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Existing natural language processing (NLP) systems are built on three
basic components, namely, data, model, and algorithm. Among the
three, data is the foundation of NLP systems, since it decides the
architecture of models, the scale of models, and the corresponding
optimization algorithms. Thus, it has been critical to keep improving
the training effectiveness on data for better performance. In this
thesis, we present our exploitation of data in two dimensions, i.e.,
the intra-sample structure and the inter-sample quality. We define
intra-sample structure exploitation as fully utilizing the structure
information shared by all text samples while inter-sample quality
exploitation as emphasizing a certain type of text samples. Re-
garding intra-sample structure exploitation, we work on the emotion
recognition in conversations (ERC) task due to the rich structure
information in conversations and focus on context enhancement and
self-supervised learning. For inter-sample quality, we work on neural
machine translation (NMT) which is a classic language generation task
with large-scale benchmark datasets and complete evaluation criteria,
and focus on uncertainty-based data rejuvenation and self-training
sampling.

First, we investigate the intra-sample structure for context en-
hancement in conversations. It is important to capture the context
information accurately to perform the ERC task as an utterance
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may express different emotions in different contexts. Therefore, we
propose a hierarchical gated recurrent unit (HiGRU) framework with
a lower-level GRU to capture word-level contexts and an upper-level
GRU to capture utterance-level contexts. We further promote the
vanilla HiGRU to two variants, HiGRU with individual features
fusion (HiGRU-f) and HiGRU with self-attention and features fusion
(HiGRU-sf), so that the word- and utterance-level individual inputs
and the long-range context information can be sufficiently utilized.
Experiments on three widely used ERC datasets demonstrate that our
HiGRU models are effective in improving the performance of ERC.

Second, we study the intra-sample structure to perform self-
supervised learning on unlabeled conversation data. Data scarcity is
an issue for the ERC task, which prevents the commonly used context-
dependent models from playing their maximum effect. However,
annotating more data is costly and difficult as annotators are required
to recognize the subtle difference between emotions and consider the
contexts. Therefore, we propose a conversation completion (Con-
vCom) task to pre-train a context-dependent encoder (Pre-CODE)
on the massive unlabeled conversation data. Essentially, such a pre-
training task utilizes the sequential relationship between utterances in
each conversation, enabling the learning of representations at both
utterance- and conversation-level. Through fine-tuning on labeled
data, our Pre-CODE achieves constantly significant improvements
across the ERC datasets.

Third, we exploit the inter-sample quality for uncertainty-based
data rejuvenation on the NMT task with large-scale datasets. Large-
scale datasets are important for training large and well-performing
models, but also contain complex patterns and potential noises that
pose challenges for training NMT models effectively. Thus, we identify
the inactive data in a dataset which contributes less to the model
performance by model uncertainty, and show that the existence of
inactive data depends on the data distribution. We further introduce
data rejuvenation (DataReju) to improve the training of NMT
models on large-scale datasets by re-labeling the inactive data with
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forward-translation. Experiments on large-scale datasets show that
our DataReju approach consistently and significantly improves the
performance of strong NMT models.

At last, we explore the inter-sample quality for uncertainty-based
self-training sampling to leverage monolingual data more efficiently
for the NMT task. Self-training augments the training of NMT
models with synthetic parallel data, in which the target sentences are
obtained by translating the monolingual sentences at the source side.
The monolingual sentences usually come from a randomly sampled
subset of large-scale monolingual data. However, we empirically
show random sampling is sub-optimal and propose to select the
most informative monolingual sentences for self-training. Thus, we
calculate the translation uncertainty of monolingual sentences based
on a bilingual dictionary, and propose an uncertainty-based sampling
(UncSamp) strategy that prefers to sample monolingual sentences
with relatively higher uncertainty for self-training. Experiments on
large-scale NMT datasets demonstrate that our UncSamp strategy
improves the translation quality significantly, especially for uncertain
sentences.
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Chapter 1

Introduction

This thesis presents our research on e�ective training with data engi-
neering for language understanding and generation. We �rst provide
a brief overview of the research problems explored in Section 1.1 and
highlight the main contributions of this thesis in Section 1.2. Then we
list the publications that are related to this thesis during my Ph.D.
study in Section 1.3 and outline the thesis structure in Section 1.4.

1.1 Overview

Natural language processing (NLP) is a sub�eld of linguistics, com-
puter science, and arti�cial intelligence (AI), aiming at extracting
insights from natural language texts or even generating new texts
with computers1. Like other AI areas, existing NLP systems are
built on three basic components, namely, data, model, and algorithm,
just as Andrew Ng said2. Data is the foundation of NLP systems,
since it decides the architecture of models, the scale of models and
the corresponding optimization algorithms. For example, language
understanding tasks are usually based on text-label pairs3 while
language generation tasks are based on text-text pairs4. The di�erent
types of input data determine that the former tasks can be addressed

1https://en.wikipedia.org/wiki/Natural_language_processing
2https://www.deeplearning.ai/programs/
3http://nlpprogress.com/english/sentiment_analysis.html
4http://nlpprogress.com/english/machine_translation.html

1
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Figure 1.1: A general diagram for text classi�cation.

by an encoder-classi�er architecture [1, 12] while the latter by an
encoder-decoder architecture [13, 14, 15]. Besides, tasks with small-
scale data should be tackled by small models, otherwise the models
will be over-�tting to the training data and cannot generalize well
to the test data. For example, the Transformer model [15] used for
IWSLT14 German-English translation task is con�gured with only
1=2 parameters5 of the Transformer-base model for WMT14 English-
German translation task due to the much smaller dataset (160K
vs. 4.5M sentence pairs). For large-scale data, large models are
usually preferred to memorize the knowledge from the data as much as
possible, for example, the Transformer-big model for WMT14 English-
French translation tasks [16] and deeper Transformer models [17]. In
addition, it is also critical to design how to feed the data [10, 18]
or whether certain kinds of data should be emphasized [19, 20, 21].
Obviously, how to train models more e�ectively on the data to
achieve better performance on NLP tasks is a signi�cant problem for
researchers.

Figure 1.1 shows a general diagram of a text classi�cation task
implemented by a neural network. To categorize, the text data
can be exploited in two di�erent dimensions, i.e., fully utilizing the
shared structure information in each text sample or di�erentiating the
text samples by their quality. We de�ne the �rst as intra-sample
structure exploitation and the second asinter-sample quality

5https://github.com/pytorch/fairseq/blob/master/fairseq/models/transformer.py
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exploitation . As de�ned, intra-sample structure exploitation focuses
on the structure information shared by all text samples. For examples,
a document or conversation is composed of multiple sentences, each
of which further contains a sequence of words. Such a hierarchical
structure conforms to any document or conversation, providing rich
information for representation learning. On the contrary, inter-sample
quality exploitation tries to �nd the quality di�erence among the text
samples and give di�erent importance to the text samples accordingly
during training. The quality of samples could be measured by some
metrics such as the model con�dence or linguistic properties (e.g.,
sentence length, and word rarity). Both directions are capable of
improving the e�ectiveness of training and the �nal performance.

In terms of intra-sample structure, the data structure information
provides important clues for representation learning in NLP. The
development of representation learning in recent years exactly re�ects
the process of exploiting the data structure information in texts.
For example, as one of the NLP milestones, word embeddings from
Word2Vec [22] or GloVe [23] are obtained by learning the local
relationship between each word and its neighbors in the texts, which
gathers words with similar semantics into the same clusters in vector
space. However, these word embeddings are weak at modeling
polysemy (i.e., the coexistence of many possible meanings for a word
or phrase) as they are learned without considering the context in the
entire sentences. To address such a problem, ELMo [24] has been
proposed to learn deep contextualized word representations, which
are functions of internal states of a deep bidirectional language model
pre-trained on a large text corpus. The advantage of ELMo over
Word2Vec or GloVe is that it utilizes the sequential relationship
between words in a sentence, modeling better the data structure of
each sentence. Following EMLo are the famous pre-trained models
based on Transformer, including the BERT familiy [8, 25] and the
GPT family [26, 27, 28]. The main di�erence between the two families
is that BERT captures the context of a word by the words both before
and after it with a masked language model, whereas GPT insists on



4 CHAPTER 1. INTRODUCTION

a traditional causal language model and keeps increasing the scales of
both model and text corpus. With a similar model capacity, BERT is
supposed to perform better than GPT on downstream tasks, of which
we attribute the reason to the exploitation of bidirectional contexts.
In other words, BERT exploits the data structure information of
sentences more thoroughly than GPT [8].

As introduced above, the studies on intra-sample structure has
mainly been conducted for sentences, which may contain less structure
information than more complex text formats like documents and con-
versations. In this thesis, we present our exploitation of intra-sample
structure information in conversations for a prevalent language under-
standing task, i.e., emotion recognition in conversations (ERC) [5, 6].
We choose the ERC task because of the rich structure information in
conversations and the relatively easy-to-follow implementations of the
models. The ERC task is de�ned as below:

De�nition 1 (ERC) Suppose we are given a set of conversations,
D = f D i gL

i=1 , where L is the number of conversations. In each
conversation, D i = f (x j ; sj ; cj )g

N i
j =1 is a sequence ofN i utterances,

where the utterancex j is spoken by the speakersj 2 S with a certain
emotion cj 2 C. All speakers compose the setS and the set C
consists of all emotions, such as anger, joy, sadness, and neutral.
Our goal is to train a modelp(cjx; �) to tag each new utterance with
an emotion label fromC as accurately as possible. Here,� represents
the parameters of the model. Figure 1.2 shows an example from the
TV sitcom Friends6.

Accordingly, we investigate the intra-structure information for the
ERC task in two aspects: context enhancement, and self-supervised
learning, which are elaborated as below:

ˆ Context enhancement. We hope to fully utilize the structure
information in conversations to learn accurate representations
such that the ERC task can be well accomplished. While
the task can be performed for each individual utterance as

6https://www.imdb.com/title/tt0108778/
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Figure 1.2: An example of emotion recognition in conversations fromFriends.

traditional sentence-level text classi�cation tasks, the context
between utterances also plays a critical role as an utterance may
indicate di�erent emotions in di�erent contexts.

ˆ Self-supervised learning. We also attempt to leverage unla-
beled conversation data with self-supervised learning by utilizing
the structure information. This is particularly important for tasks
like ERC that face the data scarcity issue. Usually, labels provide
supervision for the training of models, which however are not
available for unlabeled data. To enable the training on unlabeled
data, it is important to explore the structure information in
conversations for self-supervised learning signals. These signals
could be the sequential relationship between utterances in each
conversation, which can be used for pre-training at both sentence-
level and conversation-level.

The above issues are representative since: 1) Recognizing emotions
in conversations is a novel direction of sentiment analysis, which uses
more practical user-generated texts. 2) Exploiting the intra-sample
structure information is especially critical for small-scale datasets,
which is exactly what the ERC task faces. 3) Leveraging unlabeled
data is the trend of NLP (also for other areas), which inevitably needs
the structure information to provide self-supervised signals.


