)
‖At‖2

2

‖At‖2
F

)
‖A‖2

F (4.43)

≤ Õ
(

(

√
k

`p2
+

√
1 +

√
k/`

p
)
)
‖A‖2

F . (4.44)

To derive Eq. (4.43) from Eq. (4.42), we first substitute ∆t =

Θ(
√

kt log(2kt/δ)
q) into Eq. (4.42) and set k = kt = min(m, d),

which allows Eq. (4.42) to become the maximum of the sum of

two functions. Then, we leverage the definition q = `/2 and

apply a common practical assumption of that pλ1 ≤ ‖A‖2
F =∑p

t=1 ‖At‖2
F ≤ pλ2 with each ‖At‖2

F bounded between λ1 and

λ2 that are very close to each other [10, 148].

Combing Eq. (4.44) with Eqs. (4.19)(4.21) by the union

bound achieves the desired result with probability at least

1− pβ − (2p+ 1)δ − 2pm
ek

.

The computational analysis is straightforward based on Sec-

tions 4.2.2 and 4.3.2.

4.6.4 Proof of Theorem 4.2

Proof. This proof directly follows from that in Section 4.2.1 and

OSH [111] since FROSH differs OSH merely in the sketching

techniques. Then, leveraging Theorem 4.1 immediately yields

the desired results.

Let µµµj ∈ R1×d, µ̂µµt ∈ R1×d and µµµ ∈ R1×d be the mean vector

of Aj ∈ Rhj×d, {Aj}tj=1 and A = {Aj}sj=1 ∈ Rn×d respectively,

where t ≤ s. Obviously, µ̂µµs = µµµ holds.

Then, the data centering procedure in FROSH (and OSH)

always ensures that
∑t

j=1(Aj − µµµj)T (Aj − µµµj) = ({Aj}tj=1 −

CHAPTER 4. FASTER ONLINE SKETCHING HASHING 86

µ̂µµt)
T ({Aj}tj=1 − µ̂µµt), where Aj −µµµj means subtracting each row

vector of Aj by µµµj, and {Aj}tj=1 can be regarded as a (
∑T

j=1 hj)×
d matrix by vertically stacking all Aj.

In addition, setting t = s and using ‖A − µµµ‖2
F = Tr((A −

µµµ)T (A−µµµ)) immediately yields the desired result via replacing

the A in the sketching bound of FFD Eq. (4.4) in Theorem 4.1

by A− µµµ.

The computational analysis also follows from OSH, as the

difference only lies in that between FFD and FD.

4.6.5 Proof of Corollary 4.1

Proof. The proof follows by combining our proposed Theo-

rem 4.2 and Section 1.4 of [118]. Since WT
B ∈ Rr×d contains the

top r right singular vectors of B`×d, we have WBWT
B ∈ Rd×d as

the projection matrix of B`×d. Via Lemma 4 in [55], we have

‖(A− µµµ)− (A− µµµ)WBWT
B‖2

2

≤ σ2
r+1 + 2‖(A− µµµ)T (A− µµµ)−BTB‖2, (4.45)

where σi is the i-th largest singular value of (A− µµµ).

For simplicity, when m = Θ(d) and n = Ω(`3/2d3/2), the error

bound of Eq. (5) in Theorem 4.2 will become Õ(1
`‖(A− µµµ)‖2

F),

which is then incorporated into Eq. (4.45) to get that

‖(A− µµµ)− (A− µµµ)WBWT
B‖2

2

≤ σ2
r+1 + Õ(

1

`
‖(A− µµµ)‖2

F). (4.46)

Let h = ‖(A − µµµ)‖2
F/‖(A − µµµ)‖2

2 be the numeric rank of

(A−µµµ) ∈ Rn×d, which could be much smaller than d for a low-

rank matrix (A − µµµ) ∈ Rn×d with d < n. If ` = Ω(hσ2
1

εσ2
r+1

), then

CHAPTER 4. FASTER ONLINE SKETCHING HASHING 87

from Eq. (4.46) we have

‖(A− µµµ)− (A− µµµ)WBWT
B‖2

2 ≤ (1 + ε)σ2
r+1

= (1 + ε)‖(A− µµµ)− (A− µµµ)WWT‖2
2, (4.47)

where σ2
1 = ‖(A−µµµ)‖2

2 and σ2
r+1 = ‖(A−µµµ)− (A−µµµ)WWT‖2

2

according to the definition.

2 End of chapter.

Chapter 5

Toward Efficient and Accurate

Covariance Matrix Estimation

on Compressed Data

Estimating covariance matrices is a fundamental technique in

various domains, most notably in machine learning and signal

processing. To tackle the challenges of extensive communication

costs, large storage capacity requirements, and high processing

time complexity when handling massive high-dimensional and

distributed data, we propose an efficient and accurate covariance

matrix estimation method via data compression. In contrast

to previous data-oblivious compression schemes, we leverage

a data-aware weighted sampling method to construct low-

dimensional data for such estimation. We rigorously prove

that our proposed estimator is unbiased and requires smaller

data to achieve the same accuracy with specially designed sam-

pling distributions. Besides, we depict that the computational

procedures in our algorithm are efficient. All achievements

imply an improved tradeoff between the estimation accuracy

and computational costs. Finally, the extensive experiments on

synthetic and real-world datasets validate the superior property

88

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 89

of our method and illustrate that it significantly outperforms

the state-of-the-art algorithms.

5.1 Introduction

Covariance matrices play a fundamental role in machine learning

and statistics owing to their capability to retain the second-

order information of data samples [67]. For example, Principal

Component Analysis (PCA) along with its extensions [205],

Linear Discriminant Analysis (LDA), and Quadratic Discrim-

inant Analysis (QDA) [14] are powerful for dimension reduction

and denoising, which require the estimation of a covariance

matrix from a given collection of data points. Other prominent

examples include Generalized Least Squares (GLS) regression

that requires the estimation of the noise covariance matrix [103],

Independent Component Analysis (ICA) that relies on pre-

whitening based on the covariance matrix [93], and Generalized

Method of Moments (GMM) [84] that improves the effectiveness

by a precise covariance matrix.

Many practical applications also rely on covariance matrix

directly [17]. In biology, gene relevance networks and gene

association networks are straightforwardly inferred from the

covariance matrix [27, 158]. In modern wireless communications,

protocols optimize the bandwidth based on covariance esti-

mates [172]. In array signal processing, the capon beamformer

linearly combines the sensors to minimize the noise in the

signal, which is closely related to the portfolio optimization

on covariance matrices [2]. For policy learning in the field of

robotics, it requires reliable estimates of the covariance matrix

between policy parameters [51].

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 90

Calculation of a covariance matrix usually requires enormous

computational resources in the form of communication and stor-

age because large and high-dimensional data are now routinely

gathered at an exploding rate from many distributed remote

sites, such as sensor networks, surveillance, and distributed

databases [78, 86, 164]. In particular, high communication cost

of transmitting the distributed data from the remote sites to

the fusion center (i.e., a destination to conduct complex data

analysis tasks) will require tremendous bandwidth and power

consumption [1, 168]. Formally, given a data matrix X ∈ Rd×n

with d features and n instances collected from the remote

sites, the covariance matrix is computed in the fusion center

by C , 1
nXXT − x̄x̄T , where x̄ = 1

n

∑n
i=1 xi ∈ Rd [67]. For

simplicity of discussion, we temporarily assume the empirical

mean is zero, i.e., x̄ = 0. The covariance matrix can be

written as C = 1
nXXT consequently [16]. Then, it takes O(nd)

communication burden to transmit data from numerous remote

sites to the fusion center to form the full data set X, O(nd)

storage in total to store X in remote sites, and O(nd+d2) storage

with O(nd2) time to calculate C in the fusion center. When

n, d� 1, the overall cost is prohibitively expensive for practical

scenarios like wireless sensors which have narrow transmission

bandwidth, limited storage, and low power supply.

To tackle such computational challenges, compressed data

can be leveraged to estimate the covariance matrix, which

essentially has roots in compressed sensing. One solution is to

process each data point by multiplying it with a single projection

matrix S ∈ Rd×m whose entry follows the Gaussian distribution

N (0, 1
m) [130]. Thus, storing STX and the estimated covariance

matrix requiresO(mn+d2) space in total, sending STX to the fu-

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 91

sion center incurs a O(mn) communication cost, and calculating

STX and the covariance matrix estimator 1
nSSTXXTSST takes

O(mdn + m2n + m2d + md2) time. This method substantially

reduces all computational costs if m � n, d. Note that

synchronizing only a seed between remote sites and the fusion

center allows pseudo-random number generators to reconstruct

an identical S, which avoids sending S directly and imposes a

negligible computational burden.

However, the example solution has two critical drawbacks.

The first is that the operations on the Gaussian matrix is ineffi-

cient. One could use a sparse projection matrix [113], structured

matrix [7] or sampling matrix [58] to achieve a better tradeoff

between computational cost and estimation precision. The

second problem is that applying a single projection matrix to all

data points cannot consistently estimate the covariance matrix,

i.e., the estimator cannot converge to the actual covariance

matrix even if the sample size n grows to infinity with d fixed.

This issue is demonstrated both theoretically and empirically in

[16] and also briefly described in [10, 11, 74].

In this chapter, we thus adopt n distinct projection matrices

for n data vectors [9, 10, 11, 16] to achieve consistent covariance

matrix estimation, and construct a specific sampling matrix to

increase both its efficiency and accuracy. On the whole, we do

not make statistical assumptions on the distributed data X ∈
Rd×n with n, d� 1, nor do we impose structural assumptions on

the covariance matrix C such as being low-rank or sparse. Our

goal is to compress data and recover C efficiently and accurately,

and the contributions in our work are summarized as follows:

• First, in contrast to all existing methods [9, 10, 11, 16]

that are based on data-oblivious projection matrices, we

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 92

propose to estimate the covariance matrix based on the data

compressed by a weighted sampling scheme. This strategy

is data-aware with a capacity to explore the most important

entries. Hence, we require considerably fewer entries to

achieve an equal estimation accuracy.

• Second, we provide error analysis for the derived unbiased

covariance estimator, which rigorously demonstrates that

our method can compress data to a much smaller vol-

ume than other methods. The proofs also indicate our

probability distribution is specifically designed to render

a covariance matrix estimation based on the compressed

data as accurate as possible.

• Third, we specify our method by an efficient algorithm

whose computational complexity is superior to other meth-

ods. By additionally considering the best tradeoff between

the estimation accuracy and the compression ratio, our

algorithm ultimately incurs a significantly lower computa-

tional cost than the other methods.

• Finally, we validate our method on both synthetic and real-

world datasets, which demonstrates a better performance

than the other methods.

The remainder of this chapter is organized as follows. In

Section 5.2, we review the prior work. In Section 5.3, we present

our method along with theoretical analysis and emphasize its

achievements. In Section 5.4, we provide extensive empirical

results, and in Section 5.5 we conclude the whole work.

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 93

5.2 Related Work

There have been several investigations of ways to achieve

accurate covariance matrix estimation from the low-dimensional

compressed observations constructed by applying a distinct

projection matrix {Si}ni=1 ∈ Rd×m to each data vector {xi}ni=1 ∈
Rd. The work of [152] adopts a Gaussian matrix to compress

data via STi xi, and recovers them by Si(S
T
i Si)

−1(STi xi). Because

Si(S
T
i Si)

−1STi is a strictly m-dimensional orthogonal projection

drawn uniformly at random, it can capture the information

of all entries in each data vector uniformly and substantively.

Then, 1
n

∑n
i=1 Si(S

T
i Si)

−1STi xix
T
i Si(S

T
i Si)

−1STi up to a known

scaling factor is expected to constitute accurate and consistent

covariance matrix estimation. This estimator can be modified

to an unbiased one, and its error analysis is thoroughly provided

in [16]. However, a Gaussian matrix is dense and unstructured,

which imposes an extra computational burden. Also, many

matrix inversions take a considerable amount of time, and

the whole square matrix has to be loaded into the memory.

Biased estimator 1
n

∑n
i=1 SiS

T
i xix

T
i SiS

T
i is thus proposed in [11]

to improve the efficiency by avoiding matrix inversions and

assigning Si to be a sparse matrix. This method is less

accurate because SiS
T
i approximates only an m-dimensional

random orthogonal projection. Its another disadvantage is

that the result only holds for data samples under statistical

assumptions. Based on [11], another study proposes an unbiased

estimator [9], but it still adopts an unstructured sparse matrix

that is insufficiently computation-efficient and fails to provide

the error bounds to characterize the estimation error versus

the compression ratio. Recently, sampling matrices Si ∈ Rd×m

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 94

constructed via uniform sampling without replacement have

been employed [10]. This approach is efficient, but it only results

in poor accuracy if data are compressed directly by STi xi ∈ Rd

because SiS
T
i is an m-dimensional orthogonal projection drawn

only from d deterministic orthogonal spaces/coordinates, and

the d − m entries of each vector are removed. To avoid

sacrificing much accuracy, use of the computationally efficient

Hadamard matrix [170] before sampling has also been proposed

in [10]. It flattens out whole entries, particularly those with

large magnitudes, to all coordinates to ensure that poor uniform

sampling with a small sampling size still obtains some informa-

tion among all entries. However, the Hadamard matrix involves

deterministic orthogonal projection and is unable to capture the

information uniformly in all coordinates of each vector, which

results in the need for numerous samples to achieve sufficient

accuracy. [10] constitutes the current state of the art in the

tradeoff between the estimation accuracy and computational

efficiency. Throughout this chapter, we group the foregoing rep-

resentative methods into Gauss-Inverse [16, 152], Sparse [9, 11],

and UniSample-HD [10], and the unbiased estimators produced

by these methods are adopted in the subsequent theoretical and

empirical comparisons.

A number of other methods have been proposed to recover

covariance matrix from compressed data [21, 28, 38, 45]. These

methods are only applicable to low-rank, sparse, or statistically-

assumed covariance matrices.

Interesting work has also been done in the area of low-rank

matrix approximation via randomized techniques. In addition

to simply embedding the data X into space spanned by a

single random projection matrix S, a representative study [79]

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 95

improves approximation accuracy by replacing the random

projection matrix S with a low-dimensional data-aware matrix

XS′, where S′ is a random projection matrix. However, X has to

be low-rank, and computing XS′ requires one extra pass through

all entries in X. It is not suitable for our settings, where we do

not impose structural assumptions on the covariance matrix, nor

do we fully observe all data. Moreover, [16] demonstrates both

theoretically and empirically that a single projection matrix

for all data points cannot consistently and accurately estimate

the covariance matrix. The problem also exist in [138, 190]

aiming for a fast approximation of matrix products in a single

pass, which only results in an inconsistent covariance matrix

estimation and suits the low-rank case.

Among randomized techniques, it is also worth briefly dis-

cussing sampling approaches in matrix approximation. Litera-

ture in [56, 89, 146, 188] proposes to leverage column sampling in

which the sampling probabilities in the sampling matrix are ei-

ther the column norms or leverage scores. Other work [4, 5, 188]

performs element-wise sampling on the entire matrix based on

the relative magnitudes over all data entries. These researches

employ different sampling distributions to sample entries in a

matrix. However, they have to observe all data fully to calculate

the sampling distributions, which also requires one or more extra

passes. In addition, their sampling probabilities are designed

for matrix approximation, which cannot be trivially extended

to covariance matrix estimation because the exact covariance

matrix in our setting cannot be calculated in advance. Note

that although the uniform sampling in matrix approximation

is a simple one-pass algorithm, it performs poorly on many

problems because usually there exists structural non-uniformity

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 96

in the data which has been verified in [10].

5.3 Efficient and Accurate Covariance Esti-

mation

In this section, we first introduce the definition and background

to our overall work. We then justify and present our method of

data compression and covariance matrix estimation, followed by

the primary results and analysis.

5.3.1 Method and Algorithm

As discussed previously, Gauss-Inverse [16, 152] and Sparse [9,

11] suffer from deficiencies in either computational efficiency

or estimation accuracy, whereas UniSample-HD [10] is less

accurate but offers a good tradeoff between estimation accuracy

and computational efficiency. We thus propose the adoption

of weighted sampling matrices {Si}ni=1 ∈ Rd×m to compress

data via STi xi and then back-project the compressed data into

the original space via SiS
T
i xi. The recovered data is then

used for covariance matrix estimation as shown in Eq. (5.1).

Hence, a high computational efficiency is maintained. Although

Si removes at least d − m entries from the i-th vector, the

remainders can be the most informative and are retained.

With the carefully designed sampling probabilities, our unbiased

estimator Ce performs as accurately as or more accurately than

its counterparts asymptotically in terms of matrix spectral norm

‖Ce −C‖2. Note we have not quantified the error in any other

entry-wise norm (e.g., the Frobenius norm) that could be unin-

formative on the quality of the approximate invariant subspace

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 97

and unstable regarding the additive random error [4, 9, 73].

Algorithm 5.1 The proposed algorithm.

Input:

Data X ∈ Rd×n, sampling size m, and 0 < α < 1.

Initialization:

Estimated covariance matrix Ce ∈ Rd×d.

1: Initialize Y ∈ Rm×n, T ∈ Rm×n, v ∈ Rn, and w ∈ Rn with 0.

2: for all i ∈ [n] do

3: Load xi into memory, let vi = ‖xi‖1 =
∑d

k=1 |xki| and wi = ‖xi‖22 =∑d
k=1 x

2
ki

4: for all j ∈ [m] do

5: Pick tji ∈ [d] with pki ≡ P(tji = k) = α |xki|
vi

+ (1 − α)
x2ki
wi

, and let

yji = xtjii
6: end for

7: end for

8: Pass the compressed data Y, sampling indices T, v, w, and α to the

fusion center.

9: for all i ∈ [n] do

10: Initialize Si ∈ Rd×m and P ∈ Rd×n with 0

11: for all j ∈ [m] do

12: Let ptjii = α
|yji|
vi

+ (1− α)
y2ji
wi

, and stjij,i = 1√
mptjii

13: end for

14: end for

15: Compute Ce as defined in Eq. (5.1) by using {Si}ni=1, T, P, and Y.

We here summarize our method in Algorithm 5.1. In

a nutshell, we employ a weighted sampling that is able to

explore the most important entries to reduce estimation error

‖Ce − C‖2. Steps 1 to 7 in our proposed algorithm show how

to compress distributed data in many remote sites. In step

5, each entry is retained with probability proportional to the

combination of its relative absolute value and square value, and

such sampling probability is designed to make ‖Ce − C‖2 as

small as possible. Step 8 shows the communication procedure,

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 98

and steps 9 to 15 reveal how to construct an unbiased covariance

matrix estimator in the fusion center from compressed data. In

many computing cases, it is possible to manipulate vectors of

length O(d) in memory, and thus when compressing data via

weighted sampling, only one pass is required to move data from

the external space to memory. Hence, our algorithm is also

applicable to streaming data. For a covariance matrix defined as

C = 1
nXXT−x̄x̄T , we can exactly calculate x̄ = 1

n

∑n
i=1 xi in the

fusion center via x̄ = 1
n

∑g
j=1 uj, where {xi}ni=1 are from g � n

remote sites, and uj ∈ Rd is the summation of all data vectors

in the j-th remote site before being compressed. Doing so makes

no deviation on the following error analysis and imposes only a

negligible computational burden.

5.3.2 Primary Provable Results

In this part, we introduce the proposed covariance matrix

estimator. In Algorithm 5.1, we employ Y, T, v, and w to

calculate {Si}ni=1. It can be verified that using only {Si}ni=1 and

Y is able to obtain {STi xi}ni=1. Thus, we describe our estimator

via {Si}ni=1 and {STi xi}ni=1 in the following theorem, which shows

our estimator is unbiased.

Theorem 5.1. Assume X ∈ Rd×n and the sampling size 2 ≤
m < d. Sample m entries from each xi ∈ Rd with replacement by

running Algorithm 5.1. Let {pki}dk=1 and Si ∈ Rd×m denote the

sampling probabilities and sampling matrix, respectively. Then,

the unbiased estimator for the target covariance matrix C =
1
n

∑n
i=1 xix

T
i = 1

nXXT can be recovered as

Ce = Ĉ1 − Ĉ2, (5.1)

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 99

where E [Ce] = C, Ĉ1 = m
nm−n

∑n
i=1 SiS

T
i xix

T
i SiS

T
i , and Ĉ2 =

m
nm−n

∑n
i=1 D(SiS

T
i xix

T
i SiS

T
i)D(bi) with bki = 1

1+(m−1)pki
.

Note that at most m entries in each bi have to be calculated

because each SiS
T
i xix

T
i SiS

T
i has at mostm non-zero entries in its

diagonal. Now, having achieved the above unbiased estimator

Ce, we analyze its properties. We precisely upper bound the

estimation error for the original estimator C in the matrix

spectral norm.

Theorem 5.2. Given X ∈ Rd×n and the sampling size 2 ≤ m <

d, let C and Ce be defined as in Theorem 5.1. If the sampling

probabilities satisfy pki = α |xki|‖xi‖1 +(1−α)
x2ki
‖xi‖22

with 0 < α < 1 for

all k ∈ [d] and i ∈ [n], then with probability at least 1− η − δ,

‖Ce −C‖2 ≤ log(
2d

δ
)
2R

3
+

√
2σ2 log(

2d

δ
), (5.2)

where R = maxi∈[n]

[
7‖xi‖22
n + log2(2nd

η)14‖xi‖21
nmα2

]
, and σ2 =

∑n
i=1 [

8‖xi‖42
n2m2(1−α)2 + 4‖xi‖21‖xi‖22

n2m3α2(1−α) + 9‖xi‖42
n2m(1−α) + 2‖xi‖22‖xi‖21

n2m2α(1−α)

]
+‖
∑n

i=1
‖xi‖21xix2

i

n2mα ‖2.

A large R and σ2 work against the accuracy of Ce. Accord-

ingly, our sampling probabilities are designed to make R and

σ2 as small as possible to improve the accuracy. In the proof

of Theorem 5.2, we also show that the selection of q = 1, 2 in
|xki|q∑d
k=1 |xki|q

used for constructing the sampling probability pki =

α |xki|‖xi‖1 + (1−α)
x2ki
‖xi‖22

is necessary and sufficient to make the error

bound considerably tight.

Furthermore, α balances the performance by `1-norm based

sampling |xki|
‖xi‖1 and `2-norm based sampling

x2ki
‖xi‖22

. `2 sampling

penalizes small entries more than `1 sampling. Hence `2

sampling is more likely to select larger entries to decrease error.

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 100

However, as seen from the proof in the appendix, different from `1

sampling, `2 sampling is unstable and sensitive to small entries,

and it can make estimation error incredibly high if extremely

small entries are picked. Hence, if α varies from 1 to 0, the

estimation error will decrease and then increase, which is also

empirically verified in the appendix.

The error bound in Theorem 5.2 involves many data-dependent

quantities, whereas our primary interest lies in studying the

tradeoff between the computational efficiency and estimation

accuracy by employing weighted sampling to compress data and

estimate covariance matrix. To clarify, we modify Theorem 5.2

and make the bound explicitly dependent on n, d, and m with

the constraint 2 ≤ m < d.

Corollary 5.1. Given X ∈ Rd×n and the sampling size 2 ≤ m <

d, let C and Ce be created by Algorithm 5.1. Define ‖xi‖1‖xi‖2 ≤ ϕ

with 1 ≤ ϕ ≤
√
d, and ‖xi‖2 ≤ τ for all i ∈ [n]. Then, with

probability at least 1− η − δ we have

‖Ce −C‖2 ≤min{Õ
(
f +

τ 2ϕ

m

√
1

n
+ τ 2

√
1

nm

)
,

Õ
(
f +

τϕ

m

√
d‖C‖2

n
+ τ

√
d‖C‖2

nm

)
}, (5.3)

where f = τ2

n + τ2ϕ2

nm + τϕ
√
‖C‖2
nm , and Õ(·) hides the logarithmic

factors on η, δ, m, n, d, and α.

The formulation above explores that 1 ≤ ‖xi‖1/‖xi‖2 ≤
√
d

by the Cauchy-Schwarz inequality. Before proceeding, we make

several remarks to make a comparison with the following rep-

resentative work: Gauss-Inverse, UniSample-HD, and Sparse.

The first two methods provide error analysis without assuming

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 101

data distribution, which is shown in [10, 16] and illustrated in

our appendix. In the following remarks, only our method is

sensitive to ϕ, and we also employ the fact that 1
nd‖X‖

2
F ≤

‖C‖2 ≤ maxi∈[n] ‖xi‖2
2 = τ 2 to simplify all asymptotic bounds.

Remark 5.1. Eq. (5.3) with ϕ =
√
d indicates the error bound

for our estimator Ce in the worst case, where the magnitudes

of each entry in all of the input data vectors are the same

(i.e., highly uniformly distributed). Even in this case, our error

bound has a leading term of order min{Õ
(
τ2d
nm + τ

√
d‖C‖2
nm +

τ2

m

√
d
n

)
, Õ
(
τ2d
nm+ τd

m

√
‖C‖2
n

)
}, which is the same as Gauss-Inverse

ignoring logarithmic factors. In contrast, as the magnitudes of

the entries in each data vector become uneven, ϕ gets smaller,

leading to a tighter error bound than that in Gauss-Inverse.

Furthermore, when most of the entries in each vector xi have

very low magnitudes, the summation of these magnitudes will

be comparable to a particular constant. This situation is typical

because in practice only a limited number of features in each

input data dominate the learning performance. Hence, ϕ turns

to O(1), and Eq. (5.3) becomes min{Õ
(
τ2

n + τ 2
√

1
nm

)
, Õ
(
τ2

n +

τ
√

d‖C‖2
nm

)
}, which is tighter than the leading term of Gauss-

Inverse by a factor of at least
√
d/m. As explained in the next

section, Gauss-Inverse also lacks computational efficiency.

Remark 5.2. As our target is to compress data to a smaller

m that is not comparable to d in practice, O(d − m) can be

approximately regarded as O(d). Then, the error of UniSample-

HD is Õ
(
τ2d
nm + τ

√
d‖C‖2
nm + τ2d

m

√
1
nm

)
, which is asymptotically

worse than our bound. When n is sufficiently large, the leading

term of its error becomes Õ
(
τ
√

d‖C‖2
nm + τ2d

m

√
1
nm

)
, which can be

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 102

weaker than the leading term in our method by a factor of 1 to√
d/m when ϕ =

√
d, and at least d/m when ϕ = O(1).

However, if m is sufficiently close to d, which is not meaning-

ful for practical usage, O(d−m) = O(1) will hold and the error

of UniSample-HD becomes Õ
(
τ2d
nm + τ

√
d‖C‖2
nm + τ2

m

√
d
nm

)
. This

bound may slightly outperform ours by a factor of
√
d/m =

O(1) when ϕ =
√
d, but is still worse than ours when ϕ = O(1).

These results also coincide with the fact that UniSample-HD

adopts uniform sampling without replacement combined with

the Hadamard matrix, but we employ weighted sampling with

replacement.

Remark 5.3. The Sparse method, which employs a sparse

matrix for each Si, is not sufficiently accurate as demonstrated in

our experiments. Moreover, there is no error analysis available

for its unbiased estimator to characterize the estimation error

versus the compression ratio.

Thus far, we have not made statistical nor structural as-

sumptions concerning the input data or covariance matrix to

derive our provable results. However, motivated by [16], it

is also straightforward to extend our results to the statistical

data and a low-rank covariance matrix estimation. The derived

results below are polynomially equivalent to those in Gauss-

Inverse [16]. Corollary 5.2 shows the (low-rank) covariance

matrix estimation on Gaussian data, and Corollary 5.3 indicates

the derived covariance estimator also guarantees the accuracy of

the principal components regarding the subspace learning.

Corollary 5.2. Given X ∈ Rd×n (2 ≤ d) and an unknown

population covariance matrix Cp ∈ Rd×d with each column

vector xi ∈ Rd i.i.d. generated from the Gaussian distribution

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 103

N (0,Cp). Let Ce be constructed by Algorithm 5.1 with the

sampling size 2 ≤ m < d. Then, with probability at least

1− η − δ − ζ,

‖Ce −Cp‖2

‖Cp‖2
≤ Õ

(d2

nm
+
d

m

√
d

n

)
; (5.4)

Additionally, assuming rank(Cp)≤ r, with probability at least

1− η − δ − ζ we have

‖[Ce]r −Cp‖2

‖Cp‖2
≤Õ
(rd
nm

+
r

m

√
d

n
+

√
rd

nm

)
, (5.5)

where [Ce]r is the solution to minrank(A)≤r ‖A −Ce‖2, and Õ(·)
hides the logarithmic factors on η, δ, ζ, m, n, d, and α.

Corollary 5.3. Given X, d, m, Cp and Ce as defined in

Corollary 5.2. Let
∏

k =
∑k

i=1 uiu
T
i and

∏̂
k =

∑k
i=1 ûiû

T
i with

{ui}ki=1 and {ûi}ki=1 being the leading k eigenvectors of Cp and

Ce, respectively. Denote by λk the k-th largest eigenvalue of Cp.

Then, with probability at least 1− η − δ − ζ,

‖
∏̂

k −
∏

k ‖2

‖Cp‖2
≤ 1

λk − λk+1
Õ
(d2

nm
+
d

m

√
d

n

)
, (5.6)

where the eigengap λk−λk+1 > 0 and Õ(·) hides the logarithmic

factors on η, δ, ζ, m, n, d, and α.

The proof details of all our theoretical results are relegated to

the appendix. We leverage the Matrix Bernstein inequality [171]

and establish the error bound of our proposed estimator on

an arbitrary sampling probability in order to determine which

sampling probability brings the best estimation accuracy. The

employment of the Matrix Bernstein inequality involves control-

ling the range and variance of all zero-mean random matrices,

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 104

whose derivations differ from those in [10, 16] because of different

data compression schemes. Moreover, to obtain the desired tight

bound for the range and variance, we precisely provide a group

of closed-form equalities or concentration inequalities for various

quantities (see our proposed Lemma 1 and Lemma 2 along

with their proofs in Section 5.6).

5.3.3 Computational Complexity

Recall that we have n data samples in the d-dimensional space,

and let m be the target compressed dimension. Regarding

estimating C = 1
nXXT , the computational comparisons be-

tween our method and the representative baseline methods are

presented in Table 5.1, in which Standard method means that

we compute C directly without data compression. For the

definition of covariance matrix C = 1
nXXT − x̄x̄T , extra compu-

tational costs (i.e., O(gd) storage, O(gd) communication cost,

and O(nd) time) must be added to the last four compression

methods in the table, where g � n is the number of the entire

remote sites. All detailed analysis is relegated to the appendix.

Table 5.1: Computational costs on the storage, communication, and time.

Method Storage Comm. Time

Standard O(nd+ d2) O(nd) O(nd2)

Gauss-Inverse O(nm+ d2) O(nm) O(nmd+ nm2d+ nd2) + TG
Sparse O(nm+ d2) O(nm) O(d+ nm2) + TS

UniSample-HD O(nm+ d2) O(nm) O(nd log d+ nm2)

Our method O(nm+ d2) O(nm) O(nd+ nm log d+ nm2)

TG and TS in Table 5.1 represent the time taken to generate

the Gaussian matrices and sparse matrices by fast pseudo-

random number generators like Mersenne Twister [137], which

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 105

can be enormous [10] and proportional to nmd and nd2, respec-

tively, up to certain small constants. Hence, our method can be

regarded as the most efficient when d is large. Furthermore, by

using the smallest m to obtain the same estimation accuracy as

the other methods, our approach incurs the least computational

burden.

5.4 Empirical Studies

In this section, we empirically verify the properties of the

proposed method and demonstrate its superiority. We compare

its estimation accuracy with that of Gauss-Inverse, Sparse, and

UniSample-HD. We also report the time comparisons.

We run all algorithms on both synthetic and real-world

datasets whose largest dimension is around and below 105.

Such dimension is not very high in modern data analysis, but

this limitation is due to that reporting the estimation error by

calculating the spectral norm of a covariance matrix with its size

larger than 105×105 will take intolerable amount of memory and

time. The parameter selection on α is deferred to the appendix,

and we empirically set α = 0.9. To allow a fair comparison of

the time consumptions measured by FLOPS, we implement all

algorithms in C++ and run them in a single thread mode on

a standard workstation with Intel CPU@2.90GHz and 128GB

RAM.

5.4.1 Experiments on Synthetic Datasets

To clearly examine the performance, we compare all methods on

six synthetic datasets: {Xi}3
i=1 ∈ R1024×20000, X4 ∈ R1024×200000,

X5 ∈ R2048×200000, and X6 ∈ R65536×200000, which are generated

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 106

based on the generative model [118]. Specifically, given a matrix

X ∈ Rd×n from such model, it is formally defined as X = UFG,

where U ∈ Rd×k defines the signal column space with UTU = Ik
(k ≤ d), the square diagonal matrix F ∈ Rk×k contains the

diagonal entries fii = 1−(i−1)/k that gives linearly diminishing

signal singular values, and G ∈ Rk×n is the signal coefficient

with gij ∼ N (0, 1) that is the Gaussian distribution. We let

k ≈ 0.005d, then setting d = 1024 and n = 20000 completes the

creation of data X1. For X2, it is defined as DX, where each

entry in the square diagonal matrix D is defined by dii = 1/βi,

and βi is randomly sampled from the integer set [15]. Regarding

X3, it is constructed in the same way as X1 except that F now

becomes an identity matrix. Next, {Xi}6
i=4 follow the same

generation strategy of X2 except for the n and d.

m/d

0.1 0.2 0.3 0.4 0.5

E
rr

o
r

0

0.05

0.1

0.15

0.2

0.25
X1, d=1024 n=20000

Gauss-Inverse

Sparse

UniSample-HD

Our method

m/d

0.1 0.2 0.3 0.4 0.5

E
rr

o
r

0

0.04

0.08

0.12

0.16
X4, d=1024 n=200000

Gauss-Inverse

Sparse

UniSample-HD

Our method

m/d

0.1 0.2 0.3 0.4 0.5

E
rr

o
r

0

0.1

0.2

0.3

0.4

0.5
X2, d=1024 n=20000

Gauss-Inverse

Sparse

UniSample-HD

Our method

m/d

0.1 0.2 0.3 0.4 0.5

E
rr

o
r

0

0.04

0.08

0.12

0.16
X5, d=2048 n=200000

Gauss-Inverse

Sparse

UniSample-HD

Our method

m/d

0.1 0.2 0.3 0.4 0.5

E
rr

o
r

0

0.1

0.2

0.3

0.4

0.5
X3, d=1024 n=20000

Gauss-Inverse

Sparse

UniSample-HD

Our method

m/d

0.1 0.2 0.3 0.4 0.5

E
rr

o
r

0

0.15

0.3

0.45

0.6
X6, d=65536 n=200000

Sparse

UniSample-HD

Our method

Figure 5.1: Accuracy comparisons of covariance matrix estimation on

synthetic datasets. The estimation error is measured by ‖Ce−C‖2/‖C‖2 with

Ce calculated by all compared methods, and cf = m/d is the compression

ratio.

In Figure 5.1, we plot the relative estimation error averaged

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 107

over ten runs with its standard deviation versus the naive

compression ratio cf = m/d. Note that a large cf is not necessary

for practical usage, and our aim is to compress data to a smaller

volume. In Figure 5.2, we report the running time taken in

both the compressing and recovering stages, which preliminarily

depicts the efficiency of the different methods and indicates how

much power should be spent in the practical computation.

Generally, our method displays the least error and deviation

for all datasets and its error decreases dramatically with an

increase at a small cf. This observation indicates that our

method can achieve sufficient estimation accuracy by using

substantially fewer data entries than the other methods. For

X1 (ϕ = 0.81
√
d), the magnitudes of the data entries are highly

uniformly distributed, and thus our method can be regarded

as uniform sampling with replacement, which may perform

slightly worse than UniSample-HD and Gauss-Inverse if cf

becomes large enough. After allowing the magnitudes to vary

within a moderately larger range in X2 (ϕ = 0.55
√
d), our

method considerably outperforms the other three methods. Its

improvement comes from that only our method is sensitive to

ϕ and a smaller ϕ produces a tighter result, as demonstrated

by Remarks 5.1 and 5.2. However, the error of each method

in X3 (τ/
√
‖C‖2 = 5.5, ϕ = 0.81

√
d) is larger than that

in X1 (τ/
√
‖C‖2 = 4.3, ϕ = 0.81

√
d), respectively. It is

because of that almost all methods are sensitive to τ/
√
‖C‖2,

and the error ‖Ce −C‖2/‖C‖2 increases when τ/
√
‖C‖2 rises.

Such phenomenon is demonstrated via dividing numerous error

bounds in Remarks 5.1 and 5.2 by ‖C‖2. Our method also

achieves the best performance in X4. Although the ϕ and

τ/
√
‖C‖2 in X4 are approximately equal with those in X2, yet

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 108

the proved error bounds with Remarks 5.1 and 5.2 reveal that

a larger n in X4 will lead to smaller estimation errors given the

same cf. Finally, our method also achieves the best accuracy

when the dimension d increases in both X5 and X6. Besides,

taking more data (i.e., enlarging n) as suggested by X4 can be

considered to reduce the error in X5 and X6. Note that Gauss-

Inverse has not been run on X6 since it costs enormous time.

m/d

0.1 0.2 0.3 0.4 0.5

R
e

s
c
a

le
d

 T
im

e

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

X2, d=1024 n=20000
Gauss-Inverse

Sparse

UniSample-HD

Our method

Standard

m/d

0.1 0.2 0.3 0.4 0.5

R
e

s
c
a

le
d

 T
im

e

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

X4, d=1024 n=200000
Gauss-Inverse

Sparse

UniSample-HD

Our method

Standard

m/d

0.1 0.2 0.3 0.4 0.5
R

e
s
c
a

le
d

 T
im

e

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

X5, d=2048 n=200000
Gauss-Inverse

Sparse

UniSample-HD

Our method

Standard

Figure 5.2: Time comparisons of covariance matrix estimation on synthetic

datasets. Rescaled time results from the running time normalized by

that spent in the Standard way of calculating C = XXT/n without data

compression, and it is plotted in log scale.

Turning to Gauss-Inverse, it becomes highly accurate when

cf increases but requires much more time than Standard (see

Figure 5.2) so that its usage might be ruled out in practice.

However, Gauss-Inverse remains a good choice when we are in

urgent need of reducing the storage and communication burden.

Sparse, which has no error analysis of its unbiased estimator,

generally performs less accurately than the others but requires

less time than Standard. UniSample-HD is efficient while it

still consumes more time than our method. Also, its accuracy is

inferior to our method especially when cf is small. In conclusion,

our method is capable of compressing data to a very small size

while guaranteeing both estimation accuracy and computational

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 109

efficiency.

n ×10
4

2 4 6 8 10

E
rr

o
r

0

0.2

0.4

0.6

0.8

1
(a), X7 X8

X7, m/d=0.02

X8, m/d=0.02

X7, m/d=0.05

X8, m/d=0.05

X7, m/d=0.15

X8, m/d=0.15

n ×10
4

2 4 6 8 10

R
e

s
c
a

le
d

 E
rr

o
r

0

8

16

24

32
(d), X7 X8

n ×10
4

2 4 6 8 10

E
rr

o
r

0

0.2

0.4

0.6

0.8
(b), X8

m/d=0.02

m/d=0.05

m/d=0.15

n ×10
4

2 4 6 8 10

R
e

s
c
a

le
d

 E
rr

o
r

0

5

10

15

20

25
(e), X8 n ×10

4

2 4 6 8 10

E
rr

o
r

×10
-3

0

2

4

6

8
(c), X7

k=5, m/d=0.02

k=10, m/d=0.02

k=15, m/d=0.02

k=5, m/d=0.05

k=10, m/d=0.05

k=15, m/d=0.05

k=5, m/d=0.15

k=10, m/d=0.15

k=15, m/d=0.15

n ×10
4

2 4 6 8 10

R
e
s
c
a
le

d
 E

rr
o
r

0

0.2

0.4

0.6

0.8

1
(f), X7

Figure 5.3: Convergence rates of our method for the settings in Corollaries 5.2

and 5.3.

As confirmed in Figure 5.1, a large n benefits the estima-

tion accuracy. Thus, we study its effect more quantitatively.

We conduct experiments following the settings as defined in

Corollaries 5.2 and 5.3, and their results in Eqs. (5.4)-(5.6)

clearly show that the errors decay in 1/
√
n convergence rate

if d� n. We run our method on another two synthetic datasets

{Xt}8
t=7 ∈ Rd×n that follow the d-dimensional multivariate

normal distribution N (0,Cpt), where the (i, j)-th element of

Cp7 ∈ Rd×d is 0.5|i−j|/50, and Cp8 ∈ Rd×d is a low-rank matrix

that satisfies minrank(A)≤r ‖A−Cp7‖2. We take d = 1000, r = 5,

m/d = {0.02, 0.05, 0.15}, k = {5, 10, 15}, and vary n from 1000

to 100000. In Figure 5.3, the top three plots report the errors

as defined in the LHS of Eqs. (5.4)-(5.6), respectively. Then,

dividing such errors by 1/
√
n obtains the bottom three plots

accordingly.

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 110

The observation that the curves in plots (d)-(f) are roughly

flat validates that the error bounds induced by our method

decay rapidly with n in the 1/
√
n convergence rate, which

coincides with Eqs. (5.4)-(5.6). In addition to the fast error

convergence for the low-rank matrix Cp8, our method can also

obtain an increasingly better estimation accuracy for a high-

rank covariance matrix Cp7 if we enlarge n, which is displayed

in plot (a). Besides, considering the omitted plot where the

eigengap λk − λk+1 of Cp7 decreases with k, the fact that the

errors in plot (c) increase with k also coheres with Eq. (5.6). To

conclude, our method also adapts well to the specific settings

in Corollaries 5.2 and 5.3, and all induced error bounds indeed

satisfy a 1/
√
n convergence rate.

5.4.2 Experiments on Real-World Datasets

In the second set of experiments, we use nine publicly available

real-world datasets [33, 23, 8], some of which are gathered

from many distributed sensors. Their statistics are displayed

in Figure 5.4. We again compare the estimation accuracy of the

proposed method against the other three approaches. As can be

seen from the figure, our method consistently exhibits superior

accuracy over all cf = m/d, and its error decreases dramatically

when cf grows. The error of the other three methods also

decreases with cf but is still large at a small cf. Besides, our

method enjoys the least deviation. In summary, these results

confirm that our method can compress data to the lowest volume

with the best accuracy, thereby substantially reducing storage,

communication, and processing time cost in practice.

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 111

m/d

0.1 0.2 0.3 0.4 0.5

E
rr

o
r

0

0.05

0.1

0.15

0.2

0.25

0.3
DailySports, d=5625 n=9120

Gauss-Inverse

Sparse

UniSample-HD

Our method

m/d

0.1 0.2 0.3 0.4 0.5

E
rr

o
r

0

0.2

0.4

0.6

0.8
Arcene, d=10000 n=800

Gauss-Inverse

Sparse

UniSample-HD

Our method

m/d

0.1 0.2 0.3 0.4 0.5

E
rr

o
r

0

0.1

0.2

0.3
Slice, d=384 n=53500

Gauss-Inverse

Sparse

UniSample-HD

Our method

m/d

0.1 0.2 0.3 0.4 0.5

E
rr

o
r

0

0.02

0.04

0.06

0.08
Cifar10, d=3072 n=60000

Gauss-Inverse

Sparse

UniSample-HD

Our method

m/d

0.1 0.2 0.3 0.4 0.5

E
rr

o
r

0

0.01

0.02

0.03

0.04

0.05
Gist1M, d=960 n=1000000

Gauss-Inverse

Sparse

UniSample-HD

Our method

m/d

0.1 0.2 0.3 0.4 0.5

E
rr

o
r

0

0.05

0.1

0.15

0.2
Mnist, d=780 n=70000

Gauss-Inverse

Sparse

UniSample-HD

Our method

m/d

0.1 0.2 0.3 0.4 0.5

E
rr

o
r

0

0.1

0.2

0.3

0.4
Isolet, d=617 n=7797

Gauss-Inverse

Sparse

UniSample-HD

Our method

m/d

0.1 0.2 0.3 0.4 0.5

E
rr

o
r

0

0.1

0.2

0.3

0.4

0.5
A9a, d=123 n=48842

Gauss-Inverse

Sparse

UniSample-HD

Our method

m/d

0.1 0.2 0.3 0.4 0.5

E
rr

o
r

0

0.05

0.1

0.15

0.2
UJIIndoorLoc, d=520 n=21048

Gauss-Inverse

Sparse

UniSample-HD

Our method

Figure 5.4: Accuracy comparisons of covariance matrix estimation on real-

world datasets.

5.5 Conclusion

In this chapter, we describe a weighted sampling method for

accurate and efficient calculation of an unbiased covariance

matrix estimator. The analysis demonstrates that our method

can employ a smaller data volume than the other approaches to

achieve an equal accuracy, and is highly efficient regarding the

communication, storage, and processing time. The empirical

results of the algorithm’s application to both synthetic and real-

world datasets further support our analysis and demonstrate its

significant improvements over other state-of-the-art methods.

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 112

Compared with the sampling-with-replacement scheme in

this chapter, we seek to make more achievements via a sampling-

without-replacement scheme in the future work. Analyzing the

corresponding unbiased estimator will pose significant technical

challenges in this research direction.

5.6 Proofs

5.6.1 Preliminaries

First, we first show the Matrix Bernstein inequality employed for

characterizing the sums of independent random variables/matrices,

and then present a matrix perturbation result for eigenvalues.

Theorem 5.3 ([171, p. 76]). Let {Ai}Li=1 ∈ Rd×n be independent

random matrices with E [Ai] = 0 and ‖Ai‖2 ≤ R. Define σ2 =

max{‖
∑L

i=1 E
[
AiA

T
i

]
‖2, ‖

∑L
i=1 E

[
AT
i Ai

]
‖2} as the variance.

Then for all ε ≥ 0,

P(‖
L∑
i=1

Ai‖2 ≥ ε) ≤ (d+ n) exp(
−ε2/2

σ2 +Rε/3
). (5.7)

Theorem 5.4 ([75, p. 396]). If A ∈ Rd×d and A + E ∈ Rd×d

are symmetric matrices, then

λk(A) + λd(E) ≤ λk(A + E) ≤ λk(A) + λ1(E) (5.8)

for k ∈ [d], where λk(A+E) and λk(A) designate the k-th largest

eigenvalues.

Next, we propose two lemmas: Lemma 5.5 and Lemma 5.6,

which are used to prove the foregoing theorems. The details are

described below.

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 113

Lemma 5.5. Given any vector x ∈ Rd, and m < d, sample

m entries from x with replacement by running Algorithm 5.1

with the inputs x and m. Let {pk}dk=1 denote the corresponding

sampling probabilities, S ∈ Rd×m denote the corresponding

rescaled sampling matrix, and {ek}dk=1 denote the standard basis

vectors for Rd. Then, we have

E
[
SSTxxTSST

]
=

d∑
k=1

x2
k

mpk
eke

T
k +

m− 1

m
xxT ; (5.9)

E
[
D(SSTxxTSST)

]
=

d∑
k=1

(
1

mpk
+
m− 1

m
)x2

keke
T
k ; (5.10)

E
[
(D(SSTxxTSST))2

]
=

d∑
k=1

[
1

m3p3
k

+
7(m− 1)

m3p2
k

+
6(m2 − 3m+ 2)

m3pk

+
m3 − 6m2 + 11m− 6

m3

]
x4
keke

T
k ; (5.11)

E
[
SSTxxTSSTD(SSTxxTSST)

]
= (E

[
D(SSTxxTSST)SSTxxTSST

]
)T

=
d∑

k=1

[
1

m3p3
k

+
6(m− 1)

m3p2
k

+
3(m2 − 3m+ 2)

m3pk

]
x4
keke

T
k

+
m− 1

m3
xxTD({x

2
k

p2
k

})

+
3(m2 − 3m+ 2)

m3
xxT

[
D({x

2
k

pk
}) +

m− 3

3
D({x2

k})
]

; (5.12)

E
[
(SSTxxTSST)2

]
=

d∑
k=1

[
4(m− 1)

m3p2
k

+
1

m3p3
k

]
x4
keke

T
k

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 114

+
d∑

k=1

[
‖x‖2

2(m
2 − 3m+ 2)

m3
+
m− 1

m3

d∑
k=1

x2
k

pk

]
x2
k

pk
eke

T
k

+

[
‖x‖2

2(m
3 − 6m2 + 11m− 6)

m3
+
m2 − 3m+ 2

m3

d∑
k=1

x2
k

pk

]
xxT

+ xxT
[

2(m2 − 3m+ 2)

m3
D({x

2
k

pk
}) +

m− 1

m3
D({x

2
k

p2
k

})
]

+

[
2(m2 − 3m+ 2)

m3
D({x

2
k

pk
}) +

m− 1

m3
D({x

2
k

p2
k

})
]

xxT , (5.13)

where the expectation is w.r.t. S, and D({x2
k}) denotes a

square diagonal matrix with {x2
k}dk=1 on its diagonal that can

be extended to other similar notations.

Lemma 5.6. Given the definitions in Lemma 5.5. Then, with

probability at least 1−
∑d

k=1 ηk, we have

‖SSTxxSST‖2 ≤
∑
k∈Γ

f 2(xk, ηk,m), (5.14)

where Γ is a set containing at most m different elements of

[d] with its cardinality |Γ| ≤ m, and f(xk, ηk,m) = |xk| +

log(2
ηk

)
[
|xk|

3mpk
+ |xk|

√
1

9m2p2k
+ 2

log(2/ηk)(
1

mpk
− 1

m)
]
.

Remark 5.4. For the expressions in Lemma 5.5 and Lemma 5.6,

the sampling probability pk appears in the denominator, which

indicates that the derived bound may be sensitive to a highly

small pk 6= 0. However, in terms of any pk = 0, we can define
|xk|a
pbk

= 0 for a, b > 0, because we follow the rule that pk = 0

only when xk = 0 and xk = 0 can never be sampled. Thus,

the aforementioned two lemmas and other derived results are

applicable to the case where there exists pk = 0.

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 115

5.6.2 Proof of Lemma 5.5

Proof. According to Algorithm 5.1, each column vector in the

rescaled sampling matrix S ∈ Rd×m is sampled with replace-

ment from {rk = 1√
mpk

ek}dk=1 with corresponding probabilities

{pk}dk=1, where {ek}dk=1 are the standard basis vectors for Rd.

Firstly, we prove Eq. (5.9). By the definition, we expand

SSTxxTSST =
m∑
j=1

stjs
T
tj
x

m∑
j=1

xTstjs
T
tj

(5.15)

=
m∑
j=1

stjs
T
tj
xxTstjs

T
tj

+
∑

i 6=j∈[m]

stis
T
ti
xxTstjs

T
tj
,

(5.16)

where the random variable tj is in [d].

Passing the expectation over S through the sum in Eq. (5.16),

we have

E
m∑
j=1

stjs
T
tj
xxTstjs

T
tj

=
m∑
j=1

d∑
k=1

P(tj = k)rkr
T
kxxTrkr

T
k

=
m∑
j=1

d∑
k=1

pk
1

m2p2
k

eke
T
kxxTeke

T
k

=
d∑

k=1

x2
k

mpk
eke

T
k , (5.17)

and similarly

E
∑

i 6=j∈[m]

stis
T
ti
xxTstjs

T
tj

(5.18)

=
∑

i6=j∈[m]

d∑
k=1

d∑
q=1

P(ti = k)P(tj = q)rkr
T
kxxTrqr

T
q (5.19)

=
d∑

k=1

d∑
q=1

xkxq
m− 1

m
eke

T
q (5.20)

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 116

=
m− 1

m
xxT . (5.21)

Now, combing Eq. (5.17) with Eq. (5.21) immediately proves

Eq. (5.9).

Then, Eq. (5.10) can be proved based on Eq. (5.9) by

E
[
D(SSTxxTSST)

]
= D(E

[
SSTxxTSST

]
) (5.22)

=
d∑

k=1

(
1

mpk
+
m− 1

m
)x2

keke
T
k . (5.23)

Alternatively, D(SSTxxTSST) can be explicitly expanded by

D(SSTxxTSST) =
m∑
j=1

stjs
T
tj

d∑
k=1

x2
keke

T
k

m∑
j=1

stjs
T
tj
. (5.24)

Thus, the whole target expectations in Eq. (5.11), Eq. (5.12)

and Eq. (5.13) can be explicitly expanded, and we can use similar

ways of proving Eq. (5.9) to prove the remainder of the lemma.

To prove Eq. (5.11), we expand

E
[
(D(SSTxxTSST))2

]
= E

[
(
m∑
j=1

stjs
T
tj

d∑
k=1

x2
keke

T
k

m∑
j=1

stjs
T
tj

)2

]
(5.25)

= E

[
m∑
j=1

stjs
T
tj

d∑
k=1

x2
keke

T
k

m∑
j=1

stjs
T
tj

m∑
j=1

stjs
T
tj

d∑
k=1

x2
keke

T
k

m∑
j=1

stjs
T
tj

]
(5.26)

= E
m∑
j=1

stjs
T
tj

d∑
k=1

x2
keke

T
k stjs

T
tj

m∑
j=1

stjs
T
tj

d∑
k=1

x2
keke

T
k stjs

T
tj

(5.27)

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 117

+ E
m∑
j=1

stjs
T
tj

d∑
k=1

x2
keke

T
k stjs

T
tj

∑
i6=j∈[m]

stis
T
ti

d∑
k=1

x2
keke

T
k stjs

T
tj

(5.28)

+ E
∑

i6=j∈[m]

stis
T
ti

d∑
k=1

x2
keke

T
k stjs

T
tj

m∑
j=1

stjs
T
tj

d∑
k=1

x2
keke

T
k stjs

T
tj

(5.29)

+ E
∑

i 6=j∈[m]

stis
T
ti

d∑
k=1

x2
keke

T
k stjs

T
tj

∑
i6=j∈[m]

stis
T
ti

d∑
k=1

x2
keke

T
k stjs

T
tj
,

(5.30)

where the four terms in the last equations are calculated as:

Eq. (5.27)

= E
m∑
j=1

stjs
T
tj

d∑
k=1

x2
keke

T
k stjs

T
tj

m∑
j=1

stjs
T
tj

d∑
k=1

x2
keke

T
k stjs

T
tj

= E
m∑
j=1

stjs
T
tj

d∑
k=1

x2
keke

T
k stjs

T
tj
stjs

T
tj

d∑
k=1

x2
keke

T
k stjs

T
tj

+ E
∑

i6=j∈[m]

stis
T
ti

d∑
k=1

x2
keke

T
k stis

T
ti
stjs

T
tj

d∑
k=1

x2
keke

T
k stjs

T
tj

=
d∑

k1=1

m∑
j=1

pk1
1

m4p4
k1

ek1e
T
k1

d∑
k=1

x2
keke

T
k ek1e

T
k1

ek1e
T
k1

d∑
k=1

x2
keke

T
k ek1e

T
k1

+ E
∑

i6=j∈[m]

d∑
k1=1

d∑
q=1

pk1pq
1

m4p2
k1
p2
q

ek1e
T
k1

d∑
k=1

x2
keke

T
k ek1e

T
k1

eqe
T
q

d∑
k=1

x2
keke

T
k eqe

T
q

=
d∑

k=1

x4
k

m3p3
k

eke
T
k +

d∑
k=1

(m2 −m)x4
k

m4p2
k

eke
T
k

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 118

=
d∑

k=1

(
1

m3p3
k

+
m− 1

m3p2
k

)x4
keke

T
k ; (5.31)

Eq. (5.28)

= E
m∑
j=1

stjs
T
tj

d∑
k=1

x2
keke

T
k stjs

T
tj

∑
i6=j∈[m]

stis
T
ti

d∑
k=1

x2
keke

T
k stjs

T
tj

= E
∑

g 6=i6=j∈[m]

stgs
T
tg

d∑
k=1

x2
keke

T
k stgs

T
tg
stis

T
ti

d∑
k=1

x2
keke

T
k stjs

T
tj

+ E
∑

g=i 6=j∈[m]

stgs
T
tg

d∑
k=1

x2
keke

T
k stgs

T
tg
stis

T
ti

d∑
k=1

x2
keke

T
k stjs

T
tj

+ E
∑

g=j 6=i∈[m]

stgs
T
tg

d∑
k=1

x2
keke

T
k stgs

T
tg
stis

T
ti

d∑
k=1

x2
keke

T
k stjs

T
tj

=
d∑

k1,k2,k3=1

m(m− 1)(m− 2)

m4pk1
ek1e

T
k1

d∑
k=1

x2
keke

T
k ek1e

T
k1

ek2e
T
k2

d∑
k=1

x2
keke

T
k ek3e

T
k3

+
d∑

k1,k3=1

m(m− 1)

m4p2
k1

ek1e
T
k1

d∑
k=1

x2
keke

T
k ek1e

T
k1

ek1e
T
k1

d∑
k=1

x2
keke

T
k ek3e

T
k3

+
d∑

k1,k2=1

m(m− 1)

m4p2
k1

ek1e
T
k1

d∑
k=1

x2
keke

T
k ek1e

T
k1

ek2e
T
k2

d∑
k=1

x2
keke

T
k ek1e

T
k1

=
d∑

k1=1

m(m− 1)(m− 2)

m4pk1
x4
k1

ek1e
T
k1

+
d∑

k1=1

m(m− 1)

m4p2
k1

x4
k1

ek1e
T
k1

+
d∑

k1=1

m(m− 1)

m4p2
k1

x4
k1

ek1e
T
k1

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 119

=
d∑

k=1

[
m(m− 1)(m− 2)

m4pk
x4
k +

2m(m− 1)x4
k

m4p2
k

]
eke

T
k ; (5.32)

Eq. (5.29)

= E
∑

i6=j∈[m]

stis
T
ti

d∑
k=1

x2
keke

T
k stjs

T
tj

m∑
j=1

stjs
T
tj

d∑
k=1

x2
keke

T
k stjs

T
tj

=
d∑

k=1

[
m(m− 1)(m− 2)

m4pk
x4
k +

2m(m− 1)x4
k

m4p2
k

]
eke

T
k ; (5.33)

Eq. (5.30)

= E
∑

i6=j∈[m]

stis
T
ti

d∑
k=1

x2
keke

T
k stjs

T
tj

∑
i 6=j∈[m]

stis
T
ti

d∑
k=1

x2
keke

T
k stjs

T
tj

= E
∑

i6=j 6=g 6=h∈[m]

stis
T
ti

d∑
k=1

x2
keke

T
k stjs

T
tj
stgs

T
tg

d∑
k=1

x2
keke

T
k sths

T
th

+ E
∑

i 6=j,i=g,j 6=h,g 6=h∈[m]

stis
T
ti

d∑
k=1

x2
keke

T
k stjs

T
tj
stgs

T
tg

d∑
k=1

x2
keke

T
k sths

T
th

+ E
∑

i 6=j,i=h,j 6=g,g 6=h∈[m]

stis
T
ti

d∑
k=1

x2
keke

T
k stjs

T
tj
stgs

T
tg

d∑
k=1

x2
keke

T
k sths

T
th

+ E
∑

i 6=j,i6=g,j=h,g 6=h∈[m]

stis
T
ti

d∑
k=1

x2
keke

T
k stjs

T
tj
stgs

T
tg

d∑
k=1

x2
keke

T
k sths

T
th

+ E
∑

i 6=j,i6=h,j=g,g 6=h∈[m]

stis
T
ti

d∑
k=1

x2
keke

T
k stjs

T
tj
stgs

T
tg

d∑
k=1

x2
keke

T
k sths

T
th

+ E
∑

i6=j,i=g,j=h,g 6=h∈[m]

stis
T
ti

d∑
k=1

x2
keke

T
k stjs

T
tj
stgs

T
tg

d∑
k=1

x2
keke

T
k sths

T
th

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 120

+ E
∑

i6=j,i=h,j=g,g 6=h∈[m]

stis
T
ti

d∑
k=1

x2
keke

T
k stjs

T
tj
stgs

T
tg

d∑
k=1

x2
keke

T
k sths

T
th

=
d∑

k=1

[
m(m− 1)(m− 2)(m− 3)

m4
x4
k +

4m(m− 1)(m− 2)

m4pk
x4
k

+
2m(m− 1)

m4p2
k

x4
k

]
eke

T
k . (5.34)

Combing the above terms with simplification and reformulation

completes the proof of Eq. (5.11).

Now, we continue to prove Eq. (5.12).

E
[
SSTxxTSSTD(SSTxxTSST)

]
= E

[
m∑
j=1

stjs
T
tj
x

m∑
j=1

xTstjs
T
tj

m∑
j=1

stjs
T
tj

d∑
k=1

x2
keke

T
k

m∑
j=1

stjs
T
tj

]

= E
m∑
j=1

stjs
T
tj
xxTstjs

T
tj

m∑
j=1

stjs
T
tj

d∑
k=1

x2
keke

T
k stjs

T
tj

(5.35)

+ E
m∑
j=1

stjs
T
tj
xxTstjs

T
tj

m∑
i6=j∈[m]

stis
T
ti

d∑
k=1

x2
keke

T
k stjs

T
tj

(5.36)

+ E
∑

i6=j∈[m]

stis
T
ti
xxTstjs

T
tj

m∑
j=1

stjs
T
tj

d∑
k=1

x2
keke

T
k stjs

T
tj

(5.37)

+ E
∑

i6=j∈[m]

stis
T
ti
xxTstjs

T
tj

∑
i6=j∈[m]

stis
T
ti

d∑
k=1

x2
keke

T
k stjs

T
tj
, (5.38)

where we calculate the four terms in the last equation as shown

in below:

Eq. (5.35)

= E
m∑
j=1

stjs
T
tj
xxTstjs

T
tj

m∑
j=1

stjs
T
tj

d∑
k=1

x2
keke

T
k stjs

T
tj

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 121

= E
m∑
j=1

stjs
T
tj
xxTstjs

T
tj
stjs

T
tj

d∑
k=1

x2
keke

T
k stjs

T
tj

+ E
∑

i6=j∈[m]

stis
T
ti
xxTstis

T
ti
stjs

T
tj

d∑
k=1

x2
keke

T
k stjs

T
tj

=
d∑

k1=1

m∑
j=1

pk1
1

m4p4
k1

ek1e
T
k1

xxTek1e
T
k1

ek1e
T
k1

d∑
k=1

x2
keke

T
k ek1e

T
k1

+ E
∑

i6=j∈[m]

d∑
k1=1

d∑
q=1

pk1pq
1

m4p2
k1
p2
q

ek1e
T
k1

xxTek1e
T
k1

eqe
T
q

d∑
k=1

x2
keke

T
k eqe

T
q

=
d∑

k=1

x4
k

m3p3
k

eke
T
k +

d∑
k=1

(m2 −m)x4
k

m4p2
k

eke
T
k

=
d∑

k=1

(
1

m3p3
k

+
m− 1

m3p2
k

)x4
keke

T
k ; (5.39)

Eq. (5.36)

= E
m∑
j=1

stjs
T
tj
xxTstjs

T
tj

∑
i6=j∈[m]

stis
T
ti

d∑
k=1

x2
keke

T
k stjs

T
tj

= E
∑

g 6=i6=j∈[m]

stgs
T
tg
xxTstgs

T
tg
stis

T
ti

d∑
k=1

x2
keke

T
k stjs

T
tj

+ E
∑

g=i 6=j∈[m]

stgs
T
tg
xxTstgs

T
tg
stis

T
ti

d∑
k=1

x2
keke

T
k stjs

T
tj

+ E
∑

g=j 6=i∈[m]

stgs
T
tg
xxTstgs

T
tg
stis

T
ti

d∑
k=1

x2
keke

T
k stjs

T
tj

=
d∑

k1,k2,k3=1

m(m− 1)(m− 2)

m4pk1
ek1e

T
k1

xxTek1e
T
k1

ek2e
T
k2

d∑
k=1

x2
keke

T
k ek3e

T
k3

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 122

+
d∑

k1,k3=1

m(m− 1)

m4p2
k1

ek1e
T
k1

xxTek1e
T
k1

ek1e
T
k1

d∑
k=1

x2
keke

T
k ek3e

T
k3

+
d∑

k1,k2=1

m(m− 1)

m4p2
k1

ek1e
T
k1

xxTek1e
T
k1

ek2e
T
k2

d∑
k=1

x2
keke

T
k ek1e

T
k1

=
d∑

k1=1

m(m− 1)(m− 2)

m4pk1
x4
k1

ek1e
T
k1

+
d∑

k1=1

m(m− 1)

m4p2
k1

x4
k1

ek1e
T
k1

+
d∑

k1=1

m(m− 1)

m4p2
k1

x4
k1

ek1e
T
k1

=
d∑

k=1

[
m(m− 1)(m− 2)

m4pk
x4
k +

2m(m− 1)

m4p2
k

x4
k

]
eke

T
k ; (5.40)

Eq. (5.37)

= E
∑

i6=j∈[m]

stis
T
ti
xxTstjs

T
tj

m∑
j=1

stjs
T
tj

d∑
k=1

x2
keke

T
k stjs

T
tj

= E
∑

i6=j 6=g∈[m]

stis
T
ti
xxTstjs

T
tj
stgs

T
tg

d∑
k=1

x2
keke

T
k stgs

T
tg

+ E
∑

i 6=j=g∈[m]

stis
T
ti
xxTstjs

T
tj
stgs

T
tg

d∑
k=1

x2
keke

T
k stgs

T
tg

+ E
∑

i=g 6=j∈[m]

stis
T
ti
xxTstjs

T
tj
stgs

T
tg

d∑
k=1

x2
keke

T
k stgs

T
tg

=
d∑

k1,k2,k3=1

m(m− 1)(m− 2)

m4pk3
ek1e

T
k1

xxTek2e
T
k2

ek3e
T
k3

d∑
k=1

x2
keke

T
k ek3e

T
k3

+
d∑

k1,k3=1

m(m− 1)

m4p2
k3

ek1e
T
k1

xxTek3e
T
k3

ek3e
T
k3

d∑
k=1

x2
keke

T
k ek3e

T
k3

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 123

+
d∑

k2,k3=1

m(m− 1)

m4p2
k3

ek3e
T
k3

xxTek2e
T
k2

ek3e
T
k3

d∑
k=1

x2
keke

T
k ek3e

T
k3

=
d∑

k1,k3=1

m(m− 1)(m− 2)

m4pk3
xk1x

3
k3

ek1e
T
k3

+
d∑

k1,k3=1

m(m− 1)

m4p2
k3

xk1x
3
k3

ek1e
T
k3

+
d∑

k3=1

m(m− 1)

m4p2
k3

x4
k3

ek3e
T
k3

=
m(m− 1)(m− 2)

m4
xxTD({x

2
k

pk
}) +

m(m− 1)

m4
xxTD({x

2
k

p2
k

})

+
m(m− 1)

m4

d∑
k=1

x4
k

p2
k

eke
T
k ; (5.41)

Eq. (5.38)

= E
∑

i6=j∈[m]

stis
T
ti
xxTstjs

T
tj

∑
i6=j∈[m]

stis
T
ti

d∑
k=1

x2
keke

T
k stjs

T
tj

= E
∑

i6=j 6=g 6=h∈[m]

stis
T
ti
xxTstjs

T
tj
stgs

T
tg

d∑
k=1

x2
keke

T
k sths

T
th

+ E
∑

i 6=j,i=g,j 6=h,g 6=h∈[m]

stis
T
ti
xxTstjs

T
tj
stgs

T
tg

d∑
k=1

x2
keke

T
k sths

T
th

+ E
∑

i 6=j,i=h,j 6=g,g 6=h∈[m]

stis
T
ti
xxTstjs

T
tj
stgs

T
tg

d∑
k=1

x2
keke

T
k sths

T
th

+ E
∑

i6=j,i6=g,j=h,g 6=h∈[m]

stis
T
ti
xxTstjs

T
tj
stgs

T
tg

d∑
k=1

x2
keke

T
k sths

T
th

+ E
∑

i6=j,i6=h,j=g,g 6=h∈[m]

stis
T
ti
xxTstjs

T
tj
stgs

T
tg

d∑
k=1

x2
keke

T
k sths

T
th

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 124

+ E
∑

i6=j,i=g,j=h,g 6=h∈[m]

stis
T
ti
xxTstjs

T
tj
stgs

T
tg

d∑
k=1

x2
keke

T
k sths

T
th

+ E
∑

i6=j,i=h,j=g,g 6=h∈[m]

stis
T
ti
xxTstjs

T
tj
stgs

T
tg

d∑
k=1

x2
keke

T
k sths

T
th

=
d∑

k1,k2,k3,k4=1

m(m− 1)(m− 2)(m− 3)

m4
xk1xk2ek1e

T
k2

ek3e
T
k3

d∑
k=1

x2
keke

T
k ek4e

T
k4

+
d∑

k1,k2,k4=1

m(m− 1)(m− 2)

m4pk1
xk1xk2ek1e

T
k2

ek1e
T
k1

d∑
k=1

x2
keke

T
k ek4e

T
k4

+
d∑

k1,k2,k3=1

m(m− 1)(m− 2)

m4pk1
xk1xk2ek1e

T
k2

ek3e
T
k3

d∑
k=1

x2
keke

T
k ek1e

T
k1

+
d∑

k1,k2,k3=1

m(m− 1)(m− 2)

m4pk2
xk1xk2ek1e

T
k2

ek3e
T
k3

d∑
k=1

x2
keke

T
k ek2e

T
k2

+
d∑

k1,k2,k4=1

m(m− 1)(m− 2)

m4pk2
xk1xk2ek1e

T
k2

ek2e
T
k2

d∑
k=1

x2
keke

T
k ek4e

T
k4

+
d∑

k1,k2

m(m− 1)

m4pk1pk2
xk1xk2ek1e

T
k2

ek1e
T
k1

d∑
k=1

x2
keke

T
k ek2e

T
k2

+
d∑

k1,k2=1

m(m− 1)

m4pk1pk2
xk1xk2ek1e

T
k2

ek2e
T
k2

d∑
k=1

x2
keke

T
k ek1e

T
k1

=
d∑

k1,k2=1

m(m− 1)(m− 2)(m− 3)

m4
xk1x

3
k2

ek1e
T
k2

+
d∑

k1=1

m(m− 1)(m− 2)

m4pk1
x4
k1

ek1e
T
k1

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 125

+
d∑

k1=1

m(m− 1)(m− 2)

m4pk1
x4
k1

ek1e
T
k1

+
d∑

k1,k2=1

m(m− 1)(m− 2)

m4pk2
xk1x

3
k2

ek1e
T
k2

+
d∑

k1,k2=1

m(m− 1)(m− 2)

m4pk2
xk1x

3
k2

ek1e
T
k2

+
d∑

k1=1

m(m− 1)

m4p2
k1

x4
k1

ek1e
T
k1

+
d∑

k1=1

m(m− 1)

m4p2
k1

x4
k1

ek1e
T
k1

=
m(m− 1)(m− 2)(m− 3)

m4
xxTD({x2

k})

+
m(m− 1)(m− 2)

m4

d∑
k=1

x4
k

pk
eke

T
k

+
m(m− 1)(m− 2)

m4

d∑
k=1

x4
k

pk
eke

T
k

+
m(m− 1)(m− 2)

m4
xxTD({x

2
k

pk
})

+
m(m− 1)(m− 2)

m4
xxTD({x

2
k

pk
})

+
2m(m− 1)

m4

d∑
k=1

x4
k

p2
k

eke
T
k . (5.42)

Combing the above terms with simplification and reformulation

completes the proof of Eq. (5.12).

Finally, we have to prove Eq. (5.13).

E
[
(SSTxxTSST)2

]

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 126

= E

[
(
m∑
j=1

stjs
T
tj
x

m∑
j=1

xTstjs
T
tj

)2

]

= E(
m∑
j=1

stjs
T
tj
xxTstjs

T
tj

+
∑

i6=j∈[m]

stis
T
ti
xxTstjs

T
tj

)2

= E(
m∑
j=1

stjs
T
tj
xxTstjs

T
tj

)2 (5.43)

+ E(
∑

i 6=j∈[m]

stis
T
ti
xxTstjs

T
tj

)2 (5.44)

+ E
m∑
j=1

stjs
T
tj
xxTstjs

T
tj

∑
i6=j∈[m]

stis
T
ti
xxTstjs

T
tj

(5.45)

+ E
∑

i6=j∈[m]

stis
T
ti
xxTstjs

T
tj

m∑
j=1

stjs
T
tj
xxTstjs

T
tj
, (5.46)

where we calculate the four terms in the last equation as shown

in below:

Eq. (5.43)

= E
m∑
j=1

stjs
T
tj
xxTstjs

T
tj
stjs

T
tj
xxTstjs

T
tj

+ E
∑

i 6=j∈[m]

stis
T
ti
xxTstis

T
ti
stjs

T
tj
xxTstjs

T
tj

=
d∑

k=1

m∑
j=1

pk
1

m4p4
k

eke
T
kxxTeke

T
k eke

T
kxxTeke

T
k

+ E
∑

i 6=j∈[m]

d∑
k=1

d∑
q=1

pkpq
1

m4p2
kp

2
q

eke
T
kxxTeke

T
k eqe

T
q xxTeqe

T
q

=
d∑

k=1

x4
k

m3p3
k

eke
T
k +

d∑
k=1

(m2 −m)x4
k

m4p2
k

eke
T
k

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 127

=
d∑

k=1

(
1

m3p3
k

+
m− 1

m3p2
k

)x4
keke

T
k ; (5.47)

Eq. (5.44)

= E

 ∑
i6=j∈[m]

stis
T
ti
xxTstjs

T
tj

∑
i6=j∈[m]

stis
T
ti
xxTstjs

T
tj

= E

∑
i6=j 6=g 6=h∈[m]

stis
T
ti
xxTstjs

T
tj
stgs

T
tg
xxTsths

T
th

+ E
∑

i 6=j,i=g,j 6=h,g 6=h∈[m]

stis
T
ti
xxTstjs

T
tj
stgs

T
tg
xxTsths

T
th

+ E
∑

i 6=j,i=h,j 6=g,g 6=h∈[m]

stis
T
ti
xxTstjs

T
tj
stgs

T
tg
xxTsths

T
th

+ E
∑

i 6=j,i6=g,j=h,g 6=h∈[m]

stis
T
ti
xxTstjs

T
tj
stgs

T
tg
xxTsths

T
th

+ E
∑

i 6=j,i6=h,j=g,g 6=h∈[m]

stis
T
ti
xxTstjs

T
tj
stgs

T
tg
xxTsths

T
th

+ E
∑

i 6=j,i=g,j=h,g 6=h∈[m]

stis
T
ti
xxTstjs

T
tj
stgs

T
tg
xxTsths

T
th

+ E
∑

i 6=j,i=h,j=g,g 6=h∈[m]

stis
T
ti
xxTstjs

T
tj
stgs

T
tg
xxTsths

T
th

=
d∑

k1,k2,k3,k4=1

m(m− 1)(m− 2)(m− 3)

m4
xk1xk2xk3xk4ek1e

T
k2

ek3e
T
k4

+
d∑

k1,k2,k4=1

m(m− 1)(m− 2)

m4pk1
x2
k1
xk2xk4ek1e

T
k2

ek1e
T
k4

+
d∑

k1,k2,k3=1

m(m− 1)(m− 2)

m4pk1
x2
k1
xk2xk3ek1e

T
k2

ek3e
T
k1

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 128

+
d∑

k1,k2,k3=1

m(m− 1)(m− 2)

m4pk2
xk1x

2
k2
xk3ek1e

T
k2

ek3e
T
k2

+
d∑

k1,k2,k4=1

m(m− 1)(m− 2)

m4pk2
xk1x

2
k2
xk4ek1e

T
k2

ek2e
T
k4

+
d∑

k1,k2

m(m− 1)

m4pk1pk2
x2
k1
x2
k2

ek1e
T
k2

ek1e
T
k2

+
d∑

k1,k2=1

m(m− 1)

m4pk1pk2
x2
k1
x2
k2

ek1e
T
k2

ek2e
T
k1

=
d∑

k2=1

x2
k2

d∑
k1,k4=1

m(m− 1)(m− 2)(m− 3)

m4
xk1xk4ek1e

T
k4

+
d∑

k1,k4=1

m(m− 1)(m− 2)

m4pk1
x3
k1
xk4ek1e

T
k4

+
d∑

k2=1

x2
k2

d∑
k1=1

m(m− 1)(m− 2)

m4pk1
x2
k1

ek1e
T
k1

+
d∑

k1,k2=1

m(m− 1)(m− 2)

m4pk2
xk1x

3
k2

ek1e
T
k2

+
d∑

k2=1

x2
k2

pk2

d∑
k1,k4=1

m(m− 1)(m− 2)

m4
xk1xk4ek1e

T
k4

+
d∑

k1=1

m(m− 1)

m4p2
k1

x4
k1

ek1e
T
k1

+
d∑

k2=1

x2
k2

pk2

d∑
k1=1

m(m− 1)

m4pk1
x2
k1

ek1e
T
k1

=
‖x‖2

2m(m− 1)(m− 2)(m− 3)

m4
xxT

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 129

+
m(m− 1)(m− 2)

m4
D({x

2
k

pk
})xxT

+
‖x‖2

2m(m− 1)(m− 2)

m4

d∑
k=1

x2
k

pk
eke

T
k

+
m(m− 1)(m− 2)

m4
xxTD({x

2
k

pk
})

+
m(m− 1)(m− 2)

m4

d∑
k=1

x2
k

pk
xxT

+
m(m− 1)

m4

d∑
k=1

x4
k

p2
k

eke
T
k

+
m(m− 1)

m4

d∑
k=1

x2
k

pk

d∑
k=1

x2
k

pk
eke

T
k ; (5.48)

Eq. (5.45)

= E
m∑
j=1

stjs
T
tj
xxTstjs

T
tj

∑
i6=j∈[m]

stis
T
ti
xxTstjs

T
tj

= E
∑

g 6=i6=j∈[m]

stgs
T
tg
xxTstgs

T
tg
stis

T
ti
xxTstjs

T
tj

+ E
∑

g=i 6=j∈[m]

stgs
T
tg
xxTstgs

T
tg
stis

T
ti
xxTstjs

T
tj

+ E
∑

g=j 6=i∈[m]

stgs
T
tg
xxTstgs

T
tg
stis

T
ti
xxTstjs

T
tj

=
d∑

k1,k2,k3=1

m(m− 1)(m− 2)

m4pk1
ek1e

T
k1

xxTek1e
T
k1

ek2e
T
k2

xxTek3e
T
k3

+
d∑

k1,k3=1

m(m− 1)

m4p2
k1

ek1e
T
k1

xxTek1e
T
k1

ek1e
T
k1

xxTek3e
T
k3

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 130

+
d∑

k1,k2=1

m(m− 1)

m4p2
k1

ek1e
T
k1

xxTek1e
T
k1

ek2e
T
k2

xxTek1e
T
k1

=
d∑

k1,k3=1

m(m− 1)(m− 2)

m4pk1
x3
k1
xk3ek1e

T
k3

+
d∑

k1,k3=1

m(m− 1)

m4p2
k1

x3
k1
xk3ek1e

T
k3

+
d∑

k1=1

m(m− 1)

m4p2
k1

x4
k1

ek1e
T
k1

=
m(m− 1)(m− 2)

m4
D({x

2
k

pk
})xxT

+
m(m− 1)

m4
D({x

2
k

p2
k

})xxT

+
m(m− 1)

m4

d∑
k=1

x4
k

p2
k

eke
T
k ; (5.49)

Eq. (5.46)

=
m(m− 1)(m− 2)

m4
xxTD({x

2
k

pk
})

+
m(m− 1)

m4
xxTD({x

2
k

p2
k

})

+
m(m− 1)

m4

d∑
k=1

x4
k

p2
k

eke
T
k . (5.50)

Combing the above terms with simplification and reformulation

completes the proof of Eq. (5.13). To this end, we complete the

whole proof.

5.6.3 Proof of Lemma 5.6

Proof. According to the setting, we have that

‖SSTxxTSST‖2
(a)
= ‖SSTx‖2

2

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 131

= ‖
m∑
j=1

stjs
T
tj
x‖2

2

= ‖
m∑
j=1

1

mptj
xtjetj‖2

2

= ‖
m∑
j=1

d∑
k=1

δtjk

mpk
xkek‖2

2

=
d∑

k=1

(
m∑
j=1

δtjkxk

mpk
)2

(b)
=
∑
k∈Γ

(
m∑
j=1

δtjkxk

mpk
)2, (5.51)

where we let Γ = {γt}|Γ|t=1 be a set containing at most m different

elements of [d] with its cardinality |Γ| ≤ m.

In Eq. (5.51), (a) follows because SSTxxTSST is a positive

semidefinite matrix of rank 1, δtjk returns 1 only when tj = k

and 0 otherwise, and P(δtjk = 1) = P(tj = k) = pk. (b) holds

due to that we perform random sampling with replacement m

times on the d entries of x ∈ Rd, and consequently at most m

certain different entries from x are sampled.

Let k = γ1 with γ1 ∈ Γ, and we first bound |
∑m

j=1

δtjγ1xγ1
mpγ1

|.

Define a random variable aj =
δtjγ1xγ1
mpγ1

− xγ1
m for all j ∈ [m]. We

can easily check that {aj}mj=1 are independent with E [aj] = 0,

so that we can leverage Theorem 5.3 to continue our following

analysis. We see that

max
j∈[m]
|aj| = max{|xγ1|

m
(

1

pγ1
− 1),

|xγ1|
m
} ≤ |xγ1|

mpγ1
, (5.52)

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 132

and

m∑
j=1

E
[
a2
j

]
=

x2
γ1

mpγ1
−
x2
γ1

m
. (5.53)

Thus, applying Theorem 5.3 with R =
|xγ1 |
mpγ1

and σ2 =
x2γ1
mpγ1
− x2γ1

m

obtains that

P(|
m∑
j=1

aj| ≥ ε) ≤ 2 exp(
−ε2/2

x2
γ1
/(mpγ1)− x2

γ1
/m+ |xγ1|ε/(3mpγ1)

),

(5.54)

whose RHS is denoted by ηγ1. Then, with probability at least

1 − ηγ1 we have |
∑m

j=1 aj| ≤ ε, i.e., |
∑m

j=1

δtjγ1xγ1
mp1
| ≤ |xγ1| + ε.

We then replace ε by other variables to obtain that

|xγ1|+ ε = |xγ1|

+ log(
2

ηγ1
)

[
|xγ1|

3mpγ1
+ |xγ1|

√
1

9m2p2
γ1

+
2

log(2/ηγ1)
(

1

mpγ1
− 1

m
)

]
,

(5.55)

which is denoted by f(xγ1, ηγ1,m).

In a similar way, we can bound |
∑m

j=1

δtjkxk

mpk
| for any other

k ∈ [d]. The lemma then follows by using the union bound over

cases for all k ∈ [d].

5.6.4 Proof of Theorem 5.1

Proof. We have to prove that the unbiased estimator for C is

Eq. (5.1), i.e., Ce = Ĉ1−Ĉ2, where Ĉ1 = m
mn−n

∑n
i=1 SiS

T
i xix

T
i SiS

T
i ,

and Ĉ2 = m
mn−n

∑n
i=1 D(SiS

T
i xix

T
i SiS

T
i)D(bi) with bki = 1

1+(m−1)pki
.

Note that each Si is created by running Algorithm 5.1, and

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 133

{Si}ni=1 are independent matrices. Thus, taking all sum-

mands E[SiS
T
i xix

T
i SiS

T
i] together and leveraging Eq. (5.9) in

Lemma 5.5 achieves the expectation of Ĉ1,

E[Ĉ1] =
m

nm− n
E

n∑
i=1

SiS
T
i xix

T
i SiS

T
i

=
m

nm− n

n∑
i=1

[
d∑

k=1

x2
ki

mpki
eke

T
k +

m− 1

m
xix

T
i

]

=
1

nm− n

n∑
i=1

d∑
k=1

x2
ki

pki
eke

T
k +

1

n
XXT . (5.56)

Eq. (5.56) indicates that Ĉ1 is a biased estimator for the original

covariance matrix C = 1
nXXT = 1

n

∑n
i=1 xix

T
i . We still need to

apply a debiasing procedure to Ĉ1 to get an unbiased estimator.

By Eq. (5.10) in Lemma 5.5, it can be shown that

E[Ĉ2] =
m

nm− n

n∑
i=1

E
[
D(SiS

T
i xix

T
i SiS

T
i)
]
D(bi)

=
1

nm− n

n∑
i=1

d∑
k=1

x2
ki

pki
eke

T
k . (5.57)

Combing Eq. (5.56) with Eq. (5.57), we immediately see that

Ce = Ĉ1 − Ĉ2 is unbiased for C.

5.6.5 Proof of Theorem 5.2

Proof. Here, we have to bound the error ‖Ce − C‖2. To make

the representation compact, we define Ai = Ai1 − Ai2 − Ai3

with Ai1 = mSiS
T
i xix

T
i SiS

T
i

nm−n , Ai2 = mD(SiS
T
i xix

T
i SiS

T
i)D(bi)

nm−n , Ai3 = xix
T
i

n .

Then,
∑n

i=1 Ai = Ce−C holds. It is straightforward to see that

{Ai}ni=1 are independent zero-mean random matrices, which are

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 134

exactly the setting of the Matrix Bernstein inequality, as shown

in Theorem 5.3. To bound ‖Ce−C‖2 via Theorem 5.3, we need

to calculate the relevant parameters R and σ2 that characterize

the range and variance of Ai respectively.

We first derive R by bounding ‖Ai‖2 so that ‖Ai‖2 ≤ R for

all i ∈ [n]. Expanding ‖Ai‖2 gets that

‖Ai‖2 = ‖Ai1 −Ai2 −Ai3‖2

≤ ‖Ai1 −Ai2‖2 + ‖Ai3‖2

≤‖Ai1‖2 + ‖Ai3‖2. (5.58)

The last inequality in Eq. (5.58) results from

‖Ai1 −Ai2‖2 = max
k∈[d]
|λk(Ai1 −Ai2)|

(a)

≤ max{|λd(Ai1)− λ1(Ai2)|, |λ1(Ai1)− λd(Ai2)|}
(5.59)

(b)
= max{λ1(Ai2), |λ1(Ai1)− λd(Ai2)|} (5.60)

(c)
= max{λ1(Ai2), λ1(Ai1)− λd(Ai2)} (5.61)

(d)

≤ λ1(Ai1) (5.62)

(e)
= ‖Ai1‖2, (5.63)

where λk(·) is the k-th largest eigenvalue.

(a) follows from that λk(Ai1) − λ1(Ai2) ≤ λk(Ai1 − Ai2) ≤
λk(Ai1) − λd(Ai2) for any k ∈ [d], which can be proved by

combining Theorem 5.4 with the fact that λd(−Ai2) = −λ1(Ai2)

and λ1(−Ai2) = −λd(Ai2) for Ai2 ∈ Rd×d.

(b) holds because of that λk≥2(Ai1) = 0 since Ai1 is a positive

semidefinite matrix of rank 1, and λk∈[d](Ai2) ≥ 0 since Ai2 is

positive semidefinite.

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 135

(c) follows owing to that λ1(Ai1) = Tr(Ai1) ≥ Tr(Ai2) =∑d
k=1 λk(Ai2) ≥ λd(Ai2) ≥ 0, where the first equality holds

because λk≥2(Ai1) = 0, the first inequality results from the

fact that the diagonal matrix Ai2 is constructed by the diagonal

elements of Ai1 multiplied by positive scalars not bigger than 1,

and the second inequality is the consequence of λk∈[d](Ai2) ≥ 0.

(d) results from that λk∈[d](Ai2) ≥ 0.

(e) follows owing to that Ai1 is positive semidefinite.

Now, we only need to bound ‖Ai1‖2 and ‖Ai3‖2. We have

that

‖Ai3‖2 = ‖xix
T
i

n
‖2 =

‖xi‖2
2

n
. (5.64)

Then, Lemma 5.6 reveals that with probability at least 1 −∑d
k=1 ηki,

‖Ai1‖2 ≤
m

nm− n
∑
k∈Γi

f 2(xki, ηki,m), (5.65)

where Γi = {γti}|Γi|t=1 is a set occupying at most m different

elements of [d] with its cardinality |Γi| ≤ m, and f(xki, ηki,m) =

|xki|+ log(2
ηki

)
[
|xki|

3mpki
+ |xki|

√
1

9m2p2ki
+ 2

log(2/ηki)
(1
mpki
− 1

m)
]
.

We derive the similar results for all {xi}ni=1. Then, by union

bound, with probability at least 1−
∑n

i=1

∑d
k=1 ηki, we have

R = max
i∈[n]

[
m

nm− n
∑
k∈Γi

f 2(xki, ηki,m) +
‖xi‖2

2

n

]
. (5.66)

Applying the well known inequality (
∑n

t=1 at)
2 ≤ n

∑n
t=1 a

2
t , we

have

f 2(xki, ηki,m) ≤ 3x2
ki + 3 log2(

2

ηki
)

x2
ki

9m2p2
ki

+ 3 log2(
2

ηki
)

x2
ki

9m2p2
ki

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 136

+ 6 log(
2

ηki
)(
x2
ki

mpki
− x2

ki

m
)

≤ 3x2
ki + log2(

2

ηki
)

2x2
ki

3m2p2
ki

+ log(
2

ηki
)

6x2
ki

mpki
.

(5.67)

Before continuing characterizing R in Eq. (5.66), we set the

sampling probabilities as pki = α |xki|‖xi‖1 + (1 − α)
x2ki
‖xi‖22

. It is easy

to check that
∑d

k=1 pki = 1. For 0 < α < 1, we also have

pki ≥ α |xki|‖xi‖1 , then plugging it in the second and third term of

Eq. (5.67) respectively getting that

f 2(xki, ηki,m) ≤ 3x2
ki + log2(

2

ηki
)
2‖xi‖2

1

3m2α2
+ log(

2

ηki
)
6|xki|‖xi‖1

mα
.

(5.68)

Equipped with Eq. (5.66) and setting ηki = η
nd for all i ∈

[n] and k ∈ [d], we bound R with probability at least 1 −∑n
i=1

∑d
k=1 ηki = 1− η by

R ≤ max
i∈[n]

[
m

nm− n
∑
k∈Γi

(
3x2

ki + log2(
2nd

η
)
2‖xi‖2

1

3m2α2
+ log(

2nd

η
)
6|xki|‖xi‖1

mα

)
+
‖xi‖2

2

n

]
≤ max

i∈[n]

[
2

n

(
3‖xi‖2

2 + log2(
2nd

η
)
2‖xi‖2

1

3mα2
+ log(

2nd

η
)
6‖xi‖2

1

mα

)
+
‖xi‖2

2

n

]
≤ max

i∈[n]

[
7‖xi‖2

2

n
+ log2(

2nd

η
)
14‖xi‖2

1

nmα2

]
, (5.69)

where the second inequality follows from that m
m−1 ≤ 2 for m ≥ 2

and |Γi| ≤ m, and the last inequality results from that α ≤ 1

and log(2nd
η) ≥ 1 for n ≥ 1, d ≥ 2, and η ≤ 1.

At this stage, we have to derive σ2 by only bounding for

‖
∑n

i=1 E [AiAi] ‖2 since Ai is symmetric. Expanding E [AiAi]

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 137

obtains that

0 � E [AiAi] = E [Ai1Ai1 + Ai2Ai2 + Ai3Ai3 −Ai1Ai2 −Ai2Ai1

−Ai1Ai3 −Ai3Ai1 + Ai2Ai3 + Ai3Ai2] ,

in RHS of which, we bound the expectation of each term.

Specifically, invoking Lemma 5.5, we have that

n2E [AiAi]

=
d∑

k=1

[
4

m(m− 1)p2
ki

+
1

(m− 1)2mp3
ki

]
x4
kieke

T
k︸ ︷︷ ︸

1©

+
d∑

k=1

[
‖xi‖2

2(m− 2)

m(m− 1)
+

1

m(m− 1)

d∑
k=1

x2
ki

pki

]
x2
ki

pki
eke

T
k︸ ︷︷ ︸

2©

+

[
‖xi‖2

2(m
2 − 5m+ 6)

m(m− 1)
+

m− 2

m(m− 1)

d∑
k=1

x2
ki

pki

]
xix

T
i︸ ︷︷ ︸

3©

+
2(m− 2)

m(m− 1)
xix

T
i D({x

2
ki

pki
})︸ ︷︷ ︸

4©

+
1

m(m− 1)
xix

T
i D({x

2
ki

p2
ki

})︸ ︷︷ ︸
5©

+
2(m− 2)

m(m− 1)
D({x

2
ki

pki
})xixTi︸ ︷︷ ︸

6©

+
1

m(m− 1)
D({x

2
ki

p2
ki

})xixTi︸ ︷︷ ︸
7©

+ D(bi)D(bi)
d∑

k=1

[
1

m(m− 1)2p3
ki

+
7

m(m− 1)p2
ki︸ ︷︷ ︸

8©

+
6(m− 2)

m(m− 1)pki
+

(m− 2)(m− 3)

m(m− 1)

]
x4
kieke

T
k︸ ︷︷ ︸

8©

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 138

+ ‖xi‖2
2xix

T
i︸ ︷︷ ︸

9©
+

d∑
k=1

(
1

(m− 1)pki
+ 1)x2

kieke
T
kD(bi)xix

T
i︸ ︷︷ ︸

10©

+ xix
T
i

d∑
k=1

(
1

(m− 1)pki
+ 1)x2

kieke
T
kD(bi)︸ ︷︷ ︸

11©

− 2
d∑

k=1

[
1

m(m− 1)2p3
ki

+
6

m(m− 1)p2
ki

+
3(m− 2)

m(m− 1)pki

]
x4
kieke

T
kD(bi)︸ ︷︷ ︸

12©

− 3(m− 2)

m(m− 1)
xix

T
i D({x

2
ki

pki
})D(bi)︸ ︷︷ ︸

13©

− (m− 2)(m− 3)

m(m− 1)
xix

T
i D({x2

ki})D(bi)︸ ︷︷ ︸
14©

− 3(m− 2)

m(m− 1)
D(bi)D({x

2
ki

pki
})xixTi︸ ︷︷ ︸

15©

− (m− 2)(m− 3)

m(m− 1)
D(bi)D({x2

ki})xixTi︸ ︷︷ ︸
16©

−
d∑

k=1

x2
ki

(m− 1)pki
eke

T
kxix

T
i︸ ︷︷ ︸

17©

−‖xi‖2
2xix

T
i︸ ︷︷ ︸

18©

−
d∑

k=1

x2
ki

(m− 1)pki
xix

T
i eke

T
k︸ ︷︷ ︸

19©

−‖xi‖2
2xix

T
i︸ ︷︷ ︸

20©

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 139

− 1

m(m− 1)
xix

T
i D({x

2
ki

p2
ki

})D(bi)︸ ︷︷ ︸
21©

− 1

m(m− 1)
D(bi)D({x

2
ki

p2
ki

})xixTi︸ ︷︷ ︸
22©

. (5.70)

Because of the limited space, D({x
2
ki

pki
}) is to denote a square

diagonal matrix in Rd×d with {x
2
ki

pki
}dk=1 on its diagonal, which is

also extended to other similar notations.

In Eq. (5.70), it can be checked that for m ≥ 2, we have

10©− 17© = 0;

11©− 19© = 0;

4©− 13©+ 5©− 14©− 21© =
xix

T
i

m(m− 1)
D({((m− 1)/pki)x

2
ki

1 + (m− 1)pki

+
(m− 2)(m+ 1− 1/pki)x

2
ki

1 + (m− 1)pki
});

6©− 15©+ 7©− 16©− 22© = D(
((m− 1)/pki)x

2
ki

1 + (m− 1)pki
)

xix
T
i

m(m− 1)

+ D(
(m− 2)(m+ 1− 1/pki)x

2
ki

1 + (m− 1)pki
)

xix
T
i

m(m− 1)
;

3©+ 9©− 18©− 20© =

[
(6− 4m)‖xi‖2

2

m(m− 1)
+

m− 2

m(m− 1)

d∑
k=1

x2
ki

pki

]
xix

T
i

� 1

m

d∑
k=1

x2
ki

pki
xix

T
i ;

8©− 12© � 0;

1© �
d∑

k=1

[
8x4

ki

m2p2
ki

+
4x4

ki

m3p3
ki

]
eke

T
k ;

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 140

2© �
d∑

k=1

[
‖xi‖2

2x
2
ki

mpki
+

2x2
ki

m2pki

d∑
k=1

x2
ki

pki

]
eke

T
k .

(5.71)

Then, applying Eq. (5.70) and Eq. (5.71) obtains that

0 � E [AiAi]

� 1

n2

d∑
k=1

[
8x4

ki

m2p2
ki

+
4x4

ki

m3p3
ki

+
‖xi‖2

2x
2
ki

mpki
+

2x2
ki

m2pki

d∑
k=1

x2
ki

pki

]
eke

T
k

+
xix

T
i

n2m(m− 1)
D({((m− 1)/pki)x

2
ki

1 + (m− 1)pki
+

(m− 2)(m+ 1− 1/pki)x
2
ki

1 + (m− 1)pki
})

+ D({((m− 1)/pki)x
2
ki

1 + (m− 1)pki
+

(m− 2)(m+ 1− 1/pki)x
2
ki

1 + (m− 1)pki
}) xix

T
i

n2m(m− 1)

+
1

n2m

d∑
k=1

x2
ki

pki
xix

T
i . (5.72)

With Eq. (5.72) in hand, we can formulate σ2 as

σ2 = ‖
n∑
i=1

E [AiAi] ‖2

≤
n∑
i=1

max
k∈[d]

1

n2

[
8x4

ki

m2p2
ki

+
4x4

ki

m3p3
ki

+
‖xi‖2

2x
2
ki

mpki
+

2x2
ki

m2pki

d∑
k=1

x2
ki

pki

]

+
n∑
i=1

max
k∈[d]

1

n2

[
2‖xi‖2

2

m(m− 1)
(
((m− 1)/pki)x

2
ki

1 + (m− 1)pki

+
(m− 2)(m+ 1 + 1/pki)x

2
ki

1 + (m− 1)pki
)

]
+

1

n2m
‖

n∑
i=1

d∑
k=1

x2
ki

pki
xix

T
i ‖2

≤
n∑
i=1

max
k∈[d]

1

n2

[
8x4

ki

m2p2
ki

+
4x4

ki

m3p3
ki

+
‖xi‖2

2x
2
ki

mpki
+

2x2
ki

m2pki

d∑
k=1

x2
ki

pki

]

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 141

+
n∑
i=1

max
k∈[d]

1

n2

[
8‖xi‖2

2x
2
ki

mpki

]
+

1

n2m
‖

n∑
i=1

d∑
k=1

x2
ki

pki
xix

T
i ‖2.

(5.73)

Again, we have to consider the sampling distributions pki =

α |xki|‖xi‖1 + (1− α)
x2ki
‖xi‖22

with 0 < α < 1. Plugging pki ≥ α |xki|‖xi‖1 and

pki ≥ (1− α)
x2ki
‖xi‖22

in Eq. (5.73), we have

σ2 ≤
n∑
i=1

max
k∈[d]

1

n2

[
8‖xi‖4

2

m2(1− α)2
+

4‖xi‖2
1‖xi‖2

2

m3α2(1− α)
+
‖xi‖4

2

m(1− α)

+
2‖xi‖2

2

m2(1− α)

d∑
k=1

|xki|‖xi‖1

α

]

+
n∑
i=1

max
k∈[d]

1

n2

[
8‖xi‖4

2

m(1− α)

]
+

1

n2m
‖

n∑
i=1

d∑
k=1

|xki|‖xi‖1

α
xix

T
i ‖2

=
n∑
i=1

[
8‖xi‖4

2

n2m2(1− α)2
+

4‖xi‖2
1‖xi‖2

2

n2m3α2(1− α)
+

9‖xi‖4
2

n2m(1− α)

+
2‖xi‖2

2‖xi‖2
1

n2m2α(1− α)

]
+ ‖

n∑
i=1

‖xi‖2
1xix

2
i

n2mα
‖2. (5.74)

Note that employing pki = Ω(|xki|4/3∑d
k=1 |xki|4/3

) for the term
4x4ki
m3p3ki

in

Eq. (5.73) can produce a result tighter than that in Eq. (5.74),

which is because of the fact that (
∑d

k=1 |xki|4/3)3 ≤ ‖xi‖2
1‖xi‖2

2

always holds owing to the Holder’s inequality. However, it is

not necessary to apply pki = Ω(|xki|4/3∑d
k=1 |xki|4/3

) to the term
4x4ki
m3p3ki

in Eq. (5.73), because the term 4‖xi‖21‖xi‖22
n2m3α2(1−α) = O(‖xi‖

2
1‖xi‖22

n2m3) in

Eq. (5.74) obtained by applying pki = α |xki|‖xi‖1 + (1 − α)
x2ki
‖xi‖22

=

Ω(|xki|‖xi‖1 +
x2ki
‖xi‖22

) to the term
4x4ki
m3p3ki

in Eq. (5.73) has already

been small enough, which can be smaller than other terms in

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 142

Eq. (5.74) like 2‖xi‖22‖xi‖21
n2m2α(1−α) = O(‖xi‖

2
1‖xi‖22

n2m2). Similarly, applying

other sampling probabilities pki = Ω(|xki|q∑d
k=1 |xki|q

) with q 6= 1, 4
3 , 2

to Eq. (5.73) will produce a result larger than Eq. (5.74), which

may not be bounded. This is also why we only use pki = α |xki|‖xi‖1 +

(1−α)
x2ki
‖xi‖22

= Ω(|xki|‖xi‖1) to tighten R in Eq. (5.69). This derivation

justifies our selection of q = 1, 2 in pki = Ω(|xki|q∑d
k=1 |xki|q

) used for

constructing the sampling probability pki = α |xki|‖xi‖1 +(1−α)
x2ki
‖xi‖22

.

We then invoke Theorem 5.3 to obtain that for ε ≥ 0,

P(‖Ce −C‖2 ≥ ε) ≤ 2d exp(
−ε2/2

σ2 +Rε/3
). (5.75)

Denote the RHS of Eq. (5.75) by δ = 2d exp(−ε2/2
σ2+Rε/3) and

consider the failure probability η in Eq. (5.69), then by union

bound we have ‖Ce − C‖2 ≤ ε holds with probability at least

1− η− δ. Furthermore, δ = 2d exp(−ε2/2
σ2+Rε/3) yields the following

quadratic equation in ε

ε2

2 log(2d/δ)
− Rε

3
− σ2 = 0. (5.76)

Solving Eq. (5.76) gets only one positive root

ε = log(
2d

δ
)

[
R

3
+

√
(
R

3
)2 +

2σ2

log(2d/δ)

]

≤ log(
2d

δ
)
2R

3
+

√
2σ2 log(

2d

δ
). (5.77)

Thus, immediately we have ‖Ce−C‖2 ≤ log(2d
δ)2R

3 +
√

2σ2 log(2d
δ)

holds with probability at least 1 − η − δ, which completes the

whole proof.

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 143

5.6.6 Proof of Corollary 5.1

Proof. According to the setting, substituting that ‖xi‖2 ≤ τ

for all i ∈ [n], ‖xi‖1‖xi‖2 ≤ ϕ with 1 ≤ ϕ ≤
√
d, and m < d into

Theorem 5.2 establishes that

‖Ce −C‖2

≤ Õ
(τ 2

n
+
τ 2ϕ2

nm
+

√
τ 4

nm2
+
τ 4ϕ2

nm3
+

τ 4

nm
+
τ 4ϕ2

nm2
+
‖C‖2τ 2ϕ2

nm

)
≤ Õ

(τ 2

n
+
τ 2ϕ2

nm
+
τ 2ϕ

m

√
1

n
+ τ 2

√
1

nm
+ τϕ

√
‖C‖2

nm

)
, (5.78)

where the first inequality invokes
∑n

i=n ‖xi‖4
2 ≤ nτ 4, and C =∑n

i=1
xix

T
i

n is the original covariance matrix.

Also, we can adopt
∑n

i=1 ‖xi‖4
2 ≤ ndτ 2‖C‖2, which holds be-

cause
∑n

i=1 ‖xi‖4
2 ≤ τ 2

∑n
i=1 ‖xi‖2

2 and
∑n

i=1 ‖xi‖2
2 = nTr(C) ≤

nd‖C‖2.

Hence, we have

‖Ce −C‖2

≤ Õ
(τ 2

n
+
τ 2ϕ2

nm
+ τ
√
‖C‖2

√
d

nm2
+
dϕ2

nm3
+

d

nm
+
dϕ2

nm2
+

ϕ2

nm

)
≤ Õ

(τ 2

n
+
τ 2ϕ2

nm
+
τϕ

m

√
d‖C‖2

n
+ τ

√
d‖C‖2

nm
+ τϕ

√
‖C‖2

nm

)
.

(5.79)

Finally, assigning ‖Ce−C‖2 by the smaller one of Eq. (5.78)

and Eq. (5.79) completes the proof.

5.6.7 Proof of Corollary 5.2

Proof. The proof follows [16, Corollaries 4-6], where the key

component ‖Ce−Cp‖2 is upper bounded by ‖Ce− 1
n

∑n
i=1 xix

T
i ‖2+

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 144

‖ 1
n

∑n
i=1 xix

T
i − Cp‖2. Then, the derivation results from Theo-

rem 5.2 in this chapter and the Gaussian tail bounds in [16,

Proposition 14].

[16, Proposition 14] shows that with probability at least 1−ζ
for d ≥ 2,

max
i∈[n]
‖xi‖2 ≤

√
2Tr(Cp) log(nd/ζ);

‖1

n

n∑
i=1

xix
T
i −Cp‖2 ≤ O

(
‖Cp‖2

√
log(2/ζ)/n

)
. (5.80)

Then, applying them and Corollary 5.1 along with the fact that

‖xi‖1 ≤
√
d‖xi‖2 and Tr(Cp) ≤ d‖Cp‖2 establishes

‖Ce −Cp‖2

≤ ‖Ce −
1

n

n∑
i=1

xix
T
i ‖2 + ‖1

n

n∑
i=1

xix
T
i −Cp‖2

≤ Õ
(τ 2

n
+
τ 2ϕ2

nm
+
τ 2ϕ

m

√
1

n
+ τ 2

√
1

nm
+ τϕ

√
‖ 1
n

∑n
i=1 xixTi ‖2

nm

)
+ Õ

(
‖Cp‖2

√
1

n

)
≤ Õ

(τ 2

n
+
τ 2ϕ2

nm
+
τ 2ϕ

m

√
1

n
+ τ 2

√
1

nm
+ τϕ

√
‖Cp‖2

nm

)
+ Õ

(
‖Cp‖2

√
1

n

)
(5.81)

≤ Õ
(d2‖Cp‖2

nm
+
d‖Cp‖2

m

√
d

n
+ d‖Cp‖2

√
1

nm
+ d‖Cp‖2

√
1

nm

+ ‖Cp‖2

√
1

n

)
≤ Õ

(d2‖Cp‖2

nm
+
d‖Cp‖2

m

√
d

n

)
(5.82)

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 145

with probability at least 1 − η − δ − ζ, where Eq. (5.81)

results from that we invoke Eq. (5.80) to get ‖ 1
n

∑n
i=1 xix

T
i ‖2 ≤

‖ 1
n

∑n
i=1 xix

T
i −Cp‖2 + ‖Cp‖2 ≤ Õ(‖Cp‖2).

The proof for the low-rank case where rank(Cp)≤ r addition-

ally adopts

‖[Ce]r −Cp‖2 ≤ ‖[Ce]r −Ce‖2 + ‖Ce −Cp‖2

≤ ‖[Cp]r −Ce‖2 + ‖Ce −Cp‖2

≤ ‖[Cp]r −Cp‖2 + ‖Cp −Ce‖2 + ‖Ce −Cp‖2

= 2‖Ce −Cp‖2, (5.83)

where the last equality holds because rank(Cp) ≤ r. Then,

armed with Tr(Cp) ≤ rank(Cp)‖Cp‖2 ≤ r‖Cp‖2, we have

‖[Ce]r −Cp‖2

≤ O(‖Ce −Cp‖2)

≤ O(‖Ce −
1

n

n∑
i=1

xix
T
i ‖2 + ‖1

n

n∑
i=1

xix
T
i −Cp‖2)

≤ Õ
(rd‖Cp‖2

nm
+
r‖Cp‖2

m

√
d

n
+ r‖Cp‖2

√
1

nm
+ ‖Cp‖2

√
rd

nm

+ ‖Cp‖2

√
1

n

)
≤ Õ

(rd‖Cp‖2

nm
+
r‖Cp‖2

m

√
d

n
+ ‖Cp‖2

√
rd

nm

)
(5.84)

with probability at least 1− η − δ − ζ.

Note that the result of [16, Corollary 5] is incorrect, since

retaining the largest r eigenvalues and associated eigenvectors

of a matrix that is not positive-(semi-)definite therein usually

cannot obtain the best r-rank matrix approximation in the

matrix spectral norm, which is also inconsistent with its proof.

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 146

5.6.8 Proof of Corollary 5.3

Proof. The given definitions also implicitly indicate that Cp and

Ce are symmetric. Then, following [16], the desired bound in

Corollary 5.3 immediately results from Corollary 5.2 combined

with the Davis-Kahan Theorem [49] that shows ‖
∏̂

k −
∏

k ‖2 ≤
1

λk−λk+1
‖Ce −Cp‖2.

5.7 Details for Counterparts

5.7.1 Theorems for Gauss-Inverse and UniSample-HD

We first use our notations to rephrase current theoretical results

provided in [16, Theorem 3] and [10, Theorem 6], which

correspond to Gauss-Inverse and UniSample-HD, respectively.

Theorem 5.7 ([16, Theorem 3]). Let d ≥ 2 and define

S1 = ‖1

n

n∑
i=1

‖xi‖2
2xix

T
i ‖2, S2 =

1

n

n∑
i=1

‖xi‖4
2.

There exists universal constants κ1, κ2 > 0 such that for any

0 < δ < 1, with probability at least 1− δ,

‖Ce −C‖2

≤ κ1

(√ d

m
S1 +

√
d

m2
S2

)√ log(d/δ)

n

+ κ2

dmaxi∈[n] ‖xi‖2
2

nm
log(d/δ). (5.85)

Theorem 5.8 ([10, Theorem 6]). Let each column of Si ∈ Rd×m

be chosen uniformly at random from the set of all canonical basis

vectors without replacement. Let ρ > 0 be a bound such that

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 147

‖SiSTi xi‖2
2 ≤ ρ‖xi‖2

2 for all i ∈ [n]. Then, with probability at

least 1− δ

‖Ce −C‖2 ≤ ε, (5.86)

where δ = d exp
(
−ε2/2

σ2+Rε/3

)
, R = 1

n

[(
d(d−1)
m(m−1)ρ+ 1

)
maxi∈[n] ‖xi‖2

2

+ d(d−m)
m(m−1) maxk∈[d],i∈[n] x

2
ki

]
, and σ2 = d(d−1)

nm(m−1)

[
(d−m)2 maxk∈[d]

∑n
i=1 x

4
ki

n(d−1)(m−1)

+(ρ− m(m−1)
d(d−1)) maxi∈[n] ‖xi‖2

2‖C‖2 + d−m
m−1ρmaxi∈[n] ‖xi‖2

2‖D(C)‖2

+
2(d−m)‖X‖2F
n(m−1) maxk∈[d],i∈[n] x

2
ki

]
.

5.7.2 Discussion

In this subsection, we will simplify the foregoing two theorems by

making Eq. (5.85) and Eq. (5.86) explicitly dependent on n, m

and d. Our derivations are natural and straightforward, and we

will not deliberately loose Eq. (5.85) and Eq. (5.86) in order to

demonstrate the superiority of the theoretical results gained by

our weighted sampling method. We define that maxi∈n ‖xi‖2 ≤
τ .

In terms of Eq. (5.85) in Theorem 5.7, S1 ≤ maxi∈[n] ‖xi‖2
2‖C‖2

and S2 ≤ maxi∈[n] ‖xi‖4
2. Note that 1

nd‖X‖
2
F ≤ ‖C‖2 ≤

maxi∈[n] ‖xi‖2
2. Then, Eq. (5.85) can be simplified and refor-

mulated as

‖Ce −C‖2

≤ Õ
(√d‖C‖2 maxi∈[n] ‖xi‖2

2

nm
+

√
dmaxi∈[n] ‖xi‖4

2

nm2

+
dmaxi∈[n] ‖xi‖2

2

nm

)
≤ Õ

(
τ

√
d‖C‖2

nm
+
τ 2

m

√
d

n
+
τ 2d

nm

)
. (5.87)

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 148

If applying S2 ≤ dmaxi∈[n] ‖xi‖2
2‖C‖2 in the original paper [16],

we will get that

‖Ce −C‖2

≤ Õ
(√d‖C‖2 maxi∈[n] ‖xi‖2

2

nm
+

√
d2 maxi∈[n] ‖xi‖2

2‖C‖2

nm2

+
dmaxi∈[n] ‖xi‖2

2

nm

)
≤ Õ

(τd
m

√
‖C‖2

n
+
τ 2d

nm

)
. (5.88)

In summary,

‖Ce −C‖2

≤ min{Õ
(
τ

√
d‖C‖2

nm
+
τ 2

m

√
d

n
+
τ 2d

nm

)
, Õ
(τd
m

√
‖C‖2

n
+
τ 2d

nm

)
}.

(5.89)

For Eq. (5.86) in Theorem 5.8, we first simplify its R and σ2.

According to [10], to obtain a more accurate estimation, each

xi is required to be multiplied by HD to flatten its large entries

before being sampled uniformly without replacement, where H

is a Hadamard matrix with its dimension being 2l (l is a certain

positive integer), and D is a diagonal matrix with its diagonal

elements being i.i.d. Rademacher random variables. Note that

HDDTHT = DTHTHD is an identity matrix.

Suppose that we do not have to pad X with zeros until its

dimension d = 2l holds. Hence, assuming that d = 2l for X ∈
Rd×n without loss of generality, we define Y = HDX ∈ Rd×n

below.

Corollary 2 of [10] indicates that with probability at least

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 149

1− β, we have

max
k∈[d],i∈[n]

|yki| ≤
√

1

d

√
2 log(

2nd

β
) max
i∈[n]
‖xi‖2 (5.90)

and

max
i∈[n]
‖yi‖2 ≤

√
2 log(

2nd

β
) max
i∈[n]
‖xi‖2. (5.91)

Corollary 3 of [10] indicates that with probability at least

1− β, we have

‖SiSTi yi‖2 ≤
√
m

d

√
2 log(

2nd

β
)‖xi‖2. (5.92)

To make a compact representation, we define θ =
√

2 log(2nd
β).

Obviously, θ > 1.

Then, in Theorem 5.8, we can replace the input data X by

Y. Combing Eq. (5.92) with the fact that ‖yi‖2 = ‖HDxi‖2 =

‖xi‖2 getting ρ = ((
√

m
d θ)

2) = mθ2

d for the setting of Theo-

rem 5.8. Along with θ > 1 and m ≤ d, we have

R

=
1

n
O
(

(
d2

m2

mθ2

d
+ 1)θ2 max

i∈[n]
‖xi‖2

2 +
d(d−m)

m2
(

√
1

d
θ)2 max

i∈[n]
‖xi‖2

2

)
= O

(
(
dθ2

nm
)θ2 max

i∈[n]
‖xi‖2

2

)
= Õ

(d

nm
max
i∈[n]
‖xi‖2

2

)
= Õ

(τ 2d

nm

)
, (5.93)

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 150

and

σ2

≤ d2

nm2
O
(

(
mθ2

d
− m(m− 1)

d(d− 1)
)θ2 max

i∈[n]
‖xi‖2

2‖
HDXXTDTHT

n
‖2

(5.94)

+
(d−m)

m

mθ2

d
θ2 max

i∈[n]
‖xi‖2

2‖D(
HDXXTDTHT

n
)‖2

+
d−m
nm

θ2

d
max
i∈[n]
‖xi‖2

2‖HDX‖2
F +

(d−m)2

ndm
n
θ4

d2
max
i∈[n]
‖xi‖4

2

)
=

d2

nm2
O
(m
d

(θ2 − m− 1

d− 1
)θ2 max

i∈[n]
‖xi‖2

2‖C‖2

+
(d−m)θ4

d
max
i∈[n]
‖xi‖2

2

n(
√

1/dθ)2 maxi∈[n] ‖xi‖2
2

n

+
(d−m)θ2

nmd
max
i∈[n]
‖xi‖2

2nd
θ2

d
max
i∈[n]
‖xi‖2

2

+
(d−m)2θ4

d3m
max
i∈[n]
‖xi‖4

2

)
= Õ

(d

nm
max
i∈[n]
‖xi‖2

2‖C‖2 +
d−m
nm2

max
i∈[n]
‖xi‖4

2

+
d(d−m)

nm3
max
i∈[n]
‖xi‖4

2 +
(d−m)2

nm3d
max
i∈[n]
‖xi‖4

2

)
= Õ

(d

nm
max
i∈[n]
‖xi‖2

2‖C‖2 +
d(d−m)

nm3
max
i∈[n]
‖xi‖4

2

+
(d−m)2

nm3d
max
i∈[n]
‖xi‖4

2

)
= Õ

(τ 2d‖C‖2

nm
+
τ 4d(d−m)

nm3
+
τ 4(d−m)2

nm3d

)
. (5.95)

Note that Eq. (5.95) for simplifying σ2 in Eq. (5.86) is tighter

than the simplification result in the original paper [10] that

scales with d2

nm2 . Recalling Eq. (5.86), and replacing its ε by

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 151

R and σ2 to get that with probability at least 1− δ−β, we have

‖Ce −C‖2

≤ Õ
(
τ

√
d‖C‖2

nm
+
τ 2

m

√
d(d−m)

nm
+
τ 2(d−m)

m

√
1

nmd
+
τ 2d

nm

)
.

(5.96)

If m = d, then

‖Ce −C‖2 ≤ Õ
(
τ

√
d‖C‖2

nm
+
τ 2d

nm

)
. (5.97)

Although pure sampling without replacement makes no estima-

tion error when m = d, processing the data by a Hadamard

matrix before sampling can result in the error as shown in

Eq. (5.97).

If m < d with m being close to d, then d −m = O(1), and

thus we have

‖Ce −C‖2 ≤ Õ
(
τ

√
d‖C‖2

nm
+
τ 2

m

√
d

nm
+
τ 2d

nm

)
. (5.98)

If m � d or there exists a certain constant κ < 1 with m <

κd, then O(d − m) = O(d). In addition to considering that
1
nd‖X‖

2
F ≤ ‖C‖2 ≤ maxi∈[n] ‖xi‖2

2 = τ 2, then we have

‖Ce −C‖2 ≤ Õ
(
τ

√
d‖C‖2

nm
+
τ 2d

m

√
1

nm
+
τ 2d

nm

)
. (5.99)

5.8 Details for Computational Complexity

Recall that we have n data samples in the d-dimensional space,

and let m be the target compressed dimension. The compu-

tational comparisons between our proposed method and the

other approaches are presented in Table 5.1, in which Standard

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 152

method means computing C directly without data compression.

We should explain some terms in the table before proceeding.

Storage: storing data and random projection matrices (if

any) in the remote sites and the fusion center, and storing the

covariance matrix in the fusion center.

Communication: shipping the data and random projection

matrices (if any) from remote sites to the fusion center (high

communication cost requires tremendous bandwidth and power

consumption).

Time (FLOPS): compressing the data in the remote sites,

and calculating the covariance matrix in the fusion center (a

low time complexity means a low power cost and high efficiency

for the data processing).

Note that, instead of only using the fusion center, data have

to be first collected from many remote sites like a network of

g � n sensors. Then, they are transmitted to the fusion center

to estimate the covariance matrix. This procedure shows why

communication cost is required. In the table, except for the

communication, the two other compared terms have contained

the total costs in both the remote sites and fusion center.

For a covariance matrix defined as C = 1
nXXT − x̄x̄T , we

can exactly calculate x̄ = 1
n

∑n
i=1 xi in the fusion center by x̄ =

1
n

∑g
j=1 uj, where {xi}ni=1 are distributed in g � n remote sites,

and uj ∈ Rd is the summation of all data vectors in the j-

th remote site before being compressed. Hence, about O(gd)

storage, O(gd) communication cost, and O(nd) time have to be

added to the last four methods in Table 5.1, with g � n.

From now on, we can focus on the covariance matrix defined

as C = 1
nXXT .

First, we derive the computational costs in our propose

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 153

algorithm. Computing {pki}k∈[d],i∈[n] takes O(nd) time. Then,

sampling nm entries from all data vectors to get Y ∈ Rm×n

takes time that is scaled on nm log d up to a certain small

constant. In Eq. (5.1), each Si, STi xi, SiS
T
i xi, and SiS

T
i

(squared diagonal), has at most m non-zero entries. Hence,

recovering {Si}ni=1 via the sampled nm entries in Y and the

sampling indices in T ∈ Rm×n incurs O(nm) time. With Y

and T in hand, {SiSTi xi}ni=1 can be accurately computed in

O(nm) time. Equipped with {SiSTi xi}ni=1, computing Ĉ1 =
m

nm−n
∑n

i=1 SiS
T
i xix

T
i SiS

T
i additionally takes only O(nm2) time,

this is due to that each SiS
T
i xi ∈ Rd and SiS

T
i xix

T
i SiS

T
i ∈ Rd×d

has at most m and m2 non-zero entries respectively. Based on

the obtained Ĉ1, computing the square diagonal matrix Ĉ2 =
m

nm−n
∑n

i=1 D(SiS
T
i xix

T
i SiS

T
i)D(bi) takes O(nm) time since each

SiS
T
i xix

T
i SiS

T
i has at most m non-zero entries in its diagonal.

Finally, obtaining C = Ĉ1 − Ĉ2 incurs O(d) extra time. The

total running time is about O(nd+nm log d+nm+nm+nm+

nm2 + nm+ d) = O(nd+ nm log d+ nm2). In the remote sites,

data are compressed into m dimensional space. Computing

bki only corresponding to the sampled entries is enough to

exactly calculate the Ĉ2 = m
nm−n

∑n
i=1 D(SiS

T
i xix

T
i SiS

T
i)D(bi)

in Eq. (5.1), so that at most nm entries from {pki}k∈[d],i∈[n] have

to be retained to obtain {bki}, since bki = 1
1+(m−1)pki

. Thus,

in the remote sites, Y ∈ Rm×n and T ∈ Rm×n dominate the

storage cost, taking about O(nm) space in total. In the fusion

center, O(d2) storage is additionally used to store the estimated

covariance Ce ∈ Rd×d. Similarly, about O(nm) communication

cost is required because of transmitting Y ∈ Rm×n, T ∈ Rm×n,

v ∈ Rn, w ∈ Rn and α.

Then, for Standard in Table 5.1 that means directly cal-

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 154

culating covariance matrix through the observed data samples

without compression, it is straightforward to check its compu-

tational complexity. X ∈ Rd×n and C ∈ Rd×d takes about

O(nd+d2) storage in total, and X ∈ Rd×n leads to about O(nd)

communication burden. Calculating the covariance matrix C =
1
nXXT costs O(nd2) time.

For Gauss-Inverse,
∑n

i=1 Si(S
T
i Si)

−1STi xix
T
i Si(S

T
i Si)

−1STi , which

is the main part of its unbiased estimator, dominates the

computational cost. Generating n different Gaussian matrices

{Si ∈ Rd×m}ni=1 by the pseudorandom number generator like

Mersenne twister [137], which is by far the most widely used,

takes considerably large amount of time in practice. The

time cost can be denoted by TG. As Si is dense, computing

{STi xi}ni=1 takes O(nmd) time. Calculating {(STi Si)
−1}ni=1 re-

quires O(nm2d + nm3), which involves matrix multiplications

and inversions. Subsequently, we repeat the matrix-vector

multiplications in {Si(STi Si)
−1STi xi ∈ Rd}ni=1 from the left to

right, based on which we get the target covariance matrix.

Finally, it takes at least O(nmd+ nm2d+ nm3 + nm2 + ndm+

nd2)+TG = O(nmd+nm2d+nd2)+TG time for Gauss-Inverse.

In the remote sites, we compress data by STi xi ∈ Rm before

sending them to the fusion center. Along with O(d2) storage for

the derived covariance matrix, about O(nm+d2) storage space is

required in total. Also, sending {STi xi ∈ Rm}ni=1 requires about

a O(nm) computational burden.

Note that we have not listed the synchronization cost of

Gauss-Inverse in Table 5.1. In practice, a pseudo-random

number generator is applied to the program in both the remote

sites and the fusion center to generate/reconstruct n Gaussian

random matrices {Si ∈ Rd×m}ni=1, and only n seeds are required

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 155

to be transmitted from remote sites to the fusion center to

recover the Gaussian random matrices. Therefore, only about

O(n) storage and communication cost have to be added in

Table 5.1. Also, calculating each (STi Si)
−1 has to load each

STi Si ∈ Rm×m into memory, hence at least O(m2) memory is

required.

For Sparse, calculating
∑n

i=1 SiS
T
i xix

T
i SiS

T
i and subtracting

its rescaled diagonal entries dominate the computational cost [9].

Generating sparse projection matrices {Si ∈ Rd×q}ni=1 is also

expensive [10], whose time cost is denoted by TS. The entries of

each Si are distributed on {−1, 0, 1} with probabilities { 1
2s , 1−

1
s ,

1
2s}. Then, each column of Si has d

s non-zero entries in expec-

tation. Empirically, we can fix that q/d = 0.2 or 0.4 according

to [11, 9]. The number of non-zero entries of SiS
T
i xi ∈ Rd is at

least d(1− (1− 1
s)
q) in expectation, which ranges from dq

s (1− q
2s)

to dq
s . Define d(1− (1− 1

s)
q) = m < d, thus we can solve s with

q/d = 0.2 or 0.4 fixed to obtain that s = O(d
2

m). Then computing

{STi xi ∈ Rq}ni=1 takes O(ndqs) = O(nm) time in expectation.

Based on it, computing {SiSTi xi ∈ Rd}ni=1 additionally costs

O(ndqs) = O(nm) time in expectation. Since each SiS
T
i xi ∈ Rd

contains only m non-zeros entries in expectation, thus obtaining∑n
i=1 SiS

T
i xix

T
i SiS

T
i and subtracting its rescaled diagonal entries

requires O(nm + nm + nm2 + d) + TS = O(nm2 + d) + TS
time in total. Storing {SiSTi xi ∈ Rd}ni=1 and the estimated

covariance matrix requires O(nm + d2) storage in expectation,

where a O(nm) cost results from O(nm) non-zero entries in

{SiSTi xi ∈ Rd}ni=1 along with O(nm) corresponding indices.

Similarly, sending {SiSTi xi ∈ Rd}ni=1 from remote sites to the

fusion center takes at most O(nm) communication cost in

expectation.

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 156

For UniSample-HD, processing data by a Hadamard matrix

by HDX ∈ Rd×n requires O(nd log d) time, where H ∈ Rd×d

can be a Hadamard matrix, D ∈ Rd×d is a diagonal ma-

trix with diagonal elements being i.i.d. Rademacher random

variables, and we suppose that d = 2l holds (l is a certain

positive integer). Then, sampling m entries uniformly with-

out replacement on each data vector by {STi HDxi ∈ Rd}ni=1

takes O(nm) time. Hence, it is straightforward to check

that
∑n

i=1 HDSiS
T
i DTHTxix

T
i DTHTSiS

T
i HD ∈ Rd×d requires

O(nd log d+ nm+ nm2 + d2 log d) = O(nd log d+ nm2) time in

total. HD ∈ Rd×d can be generated on the fly when we process

the data. About O(nm + d2) storage has to be used for the

compressed data and estimated covariance matrix. Obviously,

about O(nm) communication cost is required.

5.9 Impact of the Parameter α for Our Ap-

proach

5.9.1 Discussion

To determine if the k-th entry of the data vector xi ∈ Rd

should be retained or not, the sampling probability applied in

our method is

pki = α
|xki|
‖xi‖1

+ (1− α)
x2
ki

‖xi‖2
2

. (5.100)

Achieving our theoretical bound of Theorem 5.2 requires 0 <

α < 1. However, The case α = 1 and α = 0 can also obtain

weaker error bounds, which can be straightforwardly derived

from Eqs. (5.67)(5.68) and Eqs. (5.73)(5.74). The following

illustration reveals the connection between α and error bounds

on data owning different properties.

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 157

1. Only using α = 0, i.e., `2-norm based sampling pki =
x2ki
‖xi‖22

can yield a very weak bound if there exist some very small

entries |xki| in xi ∈ Rd. E.g., substituting pki =
x2ki
‖xi‖22

into

the term maxk∈[d]
x2ki
p2ki

of Eq. (5.67) or Eq. (5.73) results

in maxk∈[d]
‖xi‖42
x2ki

in the final error bound, which becomes

infinite if the positive entry |xki| gets close to 0;

2. Only using α = 1, i.e., `1-norm based sampling pki =
|xki|
‖xi‖1 yields a slightly weak bound if there exist some very

large entries |xki| in xi ∈ Rd. E.g., substituting pki =
|xki|
‖xi‖1 into the term maxk∈[d]

x4ki
p2ki

of Eq. (5.73) results in

maxk∈[d] x
2
ki‖xi‖2

1 in the final error bound, which is always

greater than or equal to maxk∈[d] ‖xi‖4
2 = ‖xi‖4

2 derived by

employing pki =
x2ki
‖xi‖22

to bound maxk∈[d]
x4ki
p2ki

. Specifically,

assume ‖xi‖4
2 = 1 without loss of generality, then it is pos-

sible that maxxi⊂Rd,‖xi‖42=1 maxk∈[d] x
2
ki‖xi‖2

1 = d+2
√
d+1

4 � 1

if when xji =
√√

d+1
2
√
d

and xki,k 6=j =
√

1
2d+2

√
d

for all k ∈ [d]

with k 6= j. Also, minxi⊂Rd,‖xi‖42=1 maxk∈[d] x
2
ki‖xi‖2

1 = 1 if

we have xki =
√

1
d for all k ∈ [d] or we have xji = 1 and

xki,k 6=j = 0 for all k ∈ [d] with k 6= j. Note xi ⊂ Rd in

the above optimizations means that xi is a vector variable

in the d-dimensional space, and j is an arbitrary integer in

the set [d].

3. Therefore, α balances the performance by `1-norm based

sampling and `2-norm based sampling. `2 sampling penal-

izes small entries more than `1 sampling, hence `2 sampling

is more likely to select larger entries to decrease error (e.g.,

case 2). However, different from `1 sampling, `2 sampling

is unstable and sensitive to small entries, and it can make

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 158

estimation error incredibly high if extremely small entries

are picked (e.g., case 1). Then 0 < α < 1 is applied to

achieve the desired tight bound with pki ≥ (1 − α)
x2ki
‖xi‖22

to

tackle the extreme situation in the case 2 that cannot be

well handled purely by pki ≥ α |xki|‖xi‖1 . When α turns from 1

to 0, the estimation error is likely to first decrease and then

increase.

5.9.2 Experiments

Accordingly, we create four different synthetic datasets: {Ai}4
i=1 ∈

R1000×10000 (i.e., d = 1000 and n = 10000). All entries in

A1 and A2 are i.i.d. generated from the Gaussian distri-

butions N (
√

1
2d+2

√
d
, 1

1000) and N (
√

1
2d+2

√
d
, 1

100), respectively.

For A3, the entries of its one row are i.i.d. generated from

N (
√√

d+1
2
√
d
, 1

100), and the other entries follow N (
√

1
2d+2

√
d
, 1

100).

For A4, its generation follows the way of X1 in Section 5.4.

In Figure 5.5, the y-axis reports the errors that are normalized

by the error incurred at α = 1. For A1, the magnitudes

of the data entries tend to be highly uniformly distributed.

Thus, nearly the same results are returned over all α. For A2,

its entries are slightly uniformly distributed with some entries

having extremely small magnitudes. Hence, α = 0 has a poorer

performance compared with the others, which is consistent with

the case 1 in Section 5.9.1. A3 contains some entries larger

than the others, and neither α = 0 nor α = 1 achieves the best

performance obtained roughly at α = 0.9. Also, the estimation

error first decreases and then increases when α turns from 1 to

0. All such simulation results conform to the case 2 and case 3

in Section 5.9.1. Considering A4 that is not likely to contain the

CHAPTER 5. COVARIANCE ESTIMATION VIA COMPRESSION 159

extreme situation as mentioned in the case 2 of Section 5.9.1,

we see that best performance is roughly achieved when α gets

close to 1.

m/d
0.05 0.1 0.15 0.2

E
rr

or

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
DggGaussian1X8, d=1024 n=10000

Alpha-1
Alpha-0.9
Alpha-0.8
Alpha-0.7
Alpha-0.6
Alpha-0.5
Alpha-0.4
Alpha-0.3
Alpha-0.2
Alpha-0.1
Alpha-0 m/d

0.05 0.1 0.15 0.2

R
e
s
c
a
le

d
 E

rr
o
r

0.6

0.8

1

1.2

1.4

1.6
A1, d=1000 n=10000

m/d

0.05 0.1 0.15 0.2

R
e
s
c
a
le

d
 E

rr
o
r

0.6

0.8

1

1.2

1.4

1.6
A2, d=1000 n=10000

m/d

0.05 0.1 0.15 0.2

R
e
s
c
a
le

d
 E

rr
o
r

0.6

0.8

1

1.2

1.4

1.6
A3, d=1000 n=10000

m/d

0.05 0.1 0.15 0.2

R
e
s
c
a
le

d
 E

rr
o
r

0

2

4
A4, d=1000 n=10000

Figure 5.5: Accuracy comparison by decreasing α from 1 to 0 with a step

size of 0.1. The error at each α is normalized by that at α = 1 on y-axis, and

m/d varies from 0.005 to 0.2 with a step size of 0.005 on x-axis. Roughly,

α = 0.9 is a good choice, and the smaller parameter like α = 0 usually leads

to a poorer accuracy and higher variance compared with the other α values.

2 End of chapter.

Chapter 6

Conclusions and Future Work

In this chapter, we summarize the main contribution of this

thesis and provide several interesting future directions.

6.1 Conclusion

In this thesis, we focus on the line of research on exploiting

randomized algorithms to enable learning on big data. For

the learning problems including kernel methods, unsupervised

online hashing, and covariance matrix estimation, we have

developed practical randomized algorithms with superior theo-

retical guarantees. We have also demonstrated the effectiveness

through extensive experiments.

In Chapter 3, we leverage random projections including

Gaussian projection matrix and fast JL transform to make the

training of kernel methods efficient. Instead of directly applying

random projection matrices to refine the mapped kernel features,

we efficiently find the dominant low-dimensional space of kernel

features via projection matrices and then project the mapped

kernel features into such a low-dimensional space. Through this

way, we can significantly reduce the volume of kernel features,

160

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 161

and make the training easy.

In Chapter 4, we employ distinct fast JL transforms to accel-

erate the state-of-the-art unsupervised online hashing algorithm.

Fast JL transform can compress data efficiently, and we propose

to utilize distinct transforms to guarantee the compression

accuracy. Moreover, employing fast JL transform for streaming

data requires more space, and we derive a novel implementation

of fast JL transform so that the space efficiency can still be

maintained. The computational advantages of our method are

supported by both the theoretical analysis and empirical results.

Finally, in Chapter 5, we develop weighted random sampling

with carefully designed probability distributions for covariance

matrix estimation. Compared with the other three randomized

algorithms, our method achieves both the best estimation

error bound and computational complexity. Experiments also

agree well with our theoretical findings and demonstrate the

superiority.

6.2 Future Work

We have investigated the multiple applications of the random-

ized algorithm paradigm to make the learning efficient. There

are some other interesting directions left to be explored in the

future.

6.2.1 Randomized Algorithms and Implicit Regular-

ization

In the theoretical analysis, our thesis and many other studies

only quantify that the outputs of the randomized algorithms

sacrifice a little accuracy on the observed data in comparison

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 162

with the corresponding deterministic algorithms. However, in

practice, we care more about the learning accuracy on the un-

observed data (i.e., testing data). In addition, in some cases, the

learning accuracy of randomized algorithms on the unobserved

data can even outperform the deterministic algorithms, which,

for example, can also be observed from the empirical results of

the last dataset in Figure 4.4 of Chapter 4. This superiority

has actually been theoretically justified in the randomized algo-

rithms for high-dimensional least regressions [66, 135], and the

derived theoretical results therein on the unobserved data imply

that randomized algorithms play a role of implicit regularization

in the generalization ability. Therefore, it is also important

to analyze the learning accuracy of the randomized algorithms

studied in this thesis for the unobserved data, which in return

guides us to develop more appropriate randomized algorithms.

6.2.2 Randomized Algorithms for Deep Neural Net-

works

Deep neural networks have been the state-of-the-art techniques

in many fields such as computer vision and natural language

processing. However, deep neural networks are both compu-

tationally expensive and space intensive, making it difficult to

train and infer on them and to deploy them with limited hard-

ware resources. LeCun et al. have studied dropping unimportant

weights in the networks [43]. Recent work [52] shows that there

is a large amount of redundancy in the weights of the deep

networks by training the low-rank approximations of the weight

matrix. Similarly, the work in [42] trains the deep networks with

a low bit precision. Such evidences demonstrate the information

redundancy in the network. Motivated by these findings, [36, 83]

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 163

have leveraged randomized algorithms to make a compact

representation for certain neural networks while guaranteeing

the learning ability, so that the computational burdens are

greatly reduced. Thus, it is significant to develop randomized

algorithms for a better tradeoff and for more variations of neural

networks (e.g., recurrent neural network, deep graph network,

etc. [95]).

6.2.3 Randomized Algorithms for Parallel/Distributed

Computation

Parallel/distributed computation is currently a popular strat-

egy to enable learning with big data. However, the com-

munication cost among multiple cores in a single machine or

across distributed machines is expensive. Considering that

computations for randomization are easily parallelized and dis-

tributed, randomized algorithms can be leveraged to reduce the

communication costs in parallel/distributed computation while

maintaining the communicated information well. Chapter 5 and

a recent paper by [105] also demonstrate the effectiveness with

certain distributed cases. In the future, we plan to develop

randomized algorithms for more distributed learning problems

and to make the best of modern computer architecture and

system requirements [130].

2 End of chapter.

Bibliography

[1] S. Abbasi-Daresari and J. Abouei. Toward cluster-based

weighted compressive data aggregation in wireless sensor

networks. Ad Hoc Networks, 36:368–385, 2016.

[2] R. Abrahamsson, Y. Selen, and P. Stoica. Enhanced

covariance matrix estimators in adaptive beamforming. In

Acoustics, Speech and Signal Processing, 2007. ICASSP

2007. IEEE International Conference on, volume 2, pages

II–969. IEEE, 2007.

[3] D. Achlioptas. Database-friendly random projections:

Johnson-lindenstrauss with binary coins. Journal of com-

puter and System Sciences, 66(4):671–687, 2003.

[4] D. Achlioptas, Z. S. Karnin, and E. Liberty. Near-optimal

entrywise sampling for data matrices. In Advances in

Neural Information Processing Systems, pages 1565–1573,

2013.

[5] D. Achlioptas and F. Mcsherry. Fast computation of low-

rank matrix approximations. Proceedings of the annual

ACM symposium on Theory of computing, 54(2):9, 2007.

[6] N. Ailon and B. Chazelle. Approximate nearest neighbors

and the fast johnson-lindenstrauss transform. In Pro-

164

BIBLIOGRAPHY 165

ceedings of the thirty-eighth annual ACM symposium on

Theory of computing, pages 557–563. ACM, 2006.

[7] N. Ailon and E. Liberty. Fast dimension reduction using

rademacher series on dual bch codes. In Proceedings of

the nineteenth annual ACM-SIAM symposium on Discrete

algorithms, 2008.

[8] L. Amsaleg. Datasets for approximate nearest neighbor

search, 2010.

[9] F. Anaraki. Estimation of the sample covariance matrix

from compressive measurements. IET Signal Processing,

2016.

[10] F. Anaraki and S. Becker. Preconditioned data sparsifi-

cation for big data with applications to pca and k-means.

arXiv preprint arXiv:1511.00152, 2015.

[11] F. P. Anaraki and S. Hughes. Memory and computation

efficient pca via very sparse random projections. In Pro-

ceedings of the 31st International Conference on Machine

Learning (ICML-14), pages 1341–1349, 2014.

[12] T. Anderson. The theory and practice of online learning.

Athabasca University Press, 2008.

[13] A. Andoni, P. Indyk, T. Laarhoven, I. Razenshteyn, and

L. Schmidt. Practical and optimal lsh for angular distance.

In Advances in Neural Information Processing Systems,

2015.

[14] Y. Anzai. Pattern Recognition & Machine Learning.

Elsevier, 2012.

BIBLIOGRAPHY 166

[15] H. Avron, H. Nguyen, and D. Woodruff. Subspace

embeddings for the polynomial kernel. In Advances in

Neural Information Processing Systems, 2014.

[16] M. Azizyan, A. Krishnamurthy, and A. Singh. Extreme

compressive sampling for covariance estimation. arXiv

preprint arXiv:1506.00898, 2015.

[17] D. Bartz. Advances in high-dimensional covariance matrix

estimation. 2016.

[18] C. Battaglino, G. Ballard, and T. G. Kolda. A practical

randomized cp tensor decomposition. arXiv preprint

arXiv:1701.06600, 2017.

[19] R. Bekkerman, M. Bilenko, and J. Langford. Scaling

up machine learning: Parallel and distributed approaches.

Cambridge University Press, 2011.

[20] E. Bingham and H. Mannila. Random projection in dimen-

sionality reduction: applications to image and text data.

In Proceedings of the seventh ACM SIGKDD international

conference on Knowledge discovery and data mining, pages

245–250. ACM, 2001.

[21] J. M. Bioucas-Dias, D. Cohen, and Y. C. Eldar. Covalsa:

Covariance estimation from compressive measurements

using alternating minimization. In Signal Processing

Conference (EUSIPCO), 2014 Proceedings of the 22nd

European, pages 999–1003. IEEE, 2014.

[22] C. M. Bishop et al. Pattern recognition and machine

learning, volume 1. springer New York, 2006.

BIBLIOGRAPHY 167

[23] C. Blake and C. Merz. UCI repository of machine learning

databases, 1998. URL: http://archive.ics.uci.edu/ml/.

[24] C. Boutsidis, P. Drineas, and M. W. Mahoney. Unsuper-

vised feature selection for the k-means clustering problem.

In Advances in Neural Information Processing Systems,

pages 153–161, 2009.

[25] C. Boutsidis and D. P. Woodruff. Optimal cur matrix

decompositions. SIAM Journal on Computing, 46(2):543–

589, 2017.

[26] C. Boutsidis, A. Zouzias, M. W. Mahoney, and P. Drineas.

Randomized dimensionality reduction for k-means clus-

tering. IEEE Transactions on Information Theory,

61(2):1045–1062, 2015.

[27] A. J. Butte, P. Tamayo, D. Slonim, T. R. Golub, and

I. S. Kohane. Discovering functional relationships between

rna expression and chemotherapeutic susceptibility using

relevance networks. Proceedings of the National Academy

of Sciences, 97(22):12182–12186, 2000.

[28] T. T. Cai, A. Zhang, et al. Rop: Matrix recovery via rank-

one projections. The Annals of Statistics, 43(1):102–138,

2015.

[29] F. Cakir and S. Sclaroff. Adaptive hashing for fast

similarity search. In Proceedings of the IEEE International

Conference on Computer Vision, pages 1044–1052, 2015.

[30] F. Cakir and S. Sclaroff. Online supervised hashing.

In Image Processing (ICIP), 2015 IEEE International

Conference on, pages 2606–2610. IEEE, 2015.

BIBLIOGRAPHY 168

[31] D. Calandriello, A. Lazaric, and M. Valko. Second-order

kernel online convex optimization with adaptive sketching.

In International Conference on Machine Learning, 2017.

[32] N. Cesa-Bianchi, Y. Mansour, and O. Shamir. On

the complexity of learning with kernels. arXiv preprint

arXiv:1411.1158, 2014.

[33] C.-C. Chang and C.-J. Lin. Libsvm: a library for

support vector machines. ACM Transactions on Intelligent

Systems and Technology (TIST), 2(3):27, 2011.

[34] M. S. Charikar. Similarity estimation techniques from

rounding algorithms. In Proceedings of the thiry-fourth

annual ACM symposium on Theory of computing, pages

380–388. ACM, 2002.

[35] S. Chen, Y. Liu, M. R. Lyu, I. King, and S. Zhang. Fast

relative-error approximation algorithm for ridge regres-

sion. In UAI, pages 201–210, 2015.

[36] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and

Y. Chen. Compressing neural networks with the hashing

trick. In International Conference on Machine Learning,

pages 2285–2294, 2015.

[37] X. Chen, M. R. Lyu, and I. King. Toward efficient

and accurate covariance matrix estimation on compressed

data. In International Conference on Machine Learning,

pages 767–776, 2017.

[38] Y. Chen, Y. Chi, and A. Goldsmith. Exact and stable

covariance estimation from quadratic sampling via convex

programming. 2013.

BIBLIOGRAPHY 169

[39] D. Cheng, R. Peng, Y. Liu, and I. Perros. Spals: Fast alter-

nating least squares via implicit leverage scores sampling.

In Advances In Neural Information Processing Systems,

pages 721–729, 2016.

[40] A. Choromanska, K. Choromanski, M. Bojarski, T. Je-

bara, S. Kumar, and Y. LeCun. Binary embeddings with

structured hashed projections. In ICML, 2016.

[41] C. Cortes, M. Mohri, and A. Talwalkar. On the impact

of kernel approximation on learning accuracy. In Interna-

tional Conference on Artificial Intelligence and Statistics,

pages 113–120, 2010.

[42] M. Courbariaux, J.-P. David, and Y. Bengio. Low

precision storage for deep learning. arXiv preprint

arXiv:1412.7024, 2014.

[43] Y. L. Cun, J. S. Denker, and S. A. Solla. Optimal brain

damage, 1990.

[44] B. Dai, B. Xie, N. He, Y. Liang, A. Raj, M.-F. F. Balcan,

and L. Song. Scalable kernel methods via doubly stochastic

gradients. In Advances in Neural Information Processing

Systems, pages 3041–3049, 2014.

[45] G. Dasarathy, P. Shah, B. N. Bhaskar, and R. D. Nowak.

Sketching sparse matrices, covariances, and graphs via

tensor products. Information Theory, IEEE Transactions

on, 61(3):1373–1388, 2015.

[46] S. Dasgupta. Experiments with random projection. In

Proceedings of the Sixteenth conference on Uncertainty in

BIBLIOGRAPHY 170

artificial intelligence, pages 143–151. Morgan Kaufmann

Publishers Inc., 2000.

[47] S. Dasgupta and A. Gupta. An elementary proof of

the johnson-lindenstrauss lemma. International Computer

Science Institute, Technical Report, pages 99–006, 1999.

[48] T. H. Davenport, P. Barth, and R. Bean. How big data is

different. MIT Sloan Management Review, 54(1):43, 2012.

[49] C. Davis and W. M. Kahan. The rotation of eigenvectors

by a perturbation. iii. SIAM Journal on Numerical

Analysis, 7(1):1–46, 1970.

[50] V. Dehdari and C. V. Deutsch. Applications of random-

ized methods for decomposing and simulating from large

covariance matrices. In Geostatistics Oslo 2012, pages 15–

26. Springer, 2012.

[51] M. P. Deisenroth, G. Neumann, J. Peters, et al. A survey

on policy search for robotics. Foundations and Trends in

Robotics, 2(1-2):1–142, 2013.

[52] M. Denil, B. Shakibi, L. Dinh, N. de Freitas, et al.

Predicting parameters in deep learning. In Advances in

Neural Information Processing Systems, pages 2148–2156,

2013.

[53] P. Dhillon, Y. Lu, D. P. Foster, and L. Ungar. New

subsampling algorithms for fast least squares regression.

In Advances in Neural Information Processing Systems,

pages 360–368, 2013.

BIBLIOGRAPHY 171

[54] E. Drinea, P. Drineas, and P. Huggins. A randomized

singular value decomposition algorithm for image process-

ing applications. In In Proceedings of the 8th panhellenic

conference on informatics, pages 278–288, 2001.

[55] P. Drineas and R. Kannan. Pass efficient algorithms for

approximating large matrices. In SODA, volume 3, pages

223–232, 2003.

[56] P. Drineas, R. Kannan, and M. W. Mahoney. Fast monte

carlo algorithms for matrices i: Approximating matrix

multiplication. SIAM Journal on Computing, 36(1):132–

157, 2006.

[57] P. Drineas and M. W. Mahoney. On the nystrom method

for approximating a gram matrix for improved kernel-

based learning. journal of machine learning research,

6(Dec):2153–2175, 2005.

[58] P. Drineas, M. W. Mahoney, and S. Muthukrishnan. Sub-

space sampling and relative-error matrix approximation.

In Approximation, Randomization, and Combinatorial

Optimization. 2006.

[59] P. Drineas, M. W. Mahoney, and S. Muthukrishnan.

Relative-error cur matrix decompositions. SIAM Journal

on Matrix Analysis and Applications, 30(2):844–881, 2008.

[60] P. Drineas, M. W. Mahoney, S. Muthukrishnan, and

T. Sarlós. Faster least squares approximation. Numerische

Mathematik, 117(2):219–249, 2011.

[61] R. J. Durrant and A. Kaban. Compressed fisher linear

discriminant analysis: Classification of randomly pro-

BIBLIOGRAPHY 172

jected data. In Proceedings of the 16th ACM SIGKDD

international conference on Knowledge discovery and data

mining, pages 1119–1128. ACM, 2010.

[62] R. J. Durrant and A. Kaban. Random projections as

regularizers: learning a linear discriminant from fewer ob-

servations than dimensions. Machine Learning, 99(2):257–

286, 2015.

[63] A. El Alaoui and M. W. Mahoney. Fast randomized kernel

methods with statistical guarantees. stat, 1050:2, 2014.

[64] P. C. Evans and M. Annunziata. Industrial internet:

Pushing the boundaries. General Electric Reports, 2012.

[65] J. Fan, F. Han, and H. Liu. Challenges of big data analysis.

National science review, 1(2):293–314, 2014.

[66] M. M. Fard, Y. Grinberg, J. Pineau, and D. Precup.

Compressed least-squares regression on sparse spaces. In

Association for the Advancement of Artificial Intelligence,

2012.

[67] W. Feller. introduction to probability theory and its

applications. vol. ii.[an]. 1966.

[68] Ó. Fontenla-Romero, B. Guijarro-Berdiñas, D. Martinez-

Rego, B. Pérez-Sánchez, and D. Peteiro-Barral. Online

machine learning. Efficiency and Scalability Methods for

Computational Intellect, 27, 2013.

[69] M. H.-Y. Fritz, R. Leinonen, G. Cochrane, and E. Birney.

Efficient storage of high throughput dna sequencing data

using reference-based compression. Genome research,

21(5):734–740, 2011.

BIBLIOGRAPHY 173

[70] M. Ghashami, E. Liberty, and J. M. Phillips. Efficient

frequent directions algorithm for sparse matrices. In

Proceedings of the 22nd ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining, pages

845–854. ACM, 2016.

[71] M. Ghashami and J. M. Phillips. Relative errors for deter-

ministic low-rank matrix approximations. In Proceedings

of the Twenty-Fifth Annual ACM-SIAM Symposium on

Discrete Algorithms, pages 707–717. Society for Industrial

and Applied Mathematics, 2014.

[72] A. Gionis, P. Indyk, R. Motwani, et al. Similarity search

in high dimensions via hashing. In VLDB, 1999.

[73] A. Gittens. The spectral norm error of the naive nystrom

extension. arXiv preprint arXiv:1110.5305, 2011.

[74] S. Gleichman and Y. C. Eldar. Blind compressed sensing.

Information Theory, IEEE Transactions on, 57(10):6958–

6975, 2011.

[75] G. H. Golub and C. Van Loan. Matrix computations. 1996.

[76] A. Gonen, F. Orabona, and S. Shalev-Shwartz. Solving

ridge regression using sketched preconditioned svrg. In In-

ternational Conference on Machine Learning, pages 1397–

1405, 2016.

[77] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin.

Iterative quantization: A procrustean approach to learning

binary codes for large-scale image retrieval. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 2013.

BIBLIOGRAPHY 174

[78] W. Ha and R. F. Barber. Robust pca with compressed

data. In Advances in Neural Information Processing

Systems, pages 1936–1944, 2015.

[79] N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding

structure with randomness: Probabilistic algorithms for

constructing approximate matrix decompositions. SIAM

review, 53(2):217–288, 2011.

[80] K. B. Hall, S. Gilpin, and G. Mann. Mapreduce/bigtable

for distributed optimization. In NIPS LCCC Workshop,

2010.

[81] R. Hamid, Y. Xiao, A. Gittens, and D. DeCoste. Compact

random feature maps. 2014.

[82] W. L. Hamilton, R. Ying, and J. Leskovec. Representation

learning on graphs: Methods and applications. arXiv

preprint arXiv:1709.05584, 2017.

[83] S. Han, H. Mao, and W. J. Dally. Deep compres-

sion: Compressing deep neural networks with pruning,

trained quantization and huffman coding. arXiv preprint

arXiv:1510.00149, 2015.

[84] L. P. Hansen. Large sample properties of generalized

method of moments estimators. Econometrica: Journal

of the Econometric Society, pages 1029–1054, 1982.

[85] T. Hastie, R. Tibshirani, J. Friedman, and J. Franklin. The

elements of statistical learning: data mining, inference and

prediction. The Mathematical Intelligencer, 27(2):83–85,

2005.

BIBLIOGRAPHY 175

[86] J. Haupt, W. U. Bajwa, M. Rabbat, and R. Nowak.

Compressed sensing for networked data. IEEE Signal

Processing Magazine, 25(2):92–101, 2008.

[87] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual

learning for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition,

pages 770–778, 2016.

[88] C. Heinze, B. McWilliams, and N. Meinshausen. Dual-

loco: Distributing statistical estimation using random

projections. In Artificial Intelligence and Statistics, pages

875–883, 2016.

[89] J. T. Holodnak and I. C. Ipsen. Randomized approx-

imation of the gram matrix: Exact computation and

probabilistic bounds. SIAM Journal on Matrix Analysis

and Applications, 36(1):110–137, 2015.

[90] J. Hromkovic. Algorithmics for hard problems: intro-

duction to combinatorial optimization, randomization, ap-

proximation, and heuristics. Springer Science & Business

Media, 2013.

[91] C.-W. Hsu, C.-C. Chang, C.-J. Lin, et al. A practical guide

to support vector classification. 2003.

[92] L.-K. Huang, Q. Yang, and W.-S. Zheng. Online hashing.

In IJCAI. Citeseer, 2013.

[93] A. Hyvärinen, J. Karhunen, and E. Oja. Independent

component analysis, volume 46. John Wiley & Sons, 2004.

BIBLIOGRAPHY 176

[94] P. Indyk and R. Motwani. Approximate nearest neighbors:

towards removing the curse of dimensionality. In Proceed-

ings of the thirtieth annual ACM symposium on Theory of

computing, 1998.

[95] A. Jain, A. R. Zamir, S. Savarese, and A. Saxena.

Structural-rnn: Deep learning on spatio-temporal graphs.

In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 5308–5317, 2016.

[96] H. Jegou, M. Douze, and C. Schmid. Product quantization

for nearest neighbor search. IEEE transactions on pattern

analysis and machine intelligence, 2011.

[97] Q.-Y. Jiang and W.-J. Li. Scalable graph hashing with

feature transformation. In IJCAI, pages 2248–2254, 2015.

[98] R. Jin. Deep learning at alibaba. 2017.

[99] Z. John Lu. The elements of statistical learning: data min-

ing, inference, and prediction. Journal of the Royal Statis-

tical Society: Series A (Statistics in Society), 173(3):693–

694, 2010.

[100] W. B. Johnson, J. Lindenstrauss, and G. Schechtman.

Extensions of lipschitz maps into banach spaces. Israel

Journal of Mathematics, 54(2):129–138, 1986.

[101] I. Jolliffe. Principal component analysis. Wiley Online

Library, 2002.

[102] W.-C. Kang, W.-J. Li, and Z.-H. Zhou. Column sampling

based discrete supervised hashing. In Thirtieth AAAI

Conference on Artificial Intelligence, 2016.

BIBLIOGRAPHY 177

[103] T. Kariya and H. Kurata. Generalized least squares. John

Wiley & Sons, 2004.

[104] R. M. Karp. An introduction to randomized algorithms.

Discrete Applied Mathematics, 34(1-3):165–201, 1991.

[105] J. Konevcny and P. Richtarik. Randomized distributed

mean estimation: Accuracy vs communication. arXiv

preprint arXiv:1611.07555, 2016.

[106] W. Kong and W.-J. Li. Isotropic hashing. In Advances in

Neural Information Processing Systems, 2012.

[107] A. Krizhevsky. Learning multiple layers of features from

tiny images. 2009.

[108] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012.

[109] Q. Le, T. Sarlós, and A. Smola. Fastfood approximating

kernel expansions in loglinear time. In Proceedings of the

international conference on machine learning, 2013.

[110] M. Ledoux. The concentration of measure phenomenon.

Number 89. American Mathematical Soc., 2005.

[111] C. Leng, J. Wu, J. Cheng, X. Bai, and H. Lu. Online

sketching hashing. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 2503–

2511, 2015.

[112] M. Li, D. G. Andersen, J. W. Park, A. J. Smola,

A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and

BIBLIOGRAPHY 178

B.-Y. Su. Scaling distributed machine learning with the

parameter server. In OSDI, volume 1, page 3, 2014.

[113] P. Li, T. J. Hastie, and K. W. Church. Very sparse random

projections. In Proceedings of the 12th ACM SIGKDD

international conference on Knowledge discovery and data

mining. ACM, 2006.

[114] W. Li. Learning to hash for big data. Tutorial, 2012.

[115] W. Li, M. Magdon-Ismail, M. W. Mahoney, and D. P.

Woodruff. Fast approximation of matrix coherence and

statistical leverage. Journal of Machine Learning Re-

search, 13(Dec):3475–3506, 2012.

[116] W.-J. Li, S. Wang, and W.-C. Kang. Feature learning

based deep supervised hashing with pairwise labels. In

IJCAI, 2016.

[117] Y. Li, R. Wang, H. Liu, H. Jiang, S. Shan, and X. Chen.

Two birds, one stone: Jointly learning binary code for

large-scale face image retrieval and attributes prediction.

In Proceedings of the IEEE International Conference on

Computer Vision, 2015.

[118] E. Liberty. Simple and deterministic matrix sketching. In

Proceedings of the 19th ACM SIGKDD international con-

ference on Knowledge discovery and data mining. ACM,

2013.

[119] E. Liberty and S. W. Zucker. The mailman algorithm:

A note on matrix–vector multiplication. Information

Processing Letters, 109(3):179–182, 2009.

BIBLIOGRAPHY 179

[120] C.-Y. Lin, C.-H. Tsai, C.-P. Lee, and C.-J. Lin. Large-

scale logistic regression and linear support vector machines

using spark. In Big Data (Big Data), 2014 IEEE Interna-

tional Conference on, pages 519–528. IEEE, 2014.

[121] G. Lin, C. Shen, Q. Shi, A. van den Hengel, and D. Suter.

Fast supervised hashing with decision trees for high-

dimensional data. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2014.

[122] H. Liu and W.-S. Chen. A novel random projection

model for linear discriminant analysis based face recogni-

tion. In Wavelet Analysis and Pattern Recognition, 2009.

ICWAPR 2009. International Conference on, pages 112–

117. IEEE, 2009.

[123] H. Liu, R. Ji, Y. Wu, and F. Huang. Ordinal constrained

binary code learning for nearest neighbor search. In AAAI,

2017.

[124] H. Liu, R. Ji, Y. Wu, and W. Liu. Towards optimal binary

code learning via ordinal embedding. In AAAI, 2016.

[125] W. Liu, C. Mu, S. Kumar, and S.-F. Chang. Discrete graph

hashing. In Advances in Neural Information Processing

Systems, pages 3419–3427, 2014.

[126] W. Liu, J. Wang, S. Kumar, and S.-F. Chang. Hashing

with graphs. In Proceedings of the 28th international

conference on machine learning, 2011.

[127] D. Lopez-paz, S. Sra, A. Smola, Z. Ghahramani, and

B. Schoelkopf. Randomized nonlinear component analysis.

BIBLIOGRAPHY 180

In Proceedings of the 31st International Conference on

Machine Learning (ICML-14), pages 1359–1367, 2014.

[128] Y. Lu, P. Dhillon, D. P. Foster, and L. Ungar. Faster

ridge regression via the subsampled randomized hadamard

transform. In Advances in neural information processing

systems, 2013.

[129] H. Luo, A. Agarwal, N. Cesa-Bianchi, and J. Langford.

Efficient second order online learning by sketching. In

Advances in Neural Information Processing Systems, 2016.

[130] M. Mahoney. Randomized algorithms for matrices and

data. Foundations and Trends R© in Machine Learning,

3(2):123–224, 2011.

[131] M. W. Mahoney. Lecture notes on randomized linear

algebra. arXiv preprint arXiv:1608.04481, 2016.

[132] M. W. Mahoney and P. Drineas. Cur matrix decom-

positions for improved data analysis. Proceedings of the

National Academy of Sciences, 106(3):697–702, 2009.

[133] M. W. Mahoney, M. Maggioni, and P. Drineas. Tensor-cur

decompositions for tensor-based data. SIAM Journal on

Matrix Analysis and Applications, 30(3):957–987, 2008.

[134] O.-A. Maillard and R. Munos. Linear regression with ran-

dom projections. Journal of Machine Learning Research,

13(Sep):2735–2772, 2012.

[135] O.-A. Maillard, R. Munos, et al. Compressed least-

squares regression. In In Advances in Neural Information

Processing Systems, pages 1213–1221, 2009.

BIBLIOGRAPHY 181

[136] P.-G. Martinsson, A. Szlam, M. Tygert, et al. Normalized

power iterations for the computation of svd. Manuscript.,

Nov, 2010.

[137] M. Matsumoto and T. Nishimura. Mersenne twister: a

623-dimensionally equidistributed uniform pseudo-random

number generator. ACM Transactions on Modeling and

Computer Simulation, 1998.

[138] Y. Mroueh, E. Marcheret, and V. Goel. Co-occuring di-

rections sketching for approximate matrix multiply. arXiv

preprint arXiv:1610.07686, 2016.

[139] L. Mukherjee, S. N. Ravi, V. K. Ithapu, T. Holmes,

and V. Singh. An nmf perspective on binary hashing.

In Proceedings of the IEEE International Conference on

Computer Vision, 2015.

[140] C. Musco and C. Musco. Randomized block krylov

methods for stronger and faster approximate singular

value decomposition. In Advances in Neural Information

Processing Systems, pages 1396–1404, 2015.

[141] C. Musco and C. Musco. Recursive sampling for the

nystrom method. In Advances in Neural Information

Processing Systems, pages 3836–3848, 2017.

[142] J. Nelson and H. L. Nguyen. Lower bounds for oblivious

subspace embeddings. In Automata, Languages, and

Programming, pages 883–894. Springer, 2014.

[143] Y. Nesterov. Smooth minimization of non-smooth func-

tions. Mathematical programming, 103(1):127–152, 2005.

BIBLIOGRAPHY 182

[144] B. Neyshabur, N. Srebro, R. R. Salakhutdinov,

Y. Makarychev, and P. Yadollahpour. The power of

asymmetry in binary hashing. In Advances in Neural

Information Processing Systems, 2013.

[145] A. Novikov, D. Podoprikhin, A. Osokin, and D. P. Vetrov.

Tensorizing neural networks. In Advances in Neural

Information Processing Systems, pages 442–450, 2015.

[146] D. Papailiopoulos, A. Kyrillidis, and C. Boutsidis. Prov-

able deterministic leverage score sampling. In Proceedings

of the 20th ACM SIGKDD international conference on

Knowledge discovery and data mining, pages 997–1006.

ACM, 2014.

[147] S. Paul, C. Boutsidis, M. Magdon-Ismail, and P. Drineas.

Random projections for support vector machines. In

Proceedings of the Sixteenth International Conference on

Artificial Intelligence and Statistics, pages 498–506, 2013.

[148] J. Pennington, F. Yu, and S. Kumar. Spherical random

features for polynomial kernels. In Advances in Neural

Information Processing Systems, pages 1846–1854, 2015.

[149] D. Peteiro-Barral and B. Guijarro-Berdiñas. A survey

of methods for distributed machine learning. Progress in

Artificial Intelligence, 2(1):1–11, 2013.

[150] M. Pilanci. Fast Randomized Algorithms for Convex

Optimization and Statistical Estimation. PhD thesis,

University of California, Berkeley, 2016.

[151] E. Price. Lecture 1 of Randomized Algorithms.

BIBLIOGRAPHY 183

https://www.cs.utexas.edu/~ecprice/courses/

randomized/notes/lec1.pdf, 2017.

[152] H. Qi and S. M. Hughes. Invariance of principal com-

ponents under low-dimensional random projection of the

data. In Image Processing (ICIP). IEEE, 2012.

[153] A. Rahimi and B. Recht. Random features for large-

scale kernel machines. In Advances in neural information

processing systems, pages 1177–1184, 2007.

[154] A. Rahimi and B. Recht. Random features for large-

scale kernel machines. In Advances in neural information

processing systems, pages 1177–1184, 2008.

[155] A. Rahimi and B. Recht. Weighted sums of random

kitchen sinks: Replacing minimization with randomization

in learning. In Advances in neural information processing

systems, pages 1313–1320, 2009.

[156] W. Rudin. Fourier analysis on groups. John Wiley & Sons,

1990.

[157] C. Saunders, A. Gammerman, and V. Vovk. Ridge regres-

sion learning algorithm in dual variables. In Proceedings

of the 15th International Conference on Machine Learning,

pages 515–521. Morgan Kaufmann, 1998.

[158] J. Schäfer and K. Strimmer. An empirical bayes approach

to inferring large-scale gene association networks. Bioin-

formatics, 21(6):754–764, 2005.

[159] B. Schölkopf, R. Herbrich, and A. J. Smola. A generalized

representer theorem. In Computational learning theory,

pages 416–426. Springer, 2001.

https://www.cs.utexas.edu/~ecprice/courses/randomized/notes/lec1.pdf
https://www.cs.utexas.edu/~ecprice/courses/randomized/notes/lec1.pdf

BIBLIOGRAPHY 184

[160] B. Scholkopf and A. J. Smola. Learning with kernels:

support vector machines, regularization, optimization, and

beyond. MIT press, 2001.

[161] S. Shalev-Shwartz et al. Online learning and online convex

optimization. Foundations and Trends R© in Machine

Learning, 4(2):107–194, 2012.

[162] F. Shen, W. Liu, S. Zhang, Y. Yang, and H. Tao Shen.

Learning binary codes for maximum inner product search.

In Proceedings of the IEEE International Conference on

Computer Vision, 2015.

[163] F. Shen, C. Shen, W. Liu, and H. Tao Shen. Supervised

discrete hashing. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2015.

[164] T. Shi, D. Tang, L. Xu, and T. Moscibroda. Correlated

compressive sensing for networked data. In UAI, pages

722–731, 2014.

[165] A. Shrivastava and P. Li. Asymmetric lsh (alsh) for

sublinear time maximum inner product search (mips). In

Advances in Neural Information Processing Systems, pages

2321–2329, 2014.

[166] J. Song, L. Gao, Y. Yan, D. Zhang, and N. Sebe. Super-

vised hashing with pseudo labels for scalable multimedia

retrieval. In Proceedings of the 23rd ACM international

conference on Multimedia, pages 827–830. ACM, 2015.

[167] Z. Song, D. Woodruff, and H. Zhang. Sublinear time

orthogonal tensor decomposition. In Advances in Neural

Information Processing Systems, pages 793–801, 2016.

BIBLIOGRAPHY 185

[168] T. Srisooksai, K. Keamarungsi, P. Lamsrichan, and

K. Araki. Practical data compression in wireless sensor

networks: A survey. Journal of Network and Computer

Applications, 35(1):37–59, 2012.

[169] A. T. Suresh, F. X. Yu, H. B. McMahan, and S. Kumar.

Distributed mean estimation with limited communication.

arXiv preprint arXiv:1611.00429, 2016.

[170] J. A. Tropp. Improved analysis of the subsampled ran-

domized hadamard transform. Advances in Adaptive Data

Analysis, 3(01n02):115–126, 2011.

[171] J. A. Tropp. An introduction to matrix concentration in-

equalities. Foundations and Trends in Machine Learning,

2015.

[172] A. M. Tulino and S. Verdú. Random matrix theory and

wireless communications, volume 1. Now Publishers Inc,

2004.

[173] S. R. Upadhyaya. Parallel approaches to machine learn-

ing—a comprehensive survey. Journal of Parallel and

Distributed Computing, 73(3):284–292, 2013.

[174] J. Wang, S. C. Hoi, P. Zhao, J. Zhuang, Z.-Y. Liu, et al.

Large scale online kernel classification. In Proceedings

of the Twenty-Third international joint conference on

Artificial Intelligence, pages 1750–1756. AAAI Press, 2013.

[175] J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised

hashing for scalable image retrieval. In Computer Vision

and Pattern Recognition, 2010 IEEE Conference on, pages

3424–3431. IEEE, 2010.

BIBLIOGRAPHY 186

[176] J. Wang, J. D. Lee, M. Mahdavi, M. Kolar, N. Srebro,

et al. Sketching meets random projection in the dual: A

provable recovery algorithm for big and high-dimensional

data. Electronic Journal of Statistics, 11(2):4896–4944,

2017.

[177] J. Wang, T. Zhang, J. Song, N. Sebe, and H. T.

Shen. A survey on learning to hash. arXiv preprint

arXiv:1606.00185, 2016.

[178] P.-A. Wang and C.-J. Lu. Tensor decomposition via

simultaneous power iteration. In International Conference

on Machine Learning, pages 3665–3673, 2017.

[179] S. Wang, A. Gittens, and M. W. Mahoney. Scalable kernel

k-means clustering with nystrom approximation: Relative-

error bounds. arXiv preprint arXiv:1706.02803, 2017.

[180] S. Wang, A. Gittens, and M. W. Mahoney. Sketched

ridge regression: Optimization perspective, statistical

perspective, and model averaging. arXiv preprint

arXiv:1702.04837, 2017.

[181] S. Wang and Z. Zhang. Improving cur matrix decom-

position and the nyström approximation via adaptive

sampling. The Journal of Machine Learning Research,

14(1):2729–2769, 2013.

[182] Y. Wang and A. Anandkumar. Online and differentially-

private tensor decomposition. In Advances in Neural

Information Processing Systems, pages 3531–3539, 2016.

[183] Y. Wang, D. Feng, D. Li, X. Chen, Y. Zhao, and X. Niu.

A mobile recommendation system based on logistic re-

BIBLIOGRAPHY 187

gression and gradient boosting decision trees. In Neural

Networks (IJCNN), 2016 International Joint Conference

on, pages 1896–1902. IEEE, 2016.

[184] Y. Wang, H.-Y. Tung, A. J. Smola, and A. Anandkumar.

Fast and guaranteed tensor decomposition via sketching.

In Advances in Neural Information Processing Systems,

pages 991–999, 2015.

[185] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In

Advances in neural information processing systems, 2009.

[186] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen,

and H. Li. Terngrad: Ternary gradients to reduce com-

munication in distributed deep learning. arXiv preprint

arXiv:1705.07878, 2017.

[187] C. K. Williams and M. Seeger. Using the nyström method

to speed up kernel machines. In Advances in neural

information processing systems, pages 682–688, 2001.

[188] D. P. Woodruff et al. Sketching as a tool for numerical

linear algebra. Foundations and Trends in Theoretical

Computer Science, 2014.

[189] C. Woolam, M. M. Masud, and L. Khan. Lacking labels

in the stream: classifying evolving stream data with few

labels. In International Symposium on Methodologies for

Intelligent Systems, pages 552–562. Springer, 2009.

[190] S. Wu, S. Bhojanapalli, S. Sanghavi, and A. G. Dimakis.

Single pass pca of matrix products. In Advances in Neural

Information Processing Systems, 2016.

BIBLIOGRAPHY 188

[191] L. Xie, L. Zhu, and G. Chen. Unsupervised multi-graph

cross-modal hashing for large-scale multimedia retrieval.

Multimedia Tools and Applications, pages 1–20, 2016.

[192] P. Xu, J. Yang, F. Roosta-Khorasani, C. Ré, and M. W.

Mahoney. Sub-sampled newton methods with non-uniform

sampling. In Advances in Neural Information Processing

Systems, pages 3000–3008, 2016.

[193] H. Yang, I. King, and M. R. Lyu. Sparse Learning Un-

der Regularization Framework. LAP Lambert Academic

Publishing, April 2011.

[194] H. Yang, Z. Xu, J. Ye, I. King, and M. R. Lyu. Efficient

sparse generalized multiple kernel learning. IEEE Trans-

actions on Neural Networks, 22(3):433–446, March 2011.

[195] J. Yang, Y.-L. Chow, C. Re, and M. W. Mahoney.

Weighted sgd for lp regression with randomized precon-

ditioning. In Proceedings of the Twenty-Seventh Annual

ACM-SIAM Symposium on Discrete Algorithms, pages

558–569. Society for Industrial and Applied Mathematics,

2016.

[196] J. Yang, X. Meng, and M. W. Mahoney. Implementing

randomized matrix algorithms in parallel and distributed

environments. Proceedings of the IEEE, 104(1):58–92,

2016.

[197] J. Yang, V. Sindhwani, H. Avron, and M. Mahoney.

Quasi-monte carlo feature maps for shift-invariant kernels.

In Proceedings of The 31st International Conference on

Machine Learning, pages 485–493, 2014.

BIBLIOGRAPHY 189

[198] T. Yang, Q. Lin, and R. Jin. Big data analytics: Opti-

mization and randomization. In Proceedings of the 21th

ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 2327–2327. ACM, 2015.

[199] F. X. Yu, S. Kumar, Y. Gong, and S.-F. Chang. Circulant

binary embedding. In ICML, 2014.

[200] K. Zhang, I. W. Tsang, and J. T. Kwok. Improved nystrom

low-rank approximation and error analysis. In Proceedings

of the 25th international conference on Machine learning,

pages 1232–1239. ACM, 2008.

[201] L. Zhang, M. Mahdavi, R. Jin, T. Yang, and S. Zhu. Re-

covering the optimal solution by dual random projection.

In Conference on Learning Theory, pages 135–157, 2013.

[202] L. Zhang, T. Yang, R. Jin, and Z.-H. Zhou. Sparse learning

for large-scale and high-dimensional data: A randomized

convex-concave optimization approach. In International

Conference on Algorithmic Learning Theory, pages 83–97.

Springer, 2016.

[203] W. Zhang, L. Zhang, R. Jin, D. Cai, and X. He. Accel-

erated sparse linear regression via random projection. In

AAAI, pages 2337–2343, 2016.

[204] Z. Zhang. The singular value decomposition, applications

and beyond. arXiv preprint arXiv:1510.08532, 2015.

[205] H. Zou, T. Hastie, and R. Tibshirani. Sparse principal

component analysis. Journal of computational and graph-

ical statistics, 15(2):265–286, 2006.

	Abstract
	Acknowledgement
	Introduction
	Motivation
	Machine Learning with Big Data
	Challenges
	Solutions and Our Focus

	Thesis Contribution
	Thesis Organization

	Background
	Preliminaries
	Randomized Algorithms
	Techniques on Randomization
	Random Projection
	Random Sampling

	Learning Problems of Interest
	Kernel Methods
	Unsupervised Online Hashing
	Covariance Matrix Estimation

	Training-Efficient Feature Map for Shift-Invariant Kernels
	Introduction
	Related Work
	Random Feature Maps for Shift-Invariant Kernels
	Subspace Embedding

	Training-Efficient Feature Map
	Methods and Algorithms
	Kernel Approximation Analysis
	Impact on Learning Tasks
	Computational Analysis

	Empirical Studies
	Kernel Approximation Quality
	Performance on KRR

	Conclusion
	Proofs
	Preliminaries
	Proof of Theorem 3.4
	Proof of Theorem 3.5
	Proof of Theorem 3.7

	Faster Online Sketching Hashing
	Introduction
	Related Work
	Online Sketching Hashing
	Frequent Directions for Sketching
	Fast JL Transform

	Faster Online Sketching Hashing
	Motivation, Method and Results
	Implementation of the Fast JL Trasform in FFD

	Empirical Studies
	Numerical Studies on Sketching
	Comparisons with LSH and OSH
	Comparisons with Batch Solutions

	Conclusion
	Proofs
	Preliminaries
	Proof of Lemma 4.2
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Corollary 4.1

	Toward Efficient and Accurate Covariance Matrix Estimation on Compressed Data
	Introduction
	Related Work
	Efficient and Accurate Covariance Estimation
	Method and Algorithm
	Primary Provable Results
	Computational Complexity

	Empirical Studies
	Experiments on Synthetic Datasets
	Experiments on Real-World Datasets

	Conclusion
	Proofs
	Preliminaries
	Proof of Lemma 5.5
	Proof of Lemma 5.6
	Proof of Theorem 5.1
	Proof of Theorem 5.2
	Proof of Corollary 5.1
	Proof of Corollary 5.2
	Proof of Corollary 5.3

	Details for Counterparts
	Theorems for Gauss-Inverse and UniSample-HD
	Discussion

	Details for Computational Complexity
	Impact of the Parameter for Our Approach
	Discussion
	Experiments

	Conclusions and Future Work
	Conclusion
	Future Work
	Randomized Algorithms and Implicit Regularization
	Randomized Algorithms for Deep Neural Networks
	Randomized Algorithms for Parallel/Distributed Computation

	Bibliography

