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Abstract of thesis titled:
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Existing natural language processing (NLP) systems are built on three
basic components, namely, data, model, and algorithm. Among the
three, data is the foundation of NLP systems, since it decides the
architecture of models, the scale of models, and the corresponding
optimization algorithms. Thus, it has been critical to keep improving
the training effectiveness on data for better performance. In this
thesis, we present our exploitation of data in two dimensions, i.e.,
the intra-sample structure and the inter-sample quality. We define
intra-sample structure exploitation as fully utilizing the structure
information shared by all text samples while inter-sample quality
exploitation as emphasizing a certain type of text samples. Re-
garding intra-sample structure exploitation, we work on the emotion
recognition in conversations (ERC) task due to the rich structure
information in conversations and focus on context enhancement and
self-supervised learning. For inter-sample quality, we work on neural
machine translation (NMT) which is a classic language generation task
with large-scale benchmark datasets and complete evaluation criteria,
and focus on uncertainty-based data rejuvenation and self-training
sampling.

First, we investigate the intra-sample structure for context en-
hancement in conversations. It is important to capture the context
information accurately to perform the ERC task as an utterance
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may express different emotions in different contexts. Therefore, we
propose a hierarchical gated recurrent unit (HiGRU) framework with
a lower-level GRU to capture word-level contexts and an upper-level
GRU to capture utterance-level contexts. We further promote the
vanilla HiGRU to two variants, HiGRU with individual features
fusion (HiGRU-f) and HiGRU with self-attention and features fusion
(HiGRU-sf), so that the word- and utterance-level individual inputs
and the long-range context information can be sufficiently utilized.
Experiments on three widely used ERC datasets demonstrate that our
HiGRU models are effective in improving the performance of ERC.

Second, we study the intra-sample structure to perform self-
supervised learning on unlabeled conversation data. Data scarcity is
an issue for the ERC task, which prevents the commonly used context-
dependent models from playing their maximum effect. However,
annotating more data is costly and difficult as annotators are required
to recognize the subtle difference between emotions and consider the
contexts. Therefore, we propose a conversation completion (Con-
vCom) task to pre-train a context-dependent encoder (Pre-CODE)
on the massive unlabeled conversation data. Essentially, such a pre-
training task utilizes the sequential relationship between utterances in
each conversation, enabling the learning of representations at both
utterance- and conversation-level. Through fine-tuning on labeled
data, our Pre-CODE achieves constantly significant improvements
across the ERC datasets.

Third, we exploit the inter-sample quality for uncertainty-based
data rejuvenation on the NMT task with large-scale datasets. Large-
scale datasets are important for training large and well-performing
models, but also contain complex patterns and potential noises that
pose challenges for training NMT models effectively. Thus, we identify
the inactive data in a dataset which contributes less to the model
performance by model uncertainty, and show that the existence of
inactive data depends on the data distribution. We further introduce
data rejuvenation (DataReju) to improve the training of NMT
models on large-scale datasets by re-labeling the inactive data with

ii



forward-translation. Experiments on large-scale datasets show that
our DataReju approach consistently and significantly improves the
performance of strong NMT models.

At last, we explore the inter-sample quality for uncertainty-based
self-training sampling to leverage monolingual data more efficiently
for the NMT task. Self-training augments the training of NMT
models with synthetic parallel data, in which the target sentences are
obtained by translating the monolingual sentences at the source side.
The monolingual sentences usually come from a randomly sampled
subset of large-scale monolingual data. However, we empirically
show random sampling is sub-optimal and propose to select the
most informative monolingual sentences for self-training. Thus, we
calculate the translation uncertainty of monolingual sentences based
on a bilingual dictionary, and propose an uncertainty-based sampling
(UncSamp) strategy that prefers to sample monolingual sentences
with relatively higher uncertainty for self-training. Experiments on
large-scale NMT datasets demonstrate that our UncSamp strategy
improves the translation quality significantly, especially for uncertain
sentences.
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摘要 ：

當下，先進的自然語言處理（NLP）系統都是基於三個基礎要素，
即，數據、模型和算法。在這三個要素中，數據是NLP系統的根
本，因為它決定了所使用的模型框架、模型規模和對應的優化算

法。因而，如何持續提高在數據上的訓練有效性以獲得更好的性

能是一個十分重要的問題。在本論文中，我們從兩個維度展示了

我們對於數據的開發利用，即，樣本內結構和樣本間質量。我們

定義樣本內結構開發為充分地利用所有樣本共享的結構信息，而樣

本間質量開發為強調對某一類樣本的學習。對於樣本內結構開發，

考慮到對話具有豐富的結構信息，我們在一個基於對話的情緒識別

（ERC）任務上進行研究並關注於兩個問題，包括上下文增強和自
監督學習。對於樣本間質量開發，我們在神經機器翻譯（NMT）任
務上開展研究，該任務是一個經典的語言生成任務，並且具有大規

模訓練數據和完備的評價體系。我們關注兩個問題，包括基於不確

定性的數據重生和基於不確定性的自訓練採樣。

首先，我們通過開發文本對話樣本內結構來獲得上下文增強，

從而提升模型在ERC任務上的效果。對於ERC任務來說，如何準確
地捕捉上下文信息十分重要，因為一句話在不同的上下文裡可能

表達不同的情緒。因此，我們提出了一種層級結構的門控循環單元

（HiGRU），其包括一個用於捕捉單詞級別上下文的GRU和一個
用於捕捉句子級別上下文的GRU。進一步，我們提出了HiGRU兩
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個改進版本，即，具有個體特征融合的HiGRU（HiGRU-f）和同
時具有個體特征融合與自注意力機制的HiGRU（HiGRU-sf），充
分地利用了單詞/句子級別個體特征和長距離上下文信息。通過在三
個常用的ERC數據集上開展實驗，我們驗證了所提出的HiGRU模型
能夠有效地提升預測性能。

其次，我們通過開發文本對話樣本內結構來進行自監督學習，

從而利用無標籤的文本對話數據。數據稀缺是ERC任務的一個重要
問題，它阻礙了常用的上下文依賴模型充分發揮效果。然而，人工

標註更多數據昂貴且困難，因為標註人員需要辨別不同情緒類別間

微弱的差異，以及需要考慮所處的上下文。因此，我們提出了一個

對話補全（ConvCom）任務，用於在大量的無標籤對話數據上預訓
練一個依賴上下文的編碼器（Pre-CODE）。本質上，這樣的預訓
練任務利用了每個對話裡句子之間的序列關係，因而可以同時在句

子和對話量級進行表示學習。通過在有標籤數據上進行精調，我們

提出的Pre-CODE方法能夠顯著且一致地提升ERC任務的效果。

接著，我們通過開發NMT大規模數據的樣本間質量來進行基
於不確定性的數據重生。大規模數據是訓練一個性能良好的大規

模NMT模型的要素，但其中的複雜模式及潛在噪聲也給模型的有效
訓練帶來的挑戰。因而，我們提出通過模型的不確定性來識別訓練

數據的不活躍數據，即那些對模型性能貢獻很小的數據，並且驗證

了不活躍樣本的存在主要和數據分佈本身有關。進一步，我們提出

了數據重生（DataReju），通過正向翻譯的方式對不活躍數據進
行重新打標籤，從而提升NMT模型在大規模數據上的訓練效果。通
過在兩個大規模NMT數據集上進行實驗，我們驗證了DataReju能
夠在強悍的基線模型基礎上得到一致且顯著的提升。

最後，我們通過開發大規模單語數據的樣本間質量來進行基於

不確定性的自訓練採樣，從而更加高效地利用單語數據提升NMT任
務的性能。自訓練能夠給NMT模型補充偽平行數據，即目標端句
子是通過源端單語句子翻譯得到的。這些單語句子通常是來自於大

規模單語數據中隨機採樣的一個子集。然而，我們通過實驗證明了

隨機採樣並不是最優的，並提出選擇最具有信息量的單語數據來開

展自訓練。具體地，我們基於一個從真實平行語料中抽取的雙語詞

典，計算了每個單語句子的翻譯不確定性。接著，我們提出了基於
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不確定性的採樣（UncSamp）策略，在採樣時更傾向於選擇不確
定性更高的單語數據。在大規模NMT數據集上的實驗顯示，我們
的UncSamp方法能夠顯著提高翻譯質量，尤其是對於不確定的句子
的翻譯，並且我們的方法能提升目標端低頻詞的預測準確率。

vi



Acknowledgement

First and foremost, I would like to thank my supervisors, Prof. Ir-
win King and Prof. Michael R. Lyu, for their excellent supervision
during my Ph.D. study at CUHK. On one hand, their open mind
allows me to explore interesting research topics without hesitation.
On the other hand, their rigorous attitude towards research deeply
influences me and prompts me to improve myself continuously. During
the long Ph.D. study period, I have learned so much from them, not
only their knowledge in research but also their wisdom of life.

I am very grateful to my thesis assessment committee members,
Prof. Kevin Yip and Prof. Andrew Xunying Liu, for their constructive
comments and insightful suggestions to this thesis and all the term
presentations during my Ph.D. study. Great thanks to Prof. Shou-
De Lin from National Taiwan University, who kindly serves as the
external examiner for this thesis.

I would like to thank my mentors, Dr. XingWang, and Dr. Zhaopeng
Tu when I interned in Tencent AI Lab for their valuable contributions
to the research in this thesis. Also, I would like to thank my colleagues
during the internship, Longyue Wang, Yong Wang, Yilin Yang, Bo He,
Boyuan Wang, Wenxuan Wang, Shuo Wang, Cunxiao Du, Xuebo Liu,
Liang Ding, Mingzhou Xu, Hongye Liu, Yongchang Hao, Zhiwei He,
and Jiaqing Zhang for their great help in my research and life.

I am very thankful to my fantastic group fellows, Haiqin Yang,
Hongyi Zhang, Shenglin Zhao, Xiaotian Yu, Yuxin Su, Cuiyun Gao,
Jichuan Zeng, Jiani Zhang, Ken Chan, Jian Li, Han Shao, Wang Chen,
Yue Wang, Pengpeng Liu, Shilin He, Haoli Bai, Yifan Gao, Weibin

vii



Wu, Jingjing Li, Zhuangbin Chen, Tianyi Yang, Ziqiao Meng, and
Wenchao Gu, who are the family of mine in CUHK.

I also want to thank some old friends during my study at Nanjing
University who have always been supporting me and become an
important part of my life. They are my roommates, Xiaolei Li,
Gaozheng Jin, Jian Yuan, Yonghao Zhao, Ziqiao Luan, Guanqun
Zhou, and my good friends, Dongdong Chen, Jia Gu, Jieyu Ding,
and Zhifei Ding.

Last but most importantly, I would like to thank my family.
Thanks to my girlfriend, Miss Yuye Wang, who taught me how
to enjoy life. Her unreserved love, meticulous care, and constant
companionship are the great motivation for me to complete my Ph.D.
study. Thanks to my parents, my sister, my brother-in-law, my
grandparents, and all my other family members. Their deep love and
unconditional trust are the driving force for me to thrive. Special
thanks to my little nephew and niece. Being with these two cute kids
always makes me feel younger and more energetic.

viii



Contents

Abstract i

Acknowledgement vii

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Contributions . . . . . . . . . . . . . . . . . . . 9
1.3 Publications During Ph.D. Study . . . . . . . . . . . . 11
1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . 12

2 Background Review 15
2.1 Context Modeling . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Sequential Modeling . . . . . . . . . . . . . . . 16
2.1.2 Hierarchical Modeling . . . . . . . . . . . . . . 21

2.2 Self-Supervised Learning . . . . . . . . . . . . . . . . . 27
2.2.1 Word-Level Pre-Training . . . . . . . . . . . . . 27
2.2.2 Sentence-Level Pre-Training . . . . . . . . . . . 29
2.2.3 Hierarchical Pre-Training . . . . . . . . . . . . . 33

2.3 Data Re-Weighting . . . . . . . . . . . . . . . . . . . . 34
2.3.1 Dynamic Weighting . . . . . . . . . . . . . . . . 34
2.3.2 Data Selection . . . . . . . . . . . . . . . . . . . 36
2.3.3 Curriculum Learning . . . . . . . . . . . . . . . 37

2.4 Data Augmentation . . . . . . . . . . . . . . . . . . . . 38
2.4.1 Back-Translation . . . . . . . . . . . . . . . . . 38
2.4.2 Self-Training . . . . . . . . . . . . . . . . . . . . 39
2.4.3 Hybrid Approach . . . . . . . . . . . . . . . . . 41

2.5 Inference and Evaluation . . . . . . . . . . . . . . . . . 42

ix



2.5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . 42
2.5.2 Inference . . . . . . . . . . . . . . . . . . . . . . 47
2.5.3 Evaluation Metrics . . . . . . . . . . . . . . . . 47

3 Intra-Sample Structure Mining for Context Enhance-
ment 51
3.1 Problems and Motivation . . . . . . . . . . . . . . . . . 51
3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.1 Vanilla HiGRU . . . . . . . . . . . . . . . . . . 54
3.2.2 Individual Features Fusion . . . . . . . . . . . . 56
3.2.3 Long-Range Context . . . . . . . . . . . . . . . 57
3.2.4 Training Objective . . . . . . . . . . . . . . . . 58

3.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . 59
3.3.2 Evaluation Metrics . . . . . . . . . . . . . . . . 61
3.3.3 Compared Methods . . . . . . . . . . . . . . . . 61
3.3.4 Training Procedure . . . . . . . . . . . . . . . . 62
3.3.5 Main Results . . . . . . . . . . . . . . . . . . . 63

3.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4.1 Model Size . . . . . . . . . . . . . . . . . . . . . 66
3.4.2 Successful Cases . . . . . . . . . . . . . . . . . . 67
3.4.3 Failed Cases . . . . . . . . . . . . . . . . . . . . 69

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Intra-Sample Structure Mining for Self-Supervised Learn-
ing 71
4.1 Problems and Motivation . . . . . . . . . . . . . . . . . 72
4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.1 Pre-training Task . . . . . . . . . . . . . . . . . 73
4.2.2 Pre-training Model . . . . . . . . . . . . . . . . 74

4.3 Experiment: Pre-training . . . . . . . . . . . . . . . . . 76
4.3.1 Unlabeled Conversation Data . . . . . . . . . . 76
4.3.2 Noise Utterances . . . . . . . . . . . . . . . . . 77
4.3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . 77
4.3.4 Training Details . . . . . . . . . . . . . . . . . . 78

x



4.3.5 Results . . . . . . . . . . . . . . . . . . . . . . . 78
4.4 Experiment: Fine-tuning . . . . . . . . . . . . . . . . . 79

4.4.1 ERC Architecture . . . . . . . . . . . . . . . . . 79
4.4.2 Compared Methods . . . . . . . . . . . . . . . . 79
4.4.3 ERC Datasets . . . . . . . . . . . . . . . . . . . 80
4.4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . 82
4.4.5 Training Details . . . . . . . . . . . . . . . . . . 82
4.4.6 Results . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.5.1 Model Capacity . . . . . . . . . . . . . . . . . . 84
4.5.2 Layer Effect . . . . . . . . . . . . . . . . . . . . 84
4.5.3 Qualitative Study . . . . . . . . . . . . . . . . . 85

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 86

5 Inter-Sample Quality Mining for Uncertainty-Based
Data Rejuvenation 89
5.1 Problems and Motivation . . . . . . . . . . . . . . . . . 90
5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . 92

5.2.1 Identification Model . . . . . . . . . . . . . . . 93
5.2.2 Rejuvenation Model . . . . . . . . . . . . . . . 93

5.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3.1 Experimental Setup . . . . . . . . . . . . . . . . 94
5.3.2 Identification of Inactive Samples . . . . . . . . 95
5.3.3 Rejuvenation of Inactive Samples . . . . . . . . 99
5.3.4 Main Results . . . . . . . . . . . . . . . . . . . 100

5.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.4.1 Linguistics Properties . . . . . . . . . . . . . . . 105
5.4.2 Learning Stability . . . . . . . . . . . . . . . . . 106
5.4.3 Generalization Capability . . . . . . . . . . . . 107
5.4.4 Speeding Up . . . . . . . . . . . . . . . . . . . . 108
5.4.5 Inactive Sample Cases . . . . . . . . . . . . . . 109

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 110

6 Inter-Sample Quality Mining for Uncertainty-Based
Self-Training Sampling 113

xi



6.1 Problems and Motivation . . . . . . . . . . . . . . . . . 114
6.2 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2.1 Identification of Uncertain Data . . . . . . . . . 116
6.2.2 Experimental Setup . . . . . . . . . . . . . . . . 117
6.2.3 Effect of Uncertain Data . . . . . . . . . . . . . 119
6.2.4 Linguistic Properties of Uncertain Data . . . . . 121

6.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . 123
6.3.1 Uncertainty-based Sampling Strategy . . . . . . 123
6.3.2 Overall Framework . . . . . . . . . . . . . . . . 124

6.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . 125
6.4.1 Constrained Scenario . . . . . . . . . . . . . . . 125
6.4.2 Unconstrained Scenario . . . . . . . . . . . . . . 128

6.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 129
6.5.1 Uncertain Sentences . . . . . . . . . . . . . . . 129
6.5.2 Low-Frequency Words . . . . . . . . . . . . . . 130

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 131

7 Conclusion and Future Work 133
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 133
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . 135

7.2.1 Low-Frequency Issue in Data Augmentation . . 135
7.2.2 Low-Frequency Issue in Multilingual Machine

Translation . . . . . . . . . . . . . . . . . . . . 136
7.2.3 Self-Supervised Multilingual Pre-training . . . . 137

Bibliography 139

xii



List of Figures

1.1 A general diagram for text classification. . . . . . . . . 2
1.2 An example of emotion recognition in conversations

from Friends. . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 An example of machine translation by Google Translate. 7
1.4 Overview of the research in this thesis. . . . . . . . . . 8

2.1 Overview of the research on effective training with
data engineering. Cells marked with publication venues
(e.g., AAAI’20) represent our studies, among which the
venues in red are included in this thesis. . . . . . . . . 16

2.2 The architecture of one layer CNN with two channels
for a text sample [1]. . . . . . . . . . . . . . . . . . . . 17

2.3 The unfold recurrent neural network [2]. . . . . . . . . 18
2.4 The architecture of SAN [3]. . . . . . . . . . . . . . . . 20
2.5 The architecture of HAN [4]. . . . . . . . . . . . . . . 22
2.6 The architecture of cLSTM [5]. . . . . . . . . . . . . . 23
2.7 The architecture of CMN [6]. . . . . . . . . . . . . . . 25
2.8 The architecture of DialogueRNN [7]. . . . . . . . . . 26
2.9 The architectures of Skip-gram and Continuous Bag of

Words models. . . . . . . . . . . . . . . . . . . . . . . . 28
2.10 The architecture of ELMo [8]. . . . . . . . . . . . . . . 30
2.11 The architecture of GPT [8]. . . . . . . . . . . . . . . . 31
2.12 The architecture of BERT [8]. . . . . . . . . . . . . . . 32
2.13 The architecture of TL-ERC [9]. . . . . . . . . . . . . . 33
2.14 Overview of the competence-based curriculum learn-

ing [10]. . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.15 Workflows of back-translation and self-training. . . . . 40

xiii



2.16 A confusion matrix of binary classification. . . . . . . . 48

3.1 The architecture of our proposed HiGRU-sf. “Atten-
tion” denotes self-attention. By removing the “Atten-
tion" layer, we attain HiGRU-f, and by further removing
the “Fusion” layer, we can recover the vanilla HiGRU. . 54

3.2 Self-attention over the forward hidden states of GRU. . 58

4.1 A data example in the ConvCom task. . . . . . . . . . 74

4.2 The architecture of the context-dependent encoder with
the pre-training objective. . . . . . . . . . . . . . . . . 75

4.3 The architecture for the ERC task. Both the utterance
encoder and conversation encoder are transferred from
the Pre-CODE. . . . . . . . . . . . . . . . . . . . . . 80

4.4 Detailed F1-score of each emotion class on IEMOCAP
and EmoryNLP. . . . . . . . . . . . . . . . . . . . . . . 83

5.1 The framework of data rejuvenation. The inactive
samples from the original training data are identified
by the identification model, then rejuvenated by the
rejuvenation model. The rejuvenated samples along
with the active samples are used together to train the
NMT model. . . . . . . . . . . . . . . . . . . . . . . . 92

5.2 Probability diagram on (a) En⇒De and (b) En⇒Fr
datasets. Training samples in smaller bins (e.g., 1,
2) are regarded as inactive samples due to their lower
probabilities. . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Translation performance of the NMT model trained
on the training data with the most inactive samples
removed. For comparison, results of the most active
samples and randomly sampled samples are also pre-
sented. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

xiv



5.4 Ratio of samples that are shared by different model
variants: random seed (a), model capacity (b), model
architecture on En⇒De (c) and En⇒Fr (d) datasets. A
high overlapping ratio for most inactive samples (i.e.,
1st data bin) demonstrates that the identified inactive
samples are not model-specific. . . . . . . . . . . . . . 98

5.5 Effect of the ratio of samples labeled as inactive sam-
ples. We used forward-translation as the rejuvenation
strategy and trained the final NMT model on the
combination of rejuvenated samples and active samples
from scratch. . . . . . . . . . . . . . . . . . . . . . . . 99

5.6 Linguistic properties of different training samples: fre-
quency rank (↑ more difficult), coverage (↓ more diffi-
cult), and uncertainty (↑ more difficult). . . . . . . . . 105

5.7 Learning curves on the En⇒De dataset. . . . . . . . . 107

5.8 Probability and ratio of source-translated samples over
the data bins of En⇒De test set. . . . . . . . . . . . . 109

6.1 Performance of self-training with increased size of
monolingual data. The BLEU score is averaged on
WMT En⇒De newstest2019 and newstest2020. . . . . 120

6.2 Relationship between uncertainty of monolingual data
and the corresponding NMT performance. The BLEU
score is averaged on WMT En⇒De newstest2019 and
newstest2020. . . . . . . . . . . . . . . . . . . . . . . . 120

6.3 Comparison of monolingual sentences with varied un-
certainty in terms of three properties, including sen-
tence length, word rarity, and coverage. . . . . . . . . . 121

6.4 Distribution of modified monolingual uncertainty and
sampling probability. The sample with high uncertainty
has more chance to be selected while that with exces-
sively high uncertainty would be penalized. . . . . . . 123

xv



6.5 Framework of the proposed uncertainty-based sampling
strategy for self-training. Procedures framed in the
red dashed box corresponds to our approach integrated
into the standard self-training framework. “Bitext”,
“Mono”, “Synthetic” denotes authentic parallel data,
monolingual data and synthetic parallel data, respec-
tively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

xvi



List of Tables

2.1 Datasets for emotion recognition in conversations. . . . 43
2.2 Datasets for machine translation. “⇒” denotes the

translation task in the forward direction and “⇐” in
the backward direction. . . . . . . . . . . . . . . . . . . 45

3.1 The word “okay” exhibits different emotions in the
American television sitcom, Friends. . . . . . . . . . . . 52

3.2 Statistics of the textual conversation datasets. . . . . . 59
3.3 Experimental results on IEMOCAP. “(Feat)” repre-

sents the features used in the models, where T, V,
and A denote the textual, visual, and audio features,
respectively. The underlined results of bcLSTM and
CMN are derived by us accordingly, while “-” represents
that the results are unavailable from the original paper.
For each emotion class, the corresponding column of
values are the accuracy scores. . . . . . . . . . . . . . . 63

3.4 Experimental results on Friends and EmotionPush. In
the Train column, F(E) denotes the model is trained on
only one training set, Friends or EmotionPush. F+E
means the model is trained on the mixed training set
while validated and tested individually. . . . . . . . . . 64

3.5 Experimental results of UWA on Friends by our pro-
posed models with different scales of utterance encoder. 67

3.6 “Okay” expresses distinct emotions in three different
scenes. . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.7 Wrong predictions made by both bcGRU and our
HiGRU-sf in two scenes. . . . . . . . . . . . . . . . . . 69

xvii



4.1 Statistics of the datasets for ERC. . . . . . . . . . . . . 72
4.2 Statistics of the created datasets for the ConvCom task. 77
4.3 Test results of CODE on the ConvCom task in three

capacities. . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4 Test results on IEMOCAP, EmoryNLP, and MOSEI∗.

The implemented bcLSTM performs much better than
the original one, possibly because that the original
bcLSTM is not trained end-to-end. . . . . . . . . . . . 81

4.5 Test results on Friends and EmotionPush. . . . . . . . 82
4.6 Ablation study on model capacity. . . . . . . . . . . . . 85
4.7 Ablation study on pre-trained layers. . . . . . . . . . . 85
4.8 Qualitative comparison between CODE and Pre-CODE

by two examples. . . . . . . . . . . . . . . . . . . . . . 86

5.1 Effect of different rejuvenation strategies. . . . . . . . . 100
5.2 Comparing data rejuvenation on identified inactive

samples and forward translation on randomly sampling
samples. . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3 Evaluation of translation performance across model
architectures and language pairs. “↑ / ⇑”: indicate
statistically significant improvement over the corre-
sponding baseline p < 0.05/0.01 respectively. . . . . . . 102

5.4 Comparison with other data manipulation approaches.
Results are reported on the En⇒De test set. . . . . . . 102

5.5 New testing rule on WMT19 En⇒De datasets, evalu-
ated on newstest2019 and newstest2020. . . . . . . . . 104

5.6 Results of generalization capability on the En⇒De
dataset. Larger Margin and GSNR values denote better
generalization capability. . . . . . . . . . . . . . . . . . 108

5.7 Results of speeding up (“Rej.–Big”) on the WMT14
En⇒De dataset. “Time” denotes the time of the whole
process using 4 NVIDIA Tesla V100 GPUs. . . . . . . . 109

xviii



5.8 Inactive samples from the training sets of En⇒De and
En⇒Fr. X, Y and Y’ represent the source sentence,
target sentence, and the rejuvenated target sentence,
respectively. Y and Y’ are also translated into English
(=>En:) by Google Translate for reference. For either
sample, the underlined phrases correspond to the same
content. . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.1 Translation performance with respect to different values
of β and R. The BLEU score is averaged on WMT
En⇒De newstest2019 and newstest2020. . . . . . . . . 126

6.2 Comparison of our UncSamp and RandSamp with
manual translations (Ora: manual translations; ST:
pseudo-sentences) on WMT En⇒De newstest2019 and
newstest2020. . . . . . . . . . . . . . . . . . . . . . . 127

6.3 Comparison of the proposed uncertainty-based sam-
pling strategy with related methods on WMT En⇒De
newstest2019 and newstest2020. . . . . . . . . . . . . 127

6.4 Translation performance on WMT En⇒De and WMT
En⇒Zh test sets. The results are reported with
de-tokenized case-sensitive SacreBLEU. We adopt the
Transformer-big with large batch training [11] to
achieve the strong performance. “↑ / ⇑”: indicate
statistically significant improvement over RandSamp
p < 0.05/0.01 respectively. . . . . . . . . . . . . . . . 128

6.5 Translation performance on uncertain sentences. The
relative improvements over Bitext for UncSamp are
also presented. . . . . . . . . . . . . . . . . . . . . . . . 130

6.6 Prediction accuracy of low-frequency words in the
translation outputs. The relative improvements over
Bitext for UncSamp are also presented. . . . . . . . 131

xix



Chapter 1

Introduction

This thesis presents our research on effective training with data engi-
neering for language understanding and generation. We first provide
a brief overview of the research problems explored in Section 1.1 and
highlight the main contributions of this thesis in Section 1.2. Then we
list the publications that are related to this thesis during my Ph.D.
study in Section 1.3 and outline the thesis structure in Section 1.4.

1.1 Overview

Natural language processing (NLP) is a subfield of linguistics, com-
puter science, and artificial intelligence (AI), aiming at extracting
insights from natural language texts or even generating new texts
with computers1. Like other AI areas, existing NLP systems are
built on three basic components, namely, data, model, and algorithm,
just as Andrew Ng said2. Data is the foundation of NLP systems,
since it decides the architecture of models, the scale of models and
the corresponding optimization algorithms. For example, language
understanding tasks are usually based on text-label pairs3 while
language generation tasks are based on text-text pairs4. The different
types of input data determine that the former tasks can be addressed

1https://en.wikipedia.org/wiki/Natural_language_processing
2https://www.deeplearning.ai/programs/
3http://nlpprogress.com/english/sentiment_analysis.html
4http://nlpprogress.com/english/machine_translation.html

1

https://www.andrewng.org/
https://en.wikipedia.org/wiki/Natural_language_processing
https://www.deeplearning.ai/programs/
http://nlpprogress.com/english/sentiment_analysis.html
http://nlpprogress.com/english/machine_translation.html
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Figure 1.1: A general diagram for text classification.

by an encoder-classifier architecture [1, 12] while the latter by an
encoder-decoder architecture [13, 14, 15]. Besides, tasks with small-
scale data should be tackled by small models, otherwise the models
will be over-fitting to the training data and cannot generalize well
to the test data. For example, the Transformer model [15] used for
IWSLT14 German-English translation task is configured with only
1/2 parameters5 of the Transformer-base model for WMT14 English-
German translation task due to the much smaller dataset (160K
vs. 4.5M sentence pairs). For large-scale data, large models are
usually preferred to memorize the knowledge from the data as much as
possible, for example, the Transformer-big model for WMT14 English-
French translation tasks [16] and deeper Transformer models [17]. In
addition, it is also critical to design how to feed the data [10, 18]
or whether certain kinds of data should be emphasized [19, 20, 21].
Obviously, how to train models more effectively on the data to
achieve better performance on NLP tasks is a significant problem for
researchers.

Figure 1.1 shows a general diagram of a text classification task
implemented by a neural network. To categorize, the text data
can be exploited in two different dimensions, i.e., fully utilizing the
shared structure information in each text sample or differentiating the
text samples by their quality. We define the first as intra-sample
structure exploitation and the second as inter-sample quality

5https://github.com/pytorch/fairseq/blob/master/fairseq/models/transformer.py

https://github.com/pytorch/fairseq/blob/master/fairseq/models/transformer.py
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exploitation. As defined, intra-sample structure exploitation focuses
on the structure information shared by all text samples. For examples,
a document or conversation is composed of multiple sentences, each
of which further contains a sequence of words. Such a hierarchical
structure conforms to any document or conversation, providing rich
information for representation learning. On the contrary, inter-sample
quality exploitation tries to find the quality difference among the text
samples and give different importance to the text samples accordingly
during training. The quality of samples could be measured by some
metrics such as the model confidence or linguistic properties (e.g.,
sentence length, and word rarity). Both directions are capable of
improving the effectiveness of training and the final performance.

In terms of intra-sample structure, the data structure information
provides important clues for representation learning in NLP. The
development of representation learning in recent years exactly reflects
the process of exploiting the data structure information in texts.
For example, as one of the NLP milestones, word embeddings from
Word2Vec [22] or GloVe [23] are obtained by learning the local
relationship between each word and its neighbors in the texts, which
gathers words with similar semantics into the same clusters in vector
space. However, these word embeddings are weak at modeling
polysemy (i.e., the coexistence of many possible meanings for a word
or phrase) as they are learned without considering the context in the
entire sentences. To address such a problem, ELMo [24] has been
proposed to learn deep contextualized word representations, which
are functions of internal states of a deep bidirectional language model
pre-trained on a large text corpus. The advantage of ELMo over
Word2Vec or GloVe is that it utilizes the sequential relationship
between words in a sentence, modeling better the data structure of
each sentence. Following EMLo are the famous pre-trained models
based on Transformer, including the BERT familiy [8, 25] and the
GPT family [26, 27, 28]. The main difference between the two families
is that BERT captures the context of a word by the words both before
and after it with a masked language model, whereas GPT insists on
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a traditional causal language model and keeps increasing the scales of
both model and text corpus. With a similar model capacity, BERT is
supposed to perform better than GPT on downstream tasks, of which
we attribute the reason to the exploitation of bidirectional contexts.
In other words, BERT exploits the data structure information of
sentences more thoroughly than GPT [8].

As introduced above, the studies on intra-sample structure has
mainly been conducted for sentences, which may contain less structure
information than more complex text formats like documents and con-
versations. In this thesis, we present our exploitation of intra-sample
structure information in conversations for a prevalent language under-
standing task, i.e., emotion recognition in conversations (ERC) [5, 6].
We choose the ERC task because of the rich structure information in
conversations and the relatively easy-to-follow implementations of the
models. The ERC task is defined as below:

Definition 1 (ERC) Suppose we are given a set of conversations,
D = {Di}Li=1, where L is the number of conversations. In each
conversation, Di = {(xj, sj, cj)}Ni

j=1 is a sequence of Ni utterances,
where the utterance xj is spoken by the speaker sj ∈ S with a certain
emotion cj ∈ C. All speakers compose the set S and the set C
consists of all emotions, such as anger, joy, sadness, and neutral.
Our goal is to train a model p(c|x; Θ) to tag each new utterance with
an emotion label from C as accurately as possible. Here, Θ represents
the parameters of the model. Figure 1.2 shows an example from the
TV sitcom Friends6.

Accordingly, we investigate the intra-structure information for the
ERC task in two aspects: context enhancement, and self-supervised
learning, which are elaborated as below:

• Context enhancement. We hope to fully utilize the structure
information in conversations to learn accurate representations
such that the ERC task can be well accomplished. While
the task can be performed for each individual utterance as

6https://www.imdb.com/title/tt0108778/

https://www.imdb.com/title/tt0108778/
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You sprayed my front twice!

You never turned?

No! I barely even got to three Mississippi.

Mississippi? I said count to five.

[Angry]

[Surprised]

[Angry]

[Neutral]

Figure 1.2: An example of emotion recognition in conversations from Friends.

traditional sentence-level text classification tasks, the context
between utterances also plays a critical role as an utterance may
indicate different emotions in different contexts.

• Self-supervised learning. We also attempt to leverage unla-
beled conversation data with self-supervised learning by utilizing
the structure information. This is particularly important for tasks
like ERC that face the data scarcity issue. Usually, labels provide
supervision for the training of models, which however are not
available for unlabeled data. To enable the training on unlabeled
data, it is important to explore the structure information in
conversations for self-supervised learning signals. These signals
could be the sequential relationship between utterances in each
conversation, which can be used for pre-training at both sentence-
level and conversation-level.

The above issues are representative since: 1) Recognizing emotions
in conversations is a novel direction of sentiment analysis, which uses
more practical user-generated texts. 2) Exploiting the intra-sample
structure information is especially critical for small-scale datasets,
which is exactly what the ERC task faces. 3) Leveraging unlabeled
data is the trend of NLP (also for other areas), which inevitably needs
the structure information to provide self-supervised signals.



6 CHAPTER 1. INTRODUCTION

In terms of inter-sample quality, it is especially important for
large-scale datasets. Nowadays, it has become a fashion to increase
the scale of datasets in order to train larger models [28]. Large
datasets are usually collected through automatic methods [29] rather
than human annotations. Without human correction, the source
of data could be heterogeneous and the data could be noisy. In
distinguishing the text sample quality, there have been a number
of strategies to take advantage of data, including data re-weighting,
data selection, and curriculum learning. Data re-weighting assigns
higher weights to preferred types of data when calculating the loss
function. There are mainly three choices of preferred data: 1)
self-paced learning [19] that prefers easy samples, 2) hard sample
mining [20] that exploits hard samples and 3) active learning [21] that
emphasizes high-variance samples. As for data selection, it could be
considered as an offline version of data re-weighting. It selects the
preferred types of data and feeds it to the models, without changing
the training algorithm. Commonly used metrics for data selection
could be based on language models [30], low-frequency words [31], or
model uncertainty [32]. Curriculum learning [10, 33, 34, 35] suggests
that the training of models may follow the learning process of human,
and proposes to feed the data from easy to difficult such that the
models can converge faster. The metrics for measuring the difficulty
of text samples could be sentence length and word rarity [10], data and
model uncertainty [36], or embedding norm [18]. Generally, exploiting
inter-sample quality information can accelerate the training of models
and achieve a significant boost of performance.

As introduced above, previous studies on inter-sample quality only
emphasize or select the preferred data but discard the rest. We are
curious about whether there is a way to re-use the discarded data
and thus fully utilize the whole data. Besides, we also hope to
leverage large-scale unlabeled data more efficiently based on the inter-
sample quality information. In this thesis, we investigate the inter-
sample quality on a classic language generation task, i.e., machine
translation (MT), for the large-scale benchmark datasets and its
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Figure 1.3: An example of machine translation by Google Translate.

complete evaluation criteria.

Definition 2 (MT) Suppose we are given a set of sentence pairs
from two languages X and Y , D = {[xi,yi]}Ni=1, where N is the
number of sentence pairs, xi and yi are sentences from X and Y .
Our goal is to train a translation model p(y|x,Θ) based on these
sentence pairs, which can translate each new source sentence into a
semantically equivalent and fluent sentence in the target language. In
this translation model, X is called the source language, Y is the target
language, and Θ denotes the parameters of the model. Figure 1.3
shows an translation example by Google Translate7.

In particular, we focus on data selection for both large-scale
bilingual data and monolingual data (i.e., labeled and unlabeled
data). While MT usually involves multiple languages, researchers
have been trying to utilize the monolingual data to boost the
training of MT models, for example, through pre-training [37] or
data augmentation [38]. Accordingly, we tackle two specific issues:
Uncertainty-based Data Rejuvenation, and Uncertainty-based Self-
training Sampling, which are elaborated as below:

• Uncertainty-based Data Rejuvenation. We aim to iden-
tify samples in the training data that contribute little to the
performance of models, which we define as inactive data. The
criterion for identification is based on the data uncertainty
calculated as the output probability of pre-trained MT models.
Beside identification, we hope to understand the characteristics
of inactive data and re-activate it to boost the performance of the

7https://translate.google.com/

https://translate.google.com/
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Figure 1.4: Overview of the research in this thesis.

models. The inactive data could be noisy data or sentences with
complex expressions, which may reduce the training efficiency of
the models.

• Uncertainty-based Self-training Sampling. We hope to
leverage the large-scale monolingual data more efficiently when
performing self-training for the MT task. Instead of translating
all monolingual data indiscriminately to construct the synthetic
parallel data, we attempt to sample monolingual data that are
both informative and with high-quality translations. The met-
ric for measuring the informativeness of monolingual sentences
could be translation uncertainty with a bilingual dictionary.
We propose an uncertainty-based sampling strategy to prefer
monolingual sentences with relatively high uncertainty.

The above issues are representative since: 1) The data (both
bilingual and monolingual) for current MT systems has been scaled
significantly, which inevitably contains inactive samples. 2) Inactive
data may contain knowledge that is not covered by the active data,
which should be re-used for better generalization capability. 3)
Monolingual data is massive but cannot be completely translated
due to the resource limit, which requires an economically alternative
approach.
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Therefore, the research of this thesis comprises two parts, as illus-
trated in Figure 1.4. In the first part, to improve the model training
effectiveness, we investigate the intra-sample structure information
in conversations for emotion recognition. This part consists of two
issues: context enhancement and self-supervised learning. In the
second part, we aim to improve the training effectiveness by exploiting
inter-sample quality information for machine translation. This part
also focuses on two issues: uncertainty-based data rejuvenation and
uncertainty-based self-training sampling. Generally, this thesis mainly
focuses on improving the effectiveness of model training from the
angle of data engineering, involving a small part of model design.
For the optimization algorithms, we follow the default settings used
in previous studies although we believe there is also room for
improvement. Besides, while it is also possible to incorporate the well-
known grammars of languages or some other prior knowledge, which
may require manual feature engineering, we focus on the end-to-end
training strategy to learn these features automatically in this thesis.

1.2 Thesis Contributions

In this thesis, we mainly focus on effective training of NLP models from
the data engineering perspectives including intra-sample structure
and inter-sample quality. Exploiting the training data is a crucial
step in improving the training efficiency and effectiveness hence the
final performance. Concerning intra-sample structure, we exploit the
structure information in conversations for context enhancement and
self-supervised learning to improve the performance of emotion recog-
nition. As for inter-sample quality, we investigate data uncertainty of
large-scale datasets for data rejuvenation and self-training sampling
to boost the performance of machine translation. The contributions
are summarized as follows:

• For context enhancement, we propose a hierarchical gated re-
current units (HiGRU) to capture both the context of words in
utterances and the context of utterances in conversations [39].
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To learn long-range context better, we also incorporate a self-
attention layer upon the words and utterances, respectively. Ex-
perimental results on three ERC datasets show that the HiGRU
approach improves the performance significantly, demonstrating
the effectiveness of our HiGRU in exploiting the intra-sample
structure information.

• For self-supervised learning, we propose a conversation comple-
tion task to utilize the sequential relationship of utterances as self-
supervised signals for pre-training [40]. Specifically, we pre-train
a context-dependent encoder (Pre-CODE) and achieve signifi-
cant improvements of performance on the ERC tasks after fine-
tuning. Extensive analyses show that the pre-trained parameters
at both utterance- and conversation-level play a noticeable effect
on the final performance, indicating the effectiveness of our pre-
training task in exploiting the intra-sample structure information.

• For uncertainty-based data rejuvenation, we divide the large-scale
datasets into active data and inactive data by their uncertainty
computed based on pre-training MT models [41]. We empirically
demonstrate that the existence of inactive data is not model-
specific and mainly dependent on the data distribution. Further,
we propose data rejuvenation (DataReju) to re-label the inac-
tive data, which is then re-used together with the active data
to train the MT models. Experiments on benchmark translation
tasks show that our DataReju obtains consistent and significant
improvements over strong baselines, demonstrating the effective-
ness of exploiting inter-sample quality information.

• For uncertainty-based self-training sampling, we propose the
uncertainty-based sampling (UncSamp) strategy to leverage
monolingual more efficiently when performing self-training for
the MT tasks [42]. Specifically, we compute the translation
uncertainty of monolingual sentences based on a bilingual dic-
tionary extracted from the authentic bilingual data, and prefer
monolingual sentences with relatively high uncertainty when
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sampling. Experiments on the benchmark MT tasks show
that the UncSamp approach obtains further improvements over
strong self-training baselines, demonstrating the necessity of
distinguishing samples.

1.3 Publications During Ph.D. Study

During my Ph.D. study period, we have five research works published
at top peer-reviewed conferences, as shown below. Among them, the
papers [1,3,4,5]8 correspond to the four contributions introduced in
Section 1.2, respectively, which will be elaborated in this thesis.

1. Wenxiang Jiao, Haiqin Yang, Irwin King, Michael R. Lyu.
“HiGRU: Hierarchical Gated Recurrent Units for Utterance-
Level Emotion Recognition”. In Proceedings of the 17th Annual
Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies
(NAACL-HLT 2019), pp. 397-406, Minneapolis, USA, June 2 -
June 7, 2019.

2. Wenxiang Jiao, Michael R. Lyu, Irwin King. “Real-Time
Emotion Recognition via Attention Gated Hierarchical Memory
Network”. In Proceedings of the Thirty-Fourth AAAI Conference
on Artificial Intelligence (AAAI 2020), pp. 8002-8009, New York,
USA, February 7 - February 12, 2020.

3. Wenxiang Jiao, Michael R. Lyu, Irwin King. “Exploiting
Unsupervised Data for Emotion Recognition in Conversations”.
In Proceedings of the 2020 Conference on Empirical Methods
in Natural Language Processing, Findings of EMNLP (EMNLP-
Findings 2020), pp. 4839-4846, Online, USA, November 16 -
November 20, 2020.

4. Wenxiang Jiao, Xing Wang, Shilin He, Irwin King, Michael
R. Lyu, Zhaopeng Tu. “Data Rejuvenation: Exploiting Inactive

8We do not elaborate the 2rd paper since it shares some similar designs of models as the 1st
paper but explores a different application scenario.
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Training Examples for Neural Machine Translation”. In Proceed-
ings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP 2020), pp. 2255-2266, Online,
USA, November 16 - November 20, 2020.

5. Wenxiang Jiao, Xing Wang, Zhaopeng Tu, Shuming Shi,
Michael R. Lyu, Irwin King. “Self-training Sampling with
Monolingual Data Uncertainty for Neural Machine Translation”.
In Proceedings of the Joint Conference of the 59th Annual
Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language
Processing (ACL-IJCNLP 2021), To appear, Online, Thailand,
August 1 - August 6, 2021.

1.4 Thesis Organization

The remainder of this thesis is organized as follows.

• Chapter 2
In this chapter, we provide a systematic review of the background
knowledge and related work. Firstly, we briefly introduce
different methods on exploiting intra-sample structure for context
modeling in §2.1. Then, §2.2 presents the explorations of
self-supervised learning based on intra-sample structure. §2.3
provides the background of data re-weighting, including dynamic
weighting, data selection and curriculum learning, which are criti-
cal for exploiting inter-sample quality information. Subsequently,
in §2.4, we provide some knowledge about data augmentation,
which is closely combined with data re-weighting in this thesis.
At last, §2.5 provides basic information about the datasets,
inference, and evaluation methods involved in this thesis.

• Chapter 3
This chapter presents our investigation on intra-sample structure
for context enhancement to perform the ERC tasks. We first
introduce the background and our motivation in §3.1 and then
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elaborate our proposed approach in §3.2. In §3.3, we conduct
experiments to evaluate our approach and compare it with related
works. We further provide analyses on model size and case studies
in §3.4 to gain a deeper understanding of our approach. Finally,
we summarize the work in §3.5.

• Chapter 4
In this chapter, we introduce our study on intra-sample structure
for self-supervised learning to leverage unlabeled conversation
data. We first introduce the background knowledge in §4.1. Then
we elaborate our pre-training tasks and the models in §4.2. In
experiments, we conduct experiments for both pre-training in
§4.3 and fine-tuning in §4.4, and show the effectiveness of our
approach. We further conduct analyses to understand how pre-
training improves the performance of the ERC tasks in §4.5.
Finally, we conclude the work in §4.6.

• Chapter 5
This chapter presents our study on inter-sample quality for
uncertainty-based data rejuvenation. We first introduce the
background and motivation in §5.1. Then we elaborate our
approach for both identification and rejuvenation of inactive data
in §5.2. In §5.3, we identify the inactive data, demonstrate
its reasonableness, and present the performance improvements
attained by our approach. Further, we conduct extensive
analyses to understand the inactive data and the proposed data
rejuvenation approach in §5.4. Finally, we summarize the work
in §5.5.

• Chapter 6
In this chapter, we show our exploration of inter-sample quality
for uncertainty-based self-training sampling. We first introduce
the motivation in §6.1 and conduct preliminary experiments to
demonstrate the necessity of distinguishing monolingual data in
§6.2. We then introduce our solution to the problem in §6.3
and test its effectiveness in §6.4. Finally, we provide analyses
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to understand how the proposed approach improves translation
quality. At last, we conclude the work in §6.6.

• Chapter 7
In the last chapter, we first summarize the thesis in §7.1. Then in
§7.2, we discuss several potential research directions about data
exploitation in the future, focusing on data augmentation and
self-supervised learning for the low-frequency issue.

2 End of chapter.



Chapter 2

Background Review

This chapter reviews the background knowledge and related work.
The overall structure is illustrated in Figure 2.1. We first present
the background of context modeling in Section 2.1 for sentences
and hierarchical texts, the latter of which contain richer intra-
sample structure information that will be exploited in this thesis.
In Section 2.2, we introduce the representative studies regarding
self-supervised learning in different granularity, including word-level,
sentence-level, and hierarchical structure, the last of which with rich
intra-sample structure information is explored to learn representations
from unlabeled conversation data. In Section 2.3, we will introduce
data re-weighting, including dynamic weighting, data selection and
curriculum learning, which are critical for exploiting inter-sample
quality in large-scale datasets. Subsequently, in Section 2.4, we
provide some knowledge about data augmentation, which is closely
combined with data re-weighting in this thesis. Finally, in Section 2.5,
we include the datasets, inference methods, and evaluation metrics
that are adopted in this thesis.

2.1 Context Modeling

In this section, we review the background of intra-sample structure
for context modeling, including sequential modeling and hierarchical
modeling.

15
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AAAI’20

NAACL’19

EMNLP’20 EMNLP’20

ACL’21

Figure 2.1: Overview of the research on effective training with data engineering.
Cells marked with publication venues (e.g., AAAI’20) represent our studies, among
which the venues in red are included in this thesis.

2.1.1 Sequential Modeling

In a coarse view, a text sample can be considered as a sequence of
tokens (including words and punctuations). Representative neural
networks, including the convolutional neural network (CNN), the
recurrent neural network (RNN), and the self-attention network
(SAN), are all trying to model this sequential relationship. Essentially,
modeling the sequential relationship is modeling the context of tokens.

CNN. Convolutional neural networks are basically several convolu-
tions with nonlinear activation functions such as Tanh and ReLU [43].
Though originally invented for computer vision, CNNs have proven to
be powerful in performing the text classification task [1, 44, 45]. The
model does not need to be a complex one to realize strong results. For
example, Kim [1] proposed a very simple CNN with only one layer
for text classification but achieved the state-of-the-art results across
several benchmark datasets.

Figure 2.2 presents the architecture of the one layer CNN in [1]
with two channels for a text sample. Suppose the sentence contains
T tokens denoted by indexes in the vocabulary W = w1, w2, · · · , wT ,
and each word corresponds to a vector with a size of dw in the word
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Figure 2.2: The architecture of one layer CNN with two channels for a text
sample [1].

embedding matrix. Thus, the text sample is represented as:

x1:T = x1 ⊕ x2 ⊕ · · · ⊕ xT , (2.1)

where xi ∈ Rdw , i ∈ [1, T ], and ⊕ denotes concatenation. With a filter
size of k, CNN can extract a feature ci from a window of words xi:i+h−1

as below:

ci = f(W · xi:i+k−1 + b). (2.2)

Here, W ∈ Rkdw is the weight, b ∈ R is the bias term, and f is an
activation function. The filter goes through the word sequence and
produces a feature map as:

c = [c1, c2, · · · , cT−k+1], (2.3)

with c ∈ RT−k+1.

Subsequently, a max-over-time pooling operation is applied over
the feature map, and the maximum value ĉ = max{c} is taken as the
feature of this filter. In practice, a CNN model involves multiple filters
(e.g., k = 3, 4, 5) and a number of feature maps (e.g., n feature maps
hence W ∈ Rkdw×n). The produced features are concatenated as the
representation of the sentence. While CNNs are usually used for text
classification, they have also been adapted for sequence-to-sequence
generation [14] to enable parallel computation, which is infeasible for
RNN-based encoder-decoder models due to the recurrence.
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Figure 2.3: The unfold recurrent neural network [2].

RNN. Recurrent neural network is a kind of architecture that enables
the persistence of previous events. As presented in Figure 2.3,
the output of RNN is conditioned on the current input and the
output of last time-step1. Therefore, RNN is particularly suitable for
tasks involving sequential inputs, such as language modeling, reading
comprehension, and machine translation. However, standard RNNs
are incapable of long-term dependencies. To address this problem,
Hochreiter and Schmidhuber [46] introduced the Long Short-Term
Memory networks (LSTMs), which have been refined and popularized
in recent decades, for example, the Gated Recurrent Unit (GRU) [47].

Formally, an LSTM is composed of a forget gate, an input gate, a
new state, a cell state, and an output state. The forget gate ft ∈ Rd1,
made by a sigmoid layer, decides what information to be thrown away
from the cell state ct ∈ Rd1. The input gate it ∈ Rd1 decides which
values of the new state c̃t ∈ Rd1 to be updated in the cell state. The
output gate decides what to output based on the cell state. The
formulations are as below:

ft = σ(Vf · xt +Wf · ht−1), (2.4)
it = σ(Vi · xt +Wi · ht−1), (2.5)
c̃t = tanh(Vc · xt +Wc · ht−1), (2.6)
ct = ft � ct−1 + it � c̃t, (2.7)
ot = σ(Vo · xt +Wo · ht−1), (2.8)
ht = ot · tanh(ct), (2.9)

where xt ∈ Rd0 is the input vector, V,W ∈ Rd1×d0 are weight
1https://colah.github.io/posts/2015-08-Understanding-LSTMs/

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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matrices, � denotes element-wise multiplication, and d0 and d1 are
the dimensions of inputs and hidden states, respectively.

As for GRU, the essence of it is a gating mechanism of RNN
yielding similar performance to LSTM, but consuming lower compu-
tational cost [47]. In the t-th step, GRU utilizes the reset gate rt ∈ Rd1

and the update gate zt ∈ Rd1 to control the information passed from
the current input xt ∈ Rd0 and the previous hidden state ht−1 ∈ Rd1.
The hidden state ht at the current step is then updated by:

zt = σ(Vz · xt +Wz · ht−1), (2.10)
rt = σ(Vr · xt +Wr · ht−1), (2.11)
h̃t = tanh(Vs · xt +Ws · (ht−1 � rt)), (2.12)
ht = (1− zt)� h̃t + zt � ht−1, (2.13)

where V,W ∈ Rd1×d0 are weight matrices, d0 and d1 are the dimensions
of inputs and hidden states, respectively.

In practice, a uni-directional RNN is adopted for language mod-
eling while a bi-directional RNN [12] can obtain more comprehensive
representations. These two kinds of RNN can also form an encoder-
decoder model [13] to perform sequence-to-sequence generation.

SAN. Before we introduce the self-attention network, we first take a
look at the general attention mechanism, the introduction of which is
a milestone for sequence-to-sequence generation tasks. The attention
network computes the relevance of each value vector based on queries
and keys. Intuitively, we can consider the query as what kind of
information we are looking for, the key as the relevance to the query,
and the value as the actual contents of the input.

Formally, given a set of m query vectors Q ∈ Rm×d, a set of n
key vectors K ∈ Rn×d, and associated value vectors V ∈ Rn×d, the
computation of attention network involves two steps. The first step is
to compute the relevance between queries and keys:

R = score(Q,K), (2.14)

where score(·) is the score function, and R ∈ Rm×n stores the relevance
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Figure 2.4: The architecture of SAN [3].

score between each key and value. The second step is to compute the
output vector. For each query vector, the corresponding output vector
is a weighted sum of value vectors:

Attention(Q,K,V) = softmax(R) ·V. (2.15)

Considering the choice of score function, the attention network can
be categorized into two classes, i.e., additive attention and dotproduct
attention. The additive attention compute scores through a feed-
forward neural network:

R[i,j] = v> tanh(WsQ[i] + UsK[j]), (2.16)

where Ws,Us ∈ Rd×d, and v are learnable parameters. As for
dotproduct attention, the scores are computed by the dotproduct
between each key and value:

R[i,j] = Q>[i]K[j]. (2.17)

Self-attention network [15] is a special expression of the general
attention network, in which the query, key and value vectors are the
same. Given a sentence with n tokens and the token embeddings
E ∈ Rn×d, the output by a self-attention layer is expressed as:

SAN(E,E,E) = softmax(EE>) · E. (2.18)

Compared to RNN and CNN, SAN enables both the parallel computa-
tion and the capturing of long-range context, because the computation
of each time-step does not depend on previous time-steps and each
time-step can assess its relevance to distant time-steps through
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attention. These advantages enables the training of large models on
large-scale datasets, making SAN the standard network in existing
NLP research.

2.1.2 Hierarchical Modeling

The text sample can also be decomposed into multiple levels from a
finer-grained view, especially when it contains several sentences, for
example, a document or a conversation. Essentially, the document
or the conversation follows a words-to-sentence and sentences-to-
document hierarchy. Representative models that consider such a hier-
archy include hierarchical attention network (HAN), contextual LSTM
(cLSTM), conversational memory network (CMN), and DialogueRNN.
In this way, both the context of words and that of sentences are
required to be well learned.

HAN. Hierarchical attention network tries to incorporate the knowl-
edge of text structure in the model architecture. Since a text is
composed of sentences, which can be further decomposed into words,
Yang et al. [4] likewise proposed to extract the representation of a
text by first learning representations of sentences and then combining
them by attentive pooling. The main difference that HAN holds
from other hierarchical networks is the way to extract the higher-level
representations from the lower-level ones. Different from CNN-GRNN
and LSTM-GRNN [48] that apply max-pooling or mean-pooling, HAN
proposes to use attentive pooling because of the observation that
different words and sentences in a text are differentially informative.

We take the procedure of extracting text representations for
example. Suppose we have a text sample with several sentences,
the sentence representations are extracted by some sentence encoder.
We can utilize a bidirectional GRU (Bi-GRU) to read the sequence
of sentences and produce the contextual sentence representations by
hl = [−→h l,

←−
h l], l ∈ [1, L], where L is the number of sentences, and −→h l

and ←−h l are the hidden states in the forward and backward direction,
respectively.
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Figure 2.5: The architecture of HAN [4].

The attentive pooling attempts to reward sentences that are clues
to classify a text correctly. It introduces a sentence level context vector
us to measure the importance of the sentences. The formulations are
as below:

ul = tanh(Ws · hl + bs), (2.19)

αl = exp (u>l us)∑
l exp (u>l us)

, (2.20)

v =
∑
l

αlhl, (2.21)

where Ws is the weight matrix, bs is the bias term, αl is the attention
score, and v is the representation of the text. Here, the vector us acts
as the query, and the projected hidden states ul serves as both the key
and the value in the attentive pooling.
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Figure 2.6: The architecture of cLSTM [5].

cLSTM. The motivation of contextual LSTM is based on the fact
that the classification of each member in a sequence is dependent
on the other members. Since the utterances in a conversation
form a sequence, when classifying an utterance, other utterances
should provide relevant contextual information. However, previous
approaches treat the utterances independently and ignore the order of
utterances in conversations. To address the problem, Poria et al. [5]
propose an LSTM network that takes the sequence of utterances in a
conversation in order to extract contextual features by modeling the
dependencies among the input utterances.

The work considers multimodal features, including text, audio,
and visual. Before fed to the LSTM, each kind of unimodal feature
is extracted for each utterance independently. A two-layer CNN
is applied over the input word embeddings to extract the textual
features. For the audio feature extraction, an open-source software
named openSMILE [49] is adopted to automatically extract audio
features such as pitch and voice intensity. As for the visual feature
extraction, a 3D-CNN [50] is applied over the video to learn relevant
features from each frame and the changes among consecutive frames.

To capture the flow of information triggers across utterances,
an LSTM network is adopted to fuse the independent features. As
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shown in Fig. 2.6, a simple unidirectional LSTM takes as input the
independent features, and this variant is termed as scLSTM. In fact,
the work investigates a few variants and finds that a bidirectional
LSTM (this variant is termed bcLSTM) performs the best because an
utterance can obtain information from other utterances both before
and after it.

Generally, cLSTM is suitable for sequence classification in both
monologues and dialogues. For different variants, the scenarios could
be different, for example, scLSTM better suits real-time sentiment
analysis. Because bcLSTM lets each utterance see both the history
and feature, which requires all utterances to be inputted at the same
time. In contrast, scLSTM only uses a unidirectional LSTM so that
the utterances can be inputted one by one. The common limitations
for all the variants of cLSTM include: 1) First, the model is not
an end-to-end version, since the independent features are extracted
beforehand and will not be updated during training. 2) Second, the
encoder for textual feature extraction is CNN, which is incompatible
with the LSTM over it and could be improved by a bidirectional LSTM
or a bidirectional GRU. 3) Third, cLSTM is incapable of long-range
summarization and weighted influence from the context.

CMN. Conversational memory network [6] is dedicated to emotion
recognition in dyadic conversations. The work argues that emotional
dynamics in a conversation are driven by both self- and inter-speaker
emotion influence. Self-influence refers to the degree to which a
speaker’s feelings carry over from one moment to another. Inter-
speaker influence means that speakers can affect and be affected by
their counterparts in terms of emotional state. Besides, it points out
that cLSTM is incapable of long-range summarization and unweighted
influence from the context. CMN is efficient in capturing long-range
context due to memory nets, which can also decide the importance
of each utterance in the context. To model the self and inter-speaker
influence, the memory of each speaker is obtained by a GRU each, and
a current utterance can attend to both memories.
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Figure 2.7: The architecture of CMN [6].

The memory network in CMN is inspired by [51]. For each speaker,
there are two memory banks generated by two GRUs over the most
recent K utterances, respectively. The first memory bank is used
to compute the relevance of each memory context with the query
(the current utterance) by attention, and the second memory bank is
weighted by the attention scores and summed as the memory output.
The final representation for each utterance is the concatenation of
the query and the memory outputs of each speaker. For multi-hop
memory networks, each speaker takes the output memory of the last
hop as the input memory of the current hop, and utilizes a new GRU
to produce the output memory of the current hop. At every hop, the
representation of the query utterance is updated as the sum of the
query and the memory outputs at the last hop.

The limitations of CMN include: 1) First, the idea of separating
the memory of each speaker is intuitive. However, in practice, there are
conversations involving many speakers, resulting in the complication
of modeling and the data sparsity of each speaker. 2) Second, the use
of multi-hop memory networks induces a linear increase of the model
parameters with respect to the number of hops. 3) The representation
of the query utterance does not take the history into account. 4) The
memory bank is generated by unidirectional GRUs, preventing each
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Figure 2.8: The architecture of DialogueRNN [7].

utterance from seeing the utterances after it.

DialogueRNN. The DialogueRNN [7] claims that the prediction of
emotion is affected by three main factors, namely, the speaker, the
context given by the preceding utterances, and the emotion behind
the preceding utterances. Firstly, to track the state of speakers
throughout the conversation, each speaker is assigned with a party
state which is updated by a GRU once the speaker utters an utterance.
Secondly, to model the context of an utterance, DialogueRNN utilizes
a global state which is shared among the parties. The global state is
updated by jointly encoding the preceding utterances and the party
states. Thirdly, DialogueRNN models the evolution of emotion by
updating the emotion representation based on the speaker’s state and
the emotion representation of the last utterance.

Regarding our studies on hierarchical context modeling, we pro-
posed to fully utilize the intra-sample structure information in the con-
versations, for example, the bidirectional relationship between words
or utterances, and the long-range context, which are not well captured
in previous works. Based on these structure information, we developed
the attention gated hierarchical memory network (AGHMN) [52] and
the hierarchical gated recurrent units (HiGRU) [39], the latter of which
will be elaborated in this thesis. Due to the small scale of datasets,
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early studies on the ERC tasks develop the models mainly based on
RNNs (e.g., LSTM, and GRU). However, researchers also try to adopt
the Transformer models to either directly model the task [53] or extract
features from the pre-trained Transformer models [54], as Transformer
models are effective in capturing long-range context [15, 55].

2.2 Self-Supervised Learning

In this section, we review the background of intra-sample structure for
self-supervised representation learning by pre-training. Pre-training
is a learning paradigm to train the model on other tasks with large-
scale datasets before starting the target task. Usually, pre-training
is conducted in a self-supervised fashion on large-scale unlabeled
datasets. Specifically, we introduce word-level pre-training, sentence-
level pre-training, and hierarchical pre-training, which learn the word
representations by considering the discrete words, the entire sentence,
and the whole document or conversation, respectively.

2.2.1 Word-Level Pre-Training

Word2Vec. For decades, the n-gram based models have been
dominating the language modeling field, due to their simplicity and
low complexity of computation. With the progress of machine learning
in recent years, it becomes possible to train more complex models on
much larger datasets. For example, language models based on neural
network learning significantly outperform n-gram models [56, 57, 58].
But these architectures are facing high computation costs between the
projection and the hidden layer, because the values in the projection
layer are dense.

To reduce the computation complexity, Mikolov et al. [59] pro-
posed two shallow neural network architectures, i.e., the skip-gram
model and the continuous bag-of-words model. In the meantime,
to handle the intractability of full softmax function at the output,
several solutions were proposed, either using hierarchical versions of
softmax [60, 22] or unnormalized models for training [61]. Among
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Figure 2.9: The architectures of Skip-gram and Continuous Bag of Words models.

these variants of the skip-gram model, the skip-gram model with
negative sampling [22] has achieved state-of-the-art results across
several evaluation tasks of word embeddings, namely the analogy
reasoning, sentiment analysis, sentence completion, and so on.

These models use a shallow neural network with only one hidden
layer to learn the relationship between each word and its context
words and obtains the hidden weights as word vectors. It is capable
of learning semantic and syntactic meanings of words, and mapping
similar words into nearby locations in the vector space. The simplicity
enables it to train on huge datasets with billions of tokens within a
short time. By arithmetic operations on word vectors, it is able to
produce meaningful phrases, which is quite amazing.

GloVe. Right after Word2Vec, GloVe [23] combines the global matrix
factorization methods (e.g., LSA) and the local context window meth-
ods (e.g., Word2Vec) to improve the quality of word representations.
While methods like LSA leverage statistical information effectively,
they do relatively poorly on the word analogy task, implying a sub-
optimal vector space structure. Methods like Word2Vec learn word
vectors by training on separate local contexts which do not make full
use of the global statistics of the corpus. In this sense, GloVe is kind
of like finding a learning algorithm on the global statistics. In fact,
that is exactly what the authors have done. They proposed a specific
weighted least squares model that was trained on global word-word
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co-occurrence counts and thus made efficient use of statistics.

The weighted least squares model of GloVe [23] is expressed as:

J =
|Vw|∑
i,j=1

f(Xij)(vwi
>v′wj

+ bi + b′j − logXij)2, (2.22)

where |Vw| is the size of vocabulary, vwi
and v′wj

are the vector
representations of a word and its context, and bi and b′j are the
corresponding bias. f(Xij) is a weighting function over the co-
occurrence matrix Xij. It is proposed for fixing the problem that
very frequent co-occurrences are actually not that relevant and may
cause extra noises. The weighting function adopted in GloVe [23] is
expressed as:

f(x) =
 (x/xmax)α if x < xmax

1 otherwise
, (2.23)

where xmax is the threshold set as 100, and α is a hyperparameter
said to work well with the value of 3/4. It is interesting that a
similar distortion value for negative sampling was found to give the
best performance in Word2Vec [22].

As for the construction of co-occurrences matrix Xij, there are
several decisions waited to be decided. We need to choose how large
the context window should be and whether to distinguish the left
context from the right context. In the paper, the authors use a
decreasing weighting function so that word pairs that are d words
apart contribute 1/d to the total count. This is a way to account for
the fact that close contexts are more relevant to the word than those
very distant ones.

2.2.2 Sentence-Level Pre-Training

ELMo. While word-level representation learning improves the
performance of NLP tasks significantly, it performs badly on polysemy
as it does not consider the context of the whole sentence. To solve such
a problem, Peters et al. [24] proposed to learn deeply contextualized
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Figure 2.10: The architecture of ELMo [8].

word embeddings from language models, called ELMo, which are pre-
trained on large-scale corpora. ELMo is supposed to learn both words
(e.g., syntax and semantics) and linguistic context.

Given a sentence with n tokens, (x1, x2, . . . , xn), a forward lan-
guage model computes the probability of the sentence by mod-
eling the probability of each token xi conditioned on its history
(x1, x2, . . . , xi−1):

p(x1, x2, . . . , xn) =
n∏
i=1

p(xi|x1, x2, . . . .xi−1). (2.24)

Correspondingly, the sentence can also be modeled by a backward
language model, which computes the probability of each token by the
tokens after it:

p(x1, x2, . . . , xn) =
n∏
i=1

p(xi|xi+1, xi+2, . . . .xn). (2.25)

As shown in Figure 2.10, ELMo combines both the forward and
backward language models, each modeled by a LSTM network, and
trains the model by maximizing the negative log-likelihood:

L =−
n∑
i=1

(
log p(xi|x1, x2, . . . .xi−1;

−→Θ) (2.26)

+ log p(xi|xi+1, xi+2, . . . , xn;
←−Θ). (2.27)

For each token xi, an L-layer ELMo computes a set of 2L + 1
representations, two for each layer and one for the embedding layer.
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Figure 2.11: The architecture of GPT [8].

When transferring the pre-trained EMLo for downstream tasks, the
2L + 1 representations are summarized with weights, which are
learnable parameters in the fine-tuning stage.

GPT.Due to the stronger performance of Transformer models [15], re-
searchers have been developing deep contextualized word embeddings
by Transformer-based language models. GPT [26] is the first and
representative one, performing generative pre-training on a diverse
corpus of unlabeled text, followed by discriminative fine-tuning on
each specific task. Unlike the original transformer architecture, GPT
discards the encoder part and only uses the decoder. Thus, there
is only one single input sentence rather than two separate source
and target sequences. Each transformer block contains a masked
multi-headed self-attention followed by a pointwise feed-forward layer
and normalization layers in between. The final output produces a
distribution over target tokens after softmax. The computation of
probability for each token is the same as ELMo but without the
backward computation.

There are two main differences between GPT and ELMo: 1)
First, ELMo uses the concatenation of forward and backward LSTM
networks while GPT only adopts a multi-layer transformer decoder.
2) For downstream tasks, ELMo uses the unsupervised feature-based
approach, while GPT fine-tunes the same pre-trained model. So far,
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Figure 2.12: The architecture of BERT [8].

GPT has been promoted to more powerful versions (i.e., GPT2 and
GPT3) [27, 28] by increasing the model capacity and the data scale.

BERT.As introduced above, GPT is actually a causal language model
that reads a sentence in the forward direction. Devlin et al. [8] argue
that the language model only captures the context of words before
them without that after them, and propose a masked language model
to learn better word representations, i.e., the so-called BERT. With
the masked language model, BERT computes the representation of
each word from the unlabeled text by jointly conditioning on both its
left and right context in all layers. This is also the largest difference
of BERT from GPT. In addition to the masked language model tasks,
BERT is also trained on the next sentence prediction task to capture
the relationship between sequences.

For the masked language model task, BERT chooses 15% of the
token positions from the text corpus at random for prediction. If
the ith token is chosen, we replace the ith token with: 1) the [MASK]
token for 80% of the time; 2) a random token for 10% of the time;
and 3) the unchanged ith token for the rest 10% of the time. The
next sentence prediction task is designed for downstream tasks like
question answering and natural language inference, which require the
understanding of the relationship between two text sentences, which
cannot be directly captured by language modeling. Specifically, BERT
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Figure 2.13: The architecture of TL-ERC [9].

is trained as a binary classifier to tell whether one sentence is the next
sentence of the other. Specifically, when choosing the sentences A and
B for each pre-training sample, 50% of the time B is the actual next
sentence that follows A, and 50% of the time it is a random sentence
from the corpus.

In order to transfer the pre-trained model for downstream tasks
directly, BERT is designed to prepend a special token [CLS] for each
input sentence. The hidden state of the [CLS] token is usually used
as the representation of the whole input sentence.

2.2.3 Hierarchical Pre-Training

TL-ERC. While most advances of self-supervised representation
learning are achieved at sentence-level, there also appear attempts
for more complex text formats. For example, TL-ERC [9] pre-trains a
hierarchical recurrent encoder-decoder model on conversations to learn
representations for the ERC tasks. In specific, the model consists of
three sequential components: 1) The sentence encoder RNN for the
encoding of utterances; 2) The context encoder RNN for modeling
the conversational context of utterances; and 3) The decoder RNN for
generating the response utterance. For the downstream ERC task, the
sentence encoder and the context encoder can be directly transferred,
while the decoder is replaced with a discriminative mapping to the
label space of emotions.
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As the concurrent studies, the main difference between TL-ERC
and our Pre-CODE [40] is the pre-training objective: TL-ERC
models the conversation in a response generation task while our Pre-
CODE in a contrastive response retrieval task, which is a more light-
weight and effective method. More recent studies also try to pre-train
large models on unlabeled conversation data by the encoder-decoder
model [62] or a tree-based attention network [63], which indicating the
potential of self-supervised learning on conversations.

2.3 Data Re-Weighting

In this section, we review the background knowledge of inter-sample
quality exploitation with data re-weighting, including dynamic weight-
ing, data selection, and curriculum learning.

2.3.1 Dynamic Weighting

Importance Weighting. In machine learning, there are plenty
of studies trying to ease the training or accelerate the convergence
of models by distinguishing training samples. They assign different
importance to the training samples to re-weight the loss function.
According to the choices of preferred samples, these studies can be
divided into three categories, namely, self-paced learning, hard sample
mining, and active learning. Self-paced learning [19] prefers the easy
samples during training while hard samples mining [20] proposes to
pay more attention to the hard samples, which are supposed to be
more informative. Active learning [21] makes a compromise between
self-paced learning and hard sample mining by emphasizing the high-
variance samples. The difficulty of each sample can be calculated by
the model confidence and its variance across a number of training
steps. During training, higher weights can be assigned to the loss
function of the preferred samples.

Data Denoising. Data denoising [64] is concerned with the quality
of training data and tries to reduce the negative effect of data noise on
NMT models. The noise in a sentence pair is defined in terms of the
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Algorithm 1: Denoising NMT training with trusted data and online data
selection [64].
1 Input: Noisy data D̃, trusted data D̂
2 Output: A denoised, better model
3 t = 0; Randomly initialize Θ̃0.
4 while t < T do
5 p(y|x, Θ̂t)← denoise(p(y|x, Θ̃t), D̂).
6 Randomly draw B̃random

t from D̃.
7 Compute the noise score for samples in B̃random

t .
8 Sort B̃random

t by the noise scores.
9 Sample bt from top rt of above sorted buffer.

10 Train p(y|x, Θ̃t) on bt to produce a new model p(y|x, Θ̃t+1).
11 Discard the denoised model p(y|x, Θ̂t).
12 t← t+ 1.
13 end

comparison between a noisy model Θ̃ and a denoised model Θ̂. The
noisy model is trained on large scale noisy datasets. For the denoised
model, we can fine-tune the noisy model on a set of trusted data,
i.e., clean in-domain data. Usually, the clean in-domain data contains
limited samples, so fine-tuning with a small batch and a small learning
rate is required to prevent over-fitting. Therefore, the denoised model
is supposed to be a more accurate probability distribution than the
noisy model. Then, taking NMT as an example, we can compute the
noise score of a sentence pair (x,y) as:

noise(x,y; Θ̃, Θ̂) = log p(y|x, Θ̃)− log p(y|x, Θ̂). (2.28)

The noise score can be normalized by the length of the target sentence.
The bigger the noise(x,y; Θ̃, Θ̂) is, the higher the noise level of the
sentence pair shows.

During the training of the NMT models, we will select the sentence
pairs with the lowest noise score to train the model. The noisy model
can be updated dynamically on the selected data, which will be fine-
tuned on the trusted data for a new denoised model. In this way, the
NMT model can be trained with the data noise removed gradually,
resulting in better translation performance. Algorithm 1 shows the
details of the process.
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2.3.2 Data Selection

Data selection can be regarded as the hard version of data re-
weighting. Both dynamic weighting and data selection emphasize the
preferred samples, except that dynamic weighting differentiates the
importance of samples during training while data selection directly
discards the samples that are not favored before training.

Language Model Selection. Language models are usually adopted
for in-domain data filtering, which can be performed by an in-
domain language model [30] or together with an out-of-domain (OOD)
language model. Given an in-domain corpus DI and an OOD corpus
DO, we would like to find a subcorpus DO,Sub from DO that is drawn
from the same distribution as DI . For any s, using Bayes’ rule, we
can calculate the probability a sentence s in DO is drawn from DO,Sub:

P (DO,Sub|s,DO) = P (s|DO,Sub)P (DO,Sub|DO)
P (s|DO) . (2.29)

We can ignore the P (DO,Sub|DO) term since it will be constant
for any given DI and DO, and use P (s|DI) instead of P (s|DO,Sub)
as they are drawn from the same distribution. Moving into log
domain, we can calculate the probability score for the sentence s as
logP (DO,Sub|s,DO) ∝ logP (s|DI) − logP (s|DO) where P (s|DI) and
P (s|DO) can be estimated by language models LMI and LMO trained
on DI and DO, respectively. While neural language models perform
better than n-gram models [65], the latter is still favored when the
corpus is very large due to the efficiency of training and evaluation.

Difficult Word Selection. Selecting in-domain data may enhance
the learning of originally frequent words; however, researchers also
attempt to take advantage of OOD words to increase the training
signal. For example, Fadaee et al. [31] find that in back-translation,
words with high prediction loss during training benefit most from
the addition of synthetic data. Therefore, they propose to sample
monolingual data with difficult-to-predict words using prediction loss
and word frequency (eg., low-frequency words). We can rely on a word
rarity metric [10] to score each monolingual sentence and select the



2.3. DATA RE-WEIGHTING 37

Figure 2.14: Overview of the competence-based curriculum learning [10].

desired sentences.

Data Redundancy. Birodkar et al. [66] reveal that data redundancy
exists in large-scale image recognition datasets, e.g., CIFAR-10 [67]
and ImageNet [68] datasets. They find that a subset can generalize
on par with the full dataset and that at least 10% of training data are
redundant in these large-scale image classification datasets.

2.3.3 Curriculum Learning

Instead of dynamically weighting the training samples, curriculum
learning points out that the order of feeding training samples also
affect the training process significantly. Usually, curriculum learning
suggests to feed easy samples into the models firstly and gradually
increase the difficulty of samples, so that the models can learn faster
at the beginning of training. Curriculum learning has been successfully
applied to the training of NMT models recently [10, 18, 33, 34, 35, 69].

As the name suggests, curriculum learning defines a curriculum
for models to learn from training data. Generally, based on the
estimated difficulty of a sample and the current competence of the
model, curriculum learning decides which training samples are shown
to the model at different times during training, usually from easy
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to hard. The idea originates from the fact that human learns easy
knowledge first before moving to hard knowledge. The metrics for
determining the difficulty of a sample could be derived from some
linguistic properties [10] (e.g., sentence length and word rarity), data
uncertainty, or embedding norm [18]. Curriculum learning is demon-
strated to have the following advantages, namely, reducing training
time and the need for specialized training tricks, and improving the
overall performance.

Regarding our studies on data re-weighting, we mainly rely
on the metrics from data selection to identify inactive samples or
uncertain samples from large-scale datasets. As a result, we have
proposed the data rejuvenation (DataReju) framework [41] and the
uncertainty-based self-training sampling (UncSamp) strategy to boost
the performance of large-scale NMT models.

2.4 Data Augmentation

In this section, we provide the background of representative data
augmentation techniques that are closely combined with data re-
weighting to exploit the inter-sample quality information.

2.4.1 Back-Translation

Sequence-level knowledge distillation is the most popular data aug-
mentation method in NLP. Taking the machine translation task as
an example, back-translation (BT) [70] has been the most popular
technique that has been widely applied to build large-scale NMT
systems. Back-translation pairs each monolingual sentence at the
target side with a synthetic sentence at the source side. Given a
translation task from language X to Y with a bitext (X, Y ), back-
translation is performed in three steps: (1) Train a teacher translation
model in the reversed direction, denoted as gT : Y → X . (2) Translate
a set of monolingual data in the target language, denoted as Ym, by
the teacher model gT , obtaining the synthetic data (gT (Ym), Ym). (3)
Train a student translation model on the combination of the bitext
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and the synthetic data as the final model. Figure 2.15(a) illustrates
the process of back-translation.

As an effective approach, back-translation has been widely adopted
and constantly improved. For example, to improve the efficiency of
back-translation, Fadaee et al. [31] demonstrate that words with high
prediction loss during training benefit most from the back-translation
data, and thus propose to sample examples with difficult-to-predict
words for back-translation. Wang et al. [32] point out that model
predictions during back-translation are inevitably erroneous, which
could impair the performance of the NMT models, and propose to
quantify the confidence of the NMT model predictions based on model
uncertainty. Edunov et al. [71] demonstrate that generating source
sentences by sampling or beam search with noise introduced (i.e.,
noised-BT) can significantly improve the translation performance.
Further, Edunov et al. [72] also find that the NMT systems trained
with back-translation generate translations with satisfactory adequacy
and high fluency, which are more favored by humans. Caswell et
al. [73] propose tagged-BT, which prepends a unique tag to each
synthetic source sentence of back-translation, and show that it plays a
similar role as noise. More recently, Marie et al. [74] revisit tagged-BT
and discover that the tag prevents back-translation from degrading the
translation performance on test samples with natural text as source
sentences.

2.4.2 Self-Training

Self-training [75] shares a similar procedure as back-translation, but
with two differences: (1) The teacher model is in the forward direction,
i.e., fT : X → Y . (2) The monolingual data comes from the
source language X. The workflow of self-training is illustrated in
Figure 2.15(b).

While self-training has been extensively investigated on clas-
sification problems, in machine translation it is still unclear how
self-training works due to the compositionality of the target space.
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Figure 2.15: Workflows of back-translation and self-training.

Recently, there are some efforts paid to this problem. For example,
He et al. [38] find that the perturbation on the hidden states (i.e.,
dropout) is critical for self-training to benefit from the synthetic data,
and propose to inject noise into the source of synthetic data (i.e.,
noised-ST). Wu et al. [76] combine noised self-training with noised
back-translation to exploit the monolingual data at scale. Both studies
follow a noised data training and a subsequent fine-tuning paradigm,
which performs on par with or better than joint training. While
these works suggest that synthetic data manipulation [71, 73] and
training strategy optimization [76, 32, 38] can boost the self-training
performance significantly, how to efficiently and effectively sample a
subset from the large-scale monolingual data has not been well studied.
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Algorithm 2: Data Diversification [77].
1 Input: A dataset D = (S, T ), a diversification factor k, the number of

rounds N
2 Output: A trained source-target translation model M̂S→T

3 procedure Train(D = (S, T ))
4 Train randomly initialized M on D = (S, T ) until convergence
5 return M

6 procedure DataDiverse(D = (S, T ),k,N)
7 D0 ← D
8 for r ∈ 1, . . . , N do
9 Dr = (Sr, Tr)← Dr−1

10 for i ∈ 1, . . . , k do
11 M i

S→T,r ← Train(Dr−1 = (Sr−1, Tr−1))
12 M i

T→S,r ← Train(D′r−1 = (Tr−1, Sr−1))
13 Dr ← Dr

⋃(S,M i
S→T,r(S))

14 Dr ← Dr
⋃(M i

T→S,r(T ), T )
15 end
16 end
17 M̂S→T ← Train(DN)
18 return M̂S→T

2.4.3 Hybrid Approach

Recent studies also try to combine the benefits of both back-
translation and self-training, for example, data diversification.
Data diversification [77] aims at taking full advantage of the training
data for the NMT models. It diversifies the training data by using
the predictions of multiple forward and backward models and then
merging them with the original dataset on which the final NMT model
is trained. Essentially, data diversification utilizes the aforementioned
back-translation and self-training techniques on the original training
data to synthesize more diverse data. Formally, let D = (S, T ) be
the parallel training data, where S denotes the source-side corpus and
T the target-side corpus. Also, let MS→T and MT→S represent the
forward and backward NMT models, respectively. The forward NMT
model MS→T translates the source-side corpus to obtain synthetic
data (S,MS→T (S)) and the backward NMT model translates the
target-side corpus to obtain another synthetic data (MT→S(T ), T ).
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For either forward or backward model, there are k different models
where k denotes the diversification factor. For example, we can use k
different random seeds to train the NMT models. Then, we can train
new NMT models from scratch on the combination of the 2k copies of
synthetic data and the original data. The process can be iterated with
the improved forward and backward NMT models to generate better
synthetic data. Algorithm 2 shows the details.

Regarding our studies on data augmentation, we rely on the self-
training technique to rejuvenate inactive sample in our DataReju
framework [41] to fully utilize the bilingual training data. In addition,
we propose the UncSamp strategy [42] to further improve the
performance of self-training in NMT.

2.5 Inference and Evaluation

In this section, we introduce the datasets, the inference methods, and
the evaluation metrics involved in this thesis.

2.5.1 Datasets

Emotion Recognition in Conversations. We list the commonly
used datasets for emotion recognition in conversations in Table 2.1.
Below shows the details of each dataset.

• Friends2: The Friends emotion dataset [78] is created based on
the Friends TV Scripts, with multiple speakers involved in the
conversations. The dataset is built to contain 1,000 conversations
split into 720, 80, 200 ones as the training set, validation set,
and testing set, respectively. Each utterance in a conversation
indicates one of the eight emotions, i.e., anger, joy, sadness,
neutrality, surprise, disgust, fear, and non-neutral.

• EmotionPush3: The EmotionPush emotion dataset [78] is also
created based on private conversations between friends on the

2http://doraemon.iis.sinica.edu.tw/emotionlines
3http://doraemon.iis.sinica.edu.tw/emotionlines

http://doraemon.iis.sinica.edu.tw/emotionlines
http://doraemon.iis.sinica.edu.tw/emotionlines
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Table 2.1: Datasets for emotion recognition in conversations.

Dataset Conversation Utterances

Train Valid Test Train Valid Test

IEMOCAP 91 24 31 3,569 721 1,208
Friends 720 80 200 10,561 1,178 2,764
EmotionPush 720 80 200 10,733 1,202 2,807
MELD 1,039 114 280 9,989 1,109 2,610
EmoryNLP 713 99 85 9,934 1,344 1,328
MOSEI 2,250 300 678 26,603 3,281 7,629
OpenSubtitle2016 58,360 3,186 3,297 2.4M 130K 134K

Dataset Emotions

Anger Joy Sadness Neutral Others

IEMOCAP 1,090 1,627 1,077 1,704 0
Friends 759 1,710 498 6,530 5,006
EmotionPush 140 2,100 514 9,855 2,133
MELD 1,607 2,308 1,002 6,436 2,355
EmoryNLP 1,332 2,755 844 3,776 3,899
MOSEI 2,086 9,765 2,965 5,913 16,784

Facebook messenger collected by an App called EmotionPush. It
is annotated in the same fashion as Friends, and also contains
720, 80, 200 conversations in the training set, validation set, and
testing set, respectively.

• IEMOCAP4: The IEMOCAP dataset [79] contains the acts of 10
speakers in a dyadic conversation fashion, providing text, audio,
and video features. We follow the previous work to use the first
four sessions of transcripts as the training set, and the last one as
the testing set. The validation set is extracted from the randomly-
shuffled training set with a ratio of 80:20. Also, we focus on
recognizing four emotion classes, i.e., anger, happiness, sadness,
and neutrality.

• EmoryNLP5: The EmoryNLP dataset [80] is also built from
the Friends TV Scripts, but the utterances are annotated by

4https://sail.usc.edu/iemocap/
5https://github.com/emorynlp/emotion-detection/

https://sail.usc.edu/iemocap/
https://github.com/emorynlp/emotion-detection/
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a different emotion set, including sad, mad, scared, powerful,
peaceful, joyful, and neutral. It contains 897 scenes with 12,606
utterances, and is split into the training set, validation set, and
testing set by scenes with the ratio of 713:99:85.

• MELD6: The MELD dataset is an enhanced and extended version
of the Friends dataset by Poria et al. [81]. The utterances are
re-annotated with the aid of video clips such that some neutral
or non-neutral utterances are categorized into specific emotion
classes.

• MOSEI 7: The MOSEI dataset [82] is a multimodal dataset
for sentiment analysis and emotion recognition, providing text,
audio, and video features. We use the raw transcripts, where
each utterance is labeled with one or several of the six emotions,
i.e., happiness, sadness, anger, disgust, surprise, and fear. We
decide the emotion of an utterance by the majority vote or the
higher emotion intensity sum if there are more than one majority
vote. The training set, validation set, and testing set consist of
2,250, 300, and 678 utterances each.

• OpenSubtitle2016 8: We collect unlabeled conversation data from
the open-source database named OpenSubtitle9 [83], which con-
tains a large amount of subtitles of movies and TV shows.
Specifically, we retrieve the English subtitles throughout the year
of 2016, including 25466 .html files. After preprocessing, we
obtain around 60K conversations with over 2.0M utterances.

Machine Translation. Commonly used datasets for machine
translation are mainly from WMT, and IWSLT, as listed in Table 2.2.
Below shows the details of the translation tasks.

• WMT 10: The Conference on Machine Translation (WMT) built
on a series of annual workshops and conferences on machine

6https://github.com/SenticNet/MELD/
7http://immortal.multicomp.cs.cmu.edu/raw_datasets/
8http://opus.nlpl.eu/OpenSubtitles-v2018.php
9http://opus.nlpl.eu/OpenSubtitles-v2018.php

10http://www.statmt.org/wmt20/

https://github.com/SenticNet/MELD/
http://immortal.multicomp.cs.cmu.edu/raw_datasets/
http://opus.nlpl.eu/OpenSubtitles-v2018.php
http://opus.nlpl.eu/OpenSubtitles-v2018.php
http://www.statmt.org/wmt20/
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Table 2.2: Datasets for machine translation. “⇒” denotes the translation task in
the forward direction and “⇐” in the backward direction.

Dataset Train Valid Test

⇒ ⇐ ⇒ ⇐

WMT14 En-De 4.5M 3000 3003
WMT14 En-Fr 35.5M 6003 3003
WMT16 En-Ro 608K 1999 1999
WMT19 En-De 36.8M 2998 2998 1997 2000
WMT20 En-Zh 22.1M 1997 2000 1418 2000
WMT20 NewsCrawl En 200M – –
IWSLT14 En-De 160K 7283 6750

translation, going back to 2006. Every year, the conference
features a variety of shared tasks, including news translation,
biomedical translation, similar language translation, evaluation
metrics, quality estimation, chat translation, and so on. The
conference also encourages individuals who participate in the
shared tasks to submit research papers to share their approach
with the community. We focus on the news translation tasks, such
as WMT14 English-German (En-De), WMT14 English-French
(En-Fr), WMT16 English-Romanian (En-Ro), WMT19 English-
German (En-De), and WMT20 English-Chinese (En-Zh) tasks in
this thesis. We also include the English monolingual data from
NewsCrawl released by WMT20.

• IWSLT 11: The International Conference on Spoken Language
Translation (IWSLT) is an annual scientific conference, associated
with an open evaluation campaign on spoken language transla-
tion, where both scientific papers and system descriptions are pre-
sented. The conference attempts to address challenges in simul-
taneous translation, consecutive translation and subtitling tasks,
for real-time, low latency as well offline archival purposes and
under low-resource, multilingual, and multimodal constraints.
IWSLT14 English-German (En-De) task is commonly used in
research papers to evaluate the machine translation systems for

11https://iwslt.org/2021/

https://iwslt.org/2021/
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Algorithm 3: The beam search algorithm [3].
1 t← 1
2 A = {〈< bos >, 0〉} . The set of alive candidates
3 F = {} . The set of finished candidates
4 while t < max_length do
5 C = {}
6 for 〈y0 . . . yt−1, v〉 ∈ A do
7 p← NMT(y0 . . . yt−1,x)
8 for w ∈ V do
9 yt ← w

10 l← log(p[w])
11 C ← C ⋃{〈y0 . . . yt, v + l〉}
12 end
13 end
14 C ← TopK(C, k)
15 for 〈y0 . . . yt, v〉 ∈ C do
16 if yt ==< eos > then
17 F ← F ⋃{〈y0 . . . yt, v〉}
18 else
19 A ← A⋃{〈y0 . . . yt, v〉}
20 end
21 end
22 A ← TopK(A, k)
23 F ← TopK(F , k)
24 t← t+ 1
25 end
26 〈y0 . . . yt, v〉 ← Top(F)
27 return y1 . . . yt

low-resource translation.

For all the datasets, we follow the official split of training,
validation and testing sets for experiments. While such a fixed split
may result in cherry-pick methods, it enables a fair comparison with
previous studies. Besides, it is usually inconvenient to conduct cross-
validation on language generation tasks, because the validation and
testing sets are usually obtain by human annotations.
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2.5.2 Inference

Maximum Probability Prediction. Given a classification model
and an input sentence x, we obtain the prediction by selecting the
label with the maximum probability:

ỹ = arg max
c∈C

P (c|x = x; Θ), (2.30)

where C denotes the possible classes of the label.

Beam Search. Given an NMT model and a source sentence x, how
to generate a translation from the model is an important problem.
Ideally, we would like to find the target sentence y which maximizes
the model prediction P (y|x = x; Θ) as the translation. However,
due to the intractably large search space, it is impractical to find the
translation with the highest probability. Therefore, NMT typically
uses local search algorithms such as greedy search or beam search to
find a local best translation. Beam search is a classic local search
algorithm which has been widely used in NMT [3]. Previously,
beam search has been successfully applied in statistical machine
translation (SMT). The beam search algorithm keeps track of k states
during the inference stage. Each state is a tuple (y0 . . . yt, v), where
(y0 . . . yt) is a candidate translation, and v is the log-probability of the
candidate. At each step, all the successors of all k states are generated,
but only the top-k successors are selected. Each state will result in
k partial translations after one-step generation, which is the so-called
successors of the state. The algorithm usually terminates when the
step exceeds a pre-defined value or k full translations are found. It
should be noted that the beam search will degrade into the greedy
search if k = 1. The pseudo-codes of the beam search algorithm are
given in Algorithm 3.

2.5.3 Evaluation Metrics

We introduce the commonly used evaluation metrics for text classifi-
cation and generation, i.e., F1-score and BLEU score, respectively.

F1-score. The performance of a classification model on a test dataset
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Figure 2.16: A confusion matrix of binary classification.

can be described by a confusion matrix. Take the binary classification
task as an example, Fig. 2.16 shows the confusion matrix, in which
True Positive (TP) and True Negative (TN) represent the observations
that are correctly predicted. The goal of classification is to minimize
False Positive (FP) and False Negative (FN).

Based on the confusion matrix, three metrics can be defined:

• Precision - Precision is the ratio of correctly predicted positive
observations to the total predicted positive observations:

Precision = TP
TP + FP . (2.31)

• Recall - Recall is the ratio of correctly predicted positive obser-
vations to the total observations in actual Class=Yes:

Recall = TP
TP + FN . (2.32)

• F1-score - F1-score is the harmonic average of Precision and
Recall. Therefore, F1-score takes both FP and FN into account,
which is usually more useful than accuracy for imbalanced
datasets. The formulation of F1-score is:

F1− score = 2× Recall× Precision
Recall + Precision . (2.33)

For multi-class classification tasks, we need to calculate precision,
recall, and F1-score for each class in the test set. To measure the
overall performance on all the classes, we use the following four
metrics:
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• Weighted Accuracy: The average Recall weighted by the percent-
age of true instances in each class.

• Unweighted Accuracy: The unweighted mean of Recall.

• Weighted F1 : The average F1-score weighted by the percentage
of true instances in each class.

• Macro-averaged F1 : The unweighted mean of F1-score.

Generally, recognizing strong emotions like happy or angry is
more meaningful than recognizing neutral. Therefore, the unweighted
metrics are more favorable because the weighted ones are usually
compromised by the majority emotion type neutral.

Top-K Recall. For text retrieval tasks, we usually evaluate them
with the recall of the true positives among k best-matched answers
from N ′ available candidates based on the representation of an
utterance [84]. The metric is defined as below:

RN ′@k =
∑k
i=1 yi∑N ′
i=1 yi

, (2.34)

where the variate yi represents the binary label for each candidate
answer, i.e., 1 for the correct answer and 0 for the wrong answers.
The metric is calculated for each sample and the average result of all
the samples will be reported.

BLEU Score. Manual evaluation of machine translation outputs is
not only expensive but also impractical to scaling for more languages.
On the contrary, automatic evaluation is inexpensive and language-
independent, with BLEU [85] as the representative automatic evalua-
tion metric.

BLEU stands for bilingual evaluation understudy, which is an
algorithm to evaluate the quality of machine translations. Specifically,
BLEU is computed using a couple of n-gram modified precisions to
compare a candidate translation against multiple reference transla-
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tions. The expression of BLEU is as below [85]:

BLEU = BP · exp
 N∑
n=1

wn log pn
 , (2.35)

where pn is the modified precision for n-gram, wn is the weight for
summarizing different n-gram precision log pn and ∑N

n=1wn = 1, and
BP denotes the brevity penalty to penalize short machine translations.
BP is defined as below [85]:

BP =


1, if c > r

exp
(
1− r

c

)
, if c ≤ r

, (2.36)

where c is the number of unigrams in all the candidate sentences, r
is the best match lengths for each candidate sentence in the corpus.
Here the best match length is the closest reference sentence length
to the candidate sentences. For example, if there are three references
with lengths 12, 14, and 17 words and the candidate translation is a
terse 13 words, ideally the best match length could be either 12 or 14,
but we arbitrarily choose the shorter one which is 12.

Usually, BLEU is evaluated on the corpus where there are many
candidate sentences translated from different source texts and each of
them has several reference sentences. Then c is the total number of
unigrams in all the candidate sentences, and r is the sum of the best
match lengths for each candidate sentence in the corpus.

2 End of chapter.



Chapter 3

Intra-Sample Structure Mining for
Context Enhancement

In this chapter, we investigate the intra-sample structure for context
enhancement. We conduct the studies on the ERC task due to the
rich structure information of conversations. For the ERC task, context
is important as the same sentence can deliver different emotions in
different contexts. Besides, existing approaches are weak at capturing
long-range context. Therefore, we propose a Hierarchical Gated
Recurrent Unit (HiGRU) framework to learn both the context of
words and that of utterances. Moreover, we promote the framework
to two variants, HiGRU with individual features fusion (HiGRU-f)
and HiGRU with self-attention and features fusion (HiGRU-sf), so
that the word/utterance-level individual inputs and the long-range
contextual information can be sufficiently utilized. Experiments
on three conversation emotion datasets, IEMOCAP, Friends, and
EmotionPush demonstrate that our proposed HiGRU models attain
significant improvements over the state-of-the-art methods.

3.1 Problems and Motivation

Instead of investigating sentence-level language understanding tasks,
we choose the ERC task because of the rich context in conversations,
which is important for understanding accurately. Besides, emotion
recognition itself is also a significant artificial intelligence research

51
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Table 3.1: The word “okay” exhibits different emotions in the American television
sitcom, Friends.

Speaker Utterance Emotion

Rachel Oh okay, I’ll fix that to.
What’s her email address?

Neutral

Ross Rachel! Anger
Rachel All right, I promise. I’ll fix

this. I swear. I’ll-I’ll- I’ll-I’ll
talk to her.

Non-neutral

Ross Okay! Anger
Rachel Okay. Neutral

Nurse This room’s available. Neutral
Rachel Okay! Joy
Rachel Okay wait! Non-neutral
Rachel You listen to me! Anger

topic due to the promising potential of developing empathetic ma-
chines for people.

Emotion is a universal phenomenon across different cultures and
mainly consists of six basic types: anger, disgust, fear, happiness,
sadness, and surprise [86, 87]. While the ERC task can also
be performed for each utterance in the conversations individually,
capturing the context between utterances provides more information
to make the right predictions. Otherwise, the same word or sentence
can deliver different emotions in different contexts. For example, in
Table 3.1, the sentence “okay” can deliver three different emotions,
anger, neutral, and joy, respectively. Strong emotions like joy and
anger may be indicated by the symbols “!” or “?” along with the
word. To identify a speaker’s emotion precisely, we need to explore
the conversation context sufficiently. At the meantime, existing
context-dependent models like cLSTM [5] still have room for further
improvements: 1) The textual feature is extracted by CNN, which
should be incompatible with the upper-level RNNs and could be
replaced by a bidirectional RNN. 2) The upper-level RNNs alone are
weak in capturing long-range context and weighting the importance
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of each context.

Incorporating all these factors, in the chapter, we propose a Hier-
archical Gated Recurrent Unit (HiGRU) framework for the utterance-
level emotion recognition in conversation. More specifically, HiGRU
is composed of two levels of bidirectional GRUs: a lower-level GRU
to model the word sequences of each utterance to produce individual
utterance embeddings, and an upper-level GRU to capture the sequen-
tial and contextual relationship of utterances. We further promote the
proposed HiGRU to two variants: HiGRU with individual features
fusion (HiGRU-f), and HiGRU with self-attention and features fusion
(HiGRU-sf). In HiGRU-f, the individual inputs, i.e., the word embed-
dings in the lower-level GRU and the individual utterance embeddings
in the upper-level GRU, are concatenated with the hidden states
to generate the contextual word/utterance embeddings, respectively.
In HiGRU-sf, a self-attention layer is placed on the hidden states
from the GRU to learn long-range contextual embeddings, which are
concatenated with the original individual embeddings and the hidden
states to generate the contextual word/utterance embeddings. Finally,
the contextual utterance embedding is sent to a fully connected layer
to determine the corresponding emotion. To alleviate the effect of
the data imbalance issue, we also follow [88] to train our models by
minimizing a weighted categorical cross-entropy. We summarize our
contributions as follows:

• We propose a HiGRU framework to better learn both the
individual utterance embeddings and the contextual information
of utterances, so as to recognize the emotions more precisely.

• We propose two progressive HiGRU variants, HiGRU-f and
HiGRU-sf, to effectively incorporate the individual word- and
utterance-level information and the long-range contextual infor-
mation respectively.

• We conduct extensive experiments on three textual conversation
emotion datasets, IEMOCAP, Friends, and EmotionPush. The
results demonstrate that our proposed HiGRU models achieve
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Figure 3.1: The architecture of our proposed HiGRU-sf. “Attention” denotes self-
attention. By removing the “Attention" layer, we attain HiGRU-f, and by further
removing the “Fusion” layer, we can recover the vanilla HiGRU.

at least 8.7%, 7.5%, 6.0% improvement over state-of-the-art
methods on each dataset, respectively. Particularly, by utilizing
only the textual feature in IEMOCAP, our proposed HiGRU
models gain at least 3.8% improvement over the existing best
model, conversational memory network (CMN) with not only the
text feature, but also the visual, and audio features.

3.2 Methodology

3.2.1 Vanilla HiGRU

The vanilla HiGRU consists of two-level GRUs: the lower-level
bidirectional GRU is to learn the individual utterance embedding by
modeling the word sequence within an utterance and the upper-level
bidirectional GRU is to learn the contextual utterance embedding by
modeling the utterance sequence within a conversation.

Individual Utterance Embedding. For the jth utterance in the
ith conversation Ci, it is represented by a sequence of word vectors,
xj = {wk}

Mj

k=1, whereMj is the number of words. The word vectors are
fed into the lower-level bidirectional GRU [47] to learn the individual
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utterance embedding in two opposite directions:
−→
h k = GRU(wk,

−→
h k−1), (3.1)

←−
h k = GRU(wk,

←−
h k+1). (3.2)

The two hidden states
−→
h k and

←−
h k are concatenated into

←→
h k =

[
−→
h k;
←−
h k] to produce the contextual word embedding via the tanh(·)

activation function on a linear transformation:
←→w k = tanh(Wu ·

←→
h k + bu), (3.3)

where Wu ∈ Rd1×2d1 and bu ∈ Rd1 are the model parameters, d0 and
d1 are the dimensions of word embeddings and the hidden states of
the lower-level GRU, respectively.

To extract the features of the utterance, we follow previous
studies [1] to apply max-pooling on the contextual word embeddings
within the utterance. The obtained individual utterance embeddings
is expressed as below:

uj = maxpool
(
{←→w k}

Mj

k=1

)
. (3.4)

Contextual Utterance Embedding. For the ith conversation, Ci =
{(uj, sj, cj)}Ni

j=1, the learned individual utterance embeddings, i.e.,
{uj}Ni

j=1, are fed into the upper-level bidirectional GRU to capture the
sequential and contextual relationship of utterances in a conversation:

−→Hj = GRU(uj,
−→Hj−1), (3.5)

←−Hj = GRU(uj,
←−Hj+1). (3.6)

Here, the hidden states of the upper-level GRU are represented by
Hj ∈ Rd2, where d2 is the dimension of the hidden states of the upper-
level GRU, to distinguish from those learned in the lower-level GRU
denoted by hk. Accordingly, we can obtain the contextual utterance
embedding by:

←→u j = tanh(Wc ·
←→H j + bc), (3.7)
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where ←→H j = [−→Hj;
←−Hj], Wc ∈ Rd2×2d2 and bc ∈ Rd2 are the model

parameters, and d2 is the dimension of the hidden states in the upper-
level GRU. Since the emotions are recognized at utterance-level, the
learned contextual utterance embedding ←→u j is directly fed to a FC
layer followed by a softmax function to determine the corresponding
emotion label:

ŷj = softmax(Wfc · ←→u j + bfc), (3.8)

where ŷj is the predicted vector over all emotions, and Wfc ∈ R|C|×d2,
bfc ∈ R|C|.

3.2.2 Individual Features Fusion

The vanilla HiGRU contains two main issues: 1) the individual word
and utterance embeddings are diluted with the stacking of layers, i.e.,
the loss of low-level information; 2) the upper-level GRU tends to
gather more contextual information from the majority emotions, which
deteriorates the overall model performance.

To resolve these two problems, we propose to fuse individual word
and utterance embeddings with the hidden states from GRUs so as
to strengthen the information of each word and utterance in their
corresponding contextual embeddings. Such a fusion operation is
essentially the residual connection utilized in Transformer models [15],
which proves to be effective to prevent gradient vanishing during
training. We name this variant as HiGRU-f, representing HiGRU
with individual features fusion. Hence, the lower-level GRU can
maintain individual word embeddings and the upper-level GRU can
relieve the effect of majority emotions and attain a more precise
utterance representation for different emotions. Specifically, the
contextual embeddings are updated as:

←→w k = tanh(Wu ·
←→
h f

k + bu), (3.9)
←→u j = tanh(Wc ·

←→H f
j + bc), (3.10)

where Wu ∈ Rd1×(d0+2d1), Wc ∈ Rd2×(d1+2d2),
←→
h f

k = [
−→
h k; wk;

←−
h k], and←→H f

j = [−→Hj; uj;
←−Hj].
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3.2.3 Long-Range Context

Another challenging issue is to extract the contextual information
of long sequences, especially the sequences in the testing set that
are longer than those in the training set [89]. To fully utilize the
global contextual information, we place a self-attention layer upon
the hidden states of HiGRU and fuse the attention outputs with the
individual word and utterance embeddings and the hidden states to
learn the contextual word and utterance embeddings. Hence, this
variant is termed HiGRU-sf, representing HiGRU with self-attention
and features fusion.

Particularly, we apply self-attention upon the forward and back-
ward hidden states separately to produce the left context embedding,
hlk (Hl

j), and the right context embedding, hrk (Hr
j), respectively. This

allows us to gather the unique global contextual information at the
current step in two opposite directions and yield the corresponding
contextual embeddings computed as follows:

←→w k = tanh(Wu ·
←→
h sf

k + bu), (3.11)
←→u j = tanh(Wc ·

←→H sf
j + bc), (3.12)

where Wu ∈ Rd1×(d0+4d1) and Wc ∈ Rd2×(d1+4d2) are trainable
weights, and

←→
h sf

k denotes [hlk;
−→
h k; wk;

←−
h k; hrk], and

←→H sf
j represents

[Hl
j;
−→Hj; uj;

←−Hj; Hr
j].

Self-Attention. Self-attention is an effective non-recurrent architec-
ture to compute the relation between one input to all other inputs
and has been successfully applied to various NLP applications such
as reading comprehension [90], and neural machine translation [15].
Figure 3.2 shows the dot-product self-attention over the forward
hidden states of GRU to learn the left context hlk. Each element
in the attention matrix is computed by:

f(
−→
h k,
−→
h p) =


−→
h >k
−→
h p, if k, p ≤Mj

−∞, otherwise
, (3.13)

An attention mask is then applied to waive the inner attention between
the sequence inputs and paddings. At each step, the corresponding left
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Figure 3.2: Self-attention over the forward hidden states of GRU.

context hlk is then computed by the weighted sum of all the forward
hidden states:

hlk=
Mj∑
p=1

akp
−→
h p, (3.14)

akp = exp(f(−→h k,
−→h p))∑Mj

p′=1 exp
(
f(−→h k,

−→h p′)
) , (3.15)

where akp is the weight of
−→
h p to be included in hlk. The right context

hrk can be computed similarly.

3.2.4 Training Objective

Following [88] which attains the best performance in the EmotionX
shared task [78], we minimize a weighted categorical cross-entropy on
each utterance of all conversations to optimize the model parameters:

L = − 1∑L
i=1Ni

L∑
i=1

Ni∑
j=1

ω(cj)
|C|∑
c=1

ycj log2(ŷcj), (3.16)

where yj is the original one-hot vector of the emotion labels, and ycj
and ŷcj are the elements of yj and ŷj corresponding to the class c.

Similar to [88], we assign the loss weight ω(cj) inversely propor-
tional to the number of training utterances in the class cj, denoted by
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Table 3.2: Statistics of the textual conversation datasets.

Dataset Emotion

Ang Hap/Joy Sad Neu Others

IEMOCAP 1,090 1,627 1,077 1,704 0
Friends 759 1,710 498 6,530 5,006
EmotionPush 140 2,100 514 9,855 2,133

Ic, i.e., assigning larger loss weights for the minority classes to relieve
the data imbalance issue. The difference is that we add a constant α
to adjust the smoothness of the distribution. Then, we have:

1
ω(c) = Iαc∑|E|

c′=1 I
α
c′

. (3.17)

3.3 Experiment

We conduct systematical experiments to demonstrate the advantages
of our proposed HiGRU models.

3.3.1 Datasets

The experiments are carried out on three textual conversation emotion
datasets (see the statistics in Table 3.2):

IEMOCAP. The IEMOCAP1 dataset contains approximately 12
hours of audiovisual data, including video, speech, motion capture of
face, text transcriptions. Following [5, 6]: (1) We apply the first four
sessions for training and the last session for testing; (2) The validation
set is extracted from the shuffled training set with the ratio of 80:20;
(3) We only evaluate the performance on four emotions: anger,
happiness, sadness, neutral, and remove the remaining utterances.

Friends. The Friends2 dataset is annotated from the Friends TV
Scripts [78], where each conversation in the dataset consists of a scene
of multiple speakers. Totally, there are 1,000 conversations, which

1https://sail.usc.edu/iemocap/
2http://doraemon.iis.sinica.edu.tw/emotionlines

https://sail.usc.edu/iemocap/
http://doraemon.iis.sinica.edu.tw/emotionlines
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are split into 720, 80, and 200 conversations for training, validation,
and testing, respectively. Each utterance in a conversation is labeled
by one of the eight emotions: anger, joy, sadness, neutral, surprise,
disgust, fear, and non-neutral.

EmotionPush. The EmotionPush3 dataset consists of private
conversations between friends on the Facebook messenger collected
by an App called EmotionPush, which is released for the EmotionX
shared task [78]. Totally, there are 1,000 conversations, which are split
into 720, 80, 200 conversations for training, validation, and testing,
respectively. All the utterances are categorized into one of the eight
emotions as in the Friends dataset.

Following the setup of Hsu et al. [78], in Friends and EmotionPush,
we only evaluate the model performance on four emotions: anger, joy,
sadness, and neutral, and exclude the contribution of the remaining
emotion classes during training by setting their loss weights to zero.

Data Preprocessing. We preprocess the datasets by the following
steps: (1) The utterances are split into tokens with each word being
made into the lowercase; (2) All non-alphanumerics except “?” and
“!” are removed because these two symbols usually exhibit strong
emotions, such as surprise, joy and anger; (3) We clip the length of
each utterance to 60 tokens and apply padding to utterances shorter
than 60 tokens. (4) We build a dictionary based on the words and
symbols extracted, and follow [5] to represent the tokens by the
publicly available 300-dimensional word2vec4 vectors trained on 100
billion words from Google News. The tokens not included in the
word2vec dictionary are initialized by randomly generated vectors.

3http://doraemon.iis.sinica.edu.tw/emotionlines
4https://code.google.com/archive/p/word2vec/

http://doraemon.iis.sinica.edu.tw/emotionlines
https://code.google.com/archive/p/word2vec/
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3.3.2 Evaluation Metrics

To conduct fair comparison, we adopt two metrics as [78], the weighted
accuracy (WA) and unweighted accuracy (UWA):

WA =
|C|∑
c=1

pc · ac, (3.18)

UWA = 1
|C|

|C|∑
c=1

ac, (3.19)

where pc is the percentage of the class c in the testing set, and ac is
the corresponding accuracy.

Generally, recognizing strong emotions may provide more value
than detecting the neutral emotion [78]. Thus, in Friends and
EmotionPush, UWA is a more favorite evaluation metric because WA
is heavily compromised with a large proportion of the neutral emotion.

3.3.3 Compared Methods

Our proposed vanilla HiGRU, HiGRU-f, and HiGRU-sf5 are compared
with the following state-of-the-art baselines:

• bcLSTM [5]: a bidirectional contextual LSTM with multimodal
features extracted by CNNs.

• CMN [6]: a conversational memory network with multimodal
features extracted by CNNs.

• SA-BiLSTM [91]: a self-attentive bidirectional LSTM model,
a neat model achieving the second place of EmotionX Chal-
lenge [78].

• CNN-DCNN [88]: a convolutional-deconvolutional autoencoder
with more handmade features, the winner of EmotionX Chal-
lenge [78].

• bcLSTM∗ and bcGRU: our implemented bcLSTM and bcGRU
with the weighted loss on the textual feature extracted from

5https://github.com/wxjiao/HiGRUs

https://github.com/wxjiao/HiGRUs
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CNNs. We use ∗ for our bcLSTM to distinguish from the results
of the original bcLSTM.

3.3.4 Training Procedure

All our implementations are coded on the Pytorch framework. To
prevent the models from fitting the order of data, we randomly shuffle
the training set at the beginning of every epoch.

Parameters. For bcLSTM∗ and bcGRU, the CNN layer follows the
setup of Kim et al. [1], i.e., consisting of the kernels of 3, 4, and 5
with 100 feature maps each. The convolution results of each kernel
are fed to a max-over-time pooling operation. The dimension of the
hidden states of the upper-level bidirectional LSTM or GRU is set to
300. For HiGRU, HiGRU-f, and HiGRU-sf, the dimensions of hidden
states are set to 300 for both levels. The final FC layer contains two
sub-layers with 100 neurons each.

Training. We adopt Adam [92] as the optimizer and set an initial
learning rate, 1 × 10−4 for IEMOCAP and 2.5 × 10−4 for Friends
and EmotionPush, respectively. An annealing strategy is utilized by
decaying the learning rate by half every 20 epochs. Early stopping with
a patience of 10 is adopted to terminate training based on the accuracy
of the validation set. Specifically, following the best models on each
dataset, the parameters are tuned to optimize WA on the validation
set of IEMOCAP and to optimize UWA on the validation set of Friends
and EmotionPush, respectively. Gradient clipping with a norm of 5 is
applied to model parameters. To prevent overfitting, dropout with a
rate of 0.5 is applied after the contextual word/utterance embeddings,
and the FC layer.

Loss weights. For Friends and EmotionPush, as mentioned in
Section 3.3.1, the loss weights are set to zero except the four considered
emotions, to ignore the others during training. Besides, the power rate
α of loss weights is tested from 0 to 1.5 with a step of 0.25, and we
use the best one for each model and dataset.
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Table 3.3: Experimental results on IEMOCAP. “(Feat)” represents the features
used in the models, where T, V, and A denote the textual, visual, and audio
features, respectively. The underlined results of bcLSTM and CMN are derived
by us accordingly, while “-” represents that the results are unavailable from the
original paper. For each emotion class, the corresponding column of values are the
accuracy scores.

Model (Feat) Ang Hap Sad Neu WA UWA

bcLSTM [5] (T) 76.07 78.97 76.23 67.44 73.6 74.6
(T+V+A) 77.98 79.31 78.30 69.92 76.1 76.3
CMN [6] (T) - - - - 74.1 -
(T+V+A) 89.88 81.75 77.73 67.32 77.6 79.1
bcLSTM∗ (T) 75.29 79.40 78.07 76.53 77.7(1.1) 77.3(1.4)

bcGRU (T) 77.20 80.99 76.26 72.50 76.9(1.6) 76.7(1.3)

HiGRU (T) 75.41 91.64 79.79 70.74 80.6(0.5) 79.4(0.5)

HiGRU-f (T) 76.69 88.91 80.25 75.92 81.5(0.7) 80.4(0.5)

HiGRU-sf (T) 74.78 89.65 80.50 77.58 82.1(0.4) 80.6(0.2)

3.3.5 Main Results

Table 3.3 and Table 3.4 report the average results of 10 trials each on
the three datasets, where the standard deviations of WA and UWA
are recorded by the subscripts in round brackets. The results of
bcLSTM, CMN, SA-BiLSTM, and CNN-DCNN are copied directly
from the original papers for a fair comparison because we follow the
same configuration for the corresponding datasets. From the results,
we have several findings elaborated as below.

Baselines. The baseline models implemented us, i.e., bcLSTM∗
and bcGRU, attain comparable performance with the state-of-the-
art methods on all three datasets. From the results on IEMOCAP in
Table 3.3, we can observe that:

• By utilizing the textual feature only, bcGRU outperforms bcLSTM
and CMN trained on the textual feature significantly, attaining
+3.3 and +2.8 gain in terms of WA, respectively. bcLSTM∗
performs better than bcGRU, and even beats bcLSTM and CMN
with the trimodal features in terms of WA. In terms of UWA,
CMN performs better than bcLSTM∗ only when it is equipped
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Table 3.4: Experimental results on Friends and EmotionPush. In the Train column,
F(E) denotes the model is trained on only one training set, Friends or EmotionPush.
F+E means the model is trained on the mixed training set while validated and tested
individually.

Model Train Friends (F)

Ang Joy Sad Neu WA UWA

SA-BiLSTM [91] F+E 49.1 68.8 30.6 90.1 - 59.6
CNN-DCNN [88] F+E 55.3 71.1 55.3 68.3 - 62.5
bcLSTM∗ F 64.7 69.6 48.0 75.6 72.4(4.2) 64.4(1.6)

bcGRU F 69.5 65.4 52.9 74.7 71.7(4.7) 65.6(1.2)

bcLSTM∗ F+E 54.5 75.6 43.4 73.0 70.5(4.5) 61.6(1.6)

bcGRU F+E 59.0 78.6 42.3 71.4 70.2(5.1) 62.8(1.4)

HiGRU F 66.9 73.0 51.8 77.2 74.4(1.7) 67.2(0.6)

HiGRU-f F 69.1 72.1 60.4 72.1 71.3(2.9) 68.4(1.0)

HiGRU-sf F 70.7 70.9 57.7 76.2 74.0(1.4) 68.9(1.5)

HiGRU F+E 55.4 81.2 51.4 64.4 65.8(4.2) 63.1(1.5)

HiGRU-f F+E 54.9 78.3 55.5 68.7 68.5(3.0) 64.3(1.2)

HiGRU-sf F+E 56.8 81.4 52.2 68.7 69.0(2.0) 64.8(1.3)

Model Train EmotionPush (E)

Ang Joy Sad Neu WA UWA

SA-BiLSTM [91] F+E 24.3 70.5 31.0 94.2 - 55.0
CNN-DCNN [88] F+E 45.9 76.0 51.7 76.3 - 62.5
bcLSTM∗ E 32.9 69.9 47.1 78.0 74.7(4.4) 57.0(2.1)

bcGRU E 33.7 71.1 57.2 76.1 73.9(2.9) 59.5(1.8)

bcLSTM∗ F+E 52.4 79.1 54.7 73.3 73.4(3.8) 64.9(2.1)

bcGRU F+E 49.4 74.8 61.9 72.4 72.1(4.3) 64.6(1.8)

HiGRU E 55.6 78.1 57.4 73.8 73.8(2.0) 66.3(1.7)

HiGRU-f E 55.9 78.9 60.4 72.4 73.0(2.2) 66.9(1.2)

HiGRU-sf E 57.5 78.4 64.1 72.5 73.0(1.6) 68.1(1.2)

HiGRU F+E 50.8 76.9 69.0 75.7 75.3(1.7) 68.1(1.2)

HiGRU-f F+E 58.3 79.1 69.6 70.0 71.5(2.5) 69.2(0.9)

HiGRU-sf F+E 57.8 79.3 66.3 77.4 77.1(1.0) 70.2(1.1)

with multimodal features.

• By examining the detailed accuracy in each emotion, bcLSTM∗
and bcGRU with the textual feature attain much higher accuracy
on the neutral emotion than bcLSTM with the only textual



3.3. EXPERIMENT 65

feature while maintaining good performance on the other three
emotions. The results show that the weighted loss function
benefits the training of models.

From the results on Friends and EmotionPush in Table 3.4, we
observe that bcLSTM∗ and bcGRU trained on the same dataset (F+E)
of CNN-DCNN perform better than CNN-DCNN on EmotionPush
while attaining comparable performance with CNN-DCNN on Friends.
The results show that by utilizing the contextual information with the
weighted loss function, bcLSTM∗ and bcGRU can beat the state-of-
the-art method.

HiGRUs vs. Baselines. Our proposed HiGRUs outperform the
state-of-the-art methods with significant margins on all the datasets.
From Table 3.3, we observe that:

• CMN with the trimodal features attains the best performance
on the anger emotion while our vanilla HiGRU achieves the best
performance on the happiness emotion and gains further improve-
ment on sadness and neutral emotions over CMN. Overall, the
vanilla HiGRU achieves at least 8.7% and 3.8% improvement over
CMN with the textual feature and the trimodal features in terms
of WA, respectively. The results, including those of bcLSTM∗
and bcGRU, indicate that GRU learns better representations of
utterances than CNN in this task.

• The two variants, HiGRU-f and HiGRU-sf, can further attain
+0.9 and +1.5 improvement over HiGRU in terms of WA and
+1.0 and +1.2 improvement over HiGRU in terms of UWA,
respectively. The results demonstrate that the included indi-
vidual word/utterance-level features and long-range contextual
information in HiGRU-f and HiGRU-sf, are indeed capable of
boosting the performance of the vanilla HiGRU.

As for the results in Table 3.4, we can see that:

• In terms of UWA, HiGRU trained and tested on individual sets
of Friends and EmotionPush gains at least 7.5% and 6.0% im-
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provement over CNN-DCNN, respectively. Overall, our proposed
HiGRU achieves well-balanced performance for the four tested
emotions, especially attaining significantly better performance on
the minority emotions of anger and sadness.

• Moreover, HiGRU-f and HiGRU-sf further improve HiGRU +1.2
accuracy and +1.7 accuracy on Friends and +0.6 accuracy and
+1.8 accuracy on EmotionPush in terms of UWA, respectively.
The results again demonstrate the superior power of HiGRU-f
and HiGRU-sf.

Mixing Training Sets. By examining the results from the last ten
rows in Table 3.4, we conclude that it does not necessarily improve the
performance by mixing the two sets of training data. Though the best
performance of SA-BiLSTM and CNN-DCNN is obtained by training
on the mixed dataset, the testing results show that our implemented
bcLSTM∗, bcGRU and our proposed HiGRU models can attain better
performance on EmotionPush but yield worse performance on Friends
in terms of UWA.

By examining the detailed emotions, we speculate that: Emotion-
Push is a highly imbalanced dataset with over 60% of utterances in
the neutral emotion. Introducing EmotionPush into a more balanced
dataset, Friends, is equivalent to down-sampling the minority emotions
in Friends. This hurts the performance on the minority emotions,
anger and sadness. Meanwhile, introducing Friends into EmotionPush
corresponds to up-sampling the minority emotions in EmotionPush.
The performance of the sadness emotion is significantly boosted and
that on the anger emotion is at least unaffected.

3.4 Analysis

3.4.1 Model Size

We study how the scale of the utterance encoder affects the perfor-
mance of our proposed models, especially when our models contain a
similar number of parameters as the baseline, say bcGRU. Such a fair
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Table 3.5: Experimental results of UWA on Friends by our proposed models with
different scales of utterance encoder.

d1 bcGRU HiGRU HiGRU-f HiGRU-sf

- 65.6(1.2) - - -
300 - 67.2(0.6) 68.4(1.0) 68.9(1.5)

200 - 67.6(2.0) 68.9(0.9) 69.1(1.3)

150 - 67.6(1.5) 68.5(1.3) 68.9(1.2)

100 - 67.5(1.7) 68.4(1.3) 69.6(1.0)

condition can be made between our HiGRU-sf and bcGRU if we set d1

to 150. From the testing results on Friends in Table 3.5, we can observe
that: (1) Under the fair condition, the performance of our HiGRU-
sf is not degraded compared to that when d1 = 300. HiGRU-sf still
outperforms bcGRU by a significant margin. (2) Overall, no matter
d1 is larger or smaller than 150, HiGRU-sf maintains consistently
good performance and the difference between HiGRU-sf and HiGRU-f
or HiGRU keeps noticeable. These results further demonstrate the
superiority of our proposed models over the baseline bcGRU and the
motivation of developing the two variants based on the vanilla HiGRU.

3.4.2 Successful Cases

We investigate three scenes related to the word “okay” that expresses
three distinct emotions. The first two scenes come from the testing
set of Friends and the third one from that of IEMOCAP. We report
the predictions made by bcGRU and our HiGRU-sf, respectively, in
Table 3.6. In Scene 1, “okay” with period usually exhibits little
emotion and both bcGRU and HiGRU-sf correctly classify it as
“Neu". In Scene 2, “okay” with “!” expresses strong emotion.
However, bcGRU misclassifies it to “Ang" while HiGRU-sf successfully
recognizes it as “Joy". Actually, the mistake can be traced back
to the first utterance of this scene which is also misclassified as
“Ang". This indicates that bcGRU tends to capture the wrong
atmosphere within the conversation. As for Scene 3, “okay” with
period now indicates “Sad" and is correctly recognized by HiGRU-
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Table 3.6: “Okay” expresses distinct emotions in three different scenes.

Speaker Utterance Truth bcGRU HiGRU-sf

Scene 1
Phoebe Okay. Oh but don’t tell

them Monica’s pregnant be-
cause they frown on that.

Neu Neu Neu

Rachel Okay. Neu Neu Neu
Phoebe Okay. Neu Neu Neu

Scene 2
Phoebe Yeah! Sure! Yep! Oh,

y’know what? If I heard
a shot right now, I’d throw
my body on you.

Joy Ang Joy

Gary Oh yeah? Well maybe you
and I should take a walk
through a bad neighbor-
hood.

Other / /

Phoebe Okay! Joy Ang Joy
Gary All right. Neu Neu Neu

Scene 3
Female Can I send you, like videos

and stuff? What about
when they start walking.

Other / /

Male Yeah yeah yeah. Sad Hap Sad
Male You you record every sec-

ond. You record every sec-
ond because I want to see it
all. Okay?

Hap Hap Sad

Male If I don’t get to see it now, I
get to see it later at least,
you know? You’ve got to
keep it all for me; all right?

Other / /

Female Okay. Sad Neu Sad

sf but misclassified as “Neu" by bcGRU. Note that HiGRU-sf also
classifies the third utterance in Scene 3 as “Sad" which seems to be
conflicting to the ground truth. In fact, our HiGRU-sf captures the
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Table 3.7: Wrong predictions made by both bcGRU and our HiGRU-sf in two scenes.

Speaker Utterance Truth bcGRU HiGRU-sf

Scene 4
Ross Hi. Neu Neu Neu
Rachel Hi. Neu Neu Neu
Ross Guess what? Neu Neu Neu
Rachel What? Neu Neu Neu
Ross They published my paper. Joy Sad Neu
Rachel Oh, really, let me see, let me

see.
Joy Neu Neu

Phoebe Rach, look! Oh, hi! Where
is my strong Ross Skywalker
to come rescue me. There
he is.

Other / /

Scene 5
Speaker-1 Sorry for keeping you up Sad Sad Sad
Speaker-2 Lol don’t be Joy Joy Joy
Speaker-2 I didn’t have to get up today Neu Sad Sad
Speaker-1 :p Joy Joy Joy
Speaker-2 It’s actually been a really

lax day
Joy Neu Sad

blues of this parting situation, where the true label “Hap" may not be
that suitable. These results show that our HiGRU-sf learns from both
each utterance and the context, and can make correct predictions of
the emotion of each utterance.

3.4.3 Failed Cases

At last, we show some examples that both bcGRU and our HiGRU-sf
fail in recognizing the right emotions in Table 3.7, i.e., Scene 4 from
Friends and Scene 5 from EmotionPush. In Scene 4, both bcGRU
and HiGRU-sf make wrong predictions for the fifth and the sixth
utterances. It should be good news that Ross has his paper published
and Rachel is glad to see related reports about it. While the repeating
of “let me see” two times is actually a good indicator of a non-neutral
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emotion for human, it is still hard for the models to understand the
meaning of such a behavior. This kind of scenes may be addressed by
incorporating some other features like audio and video. As for Scene 5,
the third and the fifth utterances are classified into wrong emotions.
Notice that the emotions indicated from the two utterances are very
subtle even for humans. Speaker-2 did not plan to get up today, but
Speaker-1 kept him/her up and it ended up with a really lax day. Thus,
Speaker-2 feels joyful now. This indicates that even taking into the
context into account, the models’ capability of understanding subtle
emotions is still limited and more exploration is required.

3.5 Summary

In this chapter, we study the intra-sample structure for context
enhancement to better address the ERC task. Specifically, we
propose a Hierarchical Gated Recurrent Unit (HiGRU) framework
to learn both the context of words and the context of utterances.
We further promote the HiGRU framework to two variants, HiGRU-
f, and HiGRU-sf, and effectively capture the word- and utterance-
level inputs and the long-range contextual information, respectively.
Experimental results demonstrate that our proposed HiGRU models
can sufficiently capture the context information, yielding a significant
boost of performance on all three tested datasets. In the future,
we plan to explore semi-supervised learning methods to address the
problem of data scarcity in this task.

2 End of chapter.



Chapter 4

Intra-Sample Structure Mining for
Self-Supervised Learning

In this chapter, we investigate the intra-sample structure for self-
supervised learning. We also conduct the studies on the ERC task
for not only the rich structure information of conversations but more
importantly, the data scarcity issue, which could be complemented
by unlabeled conversation data. Existing datasets for the ERC task
contain inadequate conversations, which prevent the models from
playing their maximum effect. However, collecting labeled data by
human annotation is costly as annotators are required to recognize
either obvious or subtle differences between emotions and consider the
context in the conversations. To take the advantage of the massive
unlabeled conversation data, we propose a conversation completion
(ConvCom) task to pre-train a context-dependent encoder (Pre-
CODE) on unlabeled conversation data. Essentially, such a pre-
training task utilizes the sequential relationship between utterances
in each conversation, enabling the learning of representations at both
utterance- and conversation-level. By fine-tuning on the labeled data,
our Pre-CODE achieves significant improvements of performance on
the ERC task, and particularly benefits the prediction of the minority
emotion classes.

71
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Table 4.1: Statistics of the datasets for ERC.

Model Conversation Utterance

Train Val Test Train Val Test

IEMOCAP 96 24 31 3,569 721 1,208
Friends 720 80 200 10,561 1,178 2,764
EmotionPush 720 80 200 10,733 1,202 2,807
EmoryNLP 713 99 85 9,934 1,344 1,328
MOSEI∗ 2,250 300 676 16,331 1,871 4,662

4.1 Problems and Motivation

Recent studies on the ERC task have employed context-dependent
models [5, 6, 39, 52] to exploit the inherent hierarchical struc-
ture of conversations (i.e., words-to-utterance and utterances-to-
conversation). Despite their remarkable success, context-dependent
models suffer from the data scarcity issue. In the ERC task, annotators
are required to recognize either obvious or subtle difference between
emotions, and tag the instance with a specific emotion label, such
that labeled data with human annotations are very costly to collect.
In addition, existing datasets for ERC [78, 79, 80, 81, 82] contain
inadequate conversations, as shown in Table 4.1, which prevent the
context-dependent models from playing their maximum effect.

In this chapter, we hope to take advantage of unlabeled conversa-
tion data by exploiting the intra-sample structure for self-supervised
learning. Specifically, we propose a conversation completion (Con-
vCom) task based on unlabeled conversation data, which attempts
to select the correct answer from candidate answers to fill a masked
utterance in a conversation. Then, on the proposed ConvCom task,
we Pre-train a basic COntext-Dependent Encoder (Pre-CODE).
The hierarchical structure of the context-dependent encoder (CODE)
makes our work different from those that focus on universal sentence
encoders [24, 26, 8]. Finally, we fine-tune the Pre-CODE on five
datasets of the ERC task. Experimental results show that the fine-
tuned Pre-CODE achieves a significant improvement of performance
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over the baselines, particularly on minority emotion classes, demon-
strating the effectiveness of our approach. Our contributions of this
work are as follows:

• We propose the conversation completion task for the context-
dependent encoder to learn from unlabeled conversation data.

• We fine-tune the pre-trained context-dependent encoder on the
datasets of ERC and achieve significant improvement of perfor-
mance over the baselines.

• Extensive analysis suggests that both utterance and conversation
encoders are well pre-trained and pre-training particularly bene-
fits the prediction of minority classes.

4.2 Methodology

4.2.1 Pre-training Task

We exploit the self-supervision signal in conversations to construct
our pre-training task. Formally, given a conversation Di from the
whole dataset D, denoted as Di = {u1, u2, · · · , uNi

}, we mask a
target utterance uj as Di\uj = {· · · , uj−1, [mask], uj+1, · · · } to create
a question, and try to retrieve the correct utterance uj from the whole
training corpus. The choice of filling the mask involves countless
possible utterances, making it infeasible to formulate the task into
a multi-label classification task with softmax. We instead simplify the
task into a response selection task [93] using negative sampling [22],
which is a variant of noise-contrastive estimation (NCE) [94]. To
achieve so, we sample N−1 noise utterances elsewhere, along with the
target utterance, to form a set of N candidate answers. Then the goal
is to select the correct answer, i.e., uj, from the candidate answers to
fill the mask, conditioned on the context utterances. We term this task
“Conversation Completion”, abbreviated as ConvCom. Figure 4.1
shows an example, where the utterance u4 is masked out from the
original conversation and the candidate answers are composed by u4
and two noise utterances.
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Question
u1: They die at the end ?
u2: Oh, yes.
u3: Juliet poisons herself, then Romeo 
comes in and he dies, too .
u4: [ mask ]
u5: OK.
u6: But after that, their families are 
reconciled, so that's quite nice.
u7: I don't understand why the montagons
and the caplets just won't let them muck 
about together.
-------------------------------------------------------
Candidate Answers
1. So, we should put a spoiler, should we?
2. I struggle to keep a goldfish alive, to be 
honest.
3. What do you want, Gallo?

Conversation

u1: They die at the end ?
u2: Oh, yes.
u3: Juliet poisons herself, then Romeo 
comes in and he dies, too .
u4: So, we should put a spoiler, should we?
u5: OK.
u6: But after that, their families are 
reconciled, so that's quite nice.
u7: I don't understand why the montagons 
and the caplets just won't let them muck 
about together.

Figure 4.1: A data example in the ConvCom task.

4.2.2 Pre-training Model

Context-Dependent Encoder. The context-dependent encoder
consists of two parts: an utterance encoder, and a conversation
encoder. For the ith conversation, the jth utterance is represented
by a sequence of word vectors xj = {wk}Mj

k=1, where Mj is the number
of words. The word vectors are initialized by the 300-dimensional
pre-trained GloVe word vectors1 [23].

For the utterance encoder, we adopt a bidirectional GRU to
read the word vectors of an utterance, and produce the hidden state←→
h k = [

−→
h k;
←−
h k] ∈ R2du. We apply max-pooling and mean-pooling on

the hidden states of all words. The pooling results are summed up,
followed by a fully-connected layer, to obtain the embedding of the
utterance termed uj:

hj = max({
←→
h k}

Mj

k=1) + mean({
←→
h k}

Mj

k=1), (4.1)
uj = tanh(Wu · hj + bu), j ∈ [1, Ni], (4.2)

where Ni is the number of utterances in the ith conversation. In
our preliminary experiments, we find that the results variate quite

1https://nlp.stanford.edu/projects/glove/

https://nlp.stanford.edu/projects/glove/
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Figure 4.2: The architecture of the context-dependent encoder with the pre-training
objective.

significantly using max-pooling though the maximum value could be
very high. Therefore, we also apply mean-pooling to add some stable
features.

As for the conversation encoder, since an utterance could express
different meanings in different contexts, we adopt another bidirectional
GRU to model the utterance sequence of a conversation to capture
the relationship between utterances. The produced hidden states are
termed −→Hj,

←−Hj ∈ Rdc. With the bidirectional GRU, we are able to
capture the context of each utterance from the neighbor utterances
before and after it.

Pre-training Objective. To train the context-dependent encoder on
the proposed ConvCom task, we construct a contextual embedding for
each masked utterance by combining its context from the history −→Hj−1

and the future ←−Hj+1 (see Figure 4.2):

ûj = tanh(Wc · [
−→Hj−1;

←−Hj+1] + bc). (4.3)

Then, the contextual embedding ûj is matched to the candidate
answers to find the most suitable one to fill the mask. To compute
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the matching score, we adopt dot-product with a sigmoid function as:

s(ûj,uan
) = σ(û>j uan

), n ∈ [1, N ], (4.4)

where σ(x) = 1
(1+exp(−x)) ∈ (0, 1) is the sigmoid function, and uan

is
the embedding of the nth candidate answer. The goal is to maximize
the score of the target utterance and minimize the score of the noise
utterances. Thus the loss function becomes:

F = −
∑
j

log σ(û>j ua1) +
N∑
n=2

log σ(−û>j uan
)
 , (4.5)

where a1 corresponds to the target utterance, and the summation goes
over each utterance of all the conversations in the training set.

4.3 Experiment: Pre-training

4.3.1 Unlabeled Conversation Data

Our unlabeled conversation data comes from an open-source database
named OpenSubtitle2 [83], which contains a large amount of subtitles
of movies and TV shows. Specifically, we retrieve the English subtitles
throughout the year of 2016, including 25466 .html files. We extract
the text subtitles from all the .html files and pre-process them as
below:

• For each episode, we remove the first and the last ten utterances
in case they are instructions but conversations, especially in TV
shows;

• We split the conversations in each episode randomly into shorter
ones with 5 to 100 utterances, following a uniform distribution;

• A short conversation is removed if over half of its utterances
contain less than eight words each. This is done to force the
conversation to capture more information;

• All the short conversations are randomly split into a training set,
a validation set, and a test set, following the ratio of 90:5:5.

2http://opus.nlpl.eu/OpenSubtitles-v2018.php

http://opus.nlpl.eu/OpenSubtitles-v2018.php
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Table 4.2: Statistics of the created datasets for the ConvCom task.
Set Conversation Utterance (Avg.) Word (Avg.)

Train 58360 41.3 10.1
Val 3186 41.0 10.1
Test 3297 40.8 10.1

Table 4.2 lists the statistics of the resulting sets, where #Conversa-
tion denotes the number of conversations in a set, Avg. #Utternace is
the average number of utterances in a conversation, and Avg. #Word
is the average number of tokens in an utterance. In total, there are
over 2 million utterances in over 60k conversations, which are at least
100 times more than those datasets for ERC (see Table 4.1).

4.3.2 Noise Utterances

We randomly sample ten noise utterances for each utterance in the
training set, validation set, and test set. In each set, the utterances
of a conversation is masked one by one in turn. Each utterance is
paired with ten noise utterances sampled from elsewhere within the
set, but we share the ten noise utterances for the utterances in the
same conversation. During training, we can either use the pre-selected
noise utterances or sample an arbitrary number of noise utterances
dynamically. We use the validation set to choose model parameters,
and evaluate the model performance on the test set.

4.3.3 Evaluation

To evaluate the pre-trained model, we adopt the evaluation metric:

RN ′@k =
∑k
i=1 yi∑N ′
i=1 yi

, (4.6)

which is the recall of the true positives among k best-matched answers
from N ′ available candidates for the given contextual embedding
ûj [84]. The RN ′@k is calculated for each masked utterance and we
report the average results of all utterances. The variate yi represents
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the binary label for each candidate, i.e., 1 for the target one and 0 for
the noise ones. Here, we report R5@1, R5@2, R11@1, and R11@2.

4.3.4 Training Details

We choose Adam [92] as the optimizer with an initial learning rate of
2×10−4, which is decayed with a rate of 0.75 once the validation recall
R11@1 stops increasing. We use a dropout rate of 0.5 for the utterance
encoder and the conversation encoder, respectively. Gradient clipping
with a norm of 5 is also applied to avoid gradient explosion. Each
conversation in the training set is regarded as a batch, where each
utterance plays the role of target utterance by turns. We randomly
sample 10 noise utterances for each conversation during training and
validate the model every epoch. The CODE is pre-trained for at
most 20 epochs, and early stopping with a patience of 3 is adopted to
choose the optimal parameters. Note that, we fix the word embedding
layer during pre-training to focus on the utterance encoder and the
conversation encoder.

4.3.5 Results

For simplicity, we term the context-dependent encoder CODE. We
train CODE on the created dataset in three different capacities,
namely, Small, Medium, and Large, corresponding to different
hidden sizes of the BiGRUs.

Table 4.3 lists the results on the test set. For the Small CODE, it
is able to select the correct answer for 70.8% instances with 5 candidate
answers and 56.2% with 11 candidates. The accuracy is considerably
higher than random guesses, i.e., 1/5 and 1/11, respectively. By
increasing the model capacity to Medium and Large, we further
improve the recalls by several points successively. These results
demonstrate that CODE is indeed able to capture the structure of
conversations and perform well in the proposed ConvCom task.
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Table 4.3: Test results of CODE on the ConvCom task in three capacities.

Model du/dc R5@1 R5@2 R11@1 R11@2

Small 150 70.8 88.0 56.2 72.7
Medium 300 73.8 89.7 60.4 76.4
Large 450 77.2 91.3 64.2 79.1

4.4 Experiment: Fine-tuning

4.4.1 ERC Architecture

Since the ConvCom task and the downstream ERC task both have
conversations as the input, we can directly transfer the pre-trained
CODE models, dubbed Pre-CODE, to the ERC task. In this way,
the sentential context and the relationship of utterances learned on the
unlabeled conversations can directly benefit the training of the ERC
task. The only component we need to add is a fully connected (FC)
layer upon Pre-CODE, followed by a softmax function to form the
new architecture. Figure 4.3 shows the resulting architecture, in which
we also concatenate the context-independent utterance embeddings to
the contextual ones before fed to the FC.

We adopt a weighted categorical cross-entropy loss function to
optimize the model parameters:

L = − 1∑L
i=1Ni

L∑
i=1

Ni∑
j=1

ω(cj)
|C|∑
c=1

ycj log2(ŷcj), (4.7)

where |C| is the number of emotion classes, yj is the one-hot vector
of the true label, and ŷj is the softmax output. The weight ω(c) is
inversely proportional to the ratio of class c in the training set with a
power rate of 0.5.

4.4.2 Compared Methods

We mainly compare our Pre-CODE with a number of previous
works: bcLSTM [5], CMN [6], SA-BiLSTM [91], CNN-DCNN [88],
SCNN [80], HiGRU [39], and our implementation for the follows:
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Figure 4.3: The architecture for the ERC task. Both the utterance encoder and
conversation encoder are transferred from the Pre-CODE.

• bcLSTM∗: bcLSTM re-implemented by us following Jiao et
al. [39];

• bcGRU: A variant of bcLSTM‡ implemented with BiGRUs;

• CODE: A vanilla CODE in Medium capacity without pre-
training. Unless otherwise stated, the Pre-CODE in the
experiments is also in the capacity of Medium by default.

4.4.3 ERC Datasets

We conduct experiments on five datasets for the ERC task, including
IEMOCAP3 [79], Friends4 [95], EmotionPush5 [95], EmoryNLP6 [80],

3https://sail.usc.edu/iemocap/
4http://doraemon.iis.sinica.edu.tw/emotionlines
5http://doraemon.iis.sinica.edu.tw/emotionlines
6https://github.com/emorynlp/emotion-detection/

https://sail.usc.edu/iemocap/
http://doraemon.iis.sinica.edu.tw/emotionlines
http://doraemon.iis.sinica.edu.tw/emotionlines
https://github.com/emorynlp/emotion-detection/
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Table 4.4: Test results on IEMOCAP, EmoryNLP, and MOSEI∗. The implemented
bcLSTM performs much better than the original one, possibly because that the
original bcLSTM is not trained end-to-end.

Model IEMOCAP EmoryNLP MOSEI∗

F1 WA F1 WA F1 WA

bcLSTM [5] – 73.6 – – – –
CMN [6] – 74.1 – – – –
SCNN [80] – – 26.9 37.9 – –
HiGRU-sf [39] – 82.1 – – – –
bcLSTM∗ 76.6 77.1 25.5 33.5 29.1 56.3
bcGRU 77.6 78.2 26.1 33.1 28.7 56.4
CODE-Med 78.6 79.6 26.7 34.7 29.7 56.6
Pre-CODE 81.5 82.9 29.1 36.1 31.7 57.1

and MOSEI7 [82]. For MOSEI, we pre-process it to adapt to the ERC
task and name the pre-processed dataset as MOSEI∗ here. Specifically,
we utilize the raw transcripts of MOSEI, where over 14K utterances are
not annotated, and others are labeled with one or more emotion labels.
For the unlabeled utterances, we just remove them from the dataset.
For the utterance with more than one emotion label, we determine its
primary emotion by the majority vote or the highest emotion intensity
sum if there are more than one majority vote. For the utterances that
obtain zero vote for all emotion classes, we annotate them as other.

For the first three datasets, we follow previous works [5, 95]
to consider only four emotion classes, i.e., anger, joy, sadness, and
neutral. We consider all the emotion classes for EmoryNLP as in
[80] and six emotion classes (without neutral) for MOSEI∗. All the
datasets contain the training set, validation set, and test set, except
for IEMOCAP. Thus, we follow [5] to use the first four sessions of
transcripts as the training set, and the last one as the test set. The
validation set is extracted from the randomly-shuffled training set
with a ratio of 80:20. Please revisit the statistic details of datasets
in Table 4.1.

7http://immortal.multicomp.cs.cmu.edu/raw_datasets/

http://immortal.multicomp.cs.cmu.edu/raw_datasets/
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Table 4.5: Test results on Friends and EmotionPush.

Model Friends EmotionPush

F1 WA F1 WA

CNN-DCNN [88]; – 67.0 – 75.7
SA-BiLSTM [91] – 79.8 – 87.7
HiGRU [39] – 74.4 – 73.8
bcLSTM∗ 63.1 79.9 60.3 84.8
bcGRU 62.4 77.6 60.5 84.6
CODE-Med 62.4 78.0 60.3 84.2
Pre-CODE 65.9 81.3 62.6 84.7

4.4.4 Evaluation

To evaluate the performance of our models, we report the macro-
averaged F1-score [80] and the weighted accuracy (WA) [78] of all
emotion classes. The F1-score of each emotion class is also presented
for discussion.

4.4.5 Training Details

We still choose Adam as the optimizer and tune the learning rate
for the implemented baselines. Generally, the learning rate of 2 ×
10−4 works well for all the datasets except MOSEI∗, on which we
find 5 × 10−5 works better. For the fine-tuning of Pre-CODE, we
use the learning rate of the baselines or its half and report the better
results here. By default, we fix the word embeddings and tune the pre-
trained parameters in Pre-CODE. Fixing all the parameters usually
produces limited improvement over the baselines. We monitor the
macro-averaged F1-score of the validation set and decay the learning
rate once the F1-score stops increasing. The decay rate and patience
of early stopping are 0.75 and 6 for all the datasets except IEMOCAP.
Since IEMOCAP has much fewer conversations, we change the decay
rate and patience of early stopping to 0.95 and 10, respectively.
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Figure 4.4: Detailed F1-score of each emotion class on IEMOCAP and EmoryNLP.

4.4.6 Results

We report the main results in Table 4.4 and Table 4.5. Each result is
the average of 5 repeated experiments. We directly quote the values
of previous studies for specific datasets and run experiments on all
the datasets with the implemented bcLSTM∗ and bcGRU baselines.
As seen, our Pre-CODE outperforms the compared methods on all
datasets in terms of F1-score by at least 2.0% absolute improvement.
We also conduct significance tests by using two-tailed paired t-tests
over the F-1 scores of Pre-CODE and CODE-Med. P-values are
obtained as 0.0107, 0.0038, 0.0011, 0.0003, and 0.0068 for IEMO-
CAP, EmoryNLP, MOSEI∗, Friends, and EmotionPush, respectively.
Therefore, the result for IEMOCAP is statistically significant with
a significance level of 0.05 whereas the other four datasets obtain
a significance level of 0.01. It demonstrates the effectiveness of
transferring the knowledge from unsupervised conversation data to
the ERC task.

To inspect which aspects pre-training helps the most, we present
the F1-score of each emotion class on IEMOCAP and EmoryNLP
in Figure 4.4. As seen, our Pre-CODE particularly improves the
performance on minority emotion classes, e.g., anger and sadness
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in IEMOCAP, and peaceful and sad in EmoryNLP. These results
demonstrate that pre-training can ameliorate the issue of imbalanced
performance on minority classes while maintaining good performance
on majority classes.

4.5 Analysis

4.5.1 Model Capacity

We investigate how the model performance is affected by the number
of parameters, as seen in Table 4.6. We find that: (1) Pre-CODE
consistently outperforms CODE in all cases, suggesting that pre-
training is an effective method to boost the model performance of
ERC regardless of the model capacity. (2) Pre-CODE shows better
performance in the capacities of Small and Medium, we speculate
that the datasets for ERC are so scarce that they are incapable of
transferring the pre-trained parameters of the Large Pre-CODE to
optimal ones for ERC.

4.5.2 Layer Effect

We study how different pre-trained layers affect the model perfor-
mance, as seen in Table 4.7. CODE+Pre-U denotes that only the
parameters of utterance encoder are initialized by Pre-CODE. From
CODE to CODE+Pre-U and then to Pre-CODE, we conclude that
pre-training results in better utterance embeddings and helps the
model to capture the utterance-level context more effectively. In
addition, Pre-CoDE+Re-W represents that we re-train Pre-CODE
for 10 more epochs to adjust the originally fixed word embeddings.
The results suggest that pre-training word embeddings do not improve
the model performance necessarily but may corrupt the learned
utterance and conversation encoders.
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Table 4.6: Ablation study on model capacity.

Model Capacity IEMOCAP Friends

CODE
Small 76.5 62.5
Medium 78.6 62.4
Large 77.6 62.1

Pre-CODE
Small 81.2 65.2
Medium 81.5 65.9
Large 80.3 64.8

Table 4.7: Ablation study on pre-trained layers.

Layers IEMOCAP Friends

Pre-CODE + Re-W 81.6 64.5
Pre-CODE 81.5 65.9
CODE + Pre-U 80.1 64.8
CODE 78.6 62.4

4.5.3 Qualitative Study

In Table 4.8, we provide two examples for a comparison between
CODE and Pre-CODE. The first example is from Friends with
consecutive utterances from Joey. It shows that CODE tends to
recognize the utterances with exclamation marks “!” as Angry, while
those with periods “.” as Neutral. The problem also appears on Pre-
CODE for short utterances, e.g., “Push!”, which contains little and
misleading information. This issue might be alleviated by adding other
features like audio and video. Still, Pre-CODE performs better than
CODE on longer utterances. The other example is from EmotionPush,
which are messages with few punctuations. The CODE model predicts
almost all utterances as Neutral, which may be because most of the
training utterances are Neutral. However, Pre-CODE can identify
the minor classes, e.g., Sad, demonstrating that pre-training can
alleviate the class imbalance issue.
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Table 4.8: Qualitative comparison between CODE and Pre-CODE by two
examples.

Speaker Utterance Truth CODE Pre-CODE

Example 1
Joey Come on, Lydia, you

can do it.
Neu Neu Neu

Joey Push! Joy Ang Ang
Joey Push ’em out, push

’em out, harder,
harder.

Joy Neu Neu

Joey Push ’em out, push
’em out, way out!

Joy Ang Joy

Joey Let’s get that ball and
really move, hey, hey,
ho, ho.

Joy Neu Joy

Joey Let’s. . . I was just. . .
yeah, right.

Joy Neu Neu

Joey Push! Joy Ang Ang
Joey Push! Joy Ang Ang

Example 2
Sp1 It’s so hard not to cry Sad Ang Sad
Sp2 What happened Neu Neu Neu
Sp1 I lost another 3 set

game
Sad Neu Sad

Sp2 It’s ok person_145 Neu Neu Neu
Sp1 Why does it hurt so

much
Sad Neu Sad

Sp2 Everybody loses Neu Neu Neu

4.6 Summary

In this chapter, we investigate the intra-sample structure for self-
supervised learning on unlabeled conversation data. The proposed
conversation completion task is effective for the pre-training of the
context-dependent model, which is further fine-tuned to boost the
performance of the ERC task significantly. Future directions include
exploring advanced models (e.g., Transformer) for pre-training,
conducting domain matching for the unlabeled data, as well as multi-



4.6. SUMMARY 87

task learning to alleviate the possible catastrophic forgetting issue in
transfer learning.

2 End of chapter.
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Chapter 5

Inter-Sample Quality Mining for
Uncertainty-Based Data
Rejuvenation

In this chapter, we study the inter-sample quality for uncertainty-
based data rejuvenation. We conduct the studies on the machine
translation (MT) task due to its large-scale datasets. Koehn et al. [96]
have shown that MT requires a large amount of data to train a well-
performing model, especially for neural machine translation (NMT).
However, with a rapid increase of data scale, the complex patterns
and potential noises in the large-scale data make it more challenging
to train NMT models. Therefore, we propose to identify inactive
samples in the large-scale datasets and try to re-use them to further
boost the performance of NMT models. Specifically, we identify
the inactive samples by data uncertainty, which is computed as the
output probability of a pre-trained NMT model for each sample.
We empirically demonstrate that the existence of inactive samples
mainly depends on the data distribution. Further, we introduce
data rejuvenation (DataReju) to re-label the inactive samples by
forward-translation, and re-use the rejuvenated samples together with
active samples to train NMT models. Experimental results on large-
scale MT datasets show that our DataReju approach consistently
and significantly improves performance for several strong MT models.
Extensive analyses reveal that our approach stabilizes and accelerates

89
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the training process of MT models, resulting in final models with
better generalization capability.

5.1 Problems and Motivation

Neural machine translation (NMT) is a data-hungry approach, which
requires a large amount of data to train a well-performing NMT
model [96]. However, the complex patterns and potential noises in
the large-scale datasets make training NMT models difficult. While
noises in small-scale datasets should also bring negative effects, they
can be addressed by human correction, which however is costly and
infeasible for large-scale datasets. To relieve this problem, several
approaches have been proposed to better exploit the training data,
such as curriculum learning [10], data diversification [77], and data
denoising [64].

In this chapter, we aim to exploit the inter-sample quality for
uncertainty-based data rejuvenation to improve the training of NMT
models. Specifically, we explore an interesting alternative which is to
reactivate the inactive samples in the training data for NMT models.
We provide the definition of inactive sample as below:

Definition 3 (Inactive Sample) Inactive samples are the training
samples that only marginally contribute to or even inversely harm the
performance of NMT models. According to our following analysis,
inactive samples tend to contain noises, rare words, and inconsistent
expressions (e.g., passive voice v.s. active voice) or styles (e.g., human
translation v.s. natural text) at source and target sides.

Concretely, we use sentence-level output probability [97] assigned
by a trained NMT model to measure the activeness level of training
samples, and regard the samples with the least probabilities as inactive
samples. Experimental results show that removing 10% most inactive
samples can marginally improve translation performance. In addition,
we observe a high overlapping ratio (e.g., around 80%) of the most
inactive and active samples across random seeds, model capacity, and
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model architectures. These results provide empirical support for our
hypothesis of the existence of inactive samples in large-scale datasets,
which is invariant to specific NMT models and mainly depends on the
data distribution itself.

We further propose data rejuvenation to rejuvenate the inactive
samples so as to improve the performance of NMT models. Specif-
ically, we train an NMT model on the active samples as the rejuve-
nation model to re-label the inactive samples, resulting in the rejuve-
nated samples. The final NMT model is trained on the combination
of the active samples and rejuvenated samples. Experimental results
show that the data rejuvenation approach consistently and signifi-
cantly improves performance on SOTA NMT models (e.g., Lstm [98],
Transformer [15], and DynamicConv [99]) on the benchmark
WMT14 English-German and English-French datasets (sec:main).
Encouragingly, our approach is also complementary to existing data
manipulation methods (e.g., data diversification [77] and data denois-
ing [64]), and combining them can further improve performance.

Finally, we conduct extensive analyses to better understand
the inactive samples and the proposed data rejuvenation approach.
Quantitative analyses reveal that the inactive samples are more
difficult to learn than the active ones, and rejuvenation can reduce
the learning difficulty (§5.4.1). The rejuvenated samples stabilize and
accelerate the training process of NMT models (§5.4.2), resulting in
final models with better generalization capability (§5.4.3).

Our contributions of this work are as follows:

• We demonstrate the existence of inactive samples in large-
scale translation datasets, which mainly depend on the data
distribution.

• We propose a general framework to rejuvenate the inactive
samples and achieve significant improvements over SOTA NMT
models on WMT14 En-De and En-Fr translation tasks, without
model modification.
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Figure 5.1: The framework of data rejuvenation. The inactive samples from the
original training data are identified by the identification model, then rejuvenated by
the rejuvenation model. The rejuvenated samples along with the active samples are
used together to train the NMT model.

• We conduct extensive analyses on the linguistic properties of
inactive samples, the relationship between human translation and
inactive samples, and the effect on the training process before and
after rejuvenating inactive samples.

5.2 Methodology

Figure 5.1 shows the framework of the data rejuvenation approach,
in which we introduce two models: an identification model and
a rejuvenation model. The identification model distinguishes the
inactive samples from the active ones. The rejuvenation model, which
is trained on the active samples, rejuvenates the inactive samples. The
rejuvenated samples and the active samples are combined to train the
final NMT model.

There are many possible ways to implement the general idea
of data rejuvenation. The aim of this work is not to explore this
whole space but simply to show that one fairly straightforward
implementation works well and that data rejuvenation helps.
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5.2.1 Identification Model

We describe a simple heuristic to implement the identification model
by leveraging the output probabilities of NMT models. The training
objective of the NMT model is to maximize the log-likelihood of the
training data{[xn,yn]}Nn=1:

L(θ) =
N∑
n=1

logP (yn|xn). (5.1)

The trained NMT model assigns a sentence-level probability P (y|x)
to each sentence pair (x,y), indicating the confidence of the model to
generate the target sentence y from the source one x [97, 100, 101].
Intuitively, if a training sample has a low sentence-level probability,
it is less likely to provide useful information for improving model
performance, and thus is regarded as an inactive sample.

Therefore, we adopt sentence-level probability P (y|x) as the
metric to measure the activeness level of each training sample:

I(y|x) =
T∏
t=1

p(yt|x,y<t), (5.2)

where T is the number of target words in the training sample. I(y|x)
is normalized by the length of target sentence y to avoid length bias.
We train an NMT model on the original training data and use it to
score each training sample. We treat a certain percent of training
samples with the least sentence-level probabilities as inactive samples.
Though there might be other ways to identify the inactive samples,
we find the confidence of models adopted here performs well.

5.2.2 Rejuvenation Model

Inspired by recent successes on data augmentation for NMT, we adopt
the widely-used back-translation [70] and forward-translation [75]
approaches to implement the rejuvenation model. After the active
samples are distinguished from the training data, we use them to
train an NMT model in the forward direction for forward-translation
or/and the reverse direction for back-translation. The trained model
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rejuvenates each inactive sample by producing a synthetic-parallel
sample based on their source (for forward-translation) or target (for
back-translation) side. Benefiting from the knowledge distillation
based on active samples, the rejuvenated samples consist of simpler
patterns than the original samples [72], thus are more likely to be
learned by NMT models.

5.3 Experiment

In this section, we conduct experiments to evaluate the effective-
ness of our framework. We first introduce the setup of our ex-
periments (§5.3.1), then the ablation studies of the identification
model (§5.3.2) and the rejuvenation model (§5.3.3). At last, we
report the main results across language pairs from representative NMT
architectures (§5.3.4) to demonstrate the universality of our approach.

5.3.1 Experimental Setup

Data. We conduct experiments on the two benchmark datasets, i.e.,
WMT14 English⇒German (En⇒De) and English⇒French (En⇒Fr),
which consist of about 4.5M and 35.5M sentence pairs, respectively.
We apply BPE [102] with 32K merge operations for both language
pairs. BPE is used to segment text into subword units, which can
highly reduce the size of vocabulary and improve the learning of
low-frequency words. The experimental results are reported in case-
sensitive BLEU score [85] on the test sets.

Model. We validate our approach on a couple of representative NMT
architectures:

• Lstm [98] that is implemented in the Transformer framework.

• Transformer [15] that is based solely on attention mechanisms.

• DynamicConv [99] that is implemented with lightweight and
dynamic convolutions, which can perform competitively to the
best reported Transformer results.
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Figure 5.2: Probability diagram on (a) En⇒De and (b) En⇒Fr datasets. Training
samples in smaller bins (e.g., 1, 2) are regarded as inactive samples due to their
lower probabilities.

We adopt the open-source toolkit Fairseq [103] to implement the above
NMT models. We follow the settings in the original works to train the
models. In brief, we train the Lstm model for 100K steps with 32K
(4096× 8) tokens per batch. For Transformer, we train 100K and
300K steps with 32K tokens per batch for the Base and Big models
respectively. We train the DynamicConv model for 30K steps with
459K (3584 × 128) tokens per batch. We select the model with the
best perplexity on the validation set as the final model.

We first conduct ablation studies on the identification model
(§5.3.2) and rejuvenation model (§5.3.3) on the WMT14 En⇒De
dataset with Transformer-Base. Then we report the translation
performance on different model architectures and language pairs, as
well as the comparison with previous studies (§5.3.4).

5.3.2 Identification of Inactive Samples

In this section, we investigate the reasonableness and consistency of
the identified inactive samples.

Identified Inactive Samples. As aforementioned, we rank the
training samples according to the sentence-level output probability
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Figure 5.3: Translation performance of the NMT model trained on the training
data with the most inactive samples removed. For comparison, results of the most
active samples and randomly sampled samples are also presented.

(i.e., confidence) assigned by a trained NMT model. We follow Wang
et al. [100] to partition the training samples into 10 equal bins (i.e.,
each bin contains 10% of training samples) according to the ranking of
their probabilities and report the averaged probability of each bin, as
depicted in Figure 5.2. The distributions of En⇒De and En⇒Fr are
similar due to the ranking of both training sets. As seen, the samples in
the 1st data bin have much lower probabilities than the other ones and
those in the 10th data bin have much higher probabilities. In contrast,
the probabilities from the 2nd to the 9th data bins increases linearly.
It suggests that the NMT models tend to give special priority to the
easiest samples and hardly learn the most difficult ones. Accordingly,
we treat the samples in the 1st data bin as inactive samples.

Reasonableness of Identified Inactive Samples. In this experi-
ment, we evaluate the reasonableness of the identified inactive samples
by measuring their contribution to the translation performance.
Intuitively, a reasonable set of inactive samples can be removed from
the training data without harming the translation performance, since
they cannot provide useful information to the NMT models. Starting
from this intuition, we remove a certain percentage of samples with
the least probabilities (e.g., most inactive samples) from the training
data, and evaluate the performance of the NMT model that is trained
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on the remaining data.

Figure 5.3 shows the contribution of the most inactive samples
to translation performance. Generally, the performance drop grows
up with the increased portion of samples being removed from the
training data. The declining trend of the inactive samples is more
gentle than the randomly selected samples, and that of the active
samples is steepest. These results demonstrate the reasonableness of
the identified samples. Encouragingly, the translation performance
does not degrade when removing 10% of the most inactive samples,
which is consistent with the finding of Birodkar et al. [66] on the CV
datasets.

Consistency of Identified Inactive Samples. Since our identifica-
tion of inactive samples relies on a pre-trained NMT model, one doubt
naturally arises: Are the identified inactive samples model-specific?
For example, different NMT models treat different portions of the
training data as inactive samples. To dispel the doubt, we identify
some factors that can significantly affect the performance of NMT
models:

• Random Seed: We use five different seeds for Transformer-
Base: “1”, “12”, “123”, “1234”, and “12345”.

• Model Capacity: We vary the number of layers and layer dimen-
sionality of Transformer: Tiny (3 × 256), Base (6 × 512),
and Big (6× 1024).

• Model Architecture: We use the aforementioned architectures:
Lstm, Transformer-Base, and DynamicConv.

For each data bin, we calculate the ratio of samples that are shared
by different model variants (e.g., different random seeds). Generally, a
high overlapping ratio denotes the identified samples are more agreed
by different models, which suggests the samples are not model-specific.

Figure 5.4 depicts the results. As expected, there is always
a high overlapping ratio (over 80%) for the most inactive samples
(i.e., 1st data bin) across model variants and language pairs. The
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Figure 5.4: Ratio of samples that are shared by different model variants: random
seed (a), model capacity (b), model architecture on En⇒De (c) and En⇒Fr (d)
datasets. A high overlapping ratio for most inactive samples (i.e., 1st data bin)
demonstrates that the identified inactive samples are not model-specific.

high consistency of identified inactive samples demonstrates that the
proposed identification is invariant to specific models, and depends on
the data distribution itself. Another interesting finding is that the
most active samples (i.e., 10th data bin) also hold a high agreement
by model variants. The overlapping ratios of all model variants (i.e.,
seeds, capacities, and architectures, 9 models in total) on the En⇒De
dataset are 70.9%, and 62.5% for the most inactive and (most) active
samples, respectively. This indicates that deep learning methods share
a common ability to learn from the training samples.
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Figure 5.5: Effect of the ratio of samples labeled as inactive samples. We used
forward-translation as the rejuvenation strategy and trained the final NMT model
on the combination of rejuvenated samples and active samples from scratch.

5.3.3 Rejuvenation of Inactive Samples

In this section, we evaluate the impact of different components on the
rejuvenation model.

Ratio of Samples Labeled as Inactive. After all samples are
assigned a sentence-level probability by the identification model, we
label R% of samples with the least probabilities as the inactive
samples. We investigate the effect of different R on translation
performance, as shown in Figure 5.5. Clearly, rejuvenating the inactive
samples consistently outperforms its non-rejuvenated counterpart,
demonstrating the necessity of the data rejuvenation. Concerning the
rejuvenation model, the BLEU score decreases with the increase of
R. This is intuitive, since samples with relatively higher probabilities
(e.g., beyond the 10% most inactive samples) can provide useful
information for NMT models, and rejuvenating them would inversely
harm the translation performance. In the following experiments, we
treat 10% samples with the least probabilities as inactive samples.

Effect of Rejuvenation Strategy. Table 5.1 lists the results of
different rejuvenation strategies. Surprisingly, the back-translation
strategy does not improve performance. One possible reason is that
the inactive samples are identified by a forward-translation model
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Table 5.1: Effect of different rejuvenation strategies.

Rejuvenation BLEU 4

n/a 27.5 –
Forward Translation 28.3 +0.8
Back-Translation 27.5 +0.0

Both 27.8 +0.3

(§5.2.1), indicating that these inactive samples are more difficult for
NMT models to generate from the source side to the target side,
rather than in the reverse direction. We conjecture that the forward
translation strategy may alleviate this problem by constructing a
synthetic sample, in which each source side is associated with a
simpler target side. Combining both strategies cannot further improve
translation performance. In the following experiments, we use forward
translation as the default rejuvenation strategy.

Benefiting from Forward Translation or Data Rejuvenation?
Some researchers may doubt: does the improvement indeed come
from data rejuvenation, or just from forward translation? To dispel
the doubt, we conduct the comparison experiment by randomly
selecting 10% training samples as inactive samples and applying
data rejuvenation with the forward translation strategy. As shown
in Table 5.2, removing 10% random samples inversely harms the
translation performance, and rejuvenating them leads to a further
decrease of performance. In contrast, the proposed data rejuvenation
improves performance as expected. These results provide empirical
support for our claim that the improvement comes from the proposed
data rejuvenation rather than forward translation.

5.3.4 Main Results

Comparison with Vanilla Models. Table 5.3 lists the results
across model architectures and language pairs. “+ Data Rejuve-
nation” represents the model trained with our rejuvenated data.
Our implemented Transformer models have more parameters than
previous work [15] since we use separate word embeddings for the
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Table 5.2: Comparing data rejuvenation on identified inactive samples and forward
translation on randomly sampling samples.

Training Data BLEU 4

Raw Data 27.5 –
- 10% Inactive Samples 27.8 +0.3
+ Rejuvenated Samples 28.3 +0.8

- 10% Random Samples 27.4 -0.1
+ Rejuvenated Samples 27.3 -0.2

input and output of the decoder, which leads to better performance,
especially on the large-scale En⇒Fr dataset (e.g., more than 1 BLEU
point). Our Transformer models achieve better results than that
reported in previous work [15], especially on the large-scale En⇒Fr
dataset (e.g., more than 1.0 BLEU points). Ott et al. [16] show that
models of larger capacity benefit from training with large batches.
Analogous to DynamicConv, we train another Transformer-Big
model with 459K tokens per batch (“+ Large Batch” in Table 5.3) as a
strong baseline. We test statistical significance with paired bootstrap
resampling [104] using compare-mt1 [105] with 1000 re-samples.

Clearly, our data rejuvenation consistently and significantly im-
proves translation performance in all cases, demonstrating the effec-
tiveness and universality of the proposed data rejuvenation approach.
It’s worth noting that our approach achieves significant improvements
without introducing any additional data and model modification.
It makes the approach robustly applicable to most existing NMT
systems.

Comparison with Previous Work. The proposed data rejuvena-
tion approach belongs to the family of data manipulation. Accord-
ingly, we compare it with several widely-used manipulation strategies:
data diversification [77], and data denoising [64].

For data diversification, we use both forward-translation [FT, 75]
and back-translation [BT, 70] strategies on the original training data,

1https://github.com/neulab/compare-mt

https://github.com/neulab/compare-mt


102 CHAPTER 5. UNCERTAINTY-BASED DATA REJUVENATION

Table 5.3: Evaluation of translation performance across model architectures and
language pairs. “↑ / ⇑”: indicate statistically significant improvement over the
corresponding baseline p < 0.05/0.01 respectively.

System Architecture En⇒De En⇒Fr

BLEU 4 BLEU 4

Existing NMT Systems

Vaswani et al. [15] Transformer-Base 27.3 – 38.1 –
Transformer-Big 28.4 – 41.0 –

Ott et al. [16] Scale Transformer 29.3 – 43.2 –
Wu et al. [99] DynamicConv 29.7 – 43.2 –

Our NMT Systems

This work

Lstm 26.5 – 40.6 –
+ Data Rejuvenation 27.0↑ +0.5 41.1↑ +0.5

Transformer-Base 27.5 – 40.2 –
+ Data Rejuvenation 28.3⇑ +0.8 41.0⇑ +0.8

Transformer-Big 28.4 – 42.4 –
+ Data Rejuvenation 29.2⇑ +0.8 43.0↑ +0.6
+ Large Batch 29.6 – 43.5 –

+ Data Rejuvenation 30.3⇑ +0.7 44.0↑ +0.5

DynamicConv 29.7 – 43.3 –
+ Data Rejuvenation 30.2↑ +0.5 43.9↑ +0.6

Table 5.4: Comparison with other data manipulation approaches. Results are
reported on the En⇒De test set.

Model BLEU 4

Transformer-Base 27.5 –
+ Data Rejuvenation 28.3 +0.8
+ Data Diversification-BT 26.9 -0.6

+ Data Rejuvenation 27.9 +0.4
+ Data Diversification-FT 28.1 +0.6

+ Data Rejuvenation 28.5 +1.0
+ Data Denoising 28.1 +0.6

+ Data Rejuvenation 28.6 +1.1

and no monolingual data is introduced. The final NMT model is
trained on the combination of the original and the synthetic parallel
data. Our approach is similar to “Data Diversification-FT” except
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that we only forward-translate the identified inactive samples (10%
of the training data), while they forward-translate all the training
samples.

For data denoising, we rank the training data according to a noise
metric, which requires a set of trusted samples. Following Wang et
al. [64], we use WMT newstest 2010-2011 as the trusted data, which
consists of 5492 samples. The trained NMT model on the raw data is
regarded as the noisy model, which is then fine-tuned on the trusted
data to obtain the denoised model. For each sentence pair, a noise
score is computed based on the noisy and denoised models, which is
used for instance sampling during training.

Table 5.4 shows the comparison results on the WMT14 En⇒De
test set. All approaches improve translation performance individually
except for data diversification with back-translation. Our approach
can obtain further improvement on top of these manipulation ap-
proaches, indicating that data rejuvenation is complementary to them.

In addition, we compute the overlapping ratio between the noisiest
and most inactive samples (10% of the training data) identified by
data denoising and data rejuvenation approaches, respectively. We
find that there are only 32% of samples that are shared by the two
approaches, indicating that the inactive samples are not necessarily
noisy samples. In order to better understand the characteristics of
inactive samples, we will give more detailed analyses on linguistic
properties of the inactive samples in Section 5.4.1.

Random Seeds. Some researchers may doubt if the improvement
achieved by our approach comes from lucky random starts. To dispel
this doubt, we conduct experiments on the En⇒De dataset using the
Transformer-Base model with three random seeds (i.e., 1, 12, and
123). Our approach consistently outperforms the baseline model in
all cases (i.e., 28.3/27.5, 28.2/27.4, and 27.9/27.1), demonstrating the
effectiveness of our approach.

Source Language. Some researchers may have questions about
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Table 5.5: New testing rule on WMT19 En⇒De datasets, evaluated on newstest2019
and newstest2020.

Model Newstest2019 Newstest2020

BLEU 4 BLEU 4

Transformer-Big 41.1 – 33.7 –
+ Data Rejuvenation 43.0 +1.9 35.5 +1.8

the language pairs used in the experiments that both language
pairs have English as the source language, which could determine
the rejuvenation strategy. To demonstrate the universality of our
approach across language directions, we conduct an experiment on the
WMT14 De-En translation task. The Transformer-Base model
achieves a BLEU score of 31.2, and the data rejuvenation approach
improves performance by +0.6 BLEU point.

New Testing Setup. Starting from WMT2019 [106], the test sets
only include naturally occurring text at the source-side to make
a more realistic scenario for practical translation usage. We thus
evaluate our approach under this new testing setup. Specifically, we
train Transformer-Big models on the WMT19 En⇒De datasets
with 36.8M sentence pairs and evaluated on newstest2019 and new-
stest2020. The results are listed in Table 5.5. As seen, our data
rejuvenation approach achieves +1.9 and +1.8 improvements of BLEU
score on the two test sets, respectively, demonstrating that our
approach is even more effective under this new testing setup.

5.4 Analysis

In this section, we perform an extensive study to understand in-
active samples and data rejuvenation in terms of linguistic proper-
ties (§5.4.1), learning stability (§5.4.2) and generalization capacity
(§5.4.3). We also investigate the strategy to speed up the pipeline of
data rejuvenation (§5.4.4). Unless otherwise stated, all experiments
are conducted on the En⇒De dataset with Transformer-Base.
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Figure 5.6: Linguistic properties of different training samples: frequency rank (↑
more difficult), coverage (↓ more difficult), and uncertainty (↑ more difficult).

5.4.1 Linguistics Properties

In this section, we investigate the linguistic properties of the identified
inactive samples. We explore the following three types of properties:

• Frequency Rank: We adopt frequency rank to measure the rarity
of words in the target sentences. In the target vocabulary, words
are sorted in the descending order of their frequencies in the whole
training data, and the frequency rank of a word is its position in
the dictionary. Therefore, the higher the frequency rank is, the
more rare the word is in the training data. We report the averaged
frequency rank of each of the three subsets. The larger frequency
rank of inactive samples indicates that they contain more rare
words, which makes them more difficult to be learned by NMT
models than the active samples.

• Translation Coverage: We adopt coverage to measure the ratio of
source words being aligned by any target words [107]. Firstly, we
train an alignment model on the training data by fast-align2 [108],
and force-align the source and target sentences of each subset.
Then, we calculate the coverage of each source sentence, and
report the averaged coverage of each subset. The lower coverage
of inactive samples indicates that they are not well aligned as the
active samples, which also makes them more difficult for NMT

2https://github.com/clab/fast_align

https://github.com/clab/fast_align
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models to learn.

• Translation Uncertainty: Uncertainty measures the level of multi-
modality of a parallel corpus [109]. We adopt uncertainty to
reflect the number of possible translations at the target side for
a source sentence. We use the corpus level uncertainty, which
measures the complexity of each subset. Corpus level uncertainty
is simplified as the sum of the entropy of target words conditioned
on the aligned source words denoted H(y|x = xt). Therefore, an
alignment model is also required. To prevent uncertainty from
being dominated by frequent words, we followed Zhou et al. [109]
to calculate uncertainty by averaging the entropy of target words
conditioned on a source word denoted 1

|Vx|
∑
x∈Vx

H(y|x). The
larger uncertainty of inactive samples indicates that there are
more possible translations for each source sentence within. In
other words, inactive samples contain more complex patterns,
which are more difficult to be learned by NMT models.

Figure 5.6 depicts the results. In summary, the linguistic
properties consistently suggest that inactive samples are more difficult
than those active ones. By rejuvenation, the inactive samples are
transformed into much simpler patterns such that NMT models are
able to learn from them. Our findings have also been demonstrated in
the non-autoregressive translation (NAT) scenario [110], which usually
requires knowledge distillation (i.e., forward-translation) to simplify
the training data.

5.4.2 Learning Stability

In this section, we study how data rejuvenation improves translation
performance from the perspective of the optimization process, as
shown in Figure 5.7. Concerning the training loss (Figure 5.7(a)), our
approach converges faster and presents much less fluctuation than the
baseline model during the whole training process. The reason could
be that the inactive samples are rejuvenated through beam search,
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Figure 5.7: Learning curves on the En⇒De dataset.

which produces high-confidence outputs that correspond to low losses
during training. Accordingly, the BLEU score on the validation set is
significantly boosted (Figure 5.7(b)). These results suggest that data
rejuvenation is able to accelerate and stabilize the training process.

5.4.3 Generalization Capability

In this section, we investigate how data rejuvenation affects the
generalization capability of NMT models with two measures, namely,
Margin [111] and Gradient Signal-to-Noise Ratio [GSNR, 112]. The
two measures are introduced as below:

• Margin: Margin [111] is a classic concept in support vector
machine, measuring the geometric distance between the support
vectors and the decision boundary. To apply margin for NMT
models, we followed Li et al. [113] to compute word-wise margin,
which is defined as the probability of the correctly predicted
word minus the maximum probability of other word types.
We computed the word-wise margin over the training set and
reported the averaged value.

• GSNR: The GSNR metric [112] is proposed to positively correlate
with generalization performance. The calculation of a parame-
ter’s GSNR is defined as the ratio between its gradient’s squared
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Table 5.6: Results of generalization capability on the En⇒De dataset. Larger
Margin and GSNR values denote better generalization capability.

Model Margin GSNR

Transformer-Base 0.68 5.2e-3
+ Data Rejuvenation 0.71 8.5e-3

mean and variance over the data distribution. For NMT models,
we compute GSNR of each parameter and reported the averaged
value over all the parameters.

Table 5.6 lists the results, in which the GSNR values are at the
same order of magnitude as that reported by Liu et al. [112]. As seen,
our approach achieves noticeably larger Margin and GSNR values,
demonstrating that data rejuvenation improves the generalization
capability of NMT models.

5.4.4 Speeding Up

The pipeline of data rejuvenation in Figure 5.1 is time-consuming:
training the identification and rejuvenation models in sequence as well
as the scoring and rejuvenating procedures make the time cost of data
rejuvenation more than 3X that of the standard NMT system. To
save the time cost, a promising strategy is to let the identification
model take the responsibility of rejuvenation. Therefore, we use
the Transformer-Big model with the large batch configuration
trained on the raw data to accomplish both identification and
rejuvenation. The resulted data is used to train two final models,
i.e., Transformer-Big and DynamicConv.

Table 5.7 lists the results. With almost no decrease in translation
performance, the time cost of data rejuvenation is reduced by about
33%. This makes the total time cost comparable with those data ma-
nipulation or augmentation techniques that require additional NMT
systems, such as data diversification [77] and back-translation [70].
In addition, the superior performance of DynamicConv (i.e., 30.4)
further demonstrates the high agreement of inactive samples across
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Table 5.7: Results of speeding up (“Rej.–Big”) on the WMT14 En⇒De dataset.
“Time” denotes the time of the whole process using 4 NVIDIA Tesla V100 GPUs.

Method Trans.-Big Dyn.Conv

BLEU Time BLEU Time

Standard 29.6 32h 29.7 31h
Rejuvenate 30.3 +65h 30.2 +62h
Rej.–Big 30.2 +33h 30.4 +32h

En-De

A
ve

ra
ge

d 
Pr

ob
ab

ili
ty

0.0

0.2

0.4

0.6

0.8

Data Bin

1 2 3 4 5 6 7 8 9 10

Inactive Active

En-De

So
ur

ce
-T

ra
ns

la
te

d 
R

at
io

 (%
)

0.0

20.0

40.0

60.0

80.0

100.0

Data Bin

1 2 3 4 5 6 7 8 9 10

Inactive Active

Probability Distribution

Camera ready [2020-09-22]

(a) Probability

En-De

A
ve

ra
ge

d 
Pr

ob
ab

ili
ty

0.0

0.2

0.4

0.6

0.8

Data Bin

1 2 3 4 5 6 7 8 9 10

Inactive Active

En-De

So
ur

ce
-T

ra
ns

la
te

d 
R

at
io

 (%
)

0.0

20.0

40.0

60.0

80.0

100.0

Data Bin

1 2 3 4 5 6 7 8 9 10

Inactive Active

Probability Distribution

Camera ready [2020-09-22]

(b) Source-Translated Ratio

Figure 5.8: Probability and ratio of source-translated samples over the data bins of
En⇒De test set.

architectures.

5.4.5 Inactive Sample Cases

Human Translations from Target to Source as Inactive Sam-
ples? Since forward translation performs better than back-translation
for rejuvenation, one would wonder if the inactive samples correspond
to human translations from target to source. For simplicity, we name
such samples as source-translated whereas source-natural otherwise.
The information of source-translated/natural samples is unavailable
for training samples, but fortunately is provided for test sets3. The
test set of En⇒De contains 1500 source-translated and 1503 source-
natural samples. We split the test samples of En⇒De into 10

3https://www.statmt.org/wmt14/test-full.tgz

https://www.statmt.org/wmt14/test-full.tgz
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data bins according to the sentence-level probability (see Eq. (5.2))
of the identification model (i.e., Transformer-Base), and then
calculate the ratio of source-translated samples in each bin. As seen
in Figure 5.8, the ratios of source-translated samples in 1st and 2nd
bins (i.e., 69% and 59%) significantly exceed that in the whole test set
(i.e., 1500/3003), suggesting that human translations from target to
source are more likely to be inactive samples. Such a kind of test
samples are also considered inconsistent with the practical testing
scenario [106]. From WMT2019, the test samples are all created
as human translations from natural source sentences to the target
language. Under this new testing setup, Wang et al. [114] suggests
that training NMT models on only human translations from the source
to the target language can achieve better performance than that on
the whole training data. Therefore, we expect our data rejuvenation
to be effective mainly on the source-natural samples but possibly not
on the source-translated samples.

Case Study. By inspecting the inactive samples, we find that the
target sentences tend to be paraphrases of the source sentences rather
than direct translations. We provide two cases in Table 5.8. In the first
case, the target sentence does not translate “finished the destruction
of the first” in the source sentence directly but rephrases it as “tat
dann das seine und zerstörte den Rest”, meaning “then did his and
destroyed the rest” (that was not destroyed by The First World War).
As for the second case, “denied by the latter” uses passive voice but its
corresponding phrase in the target sentence is in active voice. These
observations indicate that the inconsistent structure or expression
between source and target sentences could make the samples difficult
for NMT models to learn well.

5.5 Summary

In this chapter, we exploit the inter-sample quality for uncertainty-
based data rejuvenation so as to improve the training of NMT models.
Specifically, we propose data rejuvenation to re-activate the inactive
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Table 5.8: Inactive samples from the training sets of En⇒De and En⇒Fr. X, Y
and Y’ represent the source sentence, target sentence, and the rejuvenated target
sentence, respectively. Y and Y’ are also translated into English (=>En:) by Google
Translate for reference. For either sample, the underlined phrases correspond to the
same content.

Side Sentence

En
⇒

D
e

X
The Second World War finished the destruction of the
first .

Y

Der zweite Weltkrieg tat dann das seine und zerstörte
den Rest .
=>En: The Second World War then did his and
destroyed the rest .

Y’

Der Zweite Weltkrieg beendete die Zerstörung des ersten
.
=>En: The Second World War ended the destruction of
the first .

En
⇒

Fr

X
Anything denied by the latter was effectively confirmed
as true .

Y

Tout ce que démentait cette agence se révélait dans la
pratique bien réel .
=>En: Everything that this agency denied turned out
to be very real in practice .

Y’

Toute chose niée par ce dernier a été effectivement
confirmée comme vraie .
=>En: Anything denied by the latter has actually been
confirmed to be true .

training samples for neural machine translation on large-scale datasets.
The proposed data rejuvenation scheme is a general framework where
one can freely define, for instance, the identification and rejuvenation
models. Experimental results on different model architectures and
language pairs demonstrate the effectiveness and universality of the
data rejuvenation approach. Future directions include exploring
advanced identification and rejuvenation models that can better reflect
the learning abilities of NMT models, as well as validating on other
NLP tasks such as dialogue and summarization.

2 End of chapter.
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Chapter 6

Inter-Sample Quality Mining for
Uncertainty-Based Self-Training
Sampling

In this chapter, we investigate the inter-sample quality for uncertainty-
based self-training sampling to leverage monolingual (i.e., unlabeled)
data in a more efficient way. Self-training augments the training of
NMT models with synthetic parallel data, which is usually constructed
from a randomly selected subset of the large-scale monolingual data.
However, we empirically show that random sampling is sub-optimal
and propose to select the most informative monolingual sentences for
self-training. To this end, we compute the translation uncertainty of
monolingual sentences using the bilingual dictionary extracted from
the authentic parallel data. Intuitively, monolingual sentences with
lower uncertainty generally correspond to easy-to-translate patterns
which may not provide additional gains. Therefore, we propose
an uncertainty-based sampling (UncSamp) strategy, which prefers
to sample monolingual sentences with relatively higher uncertainty,
for self-training. Experimental results on large-scale MT datasets
demonstrate that our UncSamp approach improves the translation
quality, especially for uncertain sentences, and also the prediction
accuracy of low-frequency words at the target side.
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6.1 Problems and Motivation

Leveraging large-scale unlabeled data has become an effective ap-
proach for improving the performance of natural language processing
(NLP) models [8, 26]. As for neural machine translation (NMT),
compared to the parallel data, the monolingual data is available
in large quantities for many languages. Several approaches on
boosting the NMT performance with the monolingual data have
been proposed, e.g., data augmentation [70, 75], semi-supervised
training [115, 116, 117], pre-training [37, 118, 119]. Among them,
data augmentation with the synthetic parallel data [70, 71] is the most
widely used approach due to its simple and effective implementation.
It has been a de-facto standard in developing the large-scale NMT
systems [120, 121, 122].

In this chapter, we exploit the inter-sample quality for uncertainty-
based self-training sampling to utilize the large-scale monolingual
data more efficiently. Self-training [75] is one of the most commonly
used approaches for data augmentation. Generally, self-training is
performed in three steps: 1) randomly sample a subset from the
large-scale monolingual data; 2) employ a “teacher” NMT model to
translate the subset data into the target language to construct the
synthetic parallel data; and 3) combine the synthetic and authentic
parallel data to train a “student” NMT model. Recent studies have
shown that synthetic data manipulation [71, 73] and training strategy
optimization [76, 32] in the last two steps can boost the self-training
performance significantly. However, how to efficiently and effectively
sample the subset from the large-scale monolingual data in the first
step has not been well studied.

Intuitively, self-training simplifies the complexity of generated
target sentences [123, 109], and easy patterns in monolingual sentences
with deterministic translations may not provide additional gains over
the self-training “teacher” model [20]. Related work on computer
vision also reveals that easy patterns in unlabeled data with the deter-
ministic prediction may not provide additional gains [124]. Therefore,
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here we investigate and identify the uncertain monolingual sentences
which implicitly hold difficult patterns and exploit them to boost the
self-training performance. Specifically, we measure the uncertainty of
the monolingual sentences by using a bilingual dictionary extracted
from the authentic parallel data. Experimental results show that
NMT models benefit more from the monolingual sentences with higher
uncertainty, except on those with excessively high uncertainty. By
conducting the linguistic property analysis, we find that extremely
uncertain sentences contain relatively poor translation outputs, which
would hurt the training of NMT models hence the final performance.

Inspired by the above finding, we propose an uncertainty-based
sampling strategy for self-training, in which monolingual sentences
with relatively high uncertainty are preferred. Large-scale experiments
on WMT English⇒German and English⇒Chinese datasets show that
self-training with the proposed uncertainty-based sampling strategy
significantly outperforms that with random sampling. Extensive
analyses on the generated outputs confirm our claim by concluding
that our approach improves the translation of uncertain sentences and
the prediction of low-frequency target words.

Our main contributions are:

• We demonstrate the necessity of distinguishing monolingual
sentences for self-training.

• We propose an uncertainty-based sampling strategy for self-
training, which selects more complementary sentences for the
authentic parallel data.

• We show that NMT models benefit more from uncertain mono-
lingual sentences in self-training, which improves the translation
quality of uncertain sentences and the prediction accuracy of low-
frequency words.
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6.2 Preliminary

In this section, we aim to understand the effect of uncertain monolin-
gual data on self-training. We first introduce the metric for identifying
uncertain monolingual sentences, then the experimental setup, and at
last our preliminary results.

Notations. Let X and Y denote the source and target languages,
and let X and Y represent the sentence domains of corresponding
languages. Let B = {(xi,yi)}Ni=1 denote the authentic parallel data,
where xi ∈ X , yi ∈ Y and N is the number of sentence pairs. Let
Mx = {xj}Mx

j=1 denote the collection of monolingual sentences in the
source language, where xj ∈ X and Mx is the size of the set. Our
objective is to obtain a translation model f : X 7→ Y , that can
translate sentences from language X to language Y .

6.2.1 Identification of Uncertain Data

Data Complexity. According to Zhou et al. [109], the complexity
of a parallel corpus can be measured by adding up the translation
uncertainty of all source sentences. Formally, the translation uncer-
tainty of a source sentence x with its translation candidates can be
operationalized as conditional entropy:

H(Y|X = x) = −
∑

y∈Y
p(y|x) log p(y|x) (6.1)

≈
Tx∑
t=1
H(y|x = xt), (6.2)

where Tx denotes the length of the source sentence, x and y represent
a word in the source and target vocabularies, respectively. Generally,
a high H(Y|X = x) denotes that a source sentence x would have more
possible translation candidates.

Equation (6.2) estimates the translation uncertainty of a source
sentence with all possible translation candidates in the parallel corpus.
It can not be directly applied to the sentences in monolingual data due
to the lack of corresponding translation candidates. One potential
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solution to the problem is utilizing a trained model to generate
multiple translation candidates. However, generation may lead to
bias estimation due to the generation diversity issue [125, 126]. More
importantly, generation is extremely time-consuming for large-scale
monolingual data.

Monolingual Uncertainty. To address the problem, we modify
Equation (6.2) to reflect the uncertainty of monolingual sentences. We
estimate the target word distribution conditioned on each source word
based on the authentic parallel corpus, and then use the distribution
to measure the translation uncertainty of the monolingual sample.
Specifically, we measure the uncertainty of monolingual sentences
based on the bilingual dictionary.

For a given monolingual sentence xj ∈ Mx, its uncertainty U is
calculated as:

U(xj|Ab) = 1
Tx

Tx∑
t=1
H(y|Ab, x = xt), (6.3)

which is normalized by Tx to avoid the length bias. A higher value of U
indicates a higher translation uncertainty of the monolingual sentence.

In Equation (6.3), the word level entropyH(y|Ab, x = xt) captures
the translation modalities of each source word by using the bilingual
dictionary Ab. The bilingual dictionary records all the possible target
words for each source word, as well as the respective translation
probabilities. It can be built from the word alignments by external
alignment toolkits on the authentic parallel corpus. For example, given
a source word x with all three word translations y1, y2 and y3 and the
translation probabilities of p(y1|x), p(y2|x) and p(y3|x), respectively,
the word level entropy can be calculated as follows:

H(y|Ab, xi) = −
∑

yj∈Ab(xi)
p(yj|xi) log p(yj|xi). (6.4)

6.2.2 Experimental Setup

Data. We conduct experiments on two large-scale benchmark
translation datasets, i.e., WMT English⇒German (En⇒De) and
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WMT English⇒Chinese (En⇒Zh). The authentic parallel data for
the two tasks consists of about 36.8M and 22.1M sentence pairs,
respectively. The monolingual data we use is from newscrawl released
by WMT2020. We combine the newscrawl data from the year 2011
to 2019 for the English monolingual corpus, consisting of about 200M
sentences. We randomly sample 40M monolingual data for En⇒De
and 20M for En⇒Zh unless otherwise stated. We adopt newstest2018
as the validation set and used newstest2019 and newstest2020 as
the test sets. For En⇒De, we apply BPE [102] with 32K merge
operations. As for En⇒Zh, we also applied BPE to English but Jieba1
segmentation to Chinese.

Model. We choose the state-of-the-art Transformer [15] network
as our model, which consists of an encoder of 6 layers and a decoder
of 6 layers. We adopt the open-source toolkit Fairseq [103] to
implement the model. We use the Transformer-Base model for
preliminary experiments and the constrained scenario for efficiency.
For the unconstrained scenario, we adopt the Transformer-Big
model. Results on these models with different capacities can also
reflect the robustness of our approach. For the Transformer-Base
model, we train it for 150K steps with 32K (4096 × 8) tokens per
batch. For the Transformer-Big model, we train it for 30K steps
with 460K (3600 × 128) tokens per batch with the cosine learning
rate schedule [99]. We use 16 Nvidia V100 GPUs to conduct the
experiments and select the final model by the best perplexity on the
validation set.

Evaluation. We evaluate the models by BLEU score [127] computed
by SacreBLEU [128]2. For the En⇒Zh task, we add the option –tok
zh to SacreBLEU. We measure the statistical significance of improve-
ment with paired bootstrap re-sampling [104] using compare-mt3 [105].

1https://github.com/fxsjy/jieba
2BLEU+case.mixed+lang.[Task]+numrefs.1 +smooth.exp++test.wmt[Year]+tok.[Tok]+ver

sion.1.4.14, Task=en-de/en-zh, Year=19/20, Tok=13a/zh
3https://github.com/neulab/compare-mt

https://github.com/fxsjy/jieba
https://github.com/neulab/compare-mt
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6.2.3 Effect of Uncertain Data

First of all, we investigate the effect of monolingual data uncertainty
on the self-training performance in NMT. We conduct the preliminary
experiments on the WMT En⇒De dataset with the Transformer-
Base model. We sample 8M bilingual sentence pairs from the authen-
tic parallel data and randomly sample 40M monolingual sentences
for the self-training. To ensure the quality of synthetic parallel
data, we train a Transformer-Big model for translating the source
monolingual data to the target language. We generate translations
using beam search with beam width 5, and follow Edunov et al. [71]4
to remove sentences longer than 250 words as well as sentence-pairs
with a source/target length ratio exceeding 1.5. The “teacher” NMT
model for self-training is the Transformer-Big model to ensure the
quality of synthetic data.

Self-training v.s. Data Size. We take a look at the performance of
standard self-training and its relationship with data size. Figure 6.1
shows the results. Obviously, self-training with 8M synthetic data
can already improve the NMT performance by a significant margin
(36.2 averaged BLEU score on WMT En⇒De newstest2019 and
newstest2020). It demonstrates the advantage of such a semi-
supervised setting over the conventional supervised setting. Further
increasing the size of added monolingual data does not bring much
more benefit. With all the 40M monolingual sentences, the final
performance achieves only 36.5 BLEU points. It indicates that adding
more monolingual data only is not a promising way to improve
self-training, and more sophisticated approaches for exploiting the
monolingual data are desired.

Self-training v.s. Uncertainty. In this experiment, we first adopt
fast-align5 to establish word alignments between source and target
words in the authentic parallel corpus and use the alignments to build
the bilingual dictionary Ab. Then we use the bilingual dictionary

4https://github.com/pytorch/fairseq/tree/master/examples/backtranslation
5https://github.com/clab/fast_align

https://github.com/pytorch/fairseq/tree/master/examples/backtranslation
https://github.com/clab/fast_align
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Figure 6.1: Performance of self-training with increased size of monolingual data.
The BLEU score is averaged on WMT En⇒De newstest2019 and newstest2020.
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Figure 6.2: Relationship between uncertainty of monolingual data and the cor-
responding NMT performance. The BLEU score is averaged on WMT En⇒De
newstest2019 and newstest2020.

to compute the data uncertainty expressed in Equation (6.3) for the
sentences in the monolingual data set. After that, we rank all the 40M
monolingual sentences and group them into 5 equally-sized bins (i.e.,
8M sentences per bin) according to their uncertainty scores. At last,
we perform self-training with each bin of monolingual data.

We report the translation performance in Figure 6.2. As seen,
there is a trend of performance improvement with the increase of
monolingual data uncertainty (e.g., bins 1 to 4) until the last bin.
The last bin consists of sentences with excessively high uncertainty,
which may contain erroneous synthetic target sentences. Training
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Figure 6.3: Comparison of monolingual sentences with varied uncertainty in terms
of three properties, including sentence length, word rarity, and coverage.

on these sentences forces the models to over-fit on these incorrect
synthetic data, resulting in the confirmation bias issue [129]. These
results corroborate with prior studies [21, 124] such that learning on
certain samples brings little gain while on the excessively uncertain
samples may also hurt the model training.

6.2.4 Linguistic Properties of Uncertain Data

We further analyze the differences between the monolingual sentences
with varied uncertainty to gain a deeper understanding of the
uncertain data. Specifically, we perform linguistic analysis on the five
data bins in terms of three properties:
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• Sentence Length: We count the number of tokens in each sentence.
Sentence length can reflect the difficulty of sentences as longer
sentences may contain more complex expressions.

• Word Rarity: We calculate the word rarity [10] to measure the
frequency of words in a sentence with a higher value indicating a
more rare sentence. The word rarity of a sentence is calculated
as follows:

WR(x) = − 1
Tx

Tx∑
t=1

log p(xt), (6.5)

where p(xt) represents the normalized frequency of word xt in the
authentic parallel data, and Tx is the sentence length.

• Translation Coverage: Coverage [130, 107] measures the ratio
of source words being aligned with any target words. Firstly,
we train an alignment model on the authentic parallel data by
fast-align6. Then we use the alignment model to force-align
the monolingual sentences and the synthetic target sentences.
Finally, we calculate the coverage of each source sentence.

Among the three properties, the first two reflect the features
of monolingual sentences while the last one reflects the quality of
synthetic sentence pairs. We calculate these properties for each
sentence at the source side and report the averaged results for each
data bin in Figure 6.3. We also present the results of the synthetic
target sentences for reference.

The results are reported in Figure 6.3. For the length property, we
find that monolingual sentences with higher uncertainty are usually
longer except for those with excessively high uncertainty (e.g., bin 5).
The monolingual sentences in the last data bin noticeably contain
more rare words than other bins in Figure 6.3(b), and the rare
words in the sentences pose a great challenge in the NMT training
process [131]. In Figure 6.3(c), the overall coverage in bin 5 is the
lowest among the self-training bins. In contrast, bin 1 with the lowest
uncertainty has the highest coverage. These observations suggest that

6https://github.com/clab/fast{_}align

https://github.com/clab/fast{_}align
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Figure 6.4: Distribution of modified monolingual uncertainty and sampling proba-
bility. The sample with high uncertainty has more chance to be selected while that
with excessively high uncertainty would be penalized.

monolingual sentences in bin 1 indeed contain the easiest patterns
while monolingual sentences in bin 5 are the most difficult ones, which
may explain their relatively weak performance in Figure 6.2.

6.3 Methodology

By analyzing the effect of monolingual data uncertainty on self-
training in Section 6.2, we understand that monolingual sentences
with relatively high uncertainty are more informative while also
with high quality, which motivates us to emphasize the training on
these sentences. In this section, we introduce the uncertainty-based
sampling strategy for self-training and the overall framework.

6.3.1 Uncertainty-based Sampling Strategy

With the aforementioned measure of monolingual data uncertainty
in Section 6.2.1, we propose the uncertainty-based sampling strategy
for self-training, which prefers to sample monolingual sentences with
relatively high uncertainty.

To ensure the data diversity and avoid the risk of being domi-
nated by the excessively uncertain sentences, we sample monolingual
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sentences according to the uncertainty distribution with the highest
uncertainty penalized. Specifically, given a budget of Ns sentences
to sample, we set two hyper-parameters to control the sampling
probability as follows:

p =
[
α · U(xj|Ab)

]β
∑

xj∈Mx
[α · U(xj|Ab)]β

, (6.6)

α =


1, U(xj|Ab) ≤ Umax

max( 2Umax

U(xj |Ab) − 1, 0), otherwise
, (6.7)

where α is used to penalize excessively high uncertainty over a
maximum uncertainty threshold Umax (Figure 6.4(a)), the power
rate β is used to adjust the distribution such that a larger β

gives more probability mass to the sentences with high uncertainty
(Figure 6.4(b)).

It is difficult to determine whether a sentence is too uncertain.
Therefore, we rely on the original parallel data and define a maximum
uncertainty threshold Umax to penalize the sentence with excessively
high uncertainty. Specifically, we sort the source sentences of the
original parallel data by their uncertainty in the ascending order and
pick the uncertainty of the sentence at the R% position of all the
sentences as Umax. R is assumed to be as high as 80 to 100. Because
for monolingual data with uncertainty higher than this threshold, they
may not be translated correctly by the “teacher" model as there are
inadequate such sentences in the authentic parallel data for the model
to learn. As a result, monolingual sentences with uncertainty higher
than Umax should be penalized in terms of the sampling probability.

6.3.2 Overall Framework

Figure 6.5 presents the framework of our uncertainty-based sampling
for self-training, which includes four steps:

• Train a “teacher” NMT model and an alignment model on the
authentic parallel data simultaneously.
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respectively.

• Extract the bilingual dictionary from the alignment model and
perform uncertainty-based sampling for monolingual sentences.

• Use the “teacher” NMT model to translate the sampled monolin-
gual sentences to construct the synthetic parallel data.

• Train a “student” NMT model on the combination of synthetic
and authentic parallel data.

6.4 Experiment

6.4.1 Constrained Scenario

We first validate the proposed sampling approach in a constrained sce-
nario, where we follow the experimental configuration in Section 6.2.3
with the Transformer-Base model, the 8M bitext, and the 40M
monolingual data. It allows the efficient evaluation of our approach
with varied combinations of hyper-parameters and also the comparison
with related methods. Specifically, we perform our approach by
sampling 8M sentences from the 40M monolingual data and then
combining the corresponding 8M synthetic data with the 8M bitext
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Table 6.1: Translation performance with respect to different values of β and R. The
BLEU score is averaged on WMT En⇒De newstest2019 and newstest2020.

BLEU R

100 90 80

β

1 36.6 36.7 36.6
2 36.7 36.9 36.6
3 36.5 36.5 36.5

to train the Transformer-Base model.

Table 6.1 reports the impact of β and R on the BLEU score. As
shown, sampling with high uncertainty sentences and penalizing those
with excessively high uncertainty improves translation performance
from 36.6 to 36.9. In these experiments, the uncertainty threshold
Umax for penalizing are 2.90 and 2.74, which are determined by the
90% and 80% (R=90 and 80 in Table 6.1) most certain sentences
in the authentic parallel data, respectively. Obviously, the proposed
uncertainty-based sampling strategy achieves the best performance
with R at 90 and β at 2. In the following experiments, we use R = 90
and β = 2 as the default setting for our sampling strategy if not
otherwise stated.

Effect of Sampling. Some researchers may doubt that the final
translation quality is affected by the quality of the teacher model.
Therefore, translations of high-uncertainty sentences should contain
many errors, and it is better to add the results of oracle translations
to discuss the sampling effect and the quality of pseudo-sentences
separately. To dispel the doubt, we still use the aforementioned 8M
bitext as the bilingual data, and use the rest of WMT19 En-De data
(28.8M) as the held-out data (with oracle translations) for sampling.

The results are listed in Table 6.2. Clearly, our uncertainty-based
sampling strategy (UncSamp) outperforms the random sampling
strategy (RandSamp) when manual translations are used (Rows 2 vs.
3), demonstrating the effectiveness of our sampling strategy based on
the uncertainty. Another interesting finding is that using the pseudo-
sentences outperforms using the manual translations (Rows 4 vs. 2, 5



6.4. EXPERIMENT 127

Table 6.2: Comparison of our UncSamp and RandSamp with manual translations
(Ora: manual translations; ST: pseudo-sentences) on WMT En⇒De newstest2019
and newstest2020.

# Data 2019 2020 Avg

1 Bitext 36.9 27.7 32.3
2 + RandSamp Ora 37.4 28.0 32.7
3 + UncSamp Ora 37.8 28.2 33.0
4 + RandSamp ST 40.0 30.1 35.0
5 + UncSamp ST 40.4 30.5 35.4

Table 6.3: Comparison of the proposed uncertainty-based sampling strategy with
related methods on WMT En⇒De newstest2019 and newstest2020.

Data 2019 2020 Avg
RandSamp 40.9 31.6 36.2
DWF 39.6 30.1 34.8
SrcLM 41.1 32.0 36.5
UncSamp 41.6 32.3 36.9
+ Filtering 41.5 32.7 37.1

vs. 3). One possible reason is that the Transformer-big model to
construct the pseudo-sentences was trained on the whole WMT19 En-
De data that contains the held-out data, which serves as self-training
to decently improve the supervised baseline [38].

Comparison with Related Work. We compare our sampling ap-
proach with two related works, i.e., difficult word by frequency [DWF,
31] and source language model [SrcLM, 30]. The former one
is proposed for monolingual data selection for back-translation, in
which sentences with low-frequency words are selected to boost the
performance of back-translation. The latter one is proposed for in-
domain data selection with in-domain language models. For DWF,
we rank the monolingual data by word rarity [10] of sentences and also
select the top 80M monolingual data for self-training. For SrcLM, we
train an n-gram language model [65]7 on the source sentences in the
bitext and measure the distance between each monolingual sentence
to the bitext source sentences by cross-entropy. Similarly, we select

7https://kheafield.com/code/kenlm/

https://kheafield.com/code/kenlm/
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Table 6.4: Translation performance on WMT En⇒De and WMT En⇒Zh test sets.
The results are reported with de-tokenized case-sensitive SacreBLEU. We adopt the
Transformer-big with large batch training [11] to achieve the strong performance.
“↑ / ⇑”: indicate statistically significant improvement over RandSamp p <

0.05/0.01 respectively.

System Data En⇒De En⇒Zh

2019 2020 Avg 2019 2020 Avg

Wu et al. [76] Bitext 37.3 – – – – –
+RandSamp 39.8 – – – – –

Shi et al. [132] Bitext – – – – 38.6 –
+RandSamp – – – – 41.9 –

This Work
Bitext 39.6 31.0 35.3 37.1 42.5 39.8
+RandSamp 41.6 33.1 37.3 37.6 43.8 40.7
+SrcLM 41.7 33.1 37.4 37.3 44.0 40.7
+UncSamp 42.5⇑ 34.4⇑ 38.4 38.2⇑ 44.3↑ 41.3

8M monolingual data with the lowest cross-entropy for self-training.

Table 6.3 lists the results. For DWF, it brings no improvement
over RandSamp, indicating that the technique developed for back-
translation may not work for self-training. As for SrcLM, it achieves
a marginal improvement over RandSamp. The proposed UncSamp
approach outperforms the baseline RandSamp by +0.7 BLEU point,
which demonstrates the effectiveness of our approach. In addition to
our UncSamp approach, we also utilized another n-gram language
model at the target side to further filter out the synthetic data with
potentially erroneous target sentences. By filtering out 20% sentences
from the sampled 8M sentences, our UncSamp approach achieves a
further improvement up to +0.9 BLEU point.

6.4.2 Unconstrained Scenario

We extend our sampling approach to the unconstrained scenario,
where the scale of data and the capacity of NMT models for self-
training are increased significantly. We conduct experiments on the
high-resource En⇒De and En⇒Zh translation tasks with all the
authentic parallel data, including 36.8M sentence pairs for En⇒De



6.5. ANALYSIS 129

and 22.1M for En⇒Zh, respectively. For monolingual data, we
consider all the 200M English newscrawl monolingual data to perform
sampling. We train the Transformer-Big model for experiments.

Table 6.4 lists the main results of large-scale self-training on
high-resource language pairs. As shown, our Transformer-big
models trained on the authentic parallel data achieve the performance
competitive with or even better than the submissions to WMT
competitions. Based on such strong baselines, self-training with
RandSamp improves the performance by +2.0 and +0.9 BLEU
points on En⇒De and En⇒Zh tasks respectively, demonstrating the
effectiveness of the large-scale self-training for NMT models. With our
uncertainty-based sampling strategy UncSamp, self-training achieves
further significant improvement by +1.1 and +0.6 BLEU points over
the random sampling strategy, which demonstrates the effectiveness
of exploiting uncertain monolingual sentences.

6.5 Analysis

In this section, we conduct analyses to understand how the pro-
posed uncertainty-based sampling approach improved the translation
performance. Concretely, we analyze the translation outputs of
WMT En⇒De newstest2019 from the Transformer-Big model in
Table 6.4.

6.5.1 Uncertain Sentences

As we propose to enhance high uncertainty sentences in self-training,
one remaining question is whether our UncSamp approach improves
the translation quality of high uncertainty sentences. Specifically, we
rank the source sentences in the newstest2019 by the monolingual
uncertainty, and divide them into three equally sized groups, namely
Low, Medium and High uncertainty.

The translation performance on these three groups is reported in
Table 6.5. The first observation is that sentences with high uncertainty
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Table 6.5: Translation performance on uncertain sentences. The relative improve-
ments over Bitext for UncSamp are also presented.

Unc Bitext RandSamp UncSamp
BLEU 4(%)

Low 38.1 39.7 41.5 8.9
Med 34.2 36.7 37.4 9.3
High 31.0 33.4 34.4 10.9

are with relatively low BLEU scores (i.e., 31.0), indicating the higher
difficulty for NMT models to correctly decode the source sentences
with higher uncertainty. Our UncSamp approach improves the
translation performance on all sentences, especially on the sentences
with high uncertainty (+10.9%), which confirms our motivation of
emphasizing the learning on uncertain sentences for self-training.

6.5.2 Low-Frequency Words

Partially motivated by Fadaee et al. [31], we hypothesize that the
addition of monolingual data in self-training has the potential to
improve the prediction of low-frequency words at the target side for
the NMT models. Therefore, we investigate whether our approach has
a further boost to the performance on the prediction of low-frequency
words. We calculate the word accuracy of the translation outputs with
respect to the reference in newstest2019 by compare-mt. Following
Wang et al. [100], we divide words into three categories based on their
frequency, including High: the most 3,000 frequent words; Medium:
the most 3,001-12,000 frequent words; Low: the other words.

Table 6.6 lists the results of word accuracy on these three groups
evaluated by F-measure. First, we observe that low-frequency words
in Bitext are more difficult to predict than medium and high-
frequency words (i.e., 52.3 v.s. 65.2 and 70.3), which is consistent with
Fadaee et al. [31]. Second, adding monolingual data by self-training
improves the prediction performance of low-frequency words. Our
UncSamp approach outperforms RandSamp significantly on the low-
frequency words. These results suggest that emphasizing the learning
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Table 6.6: Prediction accuracy of low-frequency words in the translation outputs.
The relative improvements over Bitext for UncSamp are also presented.

Freq Bitext RandSamp UncSamp
Fmeas 4(%)

Low 52.3 53.8 54.7 4.5
Med 65.2 66.5 66.9 2.6
High 70.3 71.6 72.0 2.4

on uncertain monolingual sentences also brings additional benefits for
the learning of low-frequency words at the target side.

6.6 Summary

In this chapter, we study the inter-sample quality for uncertainty-
based self-training sampling to utilize the large-scale monolingual
data more efficiently. We demonstrate the necessity of distinguishing
monolingual sentences for self-training in NMT, and propose an
uncertainty-based sampling strategy to sample monolingual data.
By sampling monolingual data with relatively high uncertainty, our
method outperforms random sampling significantly on the large-scale
WMT English⇒German and English⇒Chinese datasets. Further
analyses demonstrate that our uncertainty-based sampling approach
does improve the translation quality of high uncertainty sentences
and also benefits the prediction of low-frequency words at the target
side. Future work includes the investigation on the confirmation
bias issue of self-training and the low-frequency issue in self-training
sampling. This study is highly related to our previous study on
inactive samples. Both studies utilize the technique of self-training
(i.e., forward-translation) and the uncertain sentences could be the
inactive samples to some extent. The sentences with excessively
high uncertainty should be inactive samples that cannot be easily
rejuvenated by forward-translation and more sophisticated approaches
need to be developed in the future.
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2 End of chapter.



Chapter 7

Conclusion and Future Work

7.1 Conclusion

Existing NLP systems are built on three basic components, namely,
data, model, and algorithm. Among the three, data is the foundation
of NLP systems, since it decides the architecture of models, the scale
of models, and the corresponding optimization algorithms. Thus, it
has been critical to keep improving the training effectiveness on data
for better performance. In this thesis, we present our exploitation
of data in two dimensions, i.e., the intra-sample structure and the
inter-sample quality. We define intra-sample structure exploitation
as fully utilizing the structure information shared by all text samples
while inter-sample quality exploitation as emphasizing a certain type
of text samples. Regarding intra-sample structure exploitation, we
work on the emotion recognition in conversations (ERC) task due to
the rich structure information in conversations and focus on context
enhancement and self-supervised learning. For inter-sample quality
exploitation, we work on neural machine translation (NMT) for the
large-scale benchmark datasets and its complete evaluation criteria
and focus on uncertainty-based data rejuvenation and data sampling.

In Chapter 3, we exploit the intra-sample structure for context
enhancement on the ERC task. It is important to capture the context
information accurately to perform the ERC task as an utterance
may express different emotions in different contexts. Therefore, we

133
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propose a hierarchical gated recurrent unit (HiGRU) framework with
a lower-level GRU to capture word-level contexts and an upper-level
GRU to capture utterance-level contexts. We further promote the
vanilla HiGRU to two variants, HiGRU with individual features
fusion (HiGRU-f) and HiGRU with self-attention and features fusion
(HiGRU-sf), so that the word/utterance-level individual inputs
and the long-range context information can be sufficiently utilized.
Experiments on three widely used ERC datasets demonstrate that
our HiGRU models are effective in improving the performance.

In Chapter 4, we exploit the intra-sample structure to perform self-
supervised learning on unlabeled conversation data. Data scarcity is
an issue for the ERC task, for which annotating more data is costly
and time-consuming. To take advantage of the massive unlabeled
conversation data, we propose a conversation completion (ConvCom)
task to pre-train a context-dependent encoder (Pre-CODE). Es-
sentially, such a pre-training task utilizes the sequential relationship
between utterances in each conversation, enabling the learning of
representations at both utterance- and conversation-level. Through
fine-tuning on labeled data, our Pre-CODE achieves constantly
significant improvements across the ERC datasets, and particularly
benefits the prediction of minority emotion classes.

In Chapter 5, we exploit the inter-sample quality for uncertainty-
based data rejuvenation on the NMT task with large-scale datasets.
Large-scale datasets are important for training large and well-performing
models, but they also contain complex patterns and potential noises
that pose challenges for training NMT models effectively. Thus,
we identify the inactive data which contributes less to the model
performance by model uncertainty, and show that the existence of
inactive data mainly depends on the data distribution. We further
introduce data rejuvenation (DataReju) to improve the training of
NMT models on large-scale datasets by relabeling the inactive data
with forward-translation. Experiments on large-scale datasets show
that our DataReju approach consistently and significantly improves
performance with strong NMT models.
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In Chapter 6, we exploit the inter-sample quality for uncertainty-
based self-training sampling to leverage monolingual data more effi-
ciently for the NMT task. Self-training augments the training of NMT
models with synthetic parallel data, which is usually constructed from
a randomly sampled subset of large-scale monolingual data. However,
we empirically show random sampling is sub-optimal and propose to
select the most informative monolingual sentences for self-training.
Specifically, we calculate the translation uncertainty of monolingual
sentences based on a bilingual dictionary from the authentic parallel
data. Then we propose an uncertainty-based sampling (UncSamp)
strategy that prefers to sample monolingual sentences with relatively
higher uncertainty for self-training. Experiments on large-scale NMT
datasets demonstrate that our UncSamp improves the translation
quality, especially for uncertain sentences, and the prediction accuracy
of low-frequency words at the target side.

In summary, this thesis studies the effective training of NLP
models with data engineering in the intra-sample structure and inter-
sample quality perspectives. Extensive experiments on benchmark
datasets confirm the effectiveness and efficiency of our proposed
approaches.

7.2 Future Work

In the future, we are particularly interested in how external mono-
lingual data improves the translation quality of low-frequency words.
Generally, monolingual data can be leveraged in the form of semi-
supervised learning (e.g., data augmentation, multitask learning)
or self-supervised learning (e.g., pre-training and fine-tuning). We
elaborate the low-frequency words issue in terms of these directions.

7.2.1 Low-Frequency Issue in Data Augmentation

Due to the less occurrence in the training data, low-frequency words
cannot be learned well by NMT models. As a result, the “Teacher”
models, while could be strong, are still weak at translating low-
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frequency words. Besides, sequence generation by the current beam
search algorithm tends to favor high-frequency words, which will
worsen the training of low-frequency words in data augmentation
techniques like back-translation [70] and self-training [38]. According
to our studies in Chapter 5 and Chapter 6, we also try to emphasize
the learning of medium-to-low frequency words, because the high
frequency-words have already been learned well. Particularly in
Chapter 6, we empirically show that selecting low-frequency words
for self-training cannot make improvements to the translation quality.
Therefore, how to improve the quality of synthetic data containing
low-frequency words is critical to further improve existing data
augmentation methods. A possible direction is to incorporate the
statistic machine translation [96] or bilingual lexicon induction [133],
which proves more effective in translating low-frequency words.

7.2.2 Low-Frequency Issue in Multilingual Machine Trans-
lation

The ultimate goal of machine translation is to develop a unified mul-
tilingual machine translation system that can translate any language.
It is also common knowledge that training multiple language pairs
jointly can significantly improve the translation quality of low-resource
language pairs [134, 135]. However, high-resource language pairs
usually encounter a noticeable performance drop relative to that in
bilingual training. We are curious about the low-frequency issue for
two reasons. First, while the low-frequency issue has been extensively
discussed in bilingual training, it has not been well investigated in
multilingual training, which may explain the different behaviors of
improvements on low- and high-resource language pairs. Second,
multilingual training adopts a large vocabulary for multiple languages,
which may further deteriorate the low-frequency issue. Third, recent
studies show that universal representations learning [136, 137] and
multitask learning [138] are beneficial to multilingual training, which
we believe the improvements should be related to low-frequency
words. Clearly, it is important to study these research questions in
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order to better understand and improve existing multilingual machine
translation systems.

7.2.3 Self-Supervised Multilingual Pre-training

We believe self-supervised multilingual pre-training is a promising
way to alleviate the low-frequency issue. Self-supervised learning
performed by the pre-training and fine-tuning paradigm has now
become a standard configuration in natural lanaguge process (NLP),
e.g., ELMo [24], GPT [26] and BERT [8] for natural language
understanding (NLU), and MASS [139], BART [140], and mBART [37]
for natural language generation (NLG). Different from data augmenta-
tion, pre-training does not introduce erroneous synthetic data, which
prevents error propagation when training student models. Instead,
pre-training exploits the self-supervised signals in monolingual data
to learn representations that can be inherited by downstream tasks to
improve performance. Pre-training has proven particularly effective
in low-resource translations [37], which exactly alleviates the low-
frequency issue for multilingual machine translation.

However, current pre-training approaches like mBART still only
learn representations of sentences in each language although the
data from different languages are used for training jointly. Recent
studies construct code-switched data by the substitution of word-
level translation lexicons in order to inject alignment signals into
monolingual data (e.g., CSP [141]). For phrase-level alignment signals,
an n-gram bilingual phrase table has been utilized for cross-lingual pre-
training (i.e., CMLM [142]) to benefit unsupervised NMT (UNMT).
Further, Wang et al. [143] tries to utilize high-resource bilingual data
as the sentence-level alignment signal to improve the performance
of UNMT. In the area of multilingual pre-training for NMT, it is
still desired to learn better representations for the cross-attention
module in the sequence-to-sequence framework by enhancing phrase-
and sentence-level alignment signals.
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