
Intelligent Monitoring

Metrics-Based Reliability

Management for Large-Scale Cloud

Systems

GU, Wenwei

A Thesis Submitted in Partial Fulfilment

of the Requirements for the Degree of

Doctor of Philosophy

in

Computer Science and Engineering

The Chinese University of Hong Kong

July 2025

Thesis Assessment Committee

Professor KING Kuo Chin Irwin (Chair)

Professor LYU Rung Tsong Michael (Thesis Supervisor)

Professor XU Qiang (Committee Member)

Professor PEI Dan (External Examiner)

Abstract of thesis entitled:

Intelligent Monitoring Metrics-Based Reliability Management for

Large-Scale Cloud Systems

Submitted by GU, Wenwei

for the degree of Doctor of Philosophy

at The Chinese University of Hong Kong in July 2025

In recent years, many traditional software systems have been mi-

grated to cloud computing platforms. They serve hundreds of mil-

lions of users around the world on a 24/7 basis. Due to their increas-

ing scale and complexity, performance issues become inevitable,

which may lead to potential violations of Service Level Agreements

(SLAs), causing user dissatisfaction and financial losses. Thus, en-

suring the reliability of these cloud systems is paramount. A com-

mon practice of reliability engineering involves the gathering of sys-

tem monitoring metrics, also known as Key Performance Indicators

(KPIs), from software and hardware components. The collected data

are then analyzed to identify any potential performance issues and

root causes. Despite the significance of reliability management in

ensuring the smooth operation of cloud systems, challenges such as

the large volume of data, data noise, and high rates of false posi-

tives significantly hinder effective management. To address these

challenges, this thesis explores intelligent reliability management

for cloud systems through data-driven approaches. Our research is

driven by the monitoring metrics collected from real-world large-

scale cloud systems. Our contributions are as follows:

Firstly, we propose ISOLATE, an anomaly detection approach

aimed at pinpointing performance issues in cloud systems. Unlike

i

traditional methods that monitor key performance indicators (KPIs)

independently, ISOLATE considers both the relational and temporal

dimensions of KPIs, utilizing a graph neural network with atten-

tion mechanisms to explore the intricate dependencies among cloud

components. This method captures both long-term trends and multi-

scale temporal patterns through a combination of GRU and convo-

lution networks, effectively identifying correlation-violated metrics.

To further enhance robustness against noisy data, ISOLATE em-

ploys a positive unlabeled learning strategy, utilizing pseudo labels

generated from a subset of verified negative examples.

Secondly, we develop ADAMAS, an innovative AutoML-based

anomaly detection framework tailored for practical application in

production cloud systems. Unlike conventional methods that pri-

marily rely on singular service metrics, ADAMAS dynamically ad-

justs to the complexities of cross-service anomalies through a novel

unsupervised evaluation function. This function aids in the auto-

mated optimization of model structures and parameter settings, im-

proving anomaly detection capabilities. Furthermore, ADAMAS in-

tegrates a lightweight human-in-the-loop mechanism, enabling the

incorporation of expert knowledge to refine anomaly detection con-

tinually and effectively bridge the gap between detected anomalies

and genuine business impacts. Additionally, ADAMAS monitors

the frequency of false predictions, allowing for proactive model re-

configuration and fostering a perpetual cycle of system enhance-

ment.

Thirdly, we introduce KPIRoot, an innovative method designed

for root cause localization in cloud systems that efficiently integrates

both similarity and causality analyses. KPIRoot addresses the limi-

tations of existing methods that typically focus only on the similar-

ity of anomalous trends among key performance indicators (KPIs)

to diagnose service quality issues. In complex cloud environments

characterized by interdependent services, this approach often proves

inadequate. KPIRoot enhances the root cause analysis by not only

ii

measuring the trend alignment of KPIs but also considering the se-

quential order of their variations to establish causality. Additionally,

the method incorporates symbolic aggregate approximation to cre-

ate a compact representation of each KPI, significantly improving

the efficiency of the analysis.

In summary, this thesis targets improving the reliability manage-

ment of large-scale cloud systems with data analysis on monitor-

ing metrics. Extensive experiments on both public and industrial

datasets collected from real-world cloud systems validate the effec-

tiveness and efficiency of our proposed algorithms.

iii

ŠìäŤę�Ę�ƈũŷîőġřĊj�úàÈł÷�Ĝz

«� ęīì�

Ó� ęĲ�{ì�Ó

Óŷ ę�ĒÉŊÓ�ł�Óŷ

ĽċÓ�ęņÓ­Ń

¼Ċ ę

ŠÒÕċ»săîŭŮŷîŏĐćŴ�ƈ�ĒÑŃċ©é

ÑŃĪ¹wÝU��ĳê7�24k¨útī2¦ġĘ�à�Ų

Ąúöòċ�Ž¤ä[łď�ċłŽjŵåĠtī Ñ§û

ćSLAĈċ°r��[ŭàĐŎq�2ĶÏċĲĬ©éƈŷî

úł÷�ŴűŞĊ2ł÷�ł�úN[�ĔªŁ�ýŭäŮÁ

ń{�ŜŷîřĊj�ćKPIĈċ§ëX÷ÝľĳãwÊ�ú

�Ž¤äà¡�òĶ2§�ċÝľŠ�1ÝľÀƊĳĝŲĮ�

úÄt�ĊŞÑ�Ôp­Ĝz2ĪÔŬæ©ét�ċ�Šìą

�ÔªÞÝľßħúĞŁÂÔúàŽł÷�Ĝz2�ðőġý

űŁdÁ�Ę�ƈŷî{�ŜúřĊj�ċªŋĳYĮîę

į�ċsaĳŋISOLATEċN¨Ůiƈŷî�Ž¤äúå

�Č�ĞŁ2[`ġăîÛŅřĊKPIúĞŁċISOLATE�Ï

ÔKPIúűđà¨ĨĪĄċ{�m×ĐįÞàŔpíÉ�ą

�ƈÁńĨú�Ųìƀűđ2ÏĞŁªÞGRUàÊÇįÞú

Í\¸¬Č�ĵĴàs�Ą¨Ĩ�nċp­ãwåĠŮű�

új�2Īö�iÀƊÝľúĊĺ�ċISOLATEĄ�Positive

Unlabeled LearningÑÚċ{�ĐñÔúĬÚ�rúÍ�à2

Ç�ċsaĠòÔADAMASċN[ÇĕúőġūħÉ¾Ó

őćAutoMLĈúå�Č�®ĝċĳŮi�Ę�úƈŷî2[

`ġăîĞŁċADAMASŽyħ¬ŉÙĳĪiŵtīå�ú

�Ų�ċªÞĕÈú�řÚß�ŎÝūħ{i�âÍĴàĖÝ

·íċĳŲå�Č�Ží2ÏoċADAMASÙ\ÔN[¤Š

�ĈÉàħÉ�ċĔ¶dđŜãÕdĊ�Âå�Č�ċtp­

«\Č��úå��ŁıÖīÐƖ�ĨúŋŪ2ADAMASĔ

řĊĮ�Óúċ�»�ħú�âŞÞíċĒÂŷîúdĊ�

Â2

iv

§Wċsat¶KPIRootċN¨ÇĕĞŁċ·��ġƈŷî

{¡Ķõ�ċtp­Ù\Ů��àĶăX÷2KPIRoot[ĕ�

ŠKPIúĵĴiéċĔ�ÏÇĕiú�íĳŘŅĶăűđ2Ï

oċüĞŁĄ�¡åÚ\Š�ŁċÇŘĺ[KPIúŇ¸ð³ċ

ćÛĳŲX÷­ú2

»�ċ�Šìō�ªÞřĊj�úÝľX÷�Ù�Ę�ƈ

ŷîúł÷�Ĝz2őġűŁdÁƈŷî�Ŝú½ĠàłÖÝ

ľŜú�ŠŁññÔÔsaĳŋĒŁúp­�à­ú2

v

Acknowledgement

Firstly and foremost, I am profoundly grateful to my advisor, Profes-

sor Michael R. Lyu, whose guidance and encouragement have been

instrumental in my academic journey. One of the most impactful ex-

periences was during my qualifying exam, where my performance

was less than stellar. I was nervous, my responses were halting, and

I had not published any papers then. Michael reassured me, suggest-

ing that significant progress could be made in the next two years if

I focused on several key areas. He advised me to practice English

daily and engage more with group members to aim for publishing in

top-tier conferences. Following his advice, I worked diligently, and

even after my first submission to ASE 2023 was rejected, Michael

remained optimistic. He told me that my paper had merit and that

it was merely a matter of time and luck before it found the right

venue. His positivity and approach to mentoring deeply inspired

me and sparked my interest in pursuing a career in academia as a

university professor. Michael’s spirit will continue to influence my

academic career.

Secondly, I wish to express my deep appreciation to my thesis

committee members, Prof. Irwin King and Prof. Qiang Xu, for

their insightful comments and invaluable suggestions throughout the

development of this thesis and during my term presentations. I am

also profoundly grateful to Prof. Dan Pei from Tsinghua University

for graciously serving as the external examiner for my thesis.

Thirdly, I was fortunate to receive invaluable guidance from Dr.

Jiazhen Gu. He constantly emphasized the importance of logical

vi

thinking in writing. When working on papers, he supervised me in

organizing my ideas and preparing a clear and logical presentation

before starting to write. He advocated for a thoughtful approach,

encouraging me to spend less time on repetitive tasks and more on

reading papers and thinking deeply about real-world problems and

solutions. His motto, "plan thoroughly before taking action," has

profoundly influenced me, highlighting the importance of practical

impact beyond just publication. Under his mentorship, I achieved

significant progress. His high standards in logic and writing, along

with his focus on the essence of problem-solving, have left a last-

ing impact on my work and mindset. As my mentor at Huawei, he

greatly enriched my research experience.

Fourthly, I am also fortunate to have worked alongside many ex-

ceptional research fellows and group members. I am grateful for

the collaboration and significant contributions of Zhuangbin Chen,

Jianping Zhang, Yun Peng, Jinyang Liu, Yintong Huo, Renyi Zhong,

Yichen Li, Zhihan Jiang, Yizhan Huang and Jinxi Kuang. Their co-

operation on various research projects and their insightful sugges-

tions have greatly enriched the content of this thesis.

Finally, I thank my parents for their unwavering support and en-

couragement throughout my studies.

vii

To my family.

viii

Contents

Abstract i

Acknowledgement vi

1 Introduction 1

1.1 Overview . 1

1.2 Thesis Contributions 5

1.3 Thesis Organization 11

2 Reliability Engineering in Cloud Systems 15

2.1 Architecture of Cloud Service Systems 17

2.2 Cloud System Monitoring Data 21

2.3 Metric-based Intelligent Reliability Engineering . . . 24

2.3.1 Metric-based Anomaly Detection 25

2.3.2 Metric-based Root Cause Analysis 26

2.3.3 Metric-based Clustering 26

3 Literature Survey on Monitoring Metric-based Intelli-

gent Cloud Reliability Management 28

3.1 Metric-based Analysis 28

3.1.1 Metric-based Anomaly Detection 28

3.1.2 Metric-based Root Cause Analysis 31

3.1.3 Monitoring Metric-based Clustering 32

3.2 Log-based Analysis 33

3.2.1 Log Parsing 33

ix

3.2.2 Advancements in Log-based Anomaly De-

tection . 35

4 Multivariate KPI Anomaly Detection 37

4.1 Introduction . 38

4.2 Background . 42

4.2.1 Monitoring Metrics in Cloud Service Systems 42

4.2.2 Performance Issues due to Correlation Vio-

lation . 43

4.3 METHODOLOGY 48

4.3.1 Problem Formulation 48

4.3.2 Overview 49

4.3.3 Relational-Temporal Embedding 50

4.3.4 Performance Issues Identification with LC-

VAE . 53

4.3.5 Correlation Violation Metrics Localization . 56

4.4 EVALUATION . 58

4.4.1 Datasets . 58

4.4.2 Experiment Setting 60

4.4.3 Experimental Results 64

4.4.4 Case Study 72

4.5 DISCUSSION . 74

4.5.1 Industrial Experience 74

4.5.2 Threats to Validity 79

4.5.3 Limitations of ISOLATE 80

4.6 CONCLUSION . 82

5 Adaptive AutoML-based Anomaly Detection 83

5.1 Introduction . 84

5.2 Background . 87

5.2.1 Performance Anomaly Detection in Cloud

Service Systems 88

5.2.2 Automated Machine Learning 89

x

5.3 Methodology . 90

5.3.1 Problem Formulation 90

5.3.2 Overview 91

5.3.3 Label-free Configuration Search 93

5.3.4 Feedback-based Adaptive Learning 97

5.4 Experiments . 101

5.4.1 Experiment Settings 101

5.4.2 RQ1: The Effectiveness of ADAMAS 103

5.4.3 RQ2: The Effectiveness of Each Compo-

nents of ADAMAS 107

5.4.4 RQ3: Parameter Sensitivity of ADAMAS . . 109

5.4.5 Case Study 110

5.5 Discussion . 112

5.5.1 The Reduction of Human Efforts 112

5.5.2 The overhead of ADAMAS 112

5.5.3 Threats to Validity 113

5.5.4 Limitations of ADAMAS 114

5.6 Conclusion . 115

6 Efficient KPI Root Cause Localization 116

6.1 Introduction . 117

6.2 Background and Motivation 121

6.2.1 KPI-based Root Cause Localization in Cloud

Systems . 121

6.2.2 A Motivating Example 123

6.3 METHODOLOGY 125

6.3.1 Problem Formulation 125

6.3.2 Overview 126

6.3.3 Anomaly Segment Detection 126

6.3.4 Similarity Analysis 129

6.3.5 Causality Analysis 130

6.3.6 Complexity Analysis 132

6.4 EVALUATION . 134

xi

6.4.1 Experiment Setting 135

6.4.2 Experimental Results 136

6.5 Industrial Experience 140

6.6 Discussion . 142

6.6.1 Root Cause Analysis for Microservice System142

6.6.2 The Influence of SAX Representation 143

6.6.3 Threats to Validity 143

6.6.4 Limitations of KPIRoot 144

6.7 CONCLUSION . 146

7 Conclusion and Future Work 147

7.1 Conclusion . 147

7.2 Future Work . 149

7.2.1 Failure Prediction of High-bandwidth Mem-

ory in LLM Training Platforms 150

7.2.2 Preliminary Evaluation Results 155

7.2.3 Limitations of Our Preliminary Approach . . 156

8 List of Publications 158

Bibliography 161

xii

List of Figures

1.1 Challenges in Monitoring Metric-based Reliability

Management of Cloud Systems 6

2.1 Architecture of Typical Cloud Service Systems . . . 18

2.2 Cloud System Monitoring Data 21

4.1 A real-world example of performance anomaly . . . 43

4.2 The latent embedding of the graph attention layer . . 45

4.3 The Overview of the Proposed Method ISOLATE . . 50

4.4 Positive Unlabeled Learning 56

4.5 An Illustration of the Point Adjustment Process in

Our Evaluation . 59

4.6 The Sensitivity Analysis of Threshold α and β 70

4.7 The Efficiency Analysis of ISOLATE 72

4.8 A case that ISOLATE finds false negative 73

4.9 A Case that ISOLATE avoids false positive 73

4.10 The Pipeline of Deploying ISOLATE in Huawei Cloud

System . 77

4.11 The Performance of deploying ISOLATE in Huawei

Cloud System . 78

4.12 The Delay Time of ISOLATE in Identifying Perfor-

mance Issues . 79

5.1 Examples of anomaly patterns of different services

in cloud company X 84

5.2 An Motivating Example from Company X 89

5.3 A General Overview of AutoML 91

xiii

5.4 An Overview of Proposed Framework ADAMAS . . 92

5.5 The Worst Case of Cluster Radius Update 100

5.6 The correlation between two evaluation functions

and F1 score . 106

5.7 Parameter Sensitivity of ADAMAS 108

5.8 Industrial deployment in OBS service 111

5.9 Case Study in OBS service 113

6.1 The Overall Pipeline of Root Cause Localization in

Cloud H . 118

6.2 An Industrial Case in Cloud H 121

6.3 The Overview of Our Proposed Method KPIRoot . . 123

6.4 An Illustration of SAX Representation 127

6.5 Root Cause Localization Time for All Methods . . . 139

6.6 Case Study of KPIRoot 141

7.1 Examples of Bank-level Failure Patterns 151

7.2 Bank Failure Pattern Distribution 152

7.3 Statistic Significance of Difference Distance Thresh-

olds . 153

7.4 The Overview of Our Proposed Method Cordial . . . 154

xiv

List of Tables

4.1 A List of Typical Performance Issues Caused by Cor-

relation Violation 46

4.2 Statistics of Industrial Dataset 58

4.3 A Summary of the Baseline Methods 60

4.4 Experimental Results of Different Anomaly Detec-

tion Methods. 64

4.5 Experimental Results of the Ablation Study 65

4.6 Performance on Metrics Localization 68

4.7 A Summary of the Node Types in the Huawei Cloud 76

5.1 Statistics of All Datasets 102

5.2 Implemented Algorithms and their hyperparameters . 104

5.3 Experimental Results of Different Anomaly Detec-

tion Methods . 105

5.4 Experimental Results of the Ablation Study 106

6.1 Statistics of Industrial Dataset 134

6.2 Experimental Results of Different Root Cause Lo-

calization Methods 137

6.3 Experimental Results of the Ablation Study of KPI-

Root . 138

7.1 In-row Predictable Ratio of UERs 152

7.2 Performance of Different Failure Prediction Methods 155

xv

Chapter 1

Introduction

1.1 Overview

In recent years, cloud computing has become increasingly popular.

Many software services are deployed on large-scale cloud systems,

such as Microsoft Azure, Google Cloud Platform, and Amazon Web

Services [239]. Cloud computing has benefited many enterprises,

and its marketplace has been growing significantly. The global cloud

computing market is expected to reach $832.1 billion by 2025, rep-

resenting a compound annual growth rate of 17.5% [184]. These

cloud computing systems serve millions of users worldwide on a

24/7 basis, offering a wide range of services [49,51,125]. However,

due to its growing scale and complexity, performance issues, even

failures, are inevitable [83] in cloud systems. Performance issues

may degrade overall availability and increase service response times,

causing SLA (Service Level Agreement) violations. While hardware

and software failures can cause service interruptions [64]. Both the

performance issues and failures can result in substantial economic

losses and user dissatisfaction [5, 109]. For example, a failure that

takes a top cloud provider offline in the US for 3 to 6 days would

result in $15 billion of economic loss [204]. Therefore, intelligent

reliability management that promptly identifies, diagnoses, and re-

solves these issues has become a key selling point for cloud service

providers to deliver services to their customers.

1

CHAPTER 1. INTRODUCTION 2

Leading cloud providers integrate a wide array of monitoring

tools to continuously track the health condition of their cloud sys-

tems. Different types of monitoring data are generated to reflect the

system state from different perspectives, including monitoring met-

rics [25, 79, 127], logs [60, 61, 66, 241, 254], traces [23, 63, 75, 253],

and alerts [100, 114, 244]. Especially, in this thesis, we mainly fo-

cus on monitoring metrics-based reliability engineering in cloud sys-

tems. By analyzing this data, cloud providers can quickly identify

and diagnose potential issues, address them, and maintain high ser-

vice availability levels through mitigating strategies.

Site reliability engineers (SREs) typically use basic tools to ana-

lyze observability data [226], identify performance anomalies, de-

termine the root cause, and diagnose the issue when unexpected

interruptions or service downgrades occur. For instance, imagine

a global streaming service hosted on Google Cloud Platform en-

countering intermittent connectivity issues. Users report difficulty

accessing content, leading engineers to investigate the root cause.

By reviewing network logs and monitoring metrics in dashboards,

they detect unusual latency spikes in data transmission between ge-

ographically dispersed data centers. Further analysis of the logs re-

veals that a recent update to the content delivery network (CDN)

configuration inadvertently increased the load on certain network

paths. Engineers quickly reconfigure the CDN settings to redis-

tribute traffic more evenly, restoring optimal service performance

and ensuring seamless streaming for users worldwide. Analyzing

monitoring metrics, logs, traces, and alerts is critical for proactively

identifying and diagnosing performance issues in cloud systems.

However, such manual practice has two major limitations. Firstly,

a cloud system is typically vast in scale and consists of tremendous

software and hardware components (e.g., microservices, virtual ma-

chines, and servers) [56, 158, 225]. Each component may have tens

of metrics to be collected in the backend monitoring system, result-

ing in a large volume of monitoring metrics [154, 206]. Analyzing

CHAPTER 1. INTRODUCTION 3

large amounts of data manually is labor-intensive and prone to er-

ror [26]. Secondly, effective analysis necessitates comprehensive

domain knowledge of cloud infrastructure and applications. This re-

quirement poses a significant challenge due to the rapid evolution

and increasing complexity of cloud technologies. As these systems

grow and change, keeping up to date with the latest configurations,

architectures, and potential failure points becomes increasingly dif-

ficult for SREs. This knowledge gap can lead to delays in diag-

nosing issues and implementing timely solutions. Thus, automatic

approaches that help SREs identify and diagnose performance issues

are preferred over human-dependent IT operations.

The large amounts of data generated by cloud systems support

the data-driven solution, leveraging AI techniques (machine learn-

ing, deep learning, and even large language models) to help with

the system maintenance and operations, also known as AIOps. Nev-

ertheless, it is still challenging to develop these solutions in real-

world, large-scale cloud systems. We summarize these challenges

as follows:

• Complicated Correlation Between Components: Cloud ser-

vice system typically consists of various components (e.g., stor-

age, computing, middleware). These components often have

intricate dependencies, making it difficult to identify the issues

and discover the root cause accurately. Developing models that

can accurately capture and analyze this correlation is a non-

trivial task.

• Gap between the technical and business interpretation of

anomalies: The challenge of discerning true business anoma-

lies that cause service interruption from false positives that man-

ifest as outliers in monitoring data is significant. Not all anomaly

patterns manifesting in monitoring metrics indicate genuine per-

formance issues. Normal fluctuations due to expected behav-

iors, such as auto-scaling responses, should not be flagged as

CHAPTER 1. INTRODUCTION 4

performance anomalies. These false positives can lead to mean-

ingless troubleshooting efforts if not properly handled. The gap

between true anomalies and false anomalies also poses chal-

lenges in model training, as not all anomalies detected in mon-

itoring metrics are true performance issues.

• Evolving Data with Concept Drift: Cloud technologies and

infrastructures are continually advancing, with frequent updates,

new features, and configuration changes that lead to concept

drift within monitoring data. This rapid evolution poses a sig-

nificant challenge for maintaining and updating performance

anomaly detection models. Developing models that adapt to

new patterns and behaviors within the system and effectively

handle concept drift with minimal human intervention is a com-

plex and demanding task.

• Diversity in Data Anomaly Patterns: Modern service tech-

nologies, such as microservices and serverless functions, de-

couple software into sophisticated and fine-grained units, lead-

ing to great diversity and dynamism not only in functionalities

but also in anomaly patterns. According to the No Free Lunch

Theorem, it is challenging for a single method to effectively

identify the entire spectrum of anomalies across different ser-

vices. For instance, while a common approach to anomaly de-

tection involves learning the normal pattern of a metric time

series and identifying deviations, this may not be effective for

anomalies that deviate in ways that do not prominently violate

time series periodicity.

• Real-time Processing with Large Volume of Data: Cloud en-

vironments often encompass thousands of servers, virtual ma-

chines, and numerous applications running simultaneously. Man-

aging and processing the sheer volume of data generated in

such large-scale systems requires significant computational re-

sources. The vast volume of underlying monitoring data and

CHAPTER 1. INTRODUCTION 5

the tight pressure to resolve issues quickly necessitate the de-

sign of efficient solutions to process large amounts of data effi-

ciently, often within seconds.

To address these challenges, we conduct research on intelligent

reliability management for cloud systems with data-driven approaches.

The overall pipeline of our work is illustrated in Figure 1.1. Our

studies are driven by the monitoring metric data collected from the

backend monitoring system. Firstly, we propose an approach ISO-

LATE aimed at pinpointing performance issues with multivariate

monitoring metrics collected from cloud systems. It considers both

the relational and temporal information of monitoring metrics, uti-

lizes a graph neural network with attention mechanisms to explore

the intricate dependencies among cloud components, and captures

both long-term trends and multi-scale temporal patterns through a

combination of GRU and convolution networks. It further enhances

robustness against noisy data through a positive unlabeled learn-

ing strategy. Secondly, we develop ADAMAS, an AutoML-based

anomaly detection framework that dynamically adjusts to the com-

plexities of cross-service anomalies through a novel unsupervised

evaluation function. Furthermore, ADAMAS integrates a lightweight

human-in-the-loop mechanism, enabling the incorporation of expert

knowledge to refine anomaly detection continually and effectively

bridge the gap between detected anomalies and genuine business

impacts. Finally, we introduce KPIRoot, an effective and efficient

framework for root cause analysis in cloud systems with monitoring

metrics. It integrates the strength of similarity analysis and causality

analysis. Additionally, using the SAX representation of KPI signifi-

cantly improves the method’s efficiency.

1.2 Thesis Contributions

The contributions of this thesis are summarized as follows:

CHAPTER 1. INTRODUCTION 6

Figure 1.1: Challenges in Monitoring Metric-based Reliability Management of

Cloud Systems

1. Multivariate Performance Anomaly Detection with Relational-

Temporal Features

In modern cloud systems, identifying performance issues is

usually addressed as an anomaly detection problem based on

multivariate metrics. Some existing approaches detect anoma-

lies based on individual metrics, focusing solely on temporal

abnormal patterns within each metric. However, modern cloud

services comprise various components (e.g., storage, comput-

ing, middleware), whose corresponding monitoring metrics ex-

hibit complex inter-dependencies. For instance, under normal

conditions, there is a correlation between disk I/O operations

per second and network throughput. As disk I/O increases

due to higher data processing and storage demands, network

throughput also increases as more data is transferred to and

from storage systems. A significant deviation from this cor-

relation, such as a sudden drop in network throughput while

disk I/O remains high, could indicate issues like a network bot-

tleneck or misconfiguration. This deviation can thus signal un-

CHAPTER 1. INTRODUCTION 7

derlying performance problems in the cloud service.

To address the limitation of overlooking correlations, several

graph neural network-based approaches have been proposed

to capture the spatial-temporal dependencies among multiple

metrics. While these methods consider metric correlations,

they typically embed these correlations within latent feature

representations implicitly. In contrast, we propose an approach

that explicitly incorporates correlation violations. This correla-

tion violation-aware method is crucial for effectively detecting

performance problems by using correlation violations as indi-

cators of anomalies.

Identifying performance issues through correlation violations

presents four challenges. Firstly, modeling the complicated

correlations among numerous metrics automatically and effec-

tively is difficult. A cloud application may consist of tens of mi-

croservices, each with tens of metrics, resulting in a large num-

ber of metrics with complex correlations. Even experienced

engineers struggle to comprehensively elucidate these relation-

ships. Secondly, accurately identifying correlation violations

from these intricate inter-metric correlations and determining

performance issues is a non-trivial task. Thirdly, due to the vast

volume of metrics, it is time-consuming for engineers to inves-

tigate underlying issues based on a binary (normal or abnor-

mal) result. Automatically pinpointing the anomalous metrics

is necessary. Finally, metric data from large-scale production

systems is often noisy, with mild performance issues lacking

obvious anomalies. This noise can blur the distinction between

normal and anomalous instances, leading to more false posi-

tives and negatives. Manually annotating such noisy data is

infeasible, while ignoring the noise can result in unsatisfactory

outcomes.

To tackle these challenges, we propose Identifying Performance

CHAPTER 1. INTRODUCTION 8

Issues Based on Relational-Temporal Features (ISOLATE), an

automated approach that identifies performance issues by cap-

turing both relational and temporal anomalous features of met-

rics. ISOLATE utilizes graph neural networks to explicitly cap-

ture the complex relational features among metrics, employ-

ing a graph attention mechanism to characterize metric correla-

tions. To identify correlation violations effectively, ISOLATE

uses relational embedding, which is decoupled from the tempo-

ral information of raw metrics, and feeds this into downstream

anomaly detection components. Highlighting correlation viola-

tion metrics provides insights for software reliability engineers

regarding the root cause of performance issues. Additionally,

to mitigate the impact of noisy data, ISOLATE adopts Positive

Unlabeled learning (PU learning), which iteratively finds pos-

itive samples and updates the models. PU learning produces

both negative and positive samples, whereas traditional Vari-

ational Auto Encoder-based (VAE-based) methods only han-

dle negative examples. ISOLATE employs a novel LC-VAE

(Label-Conditional VAE) to distinguish normal and abnormal

patterns effectively.

2. Adaptive Domain-aware Anomaly Detection

Cloud services exhibit significant diversity and dynamism, not

only in functionalities but also in anomaly patterns. As a re-

sult. This situation presents two major challenges for practical

anomaly detection in production systems. Firstly, it is diffi-

cult for a single method to effectively identify the entire spec-

trum of anomalies across different services, as suggested by the

No Free Lunch Theorem. Secondly, an anomaly detected on a

technical level might not translate to a performance issue im-

pacting overall business performance or customer experience,

leading to many false positives. Frequent service updates and

changing user behaviors cause the anomaly patterns of services

CHAPTER 1. INTRODUCTION 9

to evolve, a phenomenon known as concept drift, further com-

plicating the problem.

Although efforts have been made to address these challenges,

they suffer from limitations that hinder practical applications.

For instance, techniques like Automated Machine Learning (Au-

toML) aim to prevent the need for service-specific anomaly

detection solutions. However, these approaches often require

substantial labeled data or struggle to evaluate model perfor-

mance effectively, making it difficult to find the optimal model

architecture and parameters. In real-world systems, obtaining

sufficient labeled data for each cloud service is challenging. On

the other hand, the human-in-the-loop mechanism has proven

effective in incorporating domain knowledge to bridge the gap

between predicted anomalies and actual business exceptions.

However, these approaches heavily rely on human expertise

to provide high-quality feedback, affecting scalability and ef-

ficiency. Using limited feedback data to retrain models rarely

guarantees performance.

To this end, we propose ADAMAS, an AutoML-based anomaly

detection framework adaptable to different cloud services with

diverse and evolving abnormal patterns. ADAMAS consists

of two stages: a Label-free Configuration Search stage and a

Feedback-based Adaptive Learning stage. In the first stage,

ADAMAS employs Bayesian Optimization to search for the

best model architecture and parameters for anomaly detection.

During the search, ADAMAS uses the proposed Noise-Free

Mean Squared Error with Kurtosis (NFMK) evaluation func-

tion to estimate model performance without labels. In the sec-

ond stage, ADAMAS adopts a lightweight, adaptive learning

approach to efficiently incorporate expert knowledge. During

online serving, engineers can provide feedback on whether a

detected anomaly is a false positive. Using this manually la-

beled data, ADAMAS employs Metric Stream Clustering (MSC)

CHAPTER 1. INTRODUCTION 10

to group similar anomalous patterns into clusters and leverage

historical feedback to distinguish true performance issues from

false positives, significantly reducing the required feedback. To

address continuous service updates, ADAMAS triggers model

retraining when the cumulative mispredicted samples exceed a

threshold. In this process, domain knowledge introduced by

human feedback guides the configuration search.

3. Efficient Monitoring Metric Root Cause Localization

Cloud service systems typically consist of many instances, and

a common way is to monitor specific monitoring metrics that

can reflect the overall performance of the service, e.g., latency,

error count, and traffic, which we refer to as alarm KPIs. When

a performance issue is detected (i.e., the alarm KPI is abnor-

mal), it is crucial to identify the root cause (e.g., which underly-

ing instances cause the abnormal performance of the service).

A practical root cause localization approach for Key Perfor-

mance Indicators (KPIs) in cloud systems must meet the re-

quirements of efficiency and interpretability. Due to the vast

number of KPIs and the urgency to resolve issues quickly, the

approach needs to process large amounts of data (e.g., thou-

sands of KPIs) efficiently (e.g., within seconds). Additionally,

it should produce interpretable results to help engineers take ef-

fective remedial actions, which is crucial for maintaining cloud

systems.

Current root cause localization methods typically rely on statis-

tical or deep learning models. Statistic-based methods compute

linear relationships between KPIs and identify the root cause.

However, these methods are computationally expensive due to

the need to calculate correlations for every KPI pair and often

have low accuracy when dealing with complex KPIs in cloud

systems. Recent studies have adopted deep learning models,

such as graph neural networks, to model KPI relationships for

CHAPTER 1. INTRODUCTION 11

root cause localization. Despite their potential, these meth-

ods also suffer from high computational costs and lack inter-

pretability.

To address these limitations, we propose KPIRoot, an effec-

tive and efficient root cause localization approach designed to

identify the root cause underlying KPIs when an anomaly is de-

tected in a monitored alarm KPI within cloud systems. To meet

the efficiency requirement, KPIRoot first employs Symbolic

Aggregate Approximation (SAX) to downsample the time-series

data of KPIs, facilitating the extraction of anomaly segments.

By filtering out normal KPI data, KPIRoot focuses on anomaly

patterns rather than the entire time series, significantly opti-

mizing efficiency. Next, KPIRoot performs both similarity and

causality analyses to localize the root cause KPIs. Specifically,

underlying KPIs with high similarity in anomaly patterns to the

alarm KPI are more likely to be the root causes. Additionally,

causality analysis validates the cause-and-effect relationships

in the temporal dimension, ensuring that the anomaly pattern

of root cause KPIs precedes that of the alarm KPI. Finally,

KPIRoot combines the results of similarity and causality anal-

yses to produce a correlation score for each underlying KPI. A

higher score indicates a higher likelihood of the KPI being the

root cause. With a time complexity of O(
√
n) (n is the length

of the KPIs), KPIRoot can process thousands of KPIs within

seconds, enabling real-time resolution of performance issues.

1.3 Thesis Organization

The remainder of this thesis is organized as follows:

1. Chapter 2: Reliability Management in Cloud Systems

Chapter 2 introduces the background and challenges of reli-

ability management in cloud systems. Section 2.1 describes

CHAPTER 1. INTRODUCTION 12

the typical architecture of cloud systems. Section 2.2 then dis-

cusses commonly used monitoring data for reliability manage-

ment in cloud systems. Finally, Section 2.3 presents monitoring

metric-based intelligent solutions that can be integrated into the

reliability management of cloud systems.

2. Chapter 3: Literature Survey on Monitoring Metric-based

Intelligent Cloud Reliability Management

Chapter 3 reviews existing studies on metric-based cloud reli-

ability management in the literature. We cover a range of ap-

proaches, including metric-based anomaly detection, root cause

analysis, and clustering. Additionally, we discuss the limita-

tions of these studies in this section, which we try to address in

the following sections.

3. Chapter 4: Multivariate KPI Anomaly Detection

Identifying performance issues is often formulated as an anomaly

detection problem, which is tackled by analyzing each met-

ric independently. However, this approach overlooks the com-

plex dependencies existing among cloud components. Chap-

ter 4 proposes a method called ISOLATE, a learning-based ap-

proach that leverages both the relational and temporal features

of metrics to identify performance issues. Specifically, Sec-

tion 4.1 first introduces the problem and summarizes the con-

tributions made in improving multivariate metric anomaly de-

tection. Then, Section 4.2 presents some typical performance

issues due to the violation of the correlation of monitoring met-

rics, and how the correlation of metrics plays a crucial role

in detecting and diagnosing performance issues. The follow-

ing Section 4.3 describes the details of the proposed method,

ISOLATE. Section 4.4 provides a comprehensive evaluation of

the proposed method. Section 4.5 shares the industrial expe-

rience of deploying ISOLATE in Huawei Cloud and discusses

CHAPTER 1. INTRODUCTION 13

the threats to the validity of this study. Finally, Section 4.6

summarizes this chapter.

4. Chapter 5: Adaptive AutoML-based Anomaly Detection

It is a common practice in the reliability engineering of cloud

services that involves the collection of monitoring metrics, fol-

lowed by a comprehensive analysis to identify performance

issues. However, existing methods often fall short of detect-

ing diverse and evolving anomalies across different services.

Moreover, there exists a significant gap between the techni-

cal and business interpretation of anomalies, i.e., a detected

anomaly may not have an actual impact on system performance

or user experience. In Chapter 5, we propose an adaptive AutoML-

based anomaly detection ADAMAS to address these limita-

tions. Firstly, Section 5.1 first introduces the problem and sum-

marizes the contributions made in achieving adaptive and domain-

aware metric anomaly detection. Next, Section 5.2 provides ex-

amples from an industrial scenario that demonstrate the gap be-

tween the true anomalies resulting in business interruption and

technical anomalies manifested in data. We also give a brief

introduction to the general workflow of AutoML. Then, Sec-

tion 5.3 introduces the design details of ADAMAS, aiming to

achieve high adaptiveness and domain-knowledge awareness.

Section 5.4 extensively evaluates our method. Section 5.5 dis-

cusses the reduction of human efforts with ADAMAS, its over-

head, and some potential threats to the validity. Finally, we

summarize this chapter in Section 5.6.

5. Chapter 6: Efficient KPI Root Cause Localization

Root cause localization pinpoints the specific metrics when per-

formance issues happen, which are responsible for the degra-

dation of overall service quality, facilitating prompt problem

diagnosis and resolution. To this end, existing methods gen-

erally identify root-cause KPIs by locating those that exhibit

CHAPTER 1. INTRODUCTION 14

a similar anomalous trend to the overall service performance.

While straightforward, solely relying on the similarity calcula-

tion may be ineffective when dealing with cloud systems with

complicated interdependent services. In Chapter 6, we pro-

pose an effective and efficient method for root cause localiza-

tion that integrates the advantages of similarity analysis and

causality analysis. Specifically, Section 6.1 first introduces the

problem and summarizes the contributions made in achieving

efficient and effective root cause localization. Section 6.2 pro-

vides an overview of the problem of metric-based root cause

localization and demonstrates an industrial example that moti-

vates our design. Following this, Section 6.3 then introduces

the detailed design of KPIRoot. In Section 6.4, we provide a

comprehensive evaluation using real-world data collected from

Huawei. Additionally, Section 6.5 discusses the industrial ex-

perience of deploying KPIRoot within Huawei Cloud. Sec-

tion 6.6 discusses the difference between our approach and

existing root cause analysis approaches for microservice sys-

tems. Then, some potential threats to the study’s validity are

discussed. Finally, Section 6.7 summarizes this chapter.

6. Chapter 7: Conclusion and Future Work In this chapter, we

summarize this thesis and discuss our future work. We plan

to focus on methods that enhance the reliability of LLM train-

ing systems, especially in their storage systems, like large-scale

high-bandwidth memory clusters.

2 End of chapter.

Chapter 2

Reliability Engineering in Cloud

Systems

Software Reliability Engineering (SRE) is a rigorous discipline that

focuses on ensuring that software systems operate reliably, perform-

ing their intended functions under specified conditions without fail-

ure. This discipline integrates concepts from engineering, testing,

and management to predict, measure, and enhance the reliability of

software. Key components of software reliability engineering in-

clude reliability modeling, which involves developing mathematical

models to predict software reliability based on historical data and

anticipated usage patterns. Failure analysis is also crucial, as it iden-

tifies potential failure modes and assesses their impacts. Reliability

testing, such as stress and load testing, is used to identify reliabil-

ity issues, while metrics like mean time between failures (MTBF)

and mean time to repair (MTTR) provide quantifiable measures of

reliability. Continuous monitoring further ensures that systems are

proactively tracked for performance and reliability issues, allowing

for timely identification and resolution. Ultimately, reliability im-

provement strategies, such as code reviews and automated testing,

help enhance software reliability by addressing design weaknesses

and fostering robust error-handling mechanisms.

Reliability engineering in cloud systems is specifically tailored to

ensure cloud services and infrastructure remain dependable, avail-

15

CHAPTER 2. RELIABILITY ENGINEERING IN CLOUD SYSTEMS 16

able, and resilient. This involves defining service level agreements

(SLAs) and service level objectives (SLOs) to set expectations for

service availability and performance, which act as benchmarks for

reliability. Error budgeting plays a critical role, balancing develop-

ment velocity with reliability by quantifying acceptable levels of un-

reliability and informing decisions about new feature releases. Auto-

mated recovery and self-healing mechanisms are essential, enabling

systems to automatically detect and recover from failures with min-

imal downtime. Comprehensive monitoring and observability tools

provide deep insights into system behavior and health, facilitating

quick detection of anomalies. Resilience engineering focuses on

building fault-tolerant architectures that can withstand and recover

from disruptions like network outages or hardware failures. Effec-

tive incident management processes ensure rapid response to relia-

bility issues, encompassing detection, communication, documenta-

tion, and post-mortem analysis. While these practices offer signifi-

cant benefits, such as improved reliability and scalability, they also

pose challenges, including the complexity of diverse technologies,

the need for specialized skills, and the critical task of balancing de-

velopment speed with system reliability.

As cloud systems provided by platforms like Azure and Google

Cloud continue to expand, SRE encounters substantial challenges

in maintaining system reliability. The vast scale and complexity of

these modern cloud infrastructures necessitate advanced automation

and sophisticated monitoring to sustain system stability. The task of

balancing rapid development with stringent reliability objectives be-

comes increasingly intricate, compelling SRE teams to incessantly

innovate and adapt their practices to meet the escalating demands

imposed by expansive cloud environments. This dynamic landscape

requires a comprehensive approach that integrates cutting-edge tech-

nologies and methodologies to effectively address the multifaceted

challenges of reliability management.

To accommodate the large scale and complexity of cloud sys-

CHAPTER 2. RELIABILITY ENGINEERING IN CLOUD SYSTEMS 17

tems, tools for real-time monitoring and automatic analysis have

been developed and extensively studied. These tools provide deep

insights into system performance and facilitate proactive detection

and resolution of potential issues before they impact users. Plat-

forms like Azure and Google Cloud have established robust reliabil-

ity data management protocols, which standardize practices across

their infrastructures to ensure consistency and dependability. These

protocols include the use of SLOs, error budgets, and automated

recovery mechanisms that enable systems to self-heal and main-

tain optimal functionality. Additionally, the integration of machine

learning and artificial intelligence into monitoring systems enhances

predictive capabilities, allowing SRE teams to anticipate and miti-

gate failures more effectively. As these cloud systems mature, con-

tinuous refinement of reliability strategies is essential to sustain high

levels of performance and customer satisfaction in an ever-evolving

technological landscape.

In the following sections, we first introduce the architecture of

cloud service systems in Section 2.1. Then we introduce the com-

mon reliability monitoring data of modern cloud systems in Sec-

tion 2.2. Finally, we introduce intelligent monitoring metric-based

practice in enhancing the reliability of cloud systems 2.3.

2.1 Architecture of Cloud Service Systems

Cloud computing services are broadly classified into three primary

models: Infrastructure as a Service (IaaS), Platform as a Service

(PaaS), and Software as a Service (SaaS). These categories rep-

resent distinct levels of control, flexibility, and management, each

tailored to address specific business requirements. IaaS provides

foundational computing infrastructure, PaaS delivers a development

platform for creating and deploying applications, and SaaS offers

complete, ready-to-use software solutions accessible via the inter-

net. These service models collectively enable organizations to opti-

CHAPTER 2. RELIABILITY ENGINEERING IN CLOUD SYSTEMS 18

Figure 2.1: Architecture of Typical Cloud Service Systems

mize their IT operations, reduce costs, and enhance scalability while

focusing on their strategic goals. The overall architecture of cloud

service system is illustrated in Figure 2.1.

Infrastructure as a Service (IaaS) Layer. Infrastructure as a Ser-

vice (IaaS) is the most fundamental cloud service model, offering

essential virtualized computing resources such as virtual machines,

storage, and networking over the internet. This model allows users

to rent infrastructure components on a pay-as-you-go basis, provid-

ing a cost-effective alternative to investing in physical hardware.

IaaS empowers organizations with high levels of flexibility and scal-

ability, enabling them to adapt quickly to changing workloads and

business demands. It is particularly advantageous for businesses that

require dynamic resource allocation or need to handle unpredictable

spikes in traffic. However, while IaaS eliminates the need to manage

physical infrastructure, it places the responsibility for operating sys-

tems, applications, and middleware on the user, necessitating a cer-

tain level of technical expertise. Leading providers of IaaS include

Amazon Web Services (AWS), Microsoft Azure, and Google Cloud

CHAPTER 2. RELIABILITY ENGINEERING IN CLOUD SYSTEMS 19

Platform (GCP), all of which offer robust solutions that support di-

verse use cases ranging from hosting websites to running large-scale

enterprise applications.

Platform as a Service (PaaS) Layer. Platform as a Service (PaaS)

builds upon IaaS by providing a higher level of abstraction, focus-

ing on the needs of developers who require an efficient environment

for building, testing, and deploying applications. PaaS simplifies the

complexities of infrastructure management by offering development

tools, middleware, database systems, and runtime environments as

part of the service. This enables developers to concentrate on writing

code and implementing application logic rather than dealing with

hardware and software provisioning. PaaS is particularly well-suited

for projects involving rapid development cycles, collaborative work-

flows, and continuous integration/continuous deployment (CI/CD)

pipelines. Moreover, it streamlines application lifecycle manage-

ment, making it easier to scale applications as needed. Prominent

examples of PaaS platforms include Google App Engine, Microsoft

Azure App Service, and Heroku, all of which provide robust ecosys-

tems for creating modern, cloud-native applications.

Software as a Service (SaaS) Layer. Software as a Service (SaaS)

represents the most advanced and user-centric cloud service model,

delivering fully functional software applications directly to end users

over the internet. Unlike IaaS or PaaS, SaaS requires no installa-

tion, maintenance, or management of the underlying infrastructure

or software, as these responsibilities are handled entirely by the ser-

vice provider. SaaS applications are hosted in the cloud and ac-

cessed through web browsers, offering unparalleled convenience,

scalability, and accessibility from virtually any device with an in-

ternet connection. This model is ideal for businesses aiming to

minimize IT complexity and focus on their core operations, as it

eliminates the need for extensive technical expertise or on-premises

hardware. SaaS solutions cover a wide range of applications, includ-

ing customer relationship management (CRM), enterprise resource

CHAPTER 2. RELIABILITY ENGINEERING IN CLOUD SYSTEMS 20

planning (ERP), collaboration tools, and industry-specific software

tailored to specialized needs. Examples of popular SaaS providers

include Salesforce, Microsoft Office 365, and Google Workspace,

which have become essential tools for businesses seeking stream-

lined workflows, enhanced productivity, and reduced operational

overhead.

Cross-layer Interactions. Cross-layer interactions in cloud com-

puting systems involve the dynamic interplay between Infrastructure

as a Service (IaaS), Platform as a Service (PaaS), and Software as a

Service (SaaS) layers, which collectively enhance the functionality

and efficiency of cloud solutions. IaaS serves as the foundational

layer, providing the essential infrastructure components such as vir-

tual machines, storage, and networking, which underpin both PaaS

and SaaS offerings. PaaS, operating atop the IaaS layer, leverages

these infrastructure resources to deliver a robust platform that sim-

plifies application development, deployment, and scaling. This in-

teraction allows PaaS to dynamically allocate resources from IaaS,

ensuring optimal performance and cost-efficiency based on varying

workloads and developer needs. Moreover, PaaS abstracts the com-

plexities of infrastructure management, enabling developers to fo-

cus on application logic and innovation without delving into the in-

tricacies of hardware provisioning. At the SaaS level, applications

utilize the extensive capabilities of PaaS to manage complex oper-

ations and integrations, while simultaneously relying on the scal-

able infrastructure provided by IaaS for hosting and execution. This

hierarchical relationship ensures that SaaS applications can deliver

seamless user experiences, characterized by responsiveness and re-

liability, without direct involvement in infrastructure management.

Additionally, cross-layer interactions facilitate integrated security

measures, enabling consistent governance and compliance across all

layers. For instance, security protocols initiated at the IaaS level can

propagate through PaaS and SaaS, ensuring data protection and pri-

vacy throughout the service stack. This interconnected framework

CHAPTER 2. RELIABILITY ENGINEERING IN CLOUD SYSTEMS 21

Figure 2.2: Cloud System Monitoring Data

enables organizations to optimize resource usage, streamline devel-

opment processes, and enhance the value delivered through cloud

services, ultimately creating agile and scalable solutions tailored to

specific business objectives.

2.2 Cloud System Monitoring Data

Cloud system monitoring is essential for ensuring the health, perfor-

mance, and security of cloud-based applications and infrastructure.

It involves the continuous observation and analysis of various com-

ponents within a cloud environment to quickly identify and address

any issues that arise. This practice typically entails the collection

of three key data types: metrics, logs, and traces. Monitoring met-

rics offer quantitative insights into resource performance, measur-

ing factors such as CPU usage, memory utilization, disk I/O, and

CHAPTER 2. RELIABILITY ENGINEERING IN CLOUD SYSTEMS 22

network traffic. These metrics are vital for assessing system health

and identifying potential performance bottlenecks. Logs provide de-

tailed records of events within the cloud environment, encompass-

ing application operations, system events, and security incidents.

They offer a chronological view of activities, enabling effective trou-

bleshooting and compliance monitoring. Traces track the flow of

requests across distributed systems, capturing the lifecycle and per-

formance of these requests to help pinpoint bottlenecks and failures.

Alerts are notifications triggered by predefined conditions in met-

rics, logs, and traces. They provide timely awareness of potential

issues, allowing for rapid response to maintain system stability and

performance. By leveraging monitoring tools like Amazon Cloud-

Watch, Azure Monitor, and Google Cloud Operations Suite, orga-

nizations can proactively detect and resolve issues, optimize system

performance, ensure security and compliance, and manage costs ef-

fectively. When performance issues and failures occur, they can lead

to revenue losses and user dissatisfaction. To mitigate these risks,

engineers conduct detailed analyses on monitoring data to identify

and resolve problems promptly. By leveraging monitoring tools like

Amazon CloudWatch, Azure Monitor, and Google Cloud Opera-

tions Suite, organizations can proactively detect and resolve issues,

optimize system performance, ensure security and compliance, and

manage costs effectively. The overall pipeline of monitoring data

collection is illustrated in Figure 2.2

Metrics: Metrics are quantitative measures that provide insights

into the performance and health of cloud systems. Examples in-

clude CPU utilization, memory usage, disk I/O, and network traf-

fic. By continuously collecting and analyzing metrics, organizations

can monitor resource usage, identify performance bottlenecks, and

ensure that systems are running efficiently. Metrics are crucial for

real-time monitoring and can trigger alerts when predefined thresh-

olds are exceeded, indicating potential issues that need immediate

attention.

CHAPTER 2. RELIABILITY ENGINEERING IN CLOUD SYSTEMS 23

Logs: Logs are detailed records of events that occur within a

cloud environment. They capture information about application op-

erations, system events, and security incidents. Logs provide a chrono-

logical account of activities, making them invaluable for diagnosing

issues, tracking user activities, and ensuring security compliance.

By analyzing logs, administrators can detect anomalies, investigate

errors, and understand the context of specific events. Log-based

alerting involves monitoring these logs for specific patterns or key-

words that indicate problems or security threats.

Traces: Traces track the flow of requests through distributed sys-

tems, capturing the lifecycle and performance of each request. They

provide a detailed view of how different services interact, helping

to identify bottlenecks and diagnose performance issues in complex

architectures. Traces typically include spans, which are individual

units of work within a trace, detailing start and end times, duration,

and any errors encountered. Trace-based alerting involves monitor-

ing these traces for performance anomalies or error patterns, trigger-

ing alerts when predefined conditions are met.

Alerts: Alerts, also known as events or alarms, are crucial for

maintaining the health and performance of cloud systems. They

provide timely awareness of issues so they can be resolved quickly.

Alerts are generated by monitors—always-on programs—based on

predefined policies. These policies describe the circumstances under

which customers want to be alerted, such as thresholding metrics,

anomaly detection in logs, or specific patterns in traces. An alert

typically contains key information like an ID, timestamp, severity

level, textual message, and source, which helps the recipient quickly

understand the issue and take appropriate action.

By leveraging metrics, logs, traces, and alerts, cloud systems can

ensure optimal performance, quickly detect and resolve issues, and

maintain a secure and compliant environment. This integrated ap-

proach to monitoring and management is essential for the smooth

operation of cloud-based applications and infrastructure.

CHAPTER 2. RELIABILITY ENGINEERING IN CLOUD SYSTEMS 24

2.3 Metric-based Intelligent Reliability Engineering

In modern cloud environments, managing reliability data manually

presents significant challenges due to the scale and complexity of

these systems. With numerous components generating vast amounts

of monitoring metrics, it becomes increasingly difficult for human

operators to effectively monitor, analyze, and respond to issues in

real-time. The sheer volume of data can overwhelm teams, leading

to missed alerts, delayed responses, and potential system failures.

Additionally, the intricacies of distributed systems, with their com-

plex dependencies and interactions, complicate the manual diagno-

sis of problems and identification of root causes. This can result

in inefficient troubleshooting, prolonged downtimes, and increased

operational costs.

To address these challenges and enhance operational efficiency,

it is essential to leverage intelligent and automatic analysis of relia-

bility data. By incorporating advanced analytics, machine learning,

and automation tools, organizations can proactively detect anoma-

lies, predict potential issues, and streamline incident response pro-

cesses. Intelligent systems can continuously analyze large datasets,

identify patterns, and provide actionable insights faster and more

accurately than manual methods. Embracing these technologies not

only improves the reliability and performance of cloud systems but

also allows teams to focus on strategic initiatives and innovation,

ultimately driving better business outcomes.

In modern cloud systems, the sheer volume and diversity of met-

rics generated can be overwhelming, making it essential to imple-

ment automatic anomaly detection and clustering techniques. Auto-

matic anomaly detection helps identify unusual patterns or behaviors

in real time, ensuring prompt responses to potential issues. Simulta-

neously, metric-based clustering groups similar data points, enabling

the identification of patterns, trends, and anomalies at scale. To-

gether, these techniques aim to provide deeper insights into system

CHAPTER 2. RELIABILITY ENGINEERING IN CLOUD SYSTEMS 25

performance and usage patterns, facilitating more informed decision-

making and resource optimization.

2.3.1 Metric-based Anomaly Detection

Metric-based anomaly detection is a technique used to identify un-

usual patterns or behaviors in system metrics, indicating potential

issues such as hardware failures, security breaches, or performance

bottlenecks. It involves monitoring various quantitative measures

like CPU usage, memory utilization, and network latency to detect

deviations from the norm. This is effective for identifying functional

and performance anomalies at both the application and service lev-

els, assuming consistent conditions between training and runtime.

However, its accuracy can decrease if runtime conditions change,

such as during peaks in user requests or when new services replace

outdated ones. Alternatively, other techniques like Service Level

Objective (SLO) checks and heartbeat protocols are used to detect

anomalies, though they may limit the type or granularity of anoma-

lies that can be detected.

In terms of methods, machine learning-based anomaly detection

includes techniques like One-Class Support Vector Machine (OCSVM),

Isolation Forest (iForest), and Local Outlier Factor (LOF), which

leverage clustering and density estimation to identify anomalies. Deep

learning-based methods include models like Deep Autoencoder with

Gaussian Mixture Model (DAGMM), Long Short-Term Memory (LSTM)

networks, and Graph Neural Networks (GNNs) that capture com-

plex temporal and spatial dependencies for more nuanced anomaly

detection. AutoML-based methods, such as HyperBand and Prox-

yBO, automate model selection and hyperparameter tuning to im-

prove anomaly detection efficiency, though they often operate offline

and may not adapt well to online scenarios with dynamic conditions.

Each of these methods provides unique capabilities for managing the

complexities of anomaly detection in cloud environments.

CHAPTER 2. RELIABILITY ENGINEERING IN CLOUD SYSTEMS 26

2.3.2 Metric-based Root Cause Analysis

Root cause analysis in the context of monitoring metrics is a cru-

cial process aimed at identifying the underlying factors responsible

for anomalies or performance issues within cloud-based applications

and services. This analysis involves examining key performance in-

dicators (KPIs) that are monitored by agents deployed alongside ap-

plication services. By meticulously analyzing these metrics, organi-

zations strive to determine the precise causes of observed anoma-

lies, which could be related to hardware failures, software bugs,

network disruptions, or other operational challenges. Effective root

cause analysis not only aids in resolving existing issues but also con-

tributes to preventing future occurrences, thereby enhancing the re-

liability and performance of cloud systems.

There are several broad categories of methods used in root cause

analysis. Statistical analysis techniques leverage statistical methods

to evaluate KPIs, identifying anomalous patterns that might indi-

cate potential root causes; examples include ϵ-diagnosis. Topology

graph-based analysis methods utilize topology graphs to model ser-

vice dependencies and interactions within applications, as seen in

techniques like MicroRCA. Lastly, causality graph-based analysis

involves the construction and examination of causality graphs to ex-

plore the relationships between services and their KPIs, identifying

causal dependencies that might lead to anomalies, with examples

including CauseInfer, Microscope, CloudRanger, and MicroCause.

Each method provides unique insights into the complex interactions

within cloud environments, helping to pinpoint possible root causes

of service issues.

2.3.3 Metric-based Clustering

Metric-based clustering is a technique that groups similar data points

based on specific metrics or features, aiding in the identification of

patterns, trends, and anomalies within cloud systems and IT infras-

CHAPTER 2. RELIABILITY ENGINEERING IN CLOUD SYSTEMS 27

tructure. By employing clustering algorithms such as K-Means, hi-

erarchical clustering, DBSCAN, and Gaussian Mixture Models, or-

ganizations can optimize resource allocation, detect anomalies, an-

alyze performance, and plan capacity. The process involves collect-

ing and preprocessing data, selecting relevant features, choosing an

appropriate algorithm, training the model, and interpreting the re-

sults. Metric-based clustering enhances system understanding, en-

ables proactive management, and improves efficiency by identifying

and grouping similar workloads and usage patterns. By implement-

ing these intelligent reliability engineering techniques, organizations

can overcome the challenges posed by the complexity and volume of

data in cloud environments, ensuring robust and efficient operations.

2 End of chapter.

Chapter 3

Literature Survey on Monitoring

Metric-based Intelligent Cloud

Reliability Management

In this chapter, we review existing studies on monitoring metric-

based intelligent cloud reliability engineering in the literature. Ex-

tensive studies have been conducted in this area. Our goal is to pro-

vide a comprehensive overview of these studies, highlighting their

contributions and discussing their limitations.

3.1 Metric-based Analysis

3.1.1 Metric-based Anomaly Detection

Detecting performance issues through monitoring metrics in online

service systems has become increasingly important. These metrics,

often represented as multivariate time series, are critical for assess-

ing the real-time status of entire systems. The primary challenges in

detecting anomalies within multivariate metrics are twofold: effec-

tively modeling complex relational and temporal dependencies [212]

and addressing noise introduced during manual labeling processes,

which can be difficult to eliminate. Related studies are generally

divided into approaches based on machine learning or signal pro-

28

CHAPTER 3. LITERATURE REVIEW 29

cessing and those based on deep learning.

One-Class Support Vector Machine (OCSVM) [168] is a clustering-

based method that defines boundaries around normal data, identi-

fying anomalies as points outside these borders. Isolation Forest

(iForest) [121] employs multiple isolation trees, assuming anoma-

lies are rare and isolated, making them easy to detect due to their

short path lengths. Local Outlier Factor (LOF) uses density estima-

tion for anomaly detection, identifying samples with significantly

lower density compared to their neighbors as anomalies. Jump-

Starter [136] utilizes compressed sensing for data reconstruction,

employing shape-based clustering to reduce data volume and outlier-

resistant sampling to minimize anomalous values. ADSketch [25] is

an online performance anomaly detection approach that uses pattern

sketching to compare anomaly patterns with historically identified

ones, updating cluster synopses with evolving data.

The advent of deep learning has spurred a multitude of studies fo-

cused on anomaly detection in multivariate metrics data [233, 234].

The Deep Autoencoder with Gaussian Mixture Model (DAGMM) [255]

identifies anomalous data points without considering temporal pat-

terns. MSCRED [231] employs a multi-scale convolutional recur-

rent encoder-decoder to detect anomalies based on reconstruction

error. Long Short-Term Memory (LSTM) models [76, 242] are uti-

lized to detect performance degradation anomalies in software sys-

tems by leveraging prediction errors. The LSTM-VAE [157] com-

bines LSTM networks with a Variational Autoencoder (VAE) to re-

construct sliding window distributions from multivariate metrics, ef-

fectively handling temporal dependencies [25]. Similarly, LSTM-

NDT [76] utilizes LSTM networks with non-parametric dynamic

thresholds to ensure system reliability. OmniAnomaly [182] ex-

tends LSTM-VAE with normalizing flow, using reconstruction er-

ror for detection, though its effectiveness diminishes with severe

training noise. THOC [174] fuses multi-scale temporal features us-

ing hierarchical clustering, detecting anomalies through multi-layer

CHAPTER 3. LITERATURE REVIEW 30

distance loss. MTSAD [201] integrates active learning with VAE-

based anomaly detection, distinguishing between normal and abnor-

mal samples in reconstruction error and latent space. TranAD [189],

a transformer-based model, employs attention-based sequence en-

coders for efficient anomaly detection, enhanced by self-conditioning

and adversarial training for stability. ACVAE [240] uses adversarial

mechanisms and contrast learning in a VAE framework, improving

the decoder’s discriminatory power and the encoder’s sample acqui-

sition. SLA-VAE [73] is a semi-supervised model using convolu-

tions for capturing inter-metric dependence, with active learning to

update the VAE model using uncertain samples.

Recently, Graph Neural Networks (GNNs) have emerged as promis-

ing tools in deep learning-based anomaly detection, effectively cap-

turing temporal and spatial dependencies among multivariate metric

pairs [89]. MTAD-GAT [243] pioneers the use of graph-attention

networks to model sensor relationships, combining reconstruction

and forecasting for anomaly detection. Graph Deviation Network

(GDN) [35] learns pairwise relationships via cosine similarity, mod-

eling time series as graphs using adjacency matrices, predicting fu-

ture values and using forecast error as an anomaly score. GTA [22]

is a Transformer-based framework that automatically learns sensor

dependencies, employing Influence Propagation (IP) graph convo-

lution and multi-branch attention for enhanced training efficiency.

FuSAGNet [59] leverages a sparse autoencoder to extract latent fea-

ture representations, predicting future time series using sparse rep-

resentations and graph structures learned by GNNs. TopoMAD [69]

is a topology-aware model integrating GNNs, LSTM, and VAE, ex-

tracting topological information through pod-based division in Ku-

bernetes microservices. However, due to the dynamic topologies in

Huawei Cloud from frequent deployments and updates, TopoMAD

is not applicable in our scenario.

In large-scale cloud systems, manual model selection and hy-

perparameter tuning are time-consuming and error-prone, prompt-

CHAPTER 3. LITERATURE REVIEW 31

ing the adoption of AutoML techniques. HyperBand [107] com-

bines randomized search through Successive Halving with an early-

stopping mechanism, though its random nature and disregard for

historical configuration data can lead to suboptimal results. Prox-

yBO [175] speeds up neural architecture search using three proxy

functions, but these proxies are not specifically designed for anomaly

detection. AutoAD [160] is the first AutoML framework employ-

ing unsupervised measurement for model evaluation, though it uses

MSE as the evaluation function, which may not accurately reflect

performance. AutoKAD [230] applies Bayesian Optimization [10],

iteratively searching for optimal configurations using the MSE-NF

function. Both methods explore the relationship between perfor-

mance and hyperparameter settings, searching for the best configu-

ration. However, they fail to distinguish between true and predicted

anomalies, lacking domain knowledge from cloud system experts,

which can result in high false positives and burden cloud operators.

Moreover, existing AutoML-based anomaly detection frameworks

are typically offline, making them unsuitable for online scenarios

with evolving software and anomaly patterns.

3.1.2 Metric-based Root Cause Analysis

Determining the root cause of performance anomalies in online ser-

vice systems has become a critical area of research. The objective

of root cause localization using monitoring metrics in cloud sys-

tems is to identify a subset of monitored Key Performance Indicators

(KPIs), which can then be investigated to alleviate performance is-

sues. LOUD [141] operates on the premise that services exhibiting

anomalous KPIs are likely to cause anomalous behavior in corre-

lated services. It utilizes graph centrality to determine the degree

of correlation between KPIs and observed performance anomalies.

AID [221] measures the intensity of dependencies between moni-

toring KPIs of cloud services by calculating the similarity between

CHAPTER 3. LITERATURE REVIEW 32

status KPIs of the caller and the callee. AID aggregates these sim-

ilarities into a unified value representing the dependency intensity,

making it useful for root cause localization by identifying the KPI

triggering alerts. Similarly, CloudScout [222] employs the Pear-

son Correlation Coefficient to assess the similarity between services

based on KPIs at the physical machine level, such as CPU usage.

Several approaches focus on identifying fault-indicating attribute

combinations within KPI data. CMMD [218] uses a graph attention

network for cross-metric root cause localization, modeling relation-

ships between fundamental and derived metrics. HALO [238] intro-

duces a hierarchical search approach, utilizing conditional entropy

to capture relationships among attributes and locate fault-indicating

combinations. iDice [118] treats the root cause as a combination

of attribute values, identifying anomalies through specific attribute

dimension co-occurrences, and ranks these combinations using a

Fisher distance-based score function. However, iDice is not suitable

for large-scale issue reports with high-dimensional metrics typical

of cloud systems. MID [50] employs a meta-heuristic search to dy-

namically detect emerging issues from large-scale issue reports with

higher efficiency.

3.1.3 Monitoring Metric-based Clustering

Effectively handling the large volume of metrics generated by cloud

systems is crucial, and clustering plays a key role in this process. For

example, Principal Component Analysis (PCA) is used to transform

multivariate metric data into univariate time series before cluster-

ing [90]. ROCKA [113] is a robust and rapid monitoring metric clus-

tering algorithm based on shape-based distance, designed to handle

challenges like noise and phase shifts in large-scale anomaly detec-

tion. ROCKA clusters metrics based on their underlying shapes,

ensuring high accuracy and reducing model training time with mini-

mal performance loss. OmniCluster [237] is another system instance

CHAPTER 3. LITERATURE REVIEW 33

clustering method that combines a one-dimensional convolutional

autoencoder with a novel three-step feature selection strategy. This

approach efficiently clusters system instances, significantly reduc-

ing the training overhead of anomaly detection models. However,

these methods often require pairwise distance computations before

performing clustering, which can be computationally intensive and

challenging to scale in cloud environments with tens of millions of

monitoring metrics.

3.2 Log-based Analysis

3.2.1 Log Parsing

The foundational step in automated log analysis is log parsing, a

field that has seen significant research activity in recent years [60,86,

94, 254]. The objective is to distill raw log messages into structured

events by separating constant templates from variable parameters.

Historically, research in this domain has bifurcated into two primary

paradigms: syntax-based and semantic-based approaches.

These methods, which operate on the logs’ textual structure and

patterns, represent the classical approach. Early and foundational

methods within this category are frequency-based, which lever-

age frequent token positions or n-gram patterns to identify tem-

plates [32, 150, 191, 192]. A second category operates on the prin-

ciple of similarity, computing distances between log messages to

cluster them and subsequently extract their common, static compo-

nents [58,177,188]. A third, more diverse group relies on heuristics,

employing specialized algorithms or data structures, such as fixed-

depth trees in Drain [62], to efficiently differentiate templates based

on designed characteristics [37, 87, 140, 145, 148, 203].

In contrast to syntax-driven methods, semantic-based parsers aim

for a deeper understanding of logs, which can yield superior parsing

accuracy [77, 110]. Advancements in language models have revolu-

CHAPTER 3. LITERATURE REVIEW 34

tionized this paradigm. Early semantic approaches formulated log

parsing as a token classification problem, employing neural archi-

tectures like Bi-LSTM networks [129].

However, the recent advent of Large Language Models (LLMs)

has catalyzed a significant shift, creating a new frontier for log pars-

ing research. This new wave of research explores the trade-offs be-

tween large-scale commercial LLMs and smaller, open-source alter-

natives. On one hand, the immense power of commercial models has

been harnessed for high accuracy. For instance, models like Chat-

GPT can dynamically generate log templates without prior knowl-

edge by analyzing message context [161]. Similarly, DivLog [216]

enhances parsing by using GPT-3 for in-context learning, select-

ing demonstrations from a candidate set of labeled logs. However,

these commercial APIs’ high cost and latency prompted efficiency-

focused solutions like LILAC [85], which incorporates an adaptive

cache to store parsing results and reduce redundant queries.

To address cost and data privacy concerns more directly, a paral-

lel line of research has focused on fine-tuning and prompting open-

source LLMs. LogPPT [102] was an initial attempt, utilizing a

masked language model (RoBERTa) with few-shot learning to clas-

sify log tokens. Subsequent work, such as LLMParser [137], sys-

tematically demonstrated that even small open-source LLMs can

achieve high accuracy with minimal fine-tuning. Building on these

ideas, Hooglle [20] adopted an LLM pre-trained specifically on la-

beled log data. A recent unsupervised approach, LibreLog [138],

was introduced to leverage open-source LLMs like Llama3-8B. Li-

breLog first groups logs using a tree structure and then refines tem-

plates through a novel combination of retrieval-augmented gener-

ation and iterative self-reflection, eliminating the need for manual

labels. This privacy-preserving method significantly improved both

parsing accuracy and processing speed compared to previous state-

of-the-art LLM-based parsers.

CHAPTER 3. LITERATURE REVIEW 35

3.2.2 Advancements in Log-based Anomaly Detection

Once logs are structured via parsing, anomaly detection is a pri-

mary downstream application. The evolution of these methods can

be traced through two major eras: those built on classical machine

learning and more recent approaches employing deep learning.

Pioneering work in this area applied established ML techniques

to log event sequences. For instance, Principal Component Analysis

(PCA) was utilized by Xu et al. [217] to identify system problems

from console logs. Other approaches focused on mining invariants

between log messages [130] or clustering similar log sequences to

recommend representative patterns for problem identification [119].

To improve context, some methods like Log3C [65] incorporated

system monitoring metrics alongside log data. A comprehensive

evaluation by He et al. [66] in their work on Loglizer systematically

explored the application of various ML methods for this task.

The advent of deep learning brought about a paradigm shift, en-

abling models to automatically learn complex temporal and seman-

tic patterns from log sequences without manual feature engineer-

ing. Du et al. [38] introduced DeepLog, which employed a Long

Short-Term Memory (LSTM) network to model normal execution

flows and detect deviations. LogAnomaly [144] extended this by

incorporating both log count and semantic vectors to create more

robust sequence representations. A key distinction within these DL-

based methods lies in the training paradigm. While early models

like DeepLog and LogAnomaly operated in an unsupervised manner,

subsequent research demonstrated the superior performance of su-

pervised models, such as CNN-based [132] and GRU-based LogRo-

bust [241] architectures. Recognizing the scarcity of labeled data,

semi-supervised methods like PLElog [220] were developed to bridge

this gap using probabilistic label estimation.

A more recent direction focuses on the complex interactions be-

tween system entities, often interleaved within log files. To address

CHAPTER 3. LITERATURE REVIEW 36

this challenge, researchers have proposed graph-based methods. An

example is Lograph [30], which introduces a log semantic associ-

ation mining approach to convert log sequences into a Log-Entity

Graph. This method can implicitly group interleaved logs by explic-

itly modeling the dependencies between logs and the entities that

generate them. It then utilizes a Heterogeneous Graph Attention

Network to capture anomalous patterns.

However, despite their high accuracy, DL-based methods have

drawbacks. The computational overhead, in terms of both time and

space complexity, of architectures like LSTMs and Transformers

can make them difficult to deploy on local instances for real-time

monitoring. Furthermore, their performance can degrade when faced

with evolving log patterns not seen during training, a common chal-

lenge in dynamic operational environments.

2 End of chapter.

Chapter 4

Multivariate KPI Anomaly

Detection

Cloud systems, typically comprised of various components (e.g.,

microservices), are susceptible to performance issues, which may

cause service-level agreement violations and financial losses. Identi-

fying performance issues is thus of paramount importance for cloud

vendors. In current practice, crucial metrics, i.e., key performance

indicators (KPIs), are monitored periodically to provide insight into

the operational status of components. Identifying performance is-

sues is often formulated as an anomaly detection problem, which is

tackled by analyzing each metric independently. However, this ap-

proach overlooks the complex dependencies existing among cloud

components. Some graph neural network-based methods take both

temporal and relational information into account, however, the cor-

relation violations in the metrics that serve as indicators of under-

lying performance issues are difficult for them to identify. Fur-

thermore, a large volume of components in a cloud system results

in a vast array of noisy metrics. This complexity renders it im-

practical for engineers to fully comprehend the correlations, mak-

ing it challenging to identify performance issues accurately. To

address these limitations, we propose Identifying Performance Is-

sues based on Relational-Temporal Features (ISOLATE), a learning-

based approach that leverages both the relational and temporal fea-

37

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 38

tures of metrics to identify performance issues. In particular, it

adopts a graph neural network with attention to characterizing the

relations among metrics and extracts long-term and multi-scale tem-

poral patterns using a GRU and a convolution network, respectively.

The learned graph attention weights can be further used to local-

ize the correlation-violated metrics. Moreover, to relieve the impact

of noisy data, ISOLATE utilizes a positive unlabeled learning strat-

egy that tags pseudo labels based on a small portion of confirmed

negative examples. Extensive evaluation on both public and indus-

trial datasets shows that ISOLATE outperforms all baseline mod-

els with 0.945 F1-score and 0.920 Hit rate@3. The ablation study

also proves the effectiveness of the relational-temporal features and

the PU-learning strategy. Furthermore, we share the success stories

of leveraging ISOLATE to identify performance issues in Huawei

Cloud, which demonstrates its superiority in practice.

4.1 Introduction

Cloud computing has surged in popularity in recent years. Large-

scale cloud vendors, e.g., Microsoft Azure, Amazon Web Services,

and Google Cloud Platform, provide customers with various ser-

vices over the Internet [162]. Due to the scale and complexity, per-

formance issues are inevitable [83] in cloud systems. Such perfor-

mance issues may degrade overall availability and increase service

response time, thus causing SLA (Service Level Agreement) vio-

lations and substantial economic losses [5, 109]. Therefore, iden-

tifying performance issues accurately is a critical task during the

maintenance of cloud systems [78].

In current practice, cloud vendors typically collect crucial metrics

(i.e., Key Performance Indicators, KPI), such as CPU utilization and

network latency, and then analyze the collected metrics to identify

performance issues. Simple as the process might seem, it is a non-

trivial task. In particular, a cloud system is typically vast in scale and

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 39

consists of tremendous software and hardware components (e.g., mi-

croservices, and virtual machines and servers) [56, 158, 225]. Each

component may have tens of metrics to be collected in the back-

end monitoring system, resulting in a large volume of monitoring

metrics [154, 206]. Since analyzing tremendous data manually is

labor-intensive and error-prone [26], automatic approaches that help

on-call engineers identify performance issues are preferred.

In the literature, the performance issue identification problem

is generally formulated as an anomaly detection problem based on

multivariate metrics [15, 166, 215]. Some existing approaches [174,

182, 242] detect anomalies based on individual metrics, i.e., they

only consider the temporal abnormal patterns on individual metrics.

However, modern cloud service typically consists of various compo-

nents (e.g., storage, computing, middleware), whose corresponding

monitoring metrics have complicated inter-dependencies [29, 133,

166]. Take disk I/O operations per second and network throughput

as an example: Under normal operating conditions, there is typi-

cally a correlation between these two metrics; as disk I/O operations

increase due to higher data processing and storage demands, net-

work throughput also increases as more data is being transferred

to and from the storage systems. However, if a performance issue

arises, this correlation can be violated. For instance, if disk I/O re-

mains high while network throughput suddenly drops significantly,

it could indicate a network bottleneck, a network gateway failure, or

a network misconfiguration. This deviation from the expected corre-

lation between disk I/O and network throughput can thus be a strong

indicator of underlying performance issues in the cloud service.

To alleviate the drawback of overlooking correlations, several

graph neural network-based approaches that take the spatial-temporal

dependency between multiple metrics [22, 35, 59, 127, 243] are pro-

posed. Though these approaches consider the correlation between

metrics, these correlations are typically embedded within the latent

feature representation in an implicit manner. In other words, these

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 40

approaches essentially detect temporal anomalies in these latent rep-

resentations. In contrast, we propose a correlation violation-aware

approach that incorporates the correlation violation explicitly. To

effectively detect correlation-violated performance problems, it is

essential to account for the correlation violation among metrics as

performance anomaly criteria.

However, there are four challenges in identifying performance

issues through correlation violations. Firstly, it is hard to auto-

matically and effectively model the complicated correlations among

a variety of metrics. A cloud application could comprise tens of

microservices. Each microservice may still have tens of metrics,

leading to a large number of metrics. Moreover, the correlation

between metrics is complicated. Even experienced engineers can-

not comprehensively clarify the relations among different metrics.

Secondly, even with these correlations extracted, the process of ac-

curately identifying the correlation violations from these intricate

inter-metric correlations and then determining the happening of per-

formance issues is a non-trivial task. Thirdly, due to the huge vol-

ume of metrics, it is still time-consuming for engineers to investigate

the underlying issues simply given a binary (i.e., normal and abnor-

mal) result. Automatically pinpointing the anomalous metrics is re-

quired. Finally, metric data from large-scale production systems are

noisy [25], i.e., mild performance issues without obvious anomalies

in the metric data. This can blur the distinction between normal and

anomalous instances, leading to more false positives and false neg-

atives. Unfortunately, it is infeasible to annotate a huge volume of

noisy data manually, while simply neglecting such noises may lead

to unsatisfying results.

To address these challenges, we propose Identifying Performance

Issues Based on Relational-Temporal Features (ISOLATE), an auto-

mated approach to identify performance issues through both cap-

turing the violation of relational features and detecting temporal

anomalous features of metrics. To solve the challenge of intricate

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 41

correlations, ISOLATE utilizes graph neural networks to capture the

complicated relational features among metrics explicitly, namely,

it employs the graph attention mechanism to characterize the cor-

relations between metrics. To effectively identify the correlation

violation between metrics, relational embedding, which is uncou-

pled from the temporal information of raw metrics, is utilized and

fed to downstream anomaly detection components. The correlation-

violation metrics are highlighted to provide insights to software re-

liability engineers like the root cause of the performance issue. Fur-

thermore, to relieve the impact of noisy data, Positive Unlabeled

learning (PU learning) is adopted, which finds positive samples and

updates the models iteratively. Since PU learning produces both

negative and positive samples, while traditional Variational Auto

Encoder-based (VAE-based) methods can only take negative exam-

ples, ISOLATE employs a novel LC-VAE (Label-Conditional VAE)

to distinguish normal and abnormal patterns from the labeled inputs

effectively.

To evaluate the performance of ISOLATE, we conduct exten-

sive experiments on a widely-used public dataset and two industrial

datasets collected from Huawei Cloud. The experimental results

demonstrate that compared with state-of-the-art baselines, ISOLATE

achieves the best performance issue identification accuracy with an

average F1 score of 0.945. ISOLATE also provides anomalous met-

rics localization with a Hit rate@3 of 0.920. Moreover, we also

conduct ablation studies to validate the effectiveness of our design.

A case study with two real cases in Huawei Cloud further shows the

practical usefulness of our proposed ISOLATE.

We summarize the main contributions of this work as follows:

• We propose an end-to-end model that captures the relational vio-

lation among monitoring metrics explicitly, offering a more pre-

cise way to identify correlation-violated performance anomalies.

The violated correlations are utilized to localize the root cause of

the performance anomaly. Besides, to alleviate the negative effect

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 42

of concealed noise in training data, we adopt positive unlabeled

learning (PU Learning) on metrics performance anomaly detec-

tion and propose the Label-Conditional Variational Autoencoder

(LC-VAE) that works seamlessly with PU Learning.

• We conduct extensive evaluations of ISOLATE on two industrial

datasets collected from large-scale online service systems of Huawei

Cloud and a publicly available dataset. The results demonstrate

that ISOLATE outperforms eighteen state-of-the-art methods.

• We have successfully deployed ISOLATE into the troubleshooting

system of Huawei Cloud. The success stories of our deployment

confirm the applicability and effectiveness of our method.

4.2 Background

In this section, we first introduce the background knowledge about

performance issue detection in modern cloud systems. Then, we

present an example of an industrial scenario that motivates this work.

Finally, we summarize some typical performance issues due to the

violation of the correlation of monitoring metrics, which aims to

provide a comprehensive understanding of the performance issues

and how the correlation of metrics plays a crucial role in detecting

and diagnosing performance issues.

4.2.1 Monitoring Metrics in Cloud Service Systems

In recent years, cloud service systems have gained significant at-

tention due to their ability to provide scalable, on-demand resources

and services. Typically, coupled multivariate metrics are collected at

run time to monitor the overall status of the cloud service systems.

The collected metrics provide insights into the performance of log-

ical and physical resources within the system, allowing operators

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 43

Figure 4.1: A real-world example of performance anomaly

to identify and address performance issues before they lead to ser-

vice disruptions. However, due to the complex inter-dependencies

between system components [48], these metrics are often strongly

correlated with each other, reflecting the interconnected nature of

the system that makes it challenging to isolate and identify specific

performance issues. For example, the performance of a virtual ma-

chine may be influenced by the workload placed on the underlying

physical server, and the performance of a microservice may depend

on the performance of other microservices it interacts with. As a

result, the metrics collected from different components can exhibit

strong correlations with each other, reflecting the complex interde-

pendencies within the system.

4.2.2 Performance Issues due to Correlation Violation

Performance issues have emerged as a primary concern, potentially

undermining the effectiveness of cloud service systems. Some typ-

ical factors contributing to these performance issues are resource

overload and network latency. Resource overload occurs when the

demand for resources exceeds the available capacity, resulting in

performance degradation and potential service disruptions [146]. Net-

work latency, exacerbated by the distributed nature of cloud sys-

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 44

tems, can result in reduced application responsiveness, impacting

the overall user experience [11]. While these performance issues

can be detected by considering single metrics, there are other per-

formance issues that are caused by the violation of correlations be-

tween different system metrics, which do not arise from a single

metric exceeding a threshold but from a violation in the expected

correlation between metrics. Considering the intrinsic correlations

between metrics in cloud service systems, accurately capturing and

localizing these correlation violation metrics is of great significance

to performance issue identification. By localizing anomalous met-

rics, we gain valuable insights into the specific metrics that deviate

from normal behavior (i.e.,violation of correlation to other metrics).

Through accurate metric localization, system engineers can swiftly

identify the entities that undergo performance anomalies, facilitating

prompt troubleshooting and proactive issue resolution.

An industrial case in the online service system of Huawei Cloud

is shown in Figure 4.1. Three metrics of the Elastic Load Balancing

(ELB) service are shown in the figure for convenience of presenta-

tion. Specifically, the first metric represents the network interface

card (NIC) receiving packets per second (PPS) from a virtual ma-

chine running microservice X , and the second metric represents the

NIC receiving PPS from a virtual machine running microservice Y ,

which is the downstream microservice that processes the outputs of

X . The third metric is the average CPU usage of all virtual machines

of the ELB service. We can observe that the variation tendencies be-

tween the first and second metrics are somewhat consistent during

the anomaly-free period. The third metric is used to monitor the

resource usage of the service and can raise alerts when there are

resource overload issues. However, with the existence of load bal-

ance [47], a sudden spike in CPU usage will not necessarily lead to

a performance issue. Thus, if we trigger alerts based on pre-defined

thresholds (as the red dashed line shows), many false alarms will

be reported and cause an alert storm that aggravates the burden of

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 45

Figure 4.2: The latent embedding of the graph attention layer

engineers [244].

The red areas in Figure 4.1 denote a confirmed network conges-

tion issue by engineers. This issue is caused by a network device

failure affecting communication between virtual machines running

microservices X and Y . As a result, the NIC receiving PPS from the

virtual machine running Y suddenly drops even if the NIC receiving

PPS from the virtual machine running X increases. In this case, the

correlation between the first and second metrics is critical to rapidly

identifying this issue.

Some of the typical performance issues due to correlation vio-

lation are listed in Table 4.1. Specifically, we take the memory

leak as another example to illustrate how the correlation violation

reflected on system monitoring metrics can imply performance is-

sues. In cloud service systems, efficient memory management is

of great importance and has a direct impact on both the scalability

and the operational costs of the cloud environment [139]. A cru-

cial part of the memory management strategy is using slab memory

allocation [88], which are pre-allocated extents in persistent mem-

ory and containers of free blocks [33] that aid in efficient memory

usage. While the garbage collection manages application memory

automatically in virtual machines [34], works to obtain the lifetime

of the data objects and then allocates and releases memory space ac-

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 46

Table 4.1: A List of Typical Performance Issues Caused by Correlation Violation

Performance

Issues
Metrics Description

Disk

Read/Write

Delay

CPU I/O wait time

Disk I/O

High CPU I/O wait time with low Disk

I/O indicates potential disk failure or

disk controller problems

Memory Leak Memory slab size

Garbage collection time

High memory slab size with high

garbage collection time indicates

potential memory leak

API Server

Issue
API requests

CPU usage

High API requests processed with low

CPU usage indicates a potential problem

with the API server or an overly

efficient request handling mechanism

Network

Congestion
NIC A receiving PPS

NIC B receiving PPS

High NIC A receiving PPS with low

receiving PPS of NIC B or vice versa

can indicate potential network

congestion

Hardware

Interrupt Issue
Interrupt requests

CPU usage

High CPU interrupt requests with low

CPU usage indicate a potential hardware

issue or inefficient interrupt handling

Software

Interrupt Issue
Soft interrupt requests

CPU usage

High CPU soft interrupt request with

low CPU usage indicates potential

software issue or inefficient interrupt

handling

Network

Buffering

Issue

NAT gateway PPS

Memory usage

High NAT gateway PPS with low

memory usage indicates a potential

efficient network buffering mechanism

or a network issue

Database

Indexing Issue
Database query

Memory usage

Slow database query latency with low

memory usage indicates potential issues

with database indexing or query

optimization

cordingly [176]. Memory leaks occur when a program fails to track

and release allocated memory back to the system after it’s no longer

needed [207]. Usually, it is observed that garbage collection time or

slab size increases under heavy workloads. An increase in slab size,

with a relatively stable garbage collection time, could indicate that

the system is effectively managing memory by creating new slabs

to handle the increased workload. Similarly, a rise in garbage col-

lection time, with a relatively stable slab size, might suggest that

the system reuses existing memory efficiently, resulting in more ob-

jects being created and, hence, more garbage to collect. Generally

speaking, software systems should efficiently manage memory un-

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 47

der heavy workloads, either by creating new memory blocks (in-

dicated by increased slab size) or working harder to clear up un-

used objects (indicated by increased garbage collection time). Thus,

these two cases are not typically considered performance anoma-

lies. However, when both the slab size and garbage collection time

consistently increase, even when the workload has reduced, it could

suggest a memory leak because memory is being allocated faster

than it’s being released. It should be noted that a heavy workload

can cause these two metrics to increase, hinting at a memory leak

when such a leak exists. However, a heavy workload itself will not

cause a memory leak, as the root cause of memory leaks lies in pro-

gramming errors.

It is worth noting that a straightforward way to identify this issue

is to build a new metric that combines the first metric and the second

metric. However, since a cloud service system typically has a vari-

ety of metrics, it is infeasible for engineers to design such combined

metrics comprehensively. To alleviate this problem, some GNN-

based methods like Graph Attention (GAT) attempt to embed these

correlations into latent representations. Nevertheless, we have iden-

tified that these methods incorporate correlation information into the

latent feature representation implicitly through the combination of

all metrics with attention weights. Then the temporal anomalies in

these latent representations are detected. The GAT embedding of the

example in Figure 4.1 is shown in Figure 4.2, where we can observe

that the correlation violation between the first and second metrics is

even impaired, as the uptrend of the first metric and the downtrend of

the second metric are counteracted. Thus, it is crucial to isolate the

correlation from the temporal information to detect violation-related

performance anomalies.

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 48

4.3 METHODOLOGY

In this section, we present ISOLATE, an approach for identifying

performance issues based on multivariate metrics in cloud systems.

First, we will give a formal definition of the problem. Then, we in-

troduce the overview of ISOLATE and illustrate the design details

of our proposed relational-temporal embedding, Label-Conditioned

Variational Auto-encoder (LC-VAE), and a novel positive unlabeled

strategy. Eventually, we will introduce how to localize the problem-

atic metrics with the correlations obtained in the previous stage.

4.3.1 Problem Formulation

Our objective is to identify performance issues from a variety of

monitoring metrics by identifying when the performance anomalies

happen and pinpointing the metrics that exhibit temporal or rela-

tional anomalies. Specifically, a group of metrics can be seen as a

multivariate time series X ∈ RN×M , where N denotes the num-

ber of observations collected at an equal interval, i.e., the length

of a time series [182] and M is the number of metrics. xt =
[x1t , x

2
t , ..., x

M
t] is an M -dimensional vector [76] that reflects the run-

ning status of the system at timestamp t. While the N -dimensional

vector xk = [xk1, x
k
2, ..., x

k
N] is the kth metric during the whole mon-

itoring period. In addition, a sliding window of historical values

xkt−c:t = [xkt−c+1, x
k
t−c+2, ..., x

k
t] is used for modeling the pattern of a

current observation, where c is the length of the sliding window.

To determine whether there is an occurrence of performance is-

sues at observation xt, the anomaly score st ∈ [0, 1] that represents

the degree of being anomalous for each xt−c:t is calculated. Then,

the anomaly result can be obtained by comparing the anomaly score

against a pre-defined threshold θ. If st > θ, the approach will pre-

dict the observation xt as an anomaly. However, it is still unclear

to engineers how the anomaly happens. Thus, a kind of anomaly

interpretation can be achieved through anomalous metrics localiza-

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 49

tion, i.e., pinpointing a set of metrics {xk1, xk2, ...xkr}, that is helpful

for engineers to find the monitored components that are related to

anomaly by the degree of deviation of temporal pattern or break of

correlation with other metrics, where r is the number of metrics that

are recommended as the anomalous metrics.

Normalization is performed on each individual metric to unify

the range of all metrics and improve the robustness of our model.

We normalize the metrics with the maximum and minimum values

first:

xkpre =
xk −min(xk)

max(xk)−min(xk)
(4.1)

Where max(xk) and min(xk) represent the maximum and the

minimum value of the training set, are computed within the training

data and will be used for testing data. For simplicity, we omit the

"pre" subscript in the following elaboration.

4.3.2 Overview

We propose ISOLATE, an automated method that learns correla-

tions among metrics, detects performance anomalies, and locates

anomalous metrics. The overview of ISOLATE is shown in Fig-

ure 4.3, which contains two main parts: the relational-temporal em-

bedding part and the performance issue identification with the LC-

VAE part. Specifically, since both abnormal temporal patterns and

correlation violations between metrics can indicate performance is-

sues, in the relational-temporal embedding part, ISOLATE captures

the relational and temporal patterns from the original metrics (Sec-

tion 4.3.3). In particular, due to the lack of information about the

correlation among metrics, a complete graph is constructed, then

ISOLATE employs graph attention to extract the correlation among

metrics. ISOLATE also captures the temporal pattern of each met-

ric through GRU and temporal convolution. In the performance is-

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 50

Figure 4.3: The Overview of the Proposed Method ISOLATE

sue identification part, given the inevitable presence of background

noise within the data, we propose to use the positive unlabeled learn-

ing (PU Learning) strategy during the training phase of ISOLATE

(Section 4.3.4), which identifies positive samples in unlabeled train-

ing data, avoiding the impact of noisy data. As PU learning leads

to pseudo-labeled data, a novel label-conditional-VAE (LC-VAE) is

adopted to distinguish anomalies from normal patterns (Section 4.3.4).

Unlike existing VAE-based methods that solely learn from normal

samples, the LC-VAE can learn features from normal and abnor-

mal samples, achieving better performance. Upon the detection of

an anomaly, the correlation learned from relational-temporal em-

bedding can aid in localizing the correlation-violating metrics (Sec-

tion 4.3.5).

4.3.3 Relational-Temporal Embedding

The relational-temporal embedding part takes a group of metrics as

inputs. Relational embedding is designed to extract the intrinsic de-

pendencies between metrics and embed the dependencies as a fea-

ture vector. Temporal embedding is used to obtain the temporal pat-

terns of metrics as another feature vector because metrics are time

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 51

series.

Relational Embedding

Specifically, for multivariate metrics with size M×N , we can treat

each metric xi, (i = 1, 2, ...M) as a feature vector. The correlations

between nodes can be depicted by an adjacency matrix A ∈ RM×M .

Since we don’t have prior knowledge about the correlation between

different metrics, we should construct a fully connected graph. We

then adopt graph attention networks (GAT) [17] to learn the correla-

tion between metrics. The attention score is calculated as follows:

aij =
exp(pTLeakyReLU(w · (xi · xj)))∑M
k=1 exp(p

TLeakyReLU(w · (xi · xk)))
(4.2)

The symbol · represents the concatenation operator between two

metrics xi and xj , w ∈ R2N×d is a matrix of learnable parameters

to aggregate the two features. After a nonlinear activation function

LeakyReLU [214], another learnable vector p ∈ Rd is applied. To

make the training process more robust and reduce the impact of

noise, a threshold α is set to make the adjacency matrix a sparse

binary matrix. In other words, the edge between two nodes will be

removed if the attention score is below the threshold α. Then, a

widely used graph convolution layer [98] is adopted. The formula

of graph convolution is shown as follows:

ĥ(l+1) =σ(D̃
− 1

2

l ÃlD̃
− 1

2

l h(l)Θl) (4.3)

where σ is the ReLU activation function and Ãl = Al + I is the

adjacency matrix at the layer l, D̃ ∈ RM×M is the degree matrix of

Ãl, h
(l) is the output representation of the hidden layer l and Θl ∈

RM×F is a learnable parameter. Due to the limitation of space, we

only show one layer in Figure 4.3.

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 52

We further apply graph pooling layers between the graph con-

volution layers to reduce the number of parameters, which can also

avoid overfitting. Specifically, as proposed by [104], self-attention [193]

is utilized to focus more on important features and less on unimpor-

tant features. Thus, self-attention scores can be obtained by using

another graph convolution. After obtaining the attention scores Z,

a portion of the nodes and features will be reserved according to

the scores. A hyperparameter k refers to the pooling ratio, and the

corresponding nodes with the top +kM, value of Z will be retained.

Readout layer [18] is useful to aggregate all node features and get

a summarized representation, which is used to output the relational

embedding. The output of the readout layer is as follows:

rl =
1

Nl

Nl∑

n=1

h(l)
n ·

Nl

max
n=1

h(l)
n (4.4)

where Nl denotes the node number of layer l, h
(l)
n is the nth node

feature of h(l) and · is concatenation operator. The outputs of each

layer will go through readout layers and will be added up as the

output of the relational embedding module, because the features of

different graphs with different sparsities can be combined.

Temporal Embedding

Existing metrics anomaly detection works [76,242] utilize LSTM to

acquire sequential information as Long-term temporal dependency

inherently exists in monitoring metrics [74]. However, LSTM suf-

fers from the gradient vanishing problem incurred by long-time lags [42].

To overcome the drawbacks of LSTM, we apply a GRU to capture

the sequential information tg, especially the long-term pattern in the

metrics. Then, global average pooling layers are applied on the time

series dimension of the output of GRU to get the temporal embed-

ding.

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 53

Temporal convolution is useful for capturing the multi-scale tem-

poral information of metrics. Unlike the existing methods that em-

bed metrics with only recurrent neural networks, we also deploy

causal convolution implemented by shifting the output of the 1D

convolution. To further increase the receptive field of the convolu-

tions, we use dilated convolutions. Dilated convolution is equivalent

to filling the convolution kernel with zero padding so as to get a

larger convolutional filter. Thus, we adopt dilated causal convolu-

tion (DC convolution) [153] to extract the temporal embedding of

the metrics as it has advantages over the original convolutional op-

eration with a larger receptive field, which is beneficial to our tem-

poral embedding module as it can capture the behaviors of monitor-

ing metrics at multi-scale. A block that consists of DC convolution,

batch normalization [81], and activation function (i.e. ReLU) is uti-

lized to form the temporal convolution. Eventually, the temporal

embedding will be concatenated to the relational embedding and go

through a fully connected layer to get the relational-temporal em-

bedding.

4.3.4 Performance Issues Identification with LC-VAE

With the extracted relational-temporal embedding, we then use a

novel Label Conditional VAE to detect performance issues. Unlike

traditional autoencoder-based methods [15, 182, 215, 219, 255] that

only take normal samples as input to capture the distribution of met-

rics, our proposed Label Conditional VAE takes the label obtained

from positive unlabeled learning as a part of the input to further help

the model differentiate anomalies from normal data because there

exist some mild performance issues that are ignored by engineers in

training data.

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 54

Positive Unlabeled Learning

Unsupervised methods assume that the training data is anomaly-

free. However, there are inevitably some unlabeled anomalies that

are ignored by engineers. This assumption can lead to a decline in

the overall accuracy as the presence of these hidden anomalies can

skew the model’s understanding of normal behavior. In our scenario,

we only have a small portion of negative data (representing normal,

anomaly-free metrics) with high confidence, but we don’t have posi-

tive data (representing anomalous samples) because finding positive

from a large number of unlabeled samples is like looking for a nee-

dle in the ocean.

To tackle this, ISOLATE tries to find out the anomalous sam-

ples using the idea of positive unlabeled learning (PU learning) [99].

Specifically, as shown in Figure 4.4, a small amount of negative

samples (around 5%) labeled by engineers is utilized for training

the model. These labels are obtained by initially randomly selecting

5% of the entire training dataset. Engineers then meticulously filter

out the noise in these samples and label them as true negatives. This

manual labeling process is feasible due to the high confidence in the

selected data and can be completed within a few minutes. Conse-

quently, we incorporate human expertise into our method.

With the model trained on these labeled negatives, the remaining

unlabeled training data can be predicted. Intuitively, the anomalous

samples concealed in the training data are hard to reconstruct with

this model and, thus, have a high anomaly score. After obtaining the

anomaly score, the samples with an anomaly score that exceeds a

pre-defined threshold β will be labeled as positive. All the data with

pseudo labels are used to update the model. Finally, this updated

model will be used to detect performance issues from metrics.

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 55

Label-Conditional VAE

Though the posterior of the distribution pθ(z|y, e) is critical for train-

ing and prediction of the model, it is hard to obtain. Thus, the vari-

ational inference is used to fit a neural network as the approxima-

tion posterior qφ(z|y, e). Suppose the prior of the latent variable

Z is Gaussian distribution N (0, 1) and y is the true label of the

input sliding windows. Then both posteriors of e and z are cho-

sen to be Gaussian distribution: pθ(e|y, z) = N (µθ(z), σ
2
θ(z)) and

qφ(z|y, e) = N (µφ(e), σ
2
φ(e)), where µθ(z), σθ(z) and µφ(e), σφ(e),

are the means and standard deviations of input embedding and la-

tent variable. The input embedding e will be concatenated with the

one-hot label vector y, and then the latent variable z will be sampled

from a posterior qφ(z|y, e) at the encoder, which is usually derived

by linear layers [97]. Eventually, the latent variable will also be

concatenated with y, and the input embedding will be reconstructed

from pθ(e|y, z) at the decoder. The reconstructed embedding can be

denoted as ê.

In general, the parameters of the LC-VAE can be estimated ef-

ficiently with the stochastic gradient variational Bayes (SGVB) al-

gorithm [165]. The evidence-lower bound (ELBO) is a surrogate

objective function that can help the estimation. Besides, to better

capture the latent pattern of normal sliding windows, we add an ad-

ditional reconstruction error term. The loss function of the proposed

LC-VAE is shown as follows:

LLCV AE =sgn(0.5− y) ∗ (−KL(qφ(z|y, e)∥pθ(e|y, z))

+
1

S

S∑

s=1

(log pθ(es|y) + λ · ∥es − ês∥2))
(4.5)

Where S is the number of sliding window samples, the first two

terms are from evidence-lower bound (ELBO), and the third term is

the reconstruction error of the embedding. In this way, we combine

the strength of reconstruction and probabilistic estimation together.

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 56

Figure 4.4: Positive Unlabeled Learning

The coefficient λ > 0 is to trade off the loss terms. As mentioned

above, metrics anomaly detection works by learning the normal pat-

terns of sliding windows of metrics; thus, we should minimize the

loss function for a coming normal sliding window. However, when

there is an anomalous sample input, we should avoid the model to

learn the pattern of anomaly by maximizing the loss function. Thus,

we denote the loss function with the Signum function to control the

sign. In this way, during the detection phase, the anomalies are easy

to differentiate by ISOLATE. The reconstruction error ∥es − ês∥2
will be used as the anomaly score during the detection phase.

4.3.5 Correlation Violation Metrics Localization

Once an anomaly has been detected in a service system, further anal-

yses will be enacted to determine the possible causes for such a per-

formance anomaly [115, 171, 251]. This allows application opera-

tors to determine which part of the service this performance issue

reported is related to. For monitoring metrics, to further understand

the mechanism of performance issues, pinpointing a few metrics that

are highly correlated with the root cause is crucial [224, 226]. For

example, when we observed that the throughput metrics of two de-

vices were highlighted, it seemed to be a performance issue related

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 57

to the communication between two devices. While our model high-

lights the CPU utilization of a service, it is likely to occur due to a

lack of computing resources in the run-time environment [152].

However, existing methods regarding monitoring metrics have

not integrated anomaly detection and metric localization, namely

root cause localization together in a unified pipeline [181]. In this

case, the knowledge during the anomaly detection phase cannot be

shared with the localization. We integrate these two closely related

tasks into a unified framework to provide more hints to system op-

erators.

Since there exist correlations between metrics of service in mod-

ern online service systems, the learned correlation graph between

metrics during the anomaly detection phase is useful for localizing

the metrics that reveal the cause of the anomaly [135,198,208]. Re-

garding localizing anomalous metrics, correlation information can

be more indicative than temporal information. It is straightforward

to understand that no matter whether the anomaly is a temporal

anomaly that happens on some specific metrics or an anomaly due

to the contravention of correlation compared with the anomaly-free

stage, the correlation between anomalous metrics and others will

undergo drastic changes. However, when some metrics collectively

spike, they do not violate the correlations and thus are not anomalous

metrics. So, we only utilize the correlations in metrics localization.

Particularly based on the above assumption, we can calculate the

correlation change as follows:

∆Ai =
∑

j ̸=i

∥Aa
ij − An

ij∥1 (4.6)

Where ∆Ai is the variation of correlation between normal and

abnormal periods for metric i, the An
ij is computed by averaging

aij on the training period, while the Aa
ij is the mean of aij during the

anomaly segment. Eventually, ISOLATE would highlight a few met-

rics with high ∆Ai and recommend them to engineers to help them

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 58

Table 4.2: Statistics of Industrial Dataset

Industrial Dataset A Dataset B

Services 21 31

Metrics 4∼23 3∼25

Train Length 366,513 541,043

Test Length 244,356 360,716

Anomaly Ratio 6.71% 5.88%

get fine-grained information on the performance issue and double-

check the devices related to these metrics.

4.4 EVALUATION

To comprehensively evaluate the effectiveness of our proposed ap-

proaches ISOLATE, we use both a public dataset and two real-world

monitoring metric datasets from the online services of Huawei Cloud

Company. Particularly, we aim to answer the following research

questions (RQs):

• RQ1: How effective is ISOLATE compared with performance

anomaly detection baselines?

• RQ2: How effective is each component of ISOLATE in perfor-

mance anomaly identification?

• RQ3: How effective is ISOLATE in localizing the anomalous met-

rics?

• RQ4: How sensitive is ISOLATE to the parameters?

• RQ5: How efficient is ISOLATE regarding the number of metrics?

4.4.1 Datasets

We conduct experiments on a publicly available dataset. To confirm

the practical significance of ISOLATE, we collect two datasets from

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 59

Figure 4.5: An Illustration of the Point Adjustment Process in Our Evaluation

large-scale online services of Huawei Cloud. The statistics of our

industrial datasets are shown in Table 4.2

Public Dataset The public dataset for our experiments is SMD

(Server Machine Dataset), which is collected from a large Internet

company containing a 5-week-long monitoring metrics of 28 ma-

chines [182]. The authors divided the SMD into two subsets of equal

size: the first half for the training set and the second half for the test-

ing set. Domain experts labeled anomalies in the SMD testing set

based on incident reports.

Industrial Dataset To evaluate the effectiveness of ISOLATE in

production scenarios, we collect metrics Application CPU Usage,

Memory Usage, Interface Throughput, and so on from the online

service of the company. We collect metrics with a sampling in-

terval of one minute for more than one week from two regions of

the company. The anomalies representing the performance issues of

the service are labeled by experienced software engineers with inci-

dents associated with the metrics. The performance issues consist of

correlation-violated issues like memory leaks or network congestion

listed in Table 4.1 and non-correlation-violated issues like resource

overload. Based on the incident reports, engineers also label the

metrics that are correlated to the performance issues. Using these

labels, we can also evaluate the accuracy of metrics localization of

ISOLATE.

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 60

4.4.2 Experiment Setting

Baselines

The following methods are compared to evaluate the effectiveness of

ISOLATE. All the baselines are implemented from the open-sourced

codes released by the authors. For both the public dataset SMD and

our industrial datasets in Huawei Cloud, we employed a grid search

strategy to explore the most suitable parameter configurations. A

summary of the baseline methods is shown in Table 4.3.

Table 4.3: A Summary of the Baseline Methods

Method Category Supervision Type Reference Baseline Methods

Signal Processing-based Unsupervised JumpStarter [136]

Machine Learning-based Unsupervised LOF [16], IForest [121], OCSVM [168]

LSTM-based Unsupervised LSTM [76, 242], LSTM-VAE [157], THOC [174]

Autoencoder-based
Unsupervised

DAGMM [255], OmniAnomaly [182], ACVAE [240]

TranAD [189], MTSAD [201], MSCRED [231]

Semi-supervised SLA-VAE [73]

Graph Neural Network-based Unsupervised MTAD-GAT [243], GDN [35], GTA [22], FuSAGNet [59]

• OCSVM [168]. OCSVM is a clustering-based anomaly detection

method that learns the boundary for the normal data points and

identifies the data outside the border as anomalies. The input in

this baseline is the observation of time series at each timestamp

and the output is the anomalous timestamps.

• IForest [121]. Isolation Forest ensembles a number of isolation

trees and recursively partitions the feature space to detect anoma-

lies. The samples with awfully shorter heights are likely to be

anomalies. In this baseline, the input is the observation at each

timestamp and the output is the anomalous timestamps.

• LOF [16]. Local Outlier Factor (LOF) is based on density estima-

tion that calculates the local density deviation of a given sample

with respect to its neighbors. The anomalies have a substantially

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 61

lower density than their neighbors. The input is the observation at

each timestamp and the output is the anomalous timestamps.

• DAGMM [255]. DAGMM is a model that utilizes an autoencoder

to generate a low-dimensional representation and a Gaussian Mix-

ture Model to go through a probabilistic estimation to obtain the

anomaly score.

• LSTM [76, 242]. LSTM neural network captures the normal be-

haviors of metrics by forecasting the next values of metrics based

on historical observations. Anomalies will be reported if the dif-

ferences between predicted values and real values exceed a pre-

defined threshold

• LSTM-VAE [157]. LSTM-VAE detects anomalies by integrating

LSTM and VAE. It projects observations at each timestamp into a

latent space and then estimates the distribution of it using VAE.

• OmniAnomaly [182]. OmniAnomaly is a model that captures the

normal patterns by learning robust representations of metrics with

stochastic Recurrent Neural Network (RNN) and planar normaliz-

ing flow based on the reconstruction error.

• THOC [174]. THOC is a model that captures the multi-scale tem-

poral features from dilated recurrent layers by a hierarchical clus-

tering mechanism and detects the anomalies by the multi-layer dis-

tances.

• MTSAD [201]. MTSAD is a deep unsupervised anomaly detection

model that incorporates the strength of active learning, including

three feedback strategies, namely denominator penalty, negative

penalty, and metric learning.

• MSCRED [231]. MSCRED utilizes convolutional LSTM layers

to capture the temporal information and embed the inter-metric

information through a signature matrix. It detects anomalies with

reconstruction errors of the input metric.

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 62

• MTAD-GAT [243]. MTAD-GAT is a graph attention-based model

that captures both feature and temporal correlations. It passes

these correlations to a Gated-Recurrent-Unit (GRU) network for

reconstruction and forecast.

• GDN [35]. GDN learns the graph of relationships between met-

rics through graph structure learning. It then uses attention-based

forecasting and deviation scoring to output anomaly scores.

• GTA [22]. GTA is a transformer-based model that employs graph

structure learning to learn the relationship among multiple IoT

time series, and the Transformer for temporal modeling and the

reconstruction error for anomaly detection.

• TranAD [189]. TranAD is a transformer-based model that de-

tects anomalies with reconstruction error by incorporating atten-

tion mechanisms and adopting adversarial training.

• SLA-VAE [73]. SLA-VAE is a semi-supervised VAE-based anomaly

detection model for online service systems, which employs active

learning to update the model.

• ACVAE [240]. ACVAE is a self-adversarial variational autoen-

coder combined with a contrast learning mechanism that allows

the encoder to obtain more training samples.

• FuSAGNet [59]. FuSAGNet jointly optimizes reconstruction us-

ing a sparse autoencoder and forecasting using a graph neural net-

work. It captures the interdependencies between time series in

sensors.

• JumpStarter [136]. JumpStarter is a compressed sensing-based

method combined with shape-based clustering and an outlier-resistant

sampling algorithm. This combination ensures a shorter initializa-

tion time.

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 63

Evaluation Metrics

The anomaly detection problem is modeled as a binary classifica-

tion problem, so the widely-used binary classification measurements

can be applied to evaluate the performance of models. We em-

ploy Precision: PC = TP
TP+FP

, Recall: RC = TP
TP+FN

, F1 score:

F1 = 2 · PC·RC
PC+RC

. Specifically, TP is the number of abnormal

samples that the model correctly discovered; FP is the number of

normal samples that are incorrectly classified as anomalies; FN

is the number of anomalous samples that failed to be detected by

the model. F1 score is the harmonic mean of the precision and re-

call, which symmetrically represents both precision and recall in one

metric. Following [7], we get the anomaly threshold by grid search

for all baselines and ISOLATE to evaluate the performance.

In real-world applications, anomalies will last for a while, lead-

ing to consecutive anomalies in the monitoring metrics. Therefore, it

is acceptable for the model to trigger an alert for any point in a con-

tiguous anomaly segment if the delay is within the acceptable range.

Thus, we adopt the evaluation strategy following [164,182,189] that

marks the whole segment of continuous anomalies as an anomaly. In

other words, we consider the model to correctly predict an anoma-

lous segment if at least one timestamp is successfully predicted as

an anomaly. An example of the point adjustment strategy is shown

in Figure 4.5. The first anomaly segment is treated as correctly pre-

dicted, so the second point of the segment is adjusted to correctly

predicted as anomalous.

Implementations

We run all the experiments on a Linux server with Intel Xeon Gold

6140 CPU @ 2.30GHZ and Tesla V100 PCIe GPU. The proposed

model is implemented under the PyTorch framework and runs on the

GPU. The hidden sizes of the GAT layer, GRU layer, and temporal

convolution layers are 256, 128, and 128. The coefficient of loss

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 64

Table 4.4: Experimental Results of Different Anomaly Detection Methods.

Methods
SMD Dataset A Dataset B

Precision Recall F1 Precision Recall F1 Precision Recall F1

OCSVM 0.4434 0.7672 0.5619 0.8639 0.5491 0.6446 0.8979 0.5955 0.6547

IForest 0.4231 0.7329 0.5364 0.9375 0.5782 0.6726 0.9443 0.6713 0.7431

LOF 0.5634 0.3986 0.4668 0.9218 0.5744 0.6693 0.9583 0.4302 0.6160

DAGMM 0.5951 0.8782 0.7094 0.7514 0.8108 0.7792 0.8112 0.9073 0.8421

LSTM 0.7855 0.8528 0.8178 0.9177 0.8107 0.8366 0.9166 0.6994 0.7665

LSTM-VAE 0.8698 0.7879 0.8083 0.8753 0.7443 0.7936 0.7969 0.7714 0.7839

OmniAnomaly 0.8368 0.8682 0.8522 0.8769 0.9084 0.8892 0.9437 0.7985 0.8607

THOC 0.7976 0.9095 0.8499 0.9502 0.8022 0.8347 0.9613 0.8400 0.8866

MTSAD 0.8745 0.9395 0.9042 0.8719 0.9171 0.8950 0.9377 0.8765 0.9026

MSCRED 0.7876 0.9374 0.8434 0.8928 0.8451 0.8570 0.9554 0.8522 0.8838

MTAD-GAT 0.8210 0.9215 0.8683 0.8519 0.9019 0.8682 0.9329 0.8769 0.9012

GDN 0.7670 0.9362 0.8312 0.8831 0.9109 0.9018 0.9614 0.8662 0.8994

GTA 0.8768 0.8987 0.8822 0.8671 0.9098 0.8784 0.9431 0.8791 0.8554

TranAD 0.8882 0.9023 0.8953 0.9275 0.8703 0.8867 0.8816 0.8929 0.8874

SLA-VAE 0.8672 0.9371 0.9019 0.9523 0.8605 0.8975 0.9361 0.8859 0.8937

ACVAE 0.8779 0.8384 0.8612 0.8988 0.8405 0.8645 0.9151 0.8432 0.8563

FuSAGNet 0.8319 0.9473 0.8736 0.9011 0.8736 0.8790 0.9038 0.8941 0.8978

JumpStarter 0.8913 0.9174 0.9063 0.8427 0.7959 0.8295 0.8697 0.7869 0.8435

ISOLATE 0.8998 0.9745 0.9346 0.9871 0.9435 0.9497 0.9759 0.9367 0.9514

function λ is 0.5. The dimension of the latent variable in LC-VAE

is 10. The threshold of positive learning is 0.9. We train ISOLATE

with the Adam optimizer [96] with a learning rate of 0.001, a batch

size of 128, and an epoch number of 50. We have released the arti-

facts and data for future research purposes on https://github.com

/WenweiGu/ISOLATE.

4.4.3 Experimental Results

RQ1 The effectiveness of ISOLATE

To answer this research question, we compare the performance of

ISOLATE with other state-of-the-art baselines on a public dataset

and two industrial datasets. First, We train ISOLATE on a small por-

tion of negative samples. Then, ISOLATE will assign pseudo labels

to the remaining training data according to the anomaly score and

threshold β. During the test phase, the anomaly score for each times-

tamp will be computed. The anomaly threshold will be searched

https://github.com/WenweiGu/ISOLATE
https://github.com/WenweiGu/ISOLATE

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 65

Table 4.5: Experimental Results of the Ablation Study

Methods
SMD Dataset A Dataset B

Precision Recall F1 Precision Recall F1 Precision Recall F1

ISOLATE w/o RT 0.8512 0.9079 0.8723 0.9791 0.8285 0.8738 0.9465 0.8879 0.9035

ISOLATE w/o PU 0.8730 0.9407 0.9062 0.9912 0.8405 0.8869 0.9396 0.9189 0.9231

ISOLATE 0.8998 0.9745 0.9346 0.9871 0.9235 0.9497 0.9759 0.9367 0.9514

following [7] to produce the prediction result.

The results are shown in Table 4.4, where the best F1 scores are

marked with boldface. We can see the average F1 score of ISO-

LATE outperforms all baseline methods in three datasets. The ex-

perimental results are shown in Table 2. In Dataset B, the improve-

ment achieved by ISOLATE is more significant as the metrics cor-

relations between metrics in Dataset B are more complicated and

the ratio of performance anomalies caused by correlation violation

is higher. Generally speaking, ISOLATE ’s good performance can

be attributed to two reasons: Firstly, the utilization of relational-

temporal embedding, as the anomalies can be caused by the vio-

lation of correlation, which can hardly be detected by finding the

spikes on a single metric, it can also help facilitate localization of

the anomalous metrics. Thus, there is a significant improvement in

the recall of ISOLATE compared to other baselines. Secondly, ISO-

LATE effectively learns potential anomalous samples from the train-

ing data, thereby mitigating the risk of overfitting anomalous pat-

terns during the training process. Consequently, ISOLATE achieves

remarkable precision, ranking among the best when compared to

other baseline methods.

Typically, the baseline methods have higher precision than recall

because there are some anomalies that are not very apparent. We

can observe that machine learning-based methods, namely OCSVM,

IForest, and LOF have relatively low performance compared with

other baseline models since these methods learn the metrics pat-

tern at each timestamp independently without considering the tem-

poral dependency. While LSTM-based methods and autoencoder-

based methods, including LSTM, DAGMM, and LSTM-VAE, per-

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 66

form notably better than OCSVM, IForest, and LOF and achieve

0.7094∼0.8421 F1 score because these models take the historical

observation window of the data, that helps to retain valuable his-

torical temporal pattern. Among the baselines, we can find Omni-

Anomaly, THOC, MTSAD, MSCRED, TranAD, ACVAE, and SLA-

VAE can achieve relatively better performance (especially MTSAD

can achieve an F1 score like 0.9042) because these methods intro-

duce some mechanisms to extract temporal information of metrics

and ensure robust anomaly detection. It should be noted that SLA-

VAE is a semi-supervised VAE-based method and it employs active

learning to update the model. However, our proposed method out-

performs SLA-VAE, suggesting that the improved performance of

our model is not solely due to the semi-supervised mechanism, i.e.,

PU learning, but also the design of combining correlational violation

detection with temporal information. Specifically, OmniAnomaly

models the metrics through stochastic variables and uses reconstruc-

tion probabilities to determine anomalies. As for MSCRED, the

temporal information is also captured through convolutional LSTM.

Meanwhile, in MTSAD, active learning has been incorporated into

a variational autoencoder to ensure capability against noise. SLA-

VAE is also a variational autoencoder-based architecture that em-

ploys both active learning and semi-supervised learning. Adversar-

ial training is incorporated in the VAE-based model ACVAE and

the transformer-based model TranAD, which assures their robust-

ness. In THOC, the complex nonlinear temporal dynamics of the

system’s normal behavior are captured. Though extracting tempo-

ral information well, the limitation of these approaches lies in not

taking the correlation features into consideration, which is essen-

tial to successfully detecting anomalies from multivariate metrics.

Graph Neural Network (GNN)-based approaches offer some miti-

gation to this issue through jointly extracting the relational and tem-

poral information of raw metrics, e.g., MTAD-GAT, GDN, GTA,

and FuSAGNet. However, without explicitly capturing the corre-

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 67

lation violation, these approaches still achieve suboptimal perfor-

mance compared with ISOLATE.

RQ2 The effectiveness of components in ISOLATE

To answer this research question, we conducted an extensive abla-

tion study on ISOLATE. Particularly, we derive two baseline models

based on removing the relational-temporal embedding and positive

unlabeled learning parts of ISOLATE to investigate the contribution

of these two components.

• ISOLATE w/o RT This baseline is a variant of ISOLATE that re-

moves relational-temporal embedding that captures both informa-

tion of metrics. Instead, only an LSTM layer is utilized in this

baseline to embed the temporal information of the raw metrics,

which will be further fed into the CVAE.

• ISOLATE w/o PU This baseline removes the positive unlabeled

learning that finds anomalous samples from a large number of nor-

mal samples. All the training data are considered normal in this

baseline.

Table 4.5 shows the experimental results of ISOLATE and its

variants. Overall, relational-temporal embedding and positive un-

labeled learning help to improve the effectiveness of ISOLATE as

it performs the best, while the degree of contribution of relational

temporal embedding is larger. We attribute this to the good capabil-

ity of relational temporal embedding in extracting both the temporal

information of each metric and correlational information between

metrics. When an anomaly happens due to a breach of relationship

during the anomaly-free period, it can be easily identified by ISO-

LATE, while other methods have difficulty identifying it as they are

more effective on temporal outliers. We observe that even without

PU learning, our model is not worse than all baselines, which further

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 68

Table 4.6: Performance on Metrics Localization

Methods
Dataset A Dataset B

Hit@1 Hit@3 Hit@1 Hit@3

DAGMM 0.5714 0.6667 0.5806 0.7419

LSTM-VAE 0.6190 0.7142 0.6451 0.7741

ISOLATE-Cor 0.7419 0.8387 0.7142 0.8571

ISOLATE 0.8095 0.9048 0.8387 0.9354

demonstrates the effectiveness of explicitly extracting correlation vi-

olation.

The variant without relational-temporal embedding is similar to

LSTM-VAE, which employs LSTM to extract the sequential infor-

mation and VAE to differentiate the anomaly from normal. How-

ever, due to the design of positive unlabeled learning and conditional

VAE, the variant can identify the noise of training data and label

them as positive. Thus, the performances on three datasets of ISO-

LATE without relational-temporal embedding in terms of F1 score

are improved compared to LSTM-VAE, respectively. We believe

that in some scenarios with a higher ratio of noise, positive unla-

beled learning would play a greater role in improving performance.

RQ3 The effectiveness of ISOLATE in localizing the anomalous metrics

To further demonstrate the capability of ISOLATE, experiments on

localizing the metrics are conducted. Specifically, we localize the

metrics by following four methods:

• DAGMM. This baseline uses the anomaly score of each metric out-

put by DAGMM as the degree of the metric being anomalous. The

metrics with the highest scores will be highlighted as anomalous

metrics.

• LSTM-VAE. This baseline uses the anomaly score output by LSTM-

VAE as the degree of being anomalous for the metrics.

• ISOLATE-Cor. This baseline sums up the correlation of a spe-

cific metric between other metrics as the degree of being the root

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 69

cause. Metrics with a high correlation with other metrics would be

reported as anomalous metrics.

• ISOLATE. Different from ISOLATE-Cor, it uses the discrepancy

between the anomaly-free period and anomaly period since the

correlation between metrics may undergo drastic changes com-

pared to the normal period when an anomaly happens.

As mentioned in Section 4.2, a metric that shows very abnor-

mal behaviors compared to the normal period is not necessarily the

most anomalous metric because it can have a small influence on

other metrics and will self-heal. Using the correlation score itself

can also cause inaccurate results because some metrics show consis-

tently high correlations with others, no matter whether it is during

an anomaly period or not. Indeed, the correlation difference between

normal and abnormal time is a stronger indicator of anomalous met-

rics because when an anomaly happens, the correlation would be

obeyed and cause a huge correlation change.

Table 4.6 presents the comparison of four methods, and we can

observe that metrics localization using ISOLATE outperforms the

other three baselines with a Hit@1 of 80.95%, 83.87%, and Hit@3

of 90.48%, 93.54% on two industrial datasets. Thus, our method

can provide accurate hints for engineers on which part of the service

system they can remedy to ensure the system’s reliability. Compared

to using the anomaly score of DAGMM and LSTM, using the corre-

lation score to localize metrics (ISOLATE-Cor) is more effective as

the anomaly scores of these two methods are computed on a single

metric and are not aware of other metrics, while correlation con-

siders the global information of metrics. Usually, the metrics that

have a higher correlation with other metrics seem to play a greater

influence on the service system and are more likely to be anomalous

metrics when an anomaly happens.

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 70

(a) Sensitivity of α on Dataset A (b) Sensitivity of α on Dataset B

(c) Sensitivity of β on Dataset A (d) Sensitivity of β on Dataset B

Figure 4.6: The Sensitivity Analysis of Threshold α and β

RQ4 The sensitivity of ISOLATE to the parameters

The threshold α is the parameter that determines the sparsity of the

relational learning, while the threshold β, i.e., the parameter that de-

termines the label of training data during positive unlabeled learn-

ing, may affect the performance by affecting the label distribution of

training samples. We hereon evaluate the sensitivity of ISOLATE to

these two hyper-parameters on two industrial datasets. We change

the value of α and β while keeping all other parameters unchanged

in our experiments to guarantee fairness. Specifically, we choose

the value of α in an appropriate range from 0.3 to 0.7 at a step of

0.1. The value of β is selected, ranging from 0.6 to 1 at a step of

0.1. When the value of β is 1, it is equivalent to the variant without

positive unlabeled learning since all samples will be seen as normal.

When the value of β is lower than 0.5, a large portion of samples

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 71

will be labeled as anomalous and introduce severe noise to training

data, which is not the case in the real scenario.

Figure 4.6 presents the experimental results of RQ4. For the

threshold α, the performance is relatively stable under different set-

tings. It can be attributed to the distribution of learned graph at-

tention scores, which are either close to 0 or 1. The polarization

of graph attention scores means that the threshold chosen within

the aforementioned range tends not to impact the performance in

a significant manner, thus stable across different values of α. This

makes ISOLATE easy to deploy in practice. For parameter β, a

good threshold indeed helps improve the accuracy of our model. In

dataset A, the best threshold is between 0.7 and 0.8, while in dataset

B, the best threshold is between 0.8 and 0.9. This is because the

anomaly ratio of Dataset B is slightly lower than Dataset A, so a

lower amount of unlabeled anomalous samples exist in the training

part. Compared to without positive unlabeled learning, a properly

selected threshold would improve recall because some abnormal be-

haviors have been labeled as positive, and these abnormal patterns

would be reported in the testing set, thus reducing false negatives.

RQ5 The efficiency of ISOLATE

In this section, we evaluate the efficiency of ISOLATE regarding

the number of metrics. We perform our method on the industrial

dataset A and B and record the training and testing costs. The train-

ing time is defined as the total time of feeding the preprocessed data

to the model, and the testing time is the total time used to predict

whether there are performance anomalies on all the sliding windows

in the test set. All the data samples are trained with the same batch

size for 20 epochs. The correlation between training/testing time

and metrics number is shown in Figure 4.7, where we can observe

that both of them are near quadratic correlations. In our scenario,

the metrics collected for node-level and service-level performance

anomaly detection are typically smaller than 100. According to the

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 72

(a) Training Time versus Metric Numbers (b) Testing Time versus Metric Numbers

Figure 4.7: The Efficiency Analysis of ISOLATE

polynomial approximation, the training and testing time for data that

contains 100 monitoring metrics is 192.9 seconds and 3.89 seconds,

respectively. Typically, model retraining will not be triggered more

frequently than once per day due to the computation cost. Thus,

the training time of 192.9 seconds is affordable for industrial de-

ployment. Furthermore, since the monitoring metrics are typically

collected at an interval of 1 minute, the testing time of 3.89 seconds

in the online detection phase is enough for real-time performance

issues identification. It should be noted that all the experiments are

run on a Linux server with only one Tesla V100 PCIe GPU, however,

the efficiency is even further enhanced when utilizing the significant

computational power that can be harnessed from thousands of GPUs

available in cloud service systems.

4.4.4 Case Study

To further demonstrate the effectiveness of ISOLATE, we conduct

a case study concerning two industrial cases on identifying perfor-

mance anomalies and localizing the anomaly on metrics that vio-

late their intrinsic correlation. The first case is shown in Figure 4.8,

which is the same example in Section 4.2.2. The first three rows

show the monitoring metrics of the NIC receiving PPS from a vir-

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 73

Figure 4.8: A case that ISOLATE finds false negative

Figure 4.9: A Case that ISOLATE avoids false positive

tual machine running microservice X , the NIC receiving PPS from a

virtual machine running microservice Y , and the average CPU usage

of all virtual machines of the ELB service. The last two rows show

the anomaly score of the baseline method LSTM-VAE and our pro-

posed ISOLATE for comparison. This anomaly can hardly be dis-

covered when observing each metric individually, as the correlation

violation is critical to identifying this performance issue. However,

our ISOLATE can find the false negative that is neglected by base-

line models. The first and second metrics can also be highlighted to

provide engineers with further insight into the performance issue.

Another example is shown in Figure 4.9. The first metric is the

soft interrupt request rate of a virtual machine VM1 running on an

Elastic Cloud Server (ECS). The second metric is the CPU usage

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 74

of VM1. We can observe that the green segment seems like a per-

formance issue, as the soft interrupt request rate of both VM1 and

the CPU usage all encounter spikes. However, this is usually caused

by increased user requests and should not be regarded as a perfor-

mance issue. In contrast, since the correlations between these met-

rics are not violated, an anomaly alert should not be triggered. The

red segment represents a soft interrupt issue because the CPU usage

of VM1 is not synchronized with the increase of the soft interrupt

request rate of VM1. Compared with the baseline method LSTM-

VAE, ISOLATE can produce a significantly higher anomaly score in

the true anomaly labeled with the red area, thus being more effec-

tive. In this case, though both ISOLATE and baseline methods like

LSTM-VAE can detect the true anomaly, our ISOLATE can avoid

sending a false alarm to engineers. This is helpful for the engineers

to mend the service system because it prevents unnecessary inter-

ventions.

4.5 DISCUSSION

In this section, we share the success story of our deployment of ISO-

LATE in the industrial environment of the service system of Huawei

Cloud and discuss the threats and limitations of our approach.

4.5.1 Industrial Experience

In this section, we share our experience in applying ISOLATE to the

real-world cloud system of Huawei Cloud, a full-stack cloud sys-

tem that consists of an infrastructure layer, a platform layer, and an

application layer, aiming to demonstrate the practical usefulness of

ISOLATE. Huawei Cloud serves hundreds of millions of cloud ser-

vice tenants, offering them low-latency and high-performance ser-

vices that span computing, storage, networking, and database solu-

tions. Among them, ELB is a crucial service that is tasked with the

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 75

automatic distribution of incoming network traffic across a multi-

tude of targets, including Elastic Cloud Server (ECS) instances, con-

tainers, and IP addresses across different Availability Zones (AZs).

Relational Database Service (RDS) is another reliable and scalable

managed DB service that frees up developers from handling time-

consuming database administration tasks. In addition, the API Gate-

way Service (APIG), is an API management service that serves as

a single point of entry into cloud systems, sitting between the user

and a collection of backend services. It receives requests from an

application user, routes the request to the appropriate services, gath-

ers the appropriate data, and combines the results for the user in a

single package. The Object Storage Service (OBS) provides stable,

secure, efficient, and easy-to-use object storage. It enables storage

and retrieval of any amount of data at any time, facilitating cloud

storage for applications, big data analysis, and backup and archiving

scenarios. The reliability of these services is among the most crucial

concerns for Huawei Cloud and its tenants.

ISOLATE has been successfully incorporated into the performance

issue detection system of large-scale online service systems in Huawei

Cloud since November 2022, specifically, the overall pipeline of de-

ployment is shown in Figure 4.10. The clusters in Huawei Cloud

represent a collection of nodes that work together to provide various

services, ensuring high availability, reliability, and scalability. Par-

ticularly, there are four types of nodes in Huawei Cloud: Manage-

ment node, network node, compute node, and storage node, where

the details of them are elaborated in Table 4.7. For clusters in cloud

service systems, it has been a common practice for monitoring met-

rics used to profile the runtime status [82, 164, 218]. Thus, software

reliability engineers usually collect tens of monitoring metrics (like

CPU usage, network traffic, disk I/O, request rates, and memory us-

age) in nodes of the cluster through monitoring tools like Grafana,

Prometheus, etc [2]. Then, these monitoring metrics are stored in the

Data Lake of Huawei Cloud, a highly scalable and flexible storage

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 76

Table 4.7: A Summary of the Node Types in the Huawei Cloud

Node Type Description

Management

Nodes

Management nodes are used to deploy FusionSphere

OpenStack, an enterprise-level platform to enhance

computing, storage, network management, installation and

maintenance, security, and reliability while supporting

multiple infrastructure virtualization technologies at the

resource pool layer. Management nodes use UVP as the host

OS. The Computing cloud services, storage cloud services,

network cloud services, common components, and

management domain components are deployed on VMs.

Network Nodes

The network node uses the UVP as the host OS. The virtual

Router, L3NAT, L3 service, and VPN components are

deployed on VMs.

Compute Nodes

Compute nodes can be divided into two subtypes. The first is

the KVM compute node for general-purpose Elastic

Computing Services (ECS) in tenant VMs. The second is the

KVM compute node for GPU-accelerated ECSs, which

provision GPUs for deep learning jobs in tenant VMs. These

two types of KVM compute nodes use the UVP as the host

OS, and FusionSphere OpenStack (role compute) is also

deployed.

Storage Nodes

Distributed storage nodes in Huawei typically support

Elastic Volume Service (EVS). After the deployment of

Huawei Distributed Block Storage, this node is utilized by

the EVS service to provision EVS instances inthe tenant

EVS disks.

system that consists of the Data Lake Storage, the Data Warehouse,

and the Data Lake Governance Center (DGC). Data Lake Storage is

the actual storage space where all the data, including the monitoring

metrics, is stored, while the Data Warehouse is an enterprise system

used for reporting and data analysis. On top of these two compo-

nents, the DGC is responsible for managing the data stored in the

data lake, which oversees the lifecycle of the data, from ingestion

and storage to usage and deletion. With Huawei Cloud’s data lake,

real-time data analysis is enabled, i.e., as soon as monitoring metrics

are collected and stored in the data lake, they can be immediately

accessed and analyzed by the performance issue diagnosis system

empowered with ISOLATE. The results of ISOLATE provide not

only the timing of a performance issue but also the metrics that are

most related to this issue. Then, alerts will be triggered immedi-

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 77

Figure 4.10: The Pipeline of Deploying ISOLATE in Huawei Cloud System

ately and sent to the SREs for further investigation. The SREs first

inspect the alert and the associated metrics to understand the mech-

anism of the problem and find the root cause. Once the root cause

has been identified, the SREs prepare a diagnosis report, including

a detailed description of the performance issue, the associated met-

rics, the identified root cause, and potential mitigation strategies. For

instance, if the performance issue is a memory leak, engineers may

need to perform software debugging involving tracing the program’s

execution and implementing appropriate code fixes to prevent the

leak from happening again. As another example, if the problem is

network congestion, the mitigation strategies may include hardware

repair, such as replacement of the NICs.

Due to frequent service updates and changes in user behavior,

monitoring metric patterns may also evolve, a phenomenon known

as concept drift. This drift can gradually weaken the effectiveness

of ISOLATE over time. To alleviate this issue, ISOLATE is re-

trained on a weekly basis with newly collected data. Figure 4.11

illustrates the performance issue identification accuracy of both the

retrained and offline versions over 20 weeks. A noticeable down-

ward trend in the accuracy of the offline version can be observed, at-

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 78

Figure 4.11: The Performance of deploying ISOLATE in Huawei Cloud System

tributed to pattern drift. Conversely, the version that is periodically

retrained displays relatively stable performance. This adaptability

to new patterns in online deployment scenarios underscores the ro-

bustness and effectiveness of ISOLATE within dynamically evolv-

ing cloud systems. More specifically, take one of the services R for

example, the time proportion of undergoing performance issues dur-

ing this period is 3.4%, and the online version of ISOLATE achieves

a precision of 0.904, recall of 0.951, and F1 of 0.926. Another in-

teresting observation is that though the anomaly ratio analyzed by

engineers ranges from 0.7% to 5.6% during the 20-week period,

the performance remains relatively stable in the retrained version of

ISOLATE, demonstrating that the performance of ISOLATE is not

sensitive to the anomaly ratio. It should be noted that the weekly re-

training enhances the adaptiveness of our method, with an additional

cost of human labeling of the potential performance anomaly data.

However, it has been a common practice in cloud systems that on-

call SREs manually verify some reported suspicious performance

anomaly [24,124,204]. Specifically, according to the interview with

SREs, they typically spend approximately one hour per week check-

ing these data and they consider it to be affordable.

The ability to timely alert operations engineers after a perfor-

mance issue happens is also of great significance. The delay time of

ISOLATE in Huawei Cloud is the time delay between the detection

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 79

Figure 4.12: The Delay Time of ISOLATE in Identifying Performance Issues

of performance issues and the time at which the issues are confirmed

by customer tickets [122]. The delay time of ISOLATE is shown in

Figure 4.12, where we can observe that most of the performance is-

sues can be captured 5 to 20 minutes after the event, and SREs can

take mitigation strategies to avoid continuously compromising the

user experience. Consequently, the potential negative impacts on

the QoS can be significantly mitigated, enhancing system reliability

and ensuring high availability.

4.5.2 Threats to Validity

Internal threats. The correctness of the implementation of base-

lines constitutes one of the internal threats to our study’s validity.

For the baselines, we utilized the open-sourced code released by the

authors of the papers or packages on GitHub, like [249]. As for our

proposed approach, the source code has been reviewed meticulously

by the authors, as well as several experienced software engineers,

to minimize the risk of errors and increase the overall confidence in

our results. For parameter selection, we conducted extensive exper-

iments with different parameters to find the most suitable configu-

rations for both baselines and our proposed method. We chose the

parameters based on the best results obtained in these experiments.

To make our results reproducible, we have also made our code and

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 80

partial data available.

External threats. The external threats to the validity of our study

mainly lie in the generalizability of our experimental results. We

conduct experiments on the large-scale online systems of two re-

gions within a prominent cloud service company. In addition to this,

our approach is also evaluated on a publicly available dataset con-

taining monitoring metrics from an Internet company, further ex-

panding the scope of our evaluation. While the diversity of the ex-

perimental settings provides some confidence in the generality of our

findings, it is essential to acknowledge that results might vary when

applied to different cloud service providers, industries, or specific

use cases. Nevertheless, we believe that our experimental results,

obtained from these multiple sources, can demonstrate the general-

ity and effectiveness of our proposed approach, ISOLATE.

4.5.3 Limitations of ISOLATE

While ISOLATE achieves satisfactory performance in detecting per-

formance issues, its practical application in real-world environments

reveals several limitations and areas for future enhancement. This

section discusses these challenges and the practical strategies em-

ployed to mitigate them.

Firstly, ISOLATE, in its current form, is not inherently adaptive

to the continuous evolution of metric patterns and correlations in dy-

namic cloud systems, which are subject to rapid software and appli-

cation upgrades. This phenomenon, known as concept drift, can ren-

der the trained model obsolete, leading to false positives when newly

established normal behaviors are incorrectly flagged as anomalous.

In practice, this limitation is effectively mitigated through a strategy

of periodic model retraining. By retraining the model on a regular

schedule, for instance, on a weekly basis, the framework can contin-

uously learn the new baseline behaviors of the cloud system. This

cyclical updating process ensures the model remains synchronized

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 81

with the system’s current state, thereby maintaining its detection ac-

curacy over time.

Secondly, the computational complexity associated with graph

neural networks can become a concern when scaling to enterprise-

level cloud systems that generate a vast number of monitoring met-

rics. This potential for high computational cost is addressed by ISO-

LATE’s targeted scope of deployment. Rather than attempting to

model an entire system in a single monolithic graph, our approach is

deployed at the node or service level, where the number of interde-

pendent metrics is typically manageable (e.g., fewer than 100). This

deliberate design choice not only contains computational demands

and enhances efficiency but also aligns with the operational needs

of Site Reliability Engineers (SREs). Performance issues detected

at this more granular level often serve as valuable early warnings for

systemic problems, providing actionable insights for prompt inter-

vention.

Thirdly, as a deep learning-based method, ISOLATE lacks the

direct, step-by-step transparency of traditional models like decision

trees, which can be a limitation where full model interpretability is

required. However, the model is not entirely a "black box." A de-

gree of post-hoc interpretability is provided by the learned graph

attention mechanism. These attention weights explicitly model the

strength of learned correlations between metrics. When ISOLATE

flags a performance issue, engineers can inspect these weights to

identify which specific metric relationships have deviated from their

established norms. This ability to pinpoint correlation violations of-

fers granular, diagnostic insight, making the model partially inter-

pretable and aiding in the initial localization of a performance issue’s

root cause.

CHAPTER 4. MULTIVARIATE KPI ANOMALY DETECTION 82

4.6 CONCLUSION

In this chapter, we propose ISOLATE, a novel framework to mine

correlations among metrics, detect performance issues, and localize

the correlation-violation metrics. Specifically, ISOLATE leverages

a graph neural network with graph attention to capture the complex

correlations between a variety of metrics and a label-conditional

VAE model to distinguish normal and abnormal patterns. We also

propose to utilize the positive unlabeled learning strategy to over-

come the impacts of noisy data. Extensive experiments on one pub-

lic dataset and two industrial datasets show that ISOLATE achieves

0.945 F1-Score on anomaly detection and 0.920 Hit@3 in terms of

localizing correlation-violation metrics, outperforming all the base-

lines. Furthermore, our framework has been successfully incorpo-

rated into Huawei Cloud’s performance issue monitoring and detec-

tion system. Both the codes and data are released to facilitate future

research.

2 End of chapter.

Chapter 5

Adaptive AutoML-based Anomaly

Detection

A common practice in the reliability engineering of cloud services

involves the collection of monitoring metrics, followed by compre-

hensive analysis to identify performance issues. However, existing

methods often fall short of detecting diverse and evolving anoma-

lies across different services. Moreover, there exists a significant

gap between the technical and business interpretation of anomalies,

i.e., a detected anomaly may not have an actual impact on system

performance or user experience. To address these challenges, we

propose ADAMAS, an adaptive AutoML-based anomaly detection

framework aiming to achieve practical anomaly detection in produc-

tion cloud systems. To improve the ability to detect cross-service

anomalies, we design a novel unsupervised evaluation function to

facilitate the automatic searching of the optimal model structure and

parameters. ADAMAS also contains a lightweight human-in-the-

loop design, which can efficiently incorporate expert knowledge to

adapt to the evolving anomaly patterns and bridge the gap between

predicted anomalies and actual business exceptions. Furthermore,

through monitoring the rate of mispredicted anomalies, ADAMAS

proactively reconfigures the optimal model, forming a continuous

loop of system improvement. Extensive evaluation on one public

and two industrial datasets shows that ADAMAS outperforms all

83

CHAPTER 5. ADAPTIVE AUTOML-BASED ANOMALY DETECTION 84

(a) Network Interrupt Anomaly in VPC Service (b) Packets Loss Anomaly in ELB Service

Figure 5.1: Examples of anomaly patterns of different services in cloud company

X

baseline models with a 0.891 F1-score. The ablation study also

proves the effectiveness of the evaluation function design and the

incorporation of expert knowledge.

5.1 Introduction

In recent years, many traditional software systems have been mi-

grated to cloud computing platforms, which are managed effectively

as cloud services. They serve hundreds of millions of users around

the world on a 24/7 basis [49,51,125]. Due to their increasing scale

and complexity, performance issues become inevitable [53, 54]. A

common practice of reliability engineering involves the gathering of

system monitoring metrics, also known as Key Performance Indi-

cators (KPIs), from software and hardware components (e.g., vir-

tual machines and network devices). The collected data are then

analyzed to identify any potential performance issues [25, 26, 251].

However, the overwhelming volume of monitoring metrics [24] in

modern cloud services renders manual performance analysis infea-

sible [108]. As a result, many automated anomaly detection meth-

ods have been proposed [25, 103, 215, 242], aiming at revealing the

unusual patterns of the metrics that reflect potential performance

anomalies.

Modern service technologies, e.g., microservices and serverless

CHAPTER 5. ADAPTIVE AUTOML-BASED ANOMALY DETECTION 85

functions, decouple software into sophisticated and fine-grained units [128].

Thus, cloud services tend to exhibit great diversity and dynamism

not only in functionalities but also in anomaly patterns [247]. This

situation poses two significant challenges for practical anomaly de-

tection in production systems. First, it is difficult for a single method

to effectively identify the entire spectrum of anomalies across differ-

ent services, i.e., the No Free Lunch Theorem [156, 167, 186]. For

example, Fig. 5.1 presents two metrics with performance anomalies

from a Virtual Private Cloud (VPC) service and an Elastic Load Bal-

ancing (ELB) service. A prevalent approach to anomaly detection

involves first learning the normal pattern of a metric time series and

then identifying anomalies when data points deviate from this es-

tablished norm [127, 167]. While this strategy can work well in the

first example, it may not be as effective for anomalies that violate

time series periodicity, as illustrated in the second example, where

the magnitude of deviation is not prominent. On the other hand,

approaches [120, 164] that leverage the periodicity for anomaly de-

tection face a different dilemma. The second challenge is related

to the data-driven nature of anomaly detection. Existing approaches

obtain the best model based on the experimental datasets. How-

ever, an anomaly detected on a technical level might not necessarily

translate to a performance issue that impacts the overall business

performance or customer experience. Consequently, engineers need

to deal with a lot of false positives. Due to the frequent service

updates and user behavior changes, the anomaly patterns of services

may evolve accordingly, i.e., concept drift [199], which further com-

pounds the problem.

While efforts have been devoted to addressing these challenges,

they suffer from important limitations that hinder their practical ap-

plications. For instance, [160, 230] employ the technique of Auto-

mated Machine Learning (AutoML) to prevent designing service-

specific anomaly detection solutions [172, 195]. However, exist-

ing AutoML-based approaches often require a considerable amount

CHAPTER 5. ADAPTIVE AUTOML-BASED ANOMALY DETECTION 86

of labeled data or cannot properly evaluate the model performance,

hindering the search for the optimal model architecture and param-

eters. In real-world systems, obtaining sufficient labeled data for

each cloud service is often challenging [39]. On the other hand,

the human-in-the-loop mechanism [19, 179] has been proven effec-

tive in incorporating domain knowledge to mitigate the gap between

the predicted anomalies and the actual business exceptions. How-

ever, existing approaches heavily rely on human expertise to provide

high-quality feedback, which impacts the scalability and efficiency.

Simply using limited feedback data to retrain the models can hardly

guarantee performance.

In this paper, we propose ADAMAS (Adaptive Domain-Aware

Performance Anomaly detection for cloud Services Systems), an

AutoML-based anomaly detection framework adaptive to different

cloud services with diverse and evolving abnormal patterns. Specif-

ically, ADAMAS consists of two stages, i.e., a Label-free Configu-

ration Search stage and a Feedback-based Adaptive Learning stage.

In the first stage, ADAMAS employs Bayesian Optimization [80] to

automatically search the best model architecture with parameters for

anomaly detection. During the search, ADAMAS utilizes the pro-

posed Noise-Free Mean squared error with Kurtosis (NFMK) eval-

uation function to estimate model performance without labels. In

the second stage, ADAMAS adopts a lightweight, adaptive learning

approach to efficiently incorporate expert knowledge. Specifically,

during online serving, engineers can provide feedback on whether

the detected anomaly is a false positive. Given the manually la-

beled data, ADAMAS employs Metric Stream Clustering (MSC)

to group similar anomalous patterns into clusters and leverage his-

torical feedback to identify true performance issues or false posi-

tives, significantly reducing the feedback required. To close the loop

of continuous service updates, ADAMAS triggers model retraining

when the cumulative mispredicted samples exceed a threshold. In

this process, the domain knowledge introduced by human feedback

CHAPTER 5. ADAPTIVE AUTOML-BASED ANOMALY DETECTION 87

will guide the configuration search.

To evaluate the performance of ADAMAS, we conduct exten-

sive experiments on one public and two industrial datasets. The

results demonstrate that ADAMAS outperforms all baselines with

an F1-score of 0.891. An ablation study demonstrates that com-

pared to other evaluation functions, NFMK is more effective, and the

MSC design can help ADAMAS achieve better performance with

less feedback. A case study further shows how ADAMAS works in

industrial cloud systems. To sum up, our main contributions are as

follows:

• We design and implement ADAMAS, a domain-aware AutoML-

based anomaly detection framework. It addresses two practical

challenges in this field, namely, the diverse anomaly patterns across

different services and the gap between the predicted anomalies and

the actual performance issues. It eliminates the dependency on la-

bels in the model searching process and significantly reduces the

amount of human feedback for expert knowledge integration.

• We conduct extensive experiments with public data as well as in-

dustrial data collected from Company X . Furthermore, our frame-

work has been successfully incorporated into X ’s performance

monitoring and anomaly detection system.

5.2 Background

In this section, we first introduce some background about metric-

based performance anomaly detection in modern cloud systems. An

example from an industrial scenario that motivates this work is also

present. Then, we give a brief introduction to the general workflow

of AutoML.

CHAPTER 5. ADAPTIVE AUTOML-BASED ANOMALY DETECTION 88

5.2.1 Performance Anomaly Detection in Cloud Service Sys-

tems

In modern cloud service systems, software reliability engineers (SREs)

usually collect a large number of metrics that track the health status

of the services (e.g., CPU utilization, memory usage and network

traffic) with monitoring tools like Grafana, Splunk, etc. [2]. Moni-

toring metrics provide the most granular information, which can be

used to derive other types of cloud monitoring data. For example,

alerts are usually triggered when metrics cross a threshold defined by

the engineers [246]. In cloud systems, there are usually redundant

components that provide fault tolerance and self-healing [25] capa-

bilities. Thus, most of the service outages manifest themselves as

performance anomalies (also known as fail-slow failures [131,155])

before fail-stop failures, which can be detected through analysis of

monitoring metrics. Previous studies [25, 135] have demonstrated

that performance anomalies of similar types tend to trigger similar

symptoms on the monitoring metrics. Thus, a particular type of per-

formance anomaly can be characterized as an anomaly pattern.

However, we observe that not all anomaly patterns manifest in

monitoring metrics are true performance anomalies. An industrial

example from Cloud Company X is shown in Fig. 5.2, where the

traffic of a load balancer in the Relational Database Service (RDS)

is monitored. In the red area, the metric suddenly dips to nearly

zero. It persists until system maintainers replace the network devices

with new ones, which is confirmed as a network interrupt failure. In

the green area, as load balancers can handle unpredictable traffic

surges [57] by scaling up the hardware and software resources, the

service can recover from a burst of requests due to its auto-scaling

feature without manual intervention in the green area. Thus, this

anomaly pattern is not a true anomaly because the fluctuating re-

quests are expected behaviors. Due to the recurring nature of perfor-

mance anomalies and failures [111], these false positives can bring

CHAPTER 5. ADAPTIVE AUTOML-BASED ANOMALY DETECTION 89

Figure 5.2: An Motivating Example from Company X

meaningless trouble to engineers if not properly handled. A natural

solution is to automatically differentiate the types of performance

anomalies and determine the true anomaly by considering the con-

text of the specific service.

5.2.2 Automated Machine Learning

In a large-scale cloud system, there are many services with differ-

ent anomaly patterns that need different configurations to achieve

optimal performance. Though there are many on-hand anomaly de-

tection methods, in software reliability engineers’ view, an “out of

the box” tool is more desired. Automated Machine Learning (Au-

toML), the process that makes machine learning easier by avoid-

ing tedious manual hyperparameter tuning for both machine learn-

ing experts and non-experts, provides great benefits to cloud system

operators. Typically, AutoML can be formulated as a Combined Al-

gorithm Selection and Hyper-parameter (CASH) problem [9].

A general AutoML workflow is shown in Fig. 5.3. The opti-

mizer fetches model configurations based on a search space and the

observations from the evaluator. Next, the evaluator measures the

model trained with configuration passed from the optimizer on some

objective functions, and the observation is used to update the opti-

CHAPTER 5. ADAPTIVE AUTOML-BASED ANOMALY DETECTION 90

mizer. The model configuration refers to both the model selection

and model hyperparameters. After several iterations, the model that

achieves the best performance will be output as the output model.

There are extensive studies on AutoML that are dedicated to im-

proving the efficiency and the effectiveness of the optimizer [3, 4,

107,250]. However, to the best of our knowledge, none of the exist-

ing AutoML methods possess the merit of domain knowledge that

plays a critical role in differentiating true anomalies and false pos-

itives. Furthermore, existing AutoML frameworks lack the adapt-

ability to new anomaly patterns in online services, which hinders

their application in dynamic, evolving cloud systems.

5.3 Methodology

In this section, we present ADAMAS, which is a Bayesian Optimization-

based approach for identifying performance issues based on moni-

toring metrics in cloud systems. First, we will give a formal defi-

nition of the problem. Then, we give the overview of ADAMAS.

We illustrate the core design of ADAMAS in detail in the remaining

sub-sections. We use the term metrics in two different contexts. To

avoid confusion, we use monitoring metrics to refer to the collected

time series that quantifies the health status of cloud systems, e.g.,

CPU usage. While evaluation metrics refer to the indicators measur-

ing the quality of anomaly detection models, i.e., the F1 score.

5.3.1 Problem Formulation

The objective of our work is to detect performance anomalies in

software systems, especially large-scale cloud systems with moni-

toring metrics. Specifically, a monitoring metric can be seen as a

time series X ∈ Rn = [x1, x2, ..., xn], where n denotes the number

of observations collected, i.e., the length of a time series. Typically,

a sliding window of historical values X l
t = [xt−l+1, xt−l+2, ..., xt] is

CHAPTER 5. ADAPTIVE AUTOML-BASED ANOMALY DETECTION 91

Figure 5.3: A General Overview of AutoML

used for modeling current observation, where l is the length of the

sliding window. Our goal is to determine whether or not the given

observation X l
t is anomalous, i.e., whether there is an occurrence of

performance issues at the observation.

An AutoML framework typically contains several models with

parameters. Given the set of monitoring metrics anomaly detection

model M = {m1,m2, ...,mk}, the set of parameter search space

θi = {θi1, θ
i
1, ..., θ

i
ni
}, we call the combination of a model m with

parameter θ as a configuration c ∈ C. With the objective func-

tion L(m, θ,X) that evaluates the performance of configurations,

the goal of AutoML is to find the optimal configuration c∗ as fol-

lows:

c∗ = argmax
c∈C

L(c;X) (5.1)

Normalization is performed on each monitoring metric to unify

the range of them and improve the robustness of our method. We

normalize the monitoring metrics with the Min-max normalization

first.

5.3.2 Overview

The overall architecture of ADAMAS is shown in Fig. 5.4, which

consists of two phases, namely, label-free configuration search and

CHAPTER 5. ADAPTIVE AUTOML-BASED ANOMALY DETECTION 92

Figure 5.4: An Overview of Proposed Framework ADAMAS

feedback-based adaptive learning. In the configuration search phase,

we apply Bayesian Optimization, a widely used AutoML technique,

to iteratively search for new configurations and update the belief

over the search space with the evaluation performance of the con-

figuration. Bayesian Optimization typically consists of three main

components: surrogate model, objective function, and acquisition

function [210]. In our framework, the surrogate model that repre-

sents the estimated belief of performance over the observed config-

urations is the most widely used Gaussian Process (GP) [44]. The

objective function is utilized to evaluate the performance of configu-

rations. In cloud systems, performance anomaly detection based on

monitoring metrics is usually unsupervised due to the lack of high-

quality labels. Thus, an objective function that approximates the

performance without labels is needed. To this end, we propose the

NFMK objective function, which is an excellent approximation of

the F1 score compared with other MSE-based objective functions.

The acquisition function is used to search for the next configura-

tion to observe with the exploration-exploitation trade-off. In our

case, we deploy the commonly used max-value entropy Search, an

acquisition function with a fast convergence rate. The initialized

configuration can be either from the optimal configurations of the

same service, which serves as a warm start of BO-based search, or

random configurations.

CHAPTER 5. ADAPTIVE AUTOML-BASED ANOMALY DETECTION 93

In the Feedback-based Adaptive Learning phase, we leverage the

output model from the search phase to detect anomalies in a sce-

nario where monitoring metrics arrive in streams, i.e., one instance

at a time. To fill in the gap that many predicted anomalies are not

true anomalies and reduce the number of false positives, we incorpo-

rate expert knowledge with human feedback from on-site engineers

when an anomaly happens. However, the human effort will be unaf-

fordable if each anomaly alert is checked manually; we try to solve

this with a streaming metrics cluster method MSC. In this way, the

historical feedback from a similar anomaly pattern can be leveraged,

which prevents additional labeling by engineers. Moreover, when

the false positive exceeds a threshold, a retraining and configura-

tion search will be triggered to make our framework adaptive to the

system change.

5.3.3 Label-free Configuration Search

Generally, an AutoML framework trains different models with dif-

ferent parameters to search for the best configuration. Before the

search process, the framework randomly selects the initial models

and hyperparameters as the cold start due to the lack of prior knowl-

edge about the monitoring metrics. If there exist explored optimal

configurations from metrics in the same service, these configura-

tions can serve as a warm start [159] as anomaly patterns in the

monitoring metrics of the same service are similar. After obtaining

the configurations, the objective function will evaluate the perfor-

mance of the current configuration, and the surrogate model (GP

in our case) updates the belief over the search space. We design

an objective function, Noise-Free Mean squared error with Kurto-

sis (NFMK), that serves as an excellent approximation to evaluation

functions like the F1 score without labels. This is because, in the

case of metrics anomaly detection, performance anomalies are rare,

and the labels are hard to obtain, which prohibits the exact evalua-

CHAPTER 5. ADAPTIVE AUTOML-BASED ANOMALY DETECTION 94

tion of labels like the F1 score.

Objective Function

The idea of approximating an evaluation function with ground truth

is based on a basic property of anomaly. If a monitoring metric seg-

ment cannot be reconstructed well by the model, it is more likely

to be an anomaly [182]. Specifically, by using Mean Squared Error

(MSE), we can evaluate the reconstruction ability of a model. How-

ever, collecting anomaly-free metric data is challenging and requires

tedious manual efforts. So, the training data often contains noises,

which manifest large errors in the MSE between the original and

reconstructed monitoring metrics. To ensure the model can differ-

entiate potential anomalies from normal patterns, we use the differ-

ence in kurtosis before and after noise removal. This helps measure

the model’s sensitivity to noise and its ability to discern outliers.

Based on this observation, we try to capture the noise (e.g., some

mild performance anomaly ignored by engineers [53]) and calculate

the MSE of the noise-free part. To make the noise part that poten-

tially represents performance anomalies more distinguishable, we

computed the difference in kurtosis before and after removing the

noise. Specifically, as an effective estimator that measures the dis-

tance between the predicted and the raw monitoring metrics, MSE

can be written as follows:

MSE(X, X̂) =
n

∑

i=1

∥Xi − X̂i∥2
n

(5.2)

where X and X̂ are raw and reconstructed monitoring metrics,

respectively, and the length of the metric data is n, Xi and X̂i are

the raw and reconstructed sliding windows at the i-th point. Given

an anomaly ratio r estimated by engineers according to historical

observation, a threshold α is the r quantile of reconstruction error

in each point. The points that exceed the threshold α are considered

CHAPTER 5. ADAPTIVE AUTOML-BASED ANOMALY DETECTION 95

noise, while others are normal. The noise indicator At can be written

as follows:

At =

{

1, |Xt − X̂t| g α,

0, |Xt − X̂t| < α.
(5.3)

Typically, a good anomaly detection method can fit the pattern

that represents the normal behavior of monitoring metrics. Suppose

the noise-free part of monitoring metric X is represented as XN

(XN = {Xt|At = 1}), then the MSE term without noise data is

MSE(XN , X̂N). When a model has a strong ability to differenti-

ate anomalies from normal patterns, the objective function should

change significantly after noise removal. This is based on the as-

sumption that a higher kurtosis corresponds to greater fluctuation,

indicating the presence of anomalies. Thus, if a model is proficient

in anomaly detection and the original kurtosis is large, there will

be a dramatic drop in kurtosis after the noise is removed. In con-

trast, if the data has a small kurtosis, this suggests fewer outliers. In

such cases, both the kurtosis before and after noise removal would

be small, and the MSE term dominates the objective function. This

encourages the model to fit the monitoring metric well. The formu-

lation of kurtosis is as follows:

Kurt(X) =
1
n

∑n
i=1(Xi − X̄)4

(1
n

∑n
i=1(Xi − X̄)2)2

(5.4)

Note that we take the reciprocal of the kurtosis part to make it

unified with the MSE part. This way, we derive NFMK as our objec-

tive function and minimize it to search for the optimal configuration.

The NFMK function in our framework is:

NFMK(X, X̂) =MSE(XN , X̂N) + (Kurt(X − X̂)

−Kurt(XN − X̂N))
−1 (5.5)

CHAPTER 5. ADAPTIVE AUTOML-BASED ANOMALY DETECTION 96

Acquisition Function

The acquisition function is the utility function that guides the se-

lection of the next configuration that should be explored to reach

the optimum of the objective function [202]. Among many acqui-

sition functions, entropy search-based acquisition functions [70–72]

motivated by information theory are proven to achieve a fast con-

vergence rate that dramatically improves the efficiency of the adap-

tive learning process [12]. In our framework, we apply the Max-

value Entropy Search (MES) [205] as the acquisition function. MES

uses the information about the maximum value of objective function

y∗ = L(c∗, X) at optimal configuration c∗, where the gain in mutual

information between the maximum y∗ and the next configuration can

be approximated by evaluating the entropy of the predictive distri-

bution as follows:

MES(c) = H(p(y|Dt, c))− E(H(p(y|Dt, c, y
∗)))

≈ 1

K

∑

y∗∈Y ∗

γy∗(c)φ(γy∗(c))

2Φ(γy∗(c))
− log Φ(γy∗(c))

(5.6)

γy∗(c) =
y∗ − µt(c)

σt(c)
(5.7)

where Dt represents the observations until the i-th iteration, H

denotes the entropy, φ is the probability density function and Φ is

the cumulative density function of normal distribution. In the first

term of Equation 5.6, the mean and variance of p(y|Dt, c) are µt(c)
and σt(c). The expectation of the second term in Equation 5.6 is ap-

proximated using Monte Carlo methods through sampling a set of K

function maxima Y ∗, where the sampling is from an approximation

via a Gumbel distribution.

CHAPTER 5. ADAPTIVE AUTOML-BASED ANOMALY DETECTION 97

5.3.4 Feedback-based Adaptive Learning

After the configuration search phase, an optimal model will be ap-

plied to detect performance anomalies in online scenarios where

monitoring metrics arrive in streams. However, there are inevitably

many false positives as some anomaly patterns on monitoring met-

rics are not considered performance anomalies. It is difficult for the

offline model to discriminate these false positives from true perfor-

mance anomalies without domain knowledge from system experts.

To this end, we propose to incorporate the knowledge of experts

through a human-in-the-loop to facilitate the anomaly detection pro-

cess. It has been a common practice in cloud systems that on-

call engineers manually verify every reported suspicious anomaly

to mitigate the problem [24, 204]. Though the precision of the per-

formance anomaly detection model can be tremendously improved

with human feedback, the human effort devoted to labeling is non-

negligible, especially in large-scale cloud systems that collect thou-

sands of monitoring metrics on the fly. We observe that similar

types of performance anomalies tend to trigger similar patterns on

the monitoring metric, similar to [25, 135]. A straightforward idea

is clustering similar anomaly patterns into one cluster and leverag-

ing the feedback on historically similar patterns. In this way, the

engineers only need to label the anomaly patterns in a cluster once.

Since the monitoring metrics are generated in a streaming man-

ner, overwhelming data can exceed storage capacities, making clus-

tering methods that require full data unsuitable [25]. Thus, we have

no access to all metric patterns, unlike offline clustering approaches.

We propose a streaming metrics clustering method, Metric Stream

Clustering (MSC), that continuously clusters all incoming anoma-

lous metric segments. Particularly, MSC is presented in Algorithm 1.

First of all, noise in the NFMK term containing potential perfor-

mance anomalies can be utilized to construct initialized clusters,

which is denoted as X0 for ease of presentation. We apply DB-

CHAPTER 5. ADAPTIVE AUTOML-BASED ANOMALY DETECTION 98

SCAN [41], a widely-used density-based clustering algorithm [169]

to construct the initialized clusters. The mean vectors, cluster sizes,

and radii are denoted as µ0, S0, R0. Our core idea of metric stream

clustering is that given a new metric segment Xt, we determine

whether it can be attributed to an existing known anomaly cluster.

The cluster will include Xt as an element and then update its param-

eters. Otherwise, a new anomaly cluster containing Xt itself will be

created, an unseen metric pattern that on-site engineers should label.

Particularly, we search for the index of the closest cluster idxt and

check whether the distance between the mean vector of the cluster

and the metric pattern is smaller than the radius of the cluster. If

yes, Xt will be considered a member of cluster idxt. Otherwise, a

new cluster containing Xt with a small radius δ represents the un-

seen pattern. When a new anomaly pattern is absorbed, the cluster’s

attributes should be updated. The mean vector and cluster size can

be updated straightforwardly through the formulation in lines 11-

12. However, the radius cannot be directly calculated as only the

attributes of clusters are retained, which is common practice in on-

line learning. We estimate it by analyzing the best and worst case

of the radius update. On the one hand, the best case can be trivially

derived in that the radius remained unchanged at Rt[idxt]. On the

other hand, the worst case is shown in Fig. 5.5, where the new ra-

dius reaches its maximum value when Xt lies on the opposite side

of the cluster center µt with respect to the furthest point that yields

the radius Rt, resulting in the largest radius update. We update the

radius with the mean of the best and worst case, shown in line 13.

With the proposed clustering method, MSC, we can seamlessly

integrate valuable feedback from on-site engineers to ADAMAS.

Specifically, when the offline model identifies an unseen suspicious

anomaly pattern, it issues a query to cloud experts for confirmation.

It should be noted that the number of suspicious anomalies is far less

than the number of all metric streams. Moreover, the expert is only

required to label once for an anomalous cluster, where all the pat-

CHAPTER 5. ADAPTIVE AUTOML-BASED ANOMALY DETECTION 99

Algorithm 1: Metric Stream Clustering

Input: X0, Xt, µt, St and Rt // Metrics and parameters of clusters

Output: µt+1, St+1 and Rt+1 // Updated parameters

1: if t=0 then

2: // Initialization Phase

3: µ0, S0, R0 ←DBSCAN(X0)
4: else

5: // Continuous Clustering Phase

6: µt+1, St+1, Rt+1 ← µt, St, Rt

7: Dt ← PairWiseDistance(Xt, µt)
8: idxt ←MinIndex(Dt)
9: if Dt[idxt] < Rt[idxt] then

10: // Add Xt to the nearest cluster and update parameters

11: µt+1[idxt]← (µ[idxt]× St[idxt] +Xt)/(St[idxt] + 1)
12: St+1[idxt]← St[idxt] + 1
13: Rt+1[idxt]← |µt+1[idxt]− µt[idxt]|/2 +Rt[idxt]
14: else

15: // A new cluster is created

16: µt+1 ← Append µt with Xt

17: St+1 ← Append St with 1

18: Rt+1 ← Append Rt with δ // A small radius will be assigned to new

cluster

19: end if

20: end if

21: return µt+1, St+1 and Rt+1

terns are considered anomalous if there is an element that is labeled

as anomalous in the cluster. This further drastically reduces the re-

quired human effort. Consequently, the number of queries to experts

is considerably lower compared to the total amount of metrics data,

making our solution highly feasible and scalable. A problem with

our strategy of incorporating human-in-the-loop is that though over-

whelming false positives can be alleviated, the offline model remains

unchanged and can not adapt to the evolving metric patterns. We try

to solve this problem by setting an engineer-specified threshold that,

when the false positive clusters exceed it, a model retraining will be

triggered. Only when many accumulated false positives cannot be

CHAPTER 5. ADAPTIVE AUTOML-BASED ANOMALY DETECTION 100

Figure 5.5: The Worst Case of Cluster Radius Update

properly differentiated by offline models should we make our model

adaptive to these patterns through retraining; otherwise, the offline

model works well toward a satisfactory performance. In this way,

the computation cost that the regular retraining adopted by most

frameworks consumes is significantly reduced. Specifically, we can

take the incorporated domain knowledge to guide the configuration

search process through the following objective function:

NFMK(X ′, X̂ ′) =MSE(X ′N , X̂
′
N) + (Kurt(X ′ − X̂ ′)

−Kurt(X ′N − X̂ ′N))
−1 (5.8)

where X ′ and X̂ ′ represent the raw and reconstructed online mon-

itoring metric segments. X̂ ′N represents the normal patterns not iden-

tified as anomalies and the false positives, which is a bit different

from Equation 5.5. The new model is updated through training on

the X ′ and selecting based on the objective function. It should be

noted that X ′ represents the most recent metric segments, as past

metric segments are discarded due to the overwhelming volume of

metrics.

CHAPTER 5. ADAPTIVE AUTOML-BASED ANOMALY DETECTION 101

5.4 Experiments

In this section, we evaluate the effectiveness of ADAMAS using

both a publicly available dataset and real-world monitoring metrics

datasets collected from large-scale cloud systems in X , a world-

leading cloud company. In particular, we aim to answer the fol-

lowing research questions (RQs).

• RQ1: What is the effectiveness of ADAMAS compared with other

baselines?

• RQ2: What is the effectiveness of each component in ADAMAS?

• RQ3: What is the sensitivity of ADAMAS to each hyperparame-

ter?

5.4.1 Experiment Settings

Datasets

To evaluate the effectiveness of ADAMAS, we conduct experiments

on a public dataset and two industrial datasets collected from large-

scale cloud systems in Company X , which confirm its practical sig-

nificance. The statistics of the datasets are summarized in Table 5.1.

Public dataset. The AIOps18 dataset was released by an interna-

tional AIOps competition in 2018, composed of multiple monitoring

metrics collected from the web services of large-scale IT companies.

Particularly, the dataset contains service metrics and machine met-

rics. The service metrics record the performance of the services,

e.g., response time and traffic, while the machine metrics reflect the

health state of physical machines, including CPU usage and network

throughput.

Industrial dataset. To fully evaluate the effectiveness in real-

world production scenarios, we collect monitoring metrics from var-

ious services (e.g., VPC, ELB, and RDS) in two availability zones

CHAPTER 5. ADAPTIVE AUTOML-BASED ANOMALY DETECTION 102

Table 5.1: Statistics of All Datasets

Dataset #Metrics #Points #Ratio

AIOps18 29 5922913 2.26%

Industry A 506 5100480 4.67%

Industry B 535 5392800 3.46%

(AZs) of a global cloud service provider X . These metrics, includ-

ing the service CPU usage, NIC throughput, received packets of load

balancers, etc., closely monitor the health status of services. For

each of these metrics, we collect one week of data with a sampling

interval of one minute. We rely on the corresponding issue reports

of performance anomalies, which contain the start and end times of

problems identified by on-site engineers or customers of an online

service, to label the data.

Implementation

We implement four widely used metric performance anomaly de-

tection methods by cloud system operators in our ADAMAS frame-

work. Table 5.2 shows the details of the algorithms and hyperparam-

eters. We run all the experiments on a Linux server with Intel Xeon

Gold 6140 CPU @ 2.30GHZ and Tesla V100 PCIe GPU. The pro-

posed model is implemented under the PyTorch and BoTorch [10]

framework and runs on the GPU. The value of γ corresponds to the

NFMK function and is set to 0.98, and the value of δ in MSC is 0.01.

Due to the policy of company X , we will release our data upon ac-

ceptance. Both the artifacts and data are available on https://github

.com/WenweiGu/ADAMAS.

Evaluation Metrics

The anomaly detection problem is modeled as a binary classification

problem, so the widely used binary classification measurements can

https://github.com/WenweiGu/ADAMAS
https://github.com/WenweiGu/ADAMAS

CHAPTER 5. ADAPTIVE AUTOML-BASED ANOMALY DETECTION 103

be applied to evaluate the models. We employ Precision: PC =
TP

TP+FP
, Recall: RC = TP

TP+FN
, F1 score: F1 = 2 · PC·RC

PC+RC
. Specif-

ically, TP is the number of abnormal samples the model correctly

discovered; FP is the number of normal samples incorrectly clas-

sified as anomalies; FN is the number of anomalous samples that

failed to be detected by the model. F1 score is the harmonic mean of

the precision and recall, which symmetrically represents both preci-

sion and recall in a metric.

In real-world applications, anomalies will last for a while, lead-

ing to consecutive anomalies in the monitoring metrics. Therefore,

it is acceptable for the model to trigger an alert for any point in a

contiguous anomaly segment if the delay is within the acceptable

range. Thus, we adopt the widely used evaluation strategy follow-

ing [7, 112, 182, 215, 230]. In practice, different monitoring metrics

have varying sampling frequencies, ranging from milliseconds (e.g.,

latency) to minutes (e.g., average load). Hence, to handle metrics

with different sampling intervals, we use the number of timestamps

rather than a fixed time interval. Particularly, the range is set to 10

timestamps based on the experiences of engineers.

5.4.2 RQ1: The Effectiveness of ADAMAS

To study the effectiveness of ADAMAS, we compare its perfor-

mance with various state-of-the-art baselines on a public dataset

and two industrial datasets collected from industry. These baselines

include (1) Traditional machine learning-based approaches, isola-

tion forest (IForest) [121] and ADSketch [25]; (2) Deep learning-

based approaches, DAGMM [255], VAE [215], LSTM [76, 242],

SCRNN [164] and Maat [103]; (3) AutoML-based approaches, Hy-

perband [107], AutoAD [160] and AutoKAD [230]. For a fair com-

parison, the models and the hyperparameter space of the Hyperband,

AutoAD, and AutoKAD are the same as ADAMAS.

The results are shown in Table 5.3, where the best F1 scores

CHAPTER 5. ADAPTIVE AUTOML-BASED ANOMALY DETECTION 104

Table 5.2: Implemented Algorithms and their hyperparameters

Algorithm Parameters Range

Autoencoder

encoding dimension 10∼50

hidden dimension 100∼200

decoding dimension 100∼200

VAE
hidden dimension 20∼200

latent dimension 10∼50

LSTM hidden dimension 50∼200

Transformer

hidden dimension 20∼500

head number 1∼8

layer number 1∼6

Common

window length 100∼300

batch size 128∼2048

learning rate 1−5 ∼ 1−2

are marked with boldface. We can see the average F1 score of

ADAMAS outperforms all baseline methods in three datasets. We

observe that the improvement of effectiveness achieved by ADAMAS

is more significant in two industrial datasets, especially on precision.

This is because modern large-scale cloud systems widely employ

microservices architectures [227] and possess the ability of fault

tolerance and self-healing [45], and some anomalies manifested in

monitoring metrics can be mitigated without intervention, which

is not considered as performance anomalies. Based on a random

sampling of 100 metrics from the datasets, software reliability engi-

neers manually analyzed these samples and determined that 28.7%

of the anomalies were data anomalies but not business anomalies.

These data anomalies are non-negligible due to their potential to

generate a significant number of false positives, which may dis-

tract the SREs. Through seamlessly incorporating human feedback,

ADAMAS drastically reduces the false positives that waste the hu-

man effort of engineers. We also notice that though ADAMAS

achieves near-perfect precision in both industrial datasets, there ex-

CHAPTER 5. ADAPTIVE AUTOML-BASED ANOMALY DETECTION 105

Table 5.3: Experimental Results of Different Anomaly Detection Methods

Methods
AIOps18 Dataset A Dataset B

Precision Recall F1 Precision Recall F1 Precision Recall F1

IForest 0.581 0.467 0.517 0.483 0.787 0.541 0.445 0.802 0.515

DAGMM 0.530 0.608 0.535 0.521 0.777 0.535 0.376 0.771 0.440

VAE 0.592 0.483 0.543 0.504 0.810 0.566 0.418 0.779 0.465

LSTM 0.598 0.706 0.530 0.621 0.730 0.638 0.534 0.726 0.553

ADSketch 0.744 0.670 0.677 0.691 0.732 0.658 0.583 0.745 0.618

Maat 0.753 0.687 0.692 0.595 0.818 0.656 0.568 0.856 0.641

SRCNN 0.741 0.656 0.674 0.619 0.707 0.640 0.597 0.756 0.636

Hyperband 0.836 0.647 0.732 0.640 0.743 0.673 0.615 0.764 0.683

AutoAD 0.798 0.665 0.710 0.611 0.784 0.662 0.539 0.848 0.614

AutoKAD 0.861 0.694 0.769 0.675 0.798 0.685 0.662 0.846 0.692

ADAMAS 0.975 0.763 0.848 0.997 0.832 0.897 0.998 0.878 0.929

Effect size 4.472 2.237 3.091 12.034 0.883 8.316 13.170 1.395 9.292

ists a few false positives in the AIOps18 dataset. The reason is that

we apply MSC in order to reduce the effort of human labeling, which

assigns all the metric patterns in a cluster with the same label. The

symptoms in the two industrial datasets are similar for the same

types of performance anomalies. In contrast, the AIOps18 dataset

may contain different types of performance issues that demonstrate

the same patterns, resulting in imperfect precision. However, we be-

lieve that ADAMAS will not introduce much burden on the cloud

operators as only 2.5% of the prediction results are false positives.

Furthermore, we find that the recall on two industrial datasets is con-

sistently higher compared with the AIOps18 dataset. We attribute

this phenomenon to the good monitoring mechanism established in

Company X that makes most of the performance anomalies percep-

tible through analysis of monitoring metrics. We also calculated

Cohen’s d to measure the effect size of the differences between our

approach and baselines.

In terms of baselines, we observe that AutoML-based baselines

typically achieve better results compared with others, consistent with

recent studies [160, 230]. This indicates that in cloud systems, there

is no golden algorithm that performs consistently best on all data

from various services, and we should employ AutoML to achieve

CHAPTER 5. ADAPTIVE AUTOML-BASED ANOMALY DETECTION 106

(a) Correlation of NFMK (b) Correlation of MSE

Figure 5.6: The correlation between two evaluation functions and F1 score

Table 5.4: Experimental Results of the Ablation Study

Methods
AIOps18 Dataset A Dataset B

Precision Recall F1 Precision Recall F1 Precision Recall F1

ADAMAS-OFF 0.843 0.741 0.778 0.728 0.793 0.730 0.715 0.845 0.751

ADAMAS-Jacob 0.956 0.715 0.813 0.972 0.753 0.857 0.976 0.813 0.870

ADAMAS-Snip 0.941 0.696 0.807 0.963 0.722 0.835 0.967 0.769 0.851

ADAMAS-Synflow 0.923 0.704 0.785 0.952 0.736 0.829 0.956 0.794 0.862

ADAMAS-F05 0.876 0.757 0.791 0.897 0.824 0.841 0.881 0.859 0.858

ADAMAS-F15 0.904 0.760 0.815 0.921 0.828 0.858 0.921 0.854 0.877

ADAMAS-F30 0.935 0.752 0.823 0.946 0.827 0.865 0.954 0.857 0.883

ADAMAS 0.975 0.763 0.848 0.997 0.832 0.897 0.998 0.878 0.929

better performance rather than rely on a single algorithm. Among

the machine learning-based and deep learning-based baselines, ADS-

ketch and Maat perform best across three datasets with average F1

scores of 0.647 and 0.663. Specifically, ADSketch detects perfor-

mance anomalies through pattern sketching, and Maat is based on

the denoising diffusion model that resists noisy data during the train-

ing phase, both achieving relatively good performance. However, all

these baselines purely mine the abnormal behaviors from the moni-

toring metrics without incorporating the crucial domain knowledge

from on-site engineers, resulting in suboptimal results.

CHAPTER 5. ADAPTIVE AUTOML-BASED ANOMALY DETECTION 107

5.4.3 RQ2: The Effectiveness of Each Components of ADAMAS

In this research question, we conduct an ablation study on ADAMAS

to show the effectiveness of its components. In particular, we derive

seven baseline models based on removing the feedback from MSC,

replacing the NFMK function with other widely used proxy func-

tions from the AutoML community, and replacing it with random

feedback. We further visualize the correlation between NFMK and

F1 score to demonstrate the contribution of our design.

• ADAMAS-OFF This baseline removes the human feedback pro-

vided by on-site engineers and the retraining of ADAMAS. We

merely utilize the model output by AutoML in the configuration

search phase to detect the anomalies.

• ADAMAS-Jacob, Snip, Synflow These three variants replace the

NFMK function with three widely used proxy functions, namely,

Jacob Covariant [143], Snip [106] and Synflow [187]. Specifically,

the original loss function value required by Snip is MSE loss in our

context.

• ADAMAS-F05, F15, F30 These three baselines randomly sample

5%, 15%, and 30% of the whole testing metric. Feedback on these

sampled metric segments is utilized.

Table 5.4 shows the experimental results of ADAMAS and its

variants. On one hand, we can observe performance drops when

replacing our NFMK function with other proxy functions. Among

these three proxies, Jacob Covariant performs the best. The assump-

tion behind Jacob Covariant is that a lower correlation indicates a

better network, which works well when the input data show vari-

ous anomaly patterns. However, it may fall short when the input

batch contains similar anomaly features. Another proxy, Snip, re-

quires the original loss function, which in our case is MSE loss. This

proxy metric approximates the loss change when a certain parameter

CHAPTER 5. ADAPTIVE AUTOML-BASED ANOMALY DETECTION 108

(a) Parameter Sensitivity of γ (b) Parameter Sensitivity of δ

Figure 5.7: Parameter Sensitivity of ADAMAS

is removed and encourages searching for the model with the lowest

loss. In our scenario, where training data may contain noise, mod-

els with low MSE can still be ineffective in differentiating anomaly

patterns. As a result, we can observe a significant drop on the recall.

Similarly, the Synflow function computes the loss as the product of

all parameters without requiring the original loss. However, it does

not inherently consider the specific pattern of input data. Generally

speaking, these proxies are not specially designed for anomaly de-

tection, and they neglect the unique characteristics of the task, thus

leading to unsatisfactory performance.

On the other hand, human feedback through MSC helps to im-

prove the effectiveness of ADAMAS as it performs the best com-

pared with the variants without feedback or with random feedback.

We observe that in the variant without human feedback, not only

does the precision drop markedly, but also the recall decreases a bit.

We attribute this to the design of retraining during the adaptive learn-

ing phase because the human-labeled evolving anomaly patterns are

utilized to update our searched model, enhancing its ability to cap-

ture unseen anomalies. Compared with the results in Table 5.3, we

find that even without human feedback, our method still outperforms

all the baselines, which shows the effectiveness of the design of our

configuration search phase. It should be noted that, according to

our experiments, the feedback ratio required by ADAMAS for three

CHAPTER 5. ADAPTIVE AUTOML-BASED ANOMALY DETECTION 109

datasets is 5.9%, 6.7%, and 4.3%, respectively. Compared to base-

lines with random feedback, ADAMAS can achieve higher perfor-

mance with less human feedback than utilizing even 30% feedback

of the whole metric, which demonstrates the effectiveness of our

design of the MSC algorithm, where anomaly patterns in the same

cluster will only be labeled by engineers once.

Our proposed NFMK function tries to fit the noise-free metric

patterns and prevent overfitting through a regularization term. To

demonstrate this, we visualize the correlation of the NFMK func-

tion versus the F1 score compared with MSE, shown in Fig. 5.6. For

the MSE function, we can observe a trend of decline in the correla-

tion when the MSE is small enough. This indicates the model over-

fits the metrics, i.e., it fits both the normal and anomalous pattern

well, resulting in a drop in performance. In fact, an effective perfor-

mance anomaly detection method generally reconstructs normal pat-

terns well while differentiating anomalies with high reconstruction

errors, while our NFMK function takes this into account. According

to our assumption, the smaller the NFMK function is, the better the

performance is. We can observe an obvious negative correlation be-

tween the NFMK function and the F1 score, which demonstrates the

effectiveness of the NFMK function as an estimator of the F1 score.

5.4.4 RQ3: Parameter Sensitivity of ADAMAS

In ADAMAS, there are only two parameters to tune, namely, the

threshold γ that determines the ratio of noise in the NFMK function

and δ that represents the radius of a new cluster in MSC. We hereon

evaluate the sensitivity of ADAMAS to these two parameters on two

industrial datasets. We change the value of γ and δ while keeping

all other parameters unchanged in our experiments to guarantee fair-

ness. Specifically, we choose the value of γ in the range from 0.95

to 0.99, while the value of δ is selected, ranging from 0.01 to 0.05.

Fig. 5.7 presents the experimental results, where we observe that

CHAPTER 5. ADAPTIVE AUTOML-BASED ANOMALY DETECTION 110

ADAMAS is relatively stable under different settings. Therefore,

ADAMAS exhibits robustness to these two parameters, eliminating

the need for meticulous parameter tuning. This aligns well with our

objective of sparing non-ML expert engineers’ effort in parameter

tuning. It should be noted that there is a consistent decline in perfor-

mance with the increase of the δ. This can be attributed to the fact

that when the radius of a new pattern becomes excessively large, it

results in numerous new anomalous patterns merging into a single

cluster. However, these patterns may not represent the same type of

performance anomaly, thus reducing the accuracy.

5.4.5 Case Study

Since October 2023, ADAMAS has been effectively incorporated

into the cloud service systems of Company X , a leading company

that provides cloud service to millions of users worldwide. ADAMAS

can be seamlessly integrated into the existing cloud monitoring data

analytics pipeline, such as Apache Kafka [25], InfluxDB [194], Data-

dog [68]. We focus on the deployment of ADAMAS in the Object

Storage Service (OBS), which is a scalable solution offering cloud

storage through a RESTful web services interface. Fig. 5.8 reflects

the feedback required by ADAMAS over a 25-week deployment pe-

riod, according to the weekly troubleshooting reports produced by

SREs. It can be observed that the required feedback experiences

a significant decrease after the initial week, thanks to our design

of MSC. Following a service update in the sixteenth week, new

anomaly patterns begin to emerge, resulting in an increase in re-

quired feedback. However, within a week, the required feedback

decreases to a relatively low level again, effectively reducing the

workload for SREs. Furthermore, we notice two drops in the ac-

cumulated false positives. This occurs due to our design of retrain-

ing when the accumulated false positives exceed a predetermined

threshold (0.6 in our normalized values), which makes ADAMAS

CHAPTER 5. ADAPTIVE AUTOML-BASED ANOMALY DETECTION 111

Figure 5.8: Industrial deployment in OBS service

adaptive to the evolving anomaly patterns of the cloud system.

Fig. 5.9 presents a case study illustrating how ADAMAS har-

nesses human feedback to minimize false positives. This example

focuses on a metric monitoring the data transfer rate within the OBS

provided by Company X . A transient spike in the metric may be at-

tributed to expected events like an influx in user requests or planned

data migration. These events are not typically categorized as per-

formance anomalies. On the contrary, a sudden dip to near zero in

the data transfer rate could suggest network congestion or service

malfunction, necessitating prompt troubleshooting. In this case, the

green areas highlight four false positives; nonetheless, only the first

anomaly pattern will undergo manual inspection by engineers, as

these four false positives share a similar pattern and would be clus-

tered together. When encountering a true performance anomaly, as

denoted by the red area, an alert will be triggered. Engineers can

then confirm that the service is experiencing performance degrada-

tion. When this anomaly pattern recurs again, engineers can rec-

ognize performance anomalies even without the effort of manually

checking. Thus, we posit that our design of ADAMAS can reduce

false positives and facilitate maintaining cloud systems.

CHAPTER 5. ADAPTIVE AUTOML-BASED ANOMALY DETECTION 112

5.5 Discussion

In this section, we discuss the reduction of human efforts with ADAMAS,

its overhead, and some potential threats to the validity.

5.5.1 The Reduction of Human Efforts

We give an estimation of how much time ADAMAS can reduce the

amount of human effort. The feedback ratio required by ADAMAS

for the three datasets is 5.9%, 6.7%, and 4.3%. Based on inter-

views with software engineers who routinely maintain the systems,

about 30% of data should be reviewed manually to maintain accu-

rate anomaly detection without ADAMAS. We estimate that without

ADAMAS, SREs should manually check approximately six times

the cases. According to the interview with SREs, each SRE typi-

cally checks around 100 anomalies per week and spends about 2-3

minutes per anomaly, amounting to approximately 4 hours per week

in total. ADAMAS can potentially reduce this effort to around 40

minutes. Thus, ADAMAS can reduce more than 3 hours of manual

effort for each SRE per week. We aim to gather more data to accu-

rately assess the exact time savings, which will be the focus of our

future work.

5.5.2 The overhead of ADAMAS

The execution time for ADAMAS mainly consists of three com-

ponents: the computation time for searching optimal configuration

(the most time-consuming one), the time spent by humans provid-

ing feedback, and the time required for clustering. According to

our investigation, when we search for 20 iterations and train each

model with 50 epochs, the average execution times on three datasets

for ADAMAS and Hyperband are 937s and 354s, respectively. It

should be noted that the efficiency can be enhanced when utilizing

the computational power available in cloud service systems. Fur-

CHAPTER 5. ADAPTIVE AUTOML-BASED ANOMALY DETECTION 113

Figure 5.9: Case Study in OBS service

thermore, since this phase is conducted offline, its impact on real-

time operations is insignificant. Thus, the overhead is affordable for

industrial deployment.

5.5.3 Threats to Validity

Internal threats. Implementing baselines constitutes one of the in-

ternal threats to our study’s validity. To address the threat of im-

plementation, we directly utilized the open-sourced code released

by the authors of the papers. As for our proposed approach, the

source code undergoes rigorous peer code review by the authors and

experienced engineers to minimize the risk of errors in our results.

To mitigate the parameter setting threat, we fine-tuned the baseline

methods utilizing a grid-search approach and derived the optimal re-

sults. To make our results reproducible, we have also made our code

and partial data available.

External threats. The external threats to the validity of our study

mainly lie in the generalizability of our experimental results. We

conduct experiments on large-scale cloud systems within a promi-

nent cloud service company. In addition to this, our approach is

also evaluated on a publicly available dataset containing monitoring

metrics from the web services of a large-scale IT company, further

CHAPTER 5. ADAPTIVE AUTOML-BASED ANOMALY DETECTION 114

expanding the scope of our evaluation. Therefore, we believe the

evaluation is representative and convincing, demonstrating that our

framework ADAMAS could be applied to typical cloud systems.

5.5.4 Limitations of ADAMAS

While ADAMAS demonstrates an advancement in adaptive anomaly

detection for cloud services, its design presents opportunities for fur-

ther research and enhancement. This section outlines two primary

limitations of the current framework and proposes corresponding di-

rections for future work.

A key limitation lies in the scope of the human-in-the-loop mech-

anism, which is primarily designed to address false positives. By

allowing engineers to validate flagged anomalies, ADAMAS effec-

tively reduces the noise from insignificant alerts. However, it cur-

rently lacks a proactive strategy for identifying false negatives—critical

anomalies that the model fails to detect. These missed events can

pose a greater risk to system reliability than false positives. A promis-

ing future direction is to enhance this feedback loop to also uncover

potential false negatives. This could be implemented by periodi-

cally sampling data points that, while classified as normal, receive a

high anomaly score from the model, placing them near the decision

boundary. Presenting these ambiguous, high-risk "normal" instances

to engineers for labeling would create a more comprehensive feed-

back system, allowing ADAMAS to learn from its under-sensitivity

and improve its recall over time.

A second area for future enhancement concerns the computa-

tional efficiency of the AutoML-based search process. In its cur-

rent form, ADAMAS evaluates each potential model configuration

by conducting a full training cycle, a process that can be resource-

intensive and time-consuming. This overhead may slow down the

framework’s ability to adapt in highly dynamic environments. To

address this, future work could focus on developing a more efficient

CHAPTER 5. ADAPTIVE AUTOML-BASED ANOMALY DETECTION 115

performance estimation strategy. One approach is to design a meta-

learning model that can predict the final performance of a given

hyperparameter configuration without requiring full model training,

perhaps by extrapolating from its initial learning curve. An alter-

native, complementary approach would be to perform the model

search on strategically sampled subsets of the data, thereby reducing

the cost of each evaluation. Success in this area would significantly

lower the computational barrier to adoption, making ADAMAS more

agile and cost-effective for continuous, real-time reconfiguration in

production cloud systems.

5.6 Conclusion

In this chapter, we propose ADAMAS, an adaptive AutoML-based

performance anomaly detection framework incorporated with do-

main knowledge. Specifically, ADAMAS consists of a configura-

tion search stage and a feedback-based Adaptive Learning stage. In

the first stage, a novel unsupervised evaluation function, NFMK, is

proposed to guide the configuration search. In the second stage,

we incorporate human feedback to differentiate true anomalies from

all predicted anomalies. A streaming metrics clustering algorithm,

MSC, is proposed to leverage the historical feedback from on-site

engineers to decrease the human effort. Furthermore, when the num-

ber of mispredicted anomalies exceeds a threshold, retraining will be

triggered to make our framework adaptive to evolving patterns due

to rapid software updates. Extensive experiments on a public dataset

and two industrial datasets show that ADAMAS achieves 0.891 F1-

Score on anomaly detection, outperforming all the baselines. Fur-

thermore, a case study demonstrates how ADAMAS is deployed into

the cloud service system of Company X .

2 End of chapter.

Chapter 6

Efficient KPI Root Cause

Localization

To ensure the reliability of cloud systems, their runtime status re-

flecting the service quality is periodically monitored with monitor-

ing metrics, i.e., KPIs (key performance indicators). When per-

formance issues happen, root cause localization pinpoints the spe-

cific KPIs that are responsible for the degradation of overall ser-

vice quality, facilitating prompt problem diagnosis and resolution.

To this end, existing methods generally locate root-cause KPIs by

identifying the KPIs that exhibit a similar anomalous trend to the

overall service performance. While straightforward, solely rely-

ing on the similarity calculation may be ineffective when dealing

with cloud systems with complicated interdependent services. Re-

cent deep learning-based methods offer improved performance by

modeling these intricate dependencies. However, their high com-

putational demand often hinders their ability to meet the efficiency

requirements of industrial applications. Furthermore, their lack of

interpretability further restricts their practicality. To overcome these

limitations, we propose KPIRoot, an effective and efficient method

for root cause localization integrating both advantages of similar-

ity analysis and causality analysis, where similarity measures the

trend alignment of KPI and causality measures the sequential order

of variation of KPI. Furthermore, we leverage symbolic aggregate

116

CHAPTER 6. EFFICIENT KPI ROOT CAUSE LOCALIZATION 117

approximation to produce a more compact representation for each

KPI, enhancing the overall analysis efficiency of the approach. The

experimental results show that KPIRoot outperforms seven state-of-

the-art baselines by 7.9%∼28.3%, while time cost is reduced by

56.9%. Moreover, we share our experience of deploying KPIRoot

in the production environment of a large-scale cloud provider Cloud

H1.

6.1 Introduction

Large-scale cloud systems, such as Microsoft Azure, Amazon Web

Services, and Google Cloud Platform, have revolutionized the com-

puting infrastructure landscape, providing scalable, flexible, and cost-

effective services to worldwide users on a 7 × 24 basis [117, 223].

However, the inherent complexity and scale of cloud service sys-

tems make performance issues (e.g., slow application response time,

service outages, and resource overload) an inevitability [100, 119],

which may lead to potential violations of Service Level Agreements

(SLAs), causing user dissatisfaction and financial losses [123]. Thus,

promptly identifying and resolving performance issues has become

a significant concern for both cloud vendors and users [126].

Cloud vendors usually collect real-time key performance indi-

cators (KPIs) to monitor the health status of their services [183].

Anomaly detection is conducted over these KPIs to identify perfor-

mance issues based on this KPI data [74, 245, 248]. For example,

if the resource utilization rate is continuously high, it may indicate

an imminent service overload and performance degradation. How-

ever, due to the scale of cloud systems, it is infeasible to analyze the

KPI of each instance (e.g., VM and container) individually. Since a

cloud service typically consists of many instances, a common way is

to monitor specific KPIs that can reflect the overall performance of

the service, e.g., latency, error count, and traffic, which we refer to

1Due to the company policy, we anonymize the name as CloudH.

CHAPTER 6. EFFICIENT KPI ROOT CAUSE LOCALIZATION 118

Figure 6.1: The Overall Pipeline of Root Cause Localization in CloudH

as alarm KPIs. Automated performance issue detection can thus be

realized through configuring alerting rules or performing anomaly

detection algorithms on such alarm KPIs. These underlying KPIs

of individual instances or VMs within a cloud service may not be

directly analyzed due to the scale of cloud systems. However, their

collective behavior significantly influences the alarm KPIs.

When a performance issue is detected (i.e., the alarm KPI is ab-

normal), it is crucial to identify the root cause (e.g., which underly-

ing instances cause the abnormal performance of the service). How-

ever, pinpointing the root cause is a non-trivial task since the mon-

itored alarm KPI is highly aggregated and often derived [218], i.e.,

the correlation between the underlying KPIs and the alarm KPI is

complicated and hard to understand. Even experienced software re-

liability engineers (SREs) can struggle to pinpoint the specific KPIs

that contribute to the root cause. Such a manual approach is like

finding a needle in a haystack, which is tedious and time-consuming.

Hence, the automated root cause localization method is an urgent re-

quirement for prompt performance issue resolution.

In particular, a practical root cause localization approach for KPIs

from cloud systems should meet the efficiency and interpretability

requirements [226]. Specifically, due to the huge volume of underly-

ing KPIs and the tight time-to-resolve pressure, the approach needs

to be able to process large amounts of data (e.g., thousands of KPIs)

efficiently (e.g., in seconds). Furthermore, the approach should pro-

CHAPTER 6. EFFICIENT KPI ROOT CAUSE LOCALIZATION 119

duce interpretable results to help engineers take effective remedy ac-

tions, which is essential in the maintenance of cloud systems. Exist-

ing root cause localization methods typically adopt statistics or deep

learning models. Statistic-based methods adopt Kendall, Spearman,

and Pearson correlation to compute the linear relationships between

KPIs and find the root cause [222]. However, these methods have

high computational costs to calculate the correlation for every KPI

pair and also suffer from low accuracy in handling complicated KPIs

from cloud systems [221]. Some recent studies [218] adopt deep

learning models (e.g., graph neural networks) to model the KPI rela-

tionships for root cause localization. However, such methods suffer

from high computation costs and lack interpretability [233, 235].

To address the above limitations, we propose KPIRoot, an ef-

fective and efficient root cause localization approach to identify the

root cause underlying KPIs when an anomaly in the monitored alarm

KPI is detected in cloud systems. To meet the efficiency require-

ment, KPIRoot first adopts the Symbolic Aggregate Approximation

(SAX) representation to downsample the time-series data of KPIs

and facilitate extracting the anomaly segments. Through filtering

out the normal KPI data, KPIRoot can focus on the anomaly pat-

terns instead of the whole time series, which greatly optimizes ef-

ficiency. Then, KPIRoot conducts both the similarity and causality

analysis to localize the root cause KPIs. Specifically, the underlying

KPIs with a high similarity of anomaly patterns to the alarm KPI

are more likely to trigger the alert and be the root causes. On the

other hand, causality analysis is used to validate the cause and effect

in the temporal dimension, i.e., the anomaly pattern of root cause

KPIs should happen before that of the alarm KPI. Finally, KPIRoot

combines the similarity and causality analysis results to produce a

correlation score for each underlying KPI. The higher the score, the

greater the possibility that the KPI is the root cause. The time com-

plexity of KPIRoot is O(√n) (n is the length of the KPIs), which

allows it to process thousands of KPIs in seconds, thus facilitating

CHAPTER 6. EFFICIENT KPI ROOT CAUSE LOCALIZATION 120

the resolution of real-time performance issues.

To evaluate the effectiveness of our proposed KPIRoot, we con-

ducted extensive experiments based on large-scale real-world KPI

data from a large cloud vendor. The experimental results demon-

strate that KPI can pinpoint root cause KPIs more accurately com-

pared with seven baselines with an F1-score of 0.850 and Hit Rate@10

of 0.917. On the other hand, KPIRoot largely reduces the computa-

tion cost with an execution time of around 5 seconds, which facili-

tates engineers in diagnosing root causes in real-time. In particular,

we have successfully deployed our approach in the cloud service

system of Cloud H since Nov 2022 and successfully localized the

true root cause of ten performance issues of emergency level with

100

We summarize the main contributions of this work as follows:

• We introduce KPIRoot, an effective and efficient method to local-

ize the underlying KPIs that cause the anomaly. KPIRoot adopts

the SAX representation for downsampling and combines both the

similarity and causality of anomaly patterns of KPIs to identify

the root cause. Such designs meet the practical requirements of

efficiency and interpretability, making KPIRoot feasible to be de-

ployed in large-scale cloud systems.

• Extensive experiments on three industrial datasets collected from

Cloud H’s large-scale cloud system demonstrate the effectiveness

of KPIRoot, i.e., 0.85 F1-score and 0.917 Hit@10 rate. The aver-

age execution time of KPIRoot is around 5 seconds, significantly

outperforming seven state-of-the-art baselines.

• We have successfully deployed KPIRoot into the troubleshooting

system of a large-scale cloud service system of Cloud H since

Nov 2022. It has successfully analyzed ten emerging performance

issues with 100% accuracy, and none of the issues affected the

customer. The success stories of our deployment confirm the ap-

plicability and effectiveness of our method.

CHAPTER 6. EFFICIENT KPI ROOT CAUSE LOCALIZATION 121

Figure 6.2: An Industrial Case in CloudH

6.2 Background and Motivation

In this section, we briefly introduce the KPI-based root cause anal-

ysis in cloud service systems and show the root cause localization

practice in a large-scale cloud service system of CloudH with a real

case.

6.2.1 KPI-based Root Cause Localization in Cloud Systems

Ensuring optimal performance and reliability in cloud systems is of

great importance. Performance anomalies like hardware malfunc-

tions, network overloads, and security violations can significantly

influence the performance of cloud systems and violate SLA [173].

Consequently, the need for run-time status and performance mon-

itoring of cloud systems is in demand. Key Performance Indica-

tors (KPIs) serve as informative tools that monitor the overall status

of various components of cloud systems [27], providing helpful in-

sights that aid in the identification of potential anomalies [180], and

even proactively predicting these performance issues before they es-

calate into catastrophic failures [190]. Some common KPIs in cloud

systems include CPU usage, memory usage, network bandwidth, la-

tency, error rates, and service QPS (queries per second).

The cloud service system has become increasingly huge in scale

and produces larger volumes of monitoring data. The highly inter-

CHAPTER 6. EFFICIENT KPI ROOT CAUSE LOCALIZATION 122

connected nature of cloud systems incurs problems that performance

failures can spread from one component to other components. Con-

sequently, the failure diagnosis, root cause localization, and perfor-

mance debugging in large cloud systems are more complex than be-

fore [163, 197]. In real-world applications, monitoring a large num-

ber of KPIs is computationally intensive, thus a more practical way

is monitoring the aggregated KPI and configuring alerts.

Specifically, in large-scale cloud service clusters, large amounts

of virtual machines (VMs) operate concurrently to provide tenants

with various services. A special KPI is the "alarm KPI" that trig-

gers alerts when a performance issue like an overload of CPU usage

in the entire cluster happens. In large-scale cloud systems, service

may consist of large amounts of VMs working together to respond to

cloud users’ demands [209]. Given the scale of these systems, indi-

vidual monitoring of each VM becomes infeasible. Instead, software

reliability engineers often utilize alarm KPIs as a more effective ap-

proach to oversee the overall performance of the service. When the

alarm KPI indicates abnormal activity, it becomes crucial to identify

which VMs are the root causes. The root cause refers to the specific

VMs that trigger the anomaly within the alarm KPI. For instance, if

the alarm KPI is triggered due to a fairly high CPU usage, the root

cause could be the particular VMs that directly cause the resource

overload. Such a setup allows for the proactive identification of per-

formance issues. In addition to the alarm KPI, other KPIs monitor

the bytes per second (bps) and packets per second (pps) of each VM

in the cluster [101]. These KPIs offer valuable insights into the data

traffic of each user, serving as indicators of their workload.

The overall pipeline of root cause localization using monitoring

KPI in Cloud H is shown in Fig.6.1. Cloud service providers typi-

cally have many data centers spread across different regions. Each

region consists of multiple, isolated locations known as availability

zones to ensure low latency and high availability [93]. Users can

create their VMs in any region that best fits their needs. Then, the

CHAPTER 6. EFFICIENT KPI ROOT CAUSE LOCALIZATION 123

Figure 6.3: The Overview of Our Proposed Method KPIRoot

behavior of both the host CPU cluster and the VMs is continuously

monitored and recorded through KPIs, including CPU usage, mem-

ory usage, and netflow throughput. Next, KPI correlation analysis

is conducted to understand the dependencies between each VM and

the host cluster. Based on the KPI correlation analysis, mitigation

strategies such as VM migration or throttling are enacted to allevi-

ate the overload in the system. In our paper, we focus on the third

and most significant part, namely root cause analysis, and propose

KPIRoot.

6.2.2 A Motivating Example

In a cloud system, there exist intrinsic correlations between the KPIs

of individual VMs and the alarm KPI [52], which is a crucial part

of RCA. Take the CPU usage in cloud systems as an example, the

correlation is based on the fundamental principle of resource allo-

cation within a cloud system that each VM is allocated a portion

of the cluster’s resources like CPU [31]. When a VM’s workload

increases, it consumes more CPU resources, thereby affecting the

overall CPU usage. However, the relationship between the KPIs of

individual VMs and the overall CPU usage of the cluster is com-

plex and non-linear [196]. This complexity is due to the sophis-

CHAPTER 6. EFFICIENT KPI ROOT CAUSE LOCALIZATION 124

ticated architecture of modern cloud systems and the principles of

resource allocation they employ. In other words, these mechanisms

ensure that the resource usage of one VM does not significantly im-

pact others, thereby preventing a single VM from monopolizing the

CPU [252]. Thus, the bulge of the workload KPI of a single VM

does not necessarily lead to alarm KPI trigger alerts.

To effectively identify the root cause of performance anomaly, we

capture the correlations between the VM KPIs and the alarm KPI

that depicts the contribution of VMs to the detected performance

anomaly. This correlation often manifests in a similar waveform be-

tween the VM’s KPIs and the alarm KPI. For example, a sudden

surge in a VM’s data traffic would likely lead to an increased de-

mand for CPU resources, which would be reflected as a spike in the

KPI of the cluster’s CPU usage [13]. The KPI correlation analysis

approach aiming to mine the inherent correlations in KPI data can

be leveraged to pinpoint the root causes of system alerts. In our

case, similarity and causality analysis are adopted. Firstly, similar-

ity analysis allows us to identify which VMs are behaving similarly

to the overall system’s performance, as reflected by the alarm KPI.

Therefore, similarity analysis can help narrow down the potential

root causes of the anomaly. Secondly, causality analysis is critical

as it allows us to determine which changes in VM KPIs occurred be-

fore the anomaly, thus providing clues as to which VMs might have

triggered the anomaly.

An industrial case in a real-world cloud system cluster of Cloud

H is shown in Fig.6.2. There is an alarm KPI monitoring the overall

CPU usage of the cluster, and several VM KPIs monitoring the net-

work traffic of individual VMs. For the purpose of discussion, we

focus on four of the VM KPIs. We can observe that the waveforms

of VM2 and VM4 have weak alignments with the fluctuations in the

alarm KPI, indicating a lower correlation, and thus are unlikely to be

significant contributors to the CPU overload. The KPI of VM1 and

VM3 exhibit a high degree of similarity to the alarm KPI, indicating

CHAPTER 6. EFFICIENT KPI ROOT CAUSE LOCALIZATION 125

they are potential root causes for the anomaly. However, to ascertain

the true root cause of the CPU overload, time series causality, i.e.,

chronological order of events should also be taken into considera-

tion. As confirmed by the SREs, it is VM1, not VM3, which is the

true root cause of the CPU overload. This is because the spike in

VM1’s KPI precedes the CPU overload anomaly, while the spike in

VM3’s KPI happens slightly after the anomaly, indicating that it is

an outcome, not a cause of the anomaly. Indeed, in a cloud system,

a VM’s increase in resource consumption usually precedes the CPU

overload due to temporal causality, which is why we take temporal

causality into consideration in our method.

6.3 METHODOLOGY

In this section, we present KPIRoot, an automated approach for root

cause localization with monitoring KPIs in cloud systems. We first

formulate the problem we target. Then we provide an overview

of the proposed method. Next, we elaborate on each part of our

method, i.e., anomaly segment detection, similarity analysis, and

causality analysis. We finally analyze the complexity of our pro-

posed algorithm.

6.3.1 Problem Formulation

The goal of our work is to identify the root causes of performance

anomalies like CPU overload in large-scale cloud systems, based on

the alarm KPI and observed individual KPIs. The root causes are

the VMs that influence the system service quality. By throttling the

throughput of these VMs, we can alleviate the system-level anomaly

and restore service quality. Given the alarm KPI that monitors the

status of the host cluster Xhost ∈ Rn and the monitored KPIs of

VMs, e.g., the netflow of them Xi ∈ Rn, i ∈ {1, 2, ...,m}, where N
denotes the number of observations collected at an equal interval and

CHAPTER 6. EFFICIENT KPI ROOT CAUSE LOCALIZATION 126

m is the number of monitored VMs. To determine the true root cause

of the detected anomaly, a correlation score ci ∈ [0, 1] that represents

the contribution of a VM KPI to the anomaly is calculated. Then the

root causes can be obtained by ranking the correlation score and

KPIs with the top K scores are deemed as root causes.

6.3.2 Overview

The overview of KPIRoot is shown in Fig.6.3, which consists of

three key components, namely, anomaly segment detection, similar-

ity analysis, and causality analysis. Given the raw monitoring KPI,

to make the RCA more efficient and meet the real-time requirement

of industrial deployment, we propose to adopt SAX representation

to downsample the raw KPI. Then KPIRoot detects the potential

anomaly segments in the downsampled alarm KPI of the host cluster

(Section.6.3.3). In this step, a score that describes the variation trend

of KPI will be computed, an anomaly segment will automatically ex-

tracted around the spike. Then KPIRoot conducts a similarity anal-

ysis to compute the similarity between VM KPIs and the alarm KPI

during the anomaly period (Section.6.3.4). This analysis provides

insights into how each VM influences the host cluster by measuring

the alignment of the KPI trends. A causality analysis is then con-

ducted (Section.6.3.5) to identify the cause-and-effect between the

VM KPIs and the alarm KPI. In our case, we utilize Granger causal-

ity. The results from the similarity and causality analyses are then

combined to compute a correlation score for each KPI.

6.3.3 Anomaly Segment Detection

To make KPIRoot efficient and meet the industrial requirement of

real-time identification, we propose to adopt Symbolic Aggregate

Approximation (SAX) [116]. SAX has several advantages in KPI

analysis: First, SAX allows for a significant reduction in the dimen-

sion of the raw KPI, which can make subsequent similarity compu-

CHAPTER 6. EFFICIENT KPI ROOT CAUSE LOCALIZATION 127

Figure 6.4: An Illustration of SAX Representation

tation more efficient [147]. Second, SAX can effectively filter out

the noise and highlight the significant patterns in the KPIs by aggre-

gating several consecutive data points into a single "symbol" [170].

Specifically, the raw KPI x of length n will be represented as a w-

dimensional vector P = {p1, p2, ..., pw}, where the jth element can

be calculated as follows:

pi =
w

n

n

w
i∑

j= n

w
(i−1)+1

xj (6.1)

In other words, to reduce the dimension of KPI from n to w, the

KPI is divided into w equal-sized subsequences. The mean value of

the subsequence is calculated and a vector of these values becomes

the Piecewise Aggregate Approximation (PAA) representation [55].

Indeed, PAA representation is intuitive and simple, yet shows an ap-

proximate performance compared with more sophisticated dimen-

sion reduction representations like Fourier transforms and wavelet

transforms [116]. Before converting it to the PAA, we normalize

each KPI to have a mean of zero and a standard deviation of one.

In the industrial scenario, a fixed threshold method (e.g., CPU

usage higher than 80%) is commonly used to detect system resource

CHAPTER 6. EFFICIENT KPI ROOT CAUSE LOCALIZATION 128

usage anomalies. However, fixed thresholds can be limiting as they

do not adapt to changes in the system’s behavior over time. Typ-

ically, an anomaly refers to a state where the system’s resources,

such as CPU, memory, or network bandwidth, are being utilized at

their maximum capacity and will cause performance issues for the

system. However, in a dynamic cloud system, at which threshold

an anomaly occurs can shift. Specifically, during periods of low

demand, a sudden spike in resource usage might be considered an

anomaly. However, during peak demand periods, the system might

be designed to handle much higher resource usage, thus the same us-

age level would not be considered an anomaly. Furthermore, the in-

dividual preferences of engineers make the setting of universally ac-

ceptable static thresholds complex. What might be a suitable thresh-

old for one engineer could be too high or too low for another, leading

to potential issues being overlooked or an excessive number of false

alarms [244].

Technically, anomaly segment detection can be formulated as a

spike detection problem. By detecting an uprush in workload, the

early warning of potential system anomaly can be identified and root

cause localization will be enabled. A score that describes the varia-

tion trend of a KPI is computed as follows:

ri =

∑i+l−1
k=i pk∑i−1
j=i−l pj

(6.2)

where l denotes the historical lags taken into consideration. If the

value ri is greater than a large threshold γ, it suggests that the usage

of resources as indicated by the KPI starts to undergo a spike and

we denote the start point of overload as ts. Once the KPI value

drops below the value of ts, it signifies that the overload ends; the

endpoint of the overload is denoted as te. In other words, xte < xts
and xte−1 > xts.

Our approach allows for the detection of anomaly segments by

CHAPTER 6. EFFICIENT KPI ROOT CAUSE LOCALIZATION 129

considering the variation trend of KPI, effectively marking the be-

ginning and endpoint of anomaly segments. This can be a particu-

larly beneficial preprocess step for subsequent correlation analysis.

6.3.4 Similarity Analysis

Motivated by [221], we propose to compute the similarity of the

alarm KPI and VM KPIs to measure the degree of the root cause.

The intuition behind this is that if a VM is responsible for triggering

an overload, its KPI should exhibit a significant similarity with the

host cluster’s KPI, especially during periods of overload. If a VM is

indeed the root cause of an overload, it is expected that its resource

usage pattern would reflect the pattern of the host resource usage.

Although there exist some approaches that can be used to calcu-

late the similarity of monitoring KPIs, such as AID [221], HALO [238],

and CMMD [218], however, in real-time cloud computing systems,

timely root cause localization is paramount. Traditional algorithms

such as Dynamic Time Warping (DTW) might not be suitable for

such scenarios due to their high time complexity, which can be pro-

hibitive for processing large volumes of data in a real-time manner.

Thus we transform the KPIs into symbolic sequences and then

compute the similarity between these sequences using the Jaccard

similarity coefficient. To obtain the discrete representation with

symbols, a discretization technique that will produce symbols with

equal probability is desired. As proved by [116], the normalized

KPIs have nearly Gaussian distributions. It’s easy to pick equal-

sized areas under the Gaussian distribution curve using lookup tables

for the cut line coordinates, slicing the under-the-Gaussian-curve

area. Suppose we have α symbols in the SAX representation, then

the breakpoints refer to a sort of numbers β = {β1, β2, ..., βα} such

that the area under normalized Gaussian distribution curve between

βi to βi+1 is equal to 1
α

. The PAA representation element in Sec-

tion.6.3.3 between βi to βi+1 will be assigned with the ith symbol

CHAPTER 6. EFFICIENT KPI ROOT CAUSE LOCALIZATION 130

shown as follows:

si = alphabetl, if βl f pi f βl+1 (6.3)

where, alphabeti denotes the ith symbol and si denotes the ith ele-

ment of the SAX representation S. An example of SAX representa-

tion of a monitoring KPI with w = 20, α = 9 is shown in Fig.6.4.

We adopt the Jaccard similarity coefficient rather than other sim-

ilarity measures because of its advantages when dealing with sym-

bolic sequences like the SAX representation [67]. Moreover, Jac-

card similarity is easy to compute and can effectively capture the

similarity between two symbolic sequences regardless of their lengths.

This makes it very suitable for our case, where the lengths of the

symbolic sequences could vary. Then, the Jaccard similarity can be

computed as follows:

Jaccard(Shost, Si) =
|Shost ∩ Si|
|Shost ∪ Si|

(6.4)

where Shost is the SAX representation of the host cluster’s KPI and

Si is the SAX representation of individual VM KPI Xi.

6.3.5 Causality Analysis

The Symbolic Aggregate Approximation (SAX) method is effective

in reducing the dimension of raw KPI, however, the computation of

SAX representation-based similarity does not provide any insights

into the causality between VM KPIs and alarm KPIs. As mentioned

by [142], the ability of Granger causality analysis to analyze the

correlation between KPIs can be a key factor for improving the ac-

curacy of the root cause localization. By using Granger Causality in

conjunction with SAX representation, we can not only analyze large

CHAPTER 6. EFFICIENT KPI ROOT CAUSE LOCALIZATION 131

quantities of time series data effectively but also gain insights into

the potential causality between different KPIs. That is why we take

Granger Causality [178] as a supplement.

Granger Causality is a statistical hypothesis test used to deter-

mine if one KPI is useful in forecasting another KPI [6]. For in-

stance, if a VM KPI undergoes an uprush and causes the alarm KPI

to trigger alerts, i.e., the change in the VM KPI precedes the changes

in the alarm KPI, then Granger causality exists from the alarm KPI

to the VM KPI. It should be noted that Granger Causality is unidi-

rectional, which means that if VM KPI Granger causes alarm KPI,

it does not imply that alarm KPI Granger causes VM KPI. In our

case, we are interested in understanding how VM KPIs influence

the alarm KPI of the host cluster, so we focus on the Granger causal-

ity from the VM KPIs to the alarm KPI. Specifically, assuming that

the two KPIs can be well described by Gaussian autoregressive pro-

cesses, the autoregression (AR) of alarm KPI without and with in-

formation from VM KPI can be written as follows:

ptalarm = â0 +

q∑

j=1

âjp
t−j
alarm + ε̂t (6.5)

ptalarm = a0 +

q∑

j=1

ajp
t−j
alarm +

q∑

j=1

bjp
t−j
i + εt (6.6)

where the first equation uses the past values of the PAA represen-

tation of host KPI Xhost while the second includes the past values

of the PAA representation of both Xhost and Xvm. Furthermore, âj
is the autoregression coefficients for Xhost, while aj and bj are the

autoregression coefficients for Xhost with the contribution of both

Xhost and Xvm’s historical values. Both ε̂t and εt are residual terms

assumed to be Gaussian and q is model order which represents the

CHAPTER 6. EFFICIENT KPI ROOT CAUSE LOCALIZATION 132

amount of past information that will be included in the prediction of

the future sample. Then we conduct the F-statistic test:

Fvm→host =

∑te
t=ts+q(ε̂

2
t − ε2t)/q∑te

t=ts+q ε
2
t/(te − ts − 2q − 1)

(6.7)

where ε̂2t and ε2t represent the mean square error (MSE) of the AR

model of host KPI without and with information from VM KPI. ts
and te are the start point and end point of the detected overload. The

F-statistic test follows an F-distribution with q and te − ts − 2p− 1
degrees of freedom under the null hypothesis that the VM KPI does

not Granger-cause the host KPI. The calculated F-statistic can be a

good indicator of the VM KPI Granger-causality to the host KPI.

After both the similarity and causality analyses are performed,

KPIRoot combines these two scores to create a more comprehen-

sive correlation score for each VM KPI. Specifically, the correlation

score is a weighted sum of similarity score and causality score:

ci = λ× Jaccard(Shost, Si) + (1− λ)× Fvm→host (6.8)

where ci is the correlation score between the ith VM KPI and the

alarm KPI. The balance weight λ is a hyperparameter. In our exper-

iments, this parameter is set to be 0.9.

6.3.6 Complexity Analysis

The proposed method KPIRoot is summarized in Algorithm.2. The

computation of our method mainly lies in the similarity and causality

analysis. In industrial practice, w ≈ √n, which means the lengths

of SAX representation of KPIs are roughly
√
n. So, the time com-

plexity of obtaining SAX representation is O(√n). On one hand,

the time complexity of Jaccard similarity is directly proportional to

CHAPTER 6. EFFICIENT KPI ROOT CAUSE LOCALIZATION 133

Algorithm 2: KPI Root Cause Localization

Require: The alarm KPI of the host Xalarm; The KPIs of VMs

Xi, i ∈ {1, 2, ...,m};
Ensure: The correlation scores of VM KPIs that correlate to the anomaly of

alarm KPI ci
1: for i = 1; i f w; i++ do

2: pialarm = w
n

∑ n
w
i

j= n
w
(i−1)+1 x

j
alarm

3: end for

4: // Anomaly Segment Detection

5: ts = {t|rt =
∑t+l−1

k=t
pk
alarm∑t−1

j=t−l
pj
alarm

> γ}
6: te = {min(t)|pte < pts and pte−1 > pts}
7: palarm = palarm[ts : te]
8: sialarm = {alphabetl, s.t. βl f pialarm f βl+1}

9: for i = 1; i f m; i++ do

10: // Similarity Analysis

11: for k = 1; k < m; k ++ do

12: pki =
w
n

∑ n
w
k

j= n
w
(k−1)+1 x

k
i

13: pi = pi[ts : te]
14: ski = {alphabetl, s.t. βl f pki f βl+1}

15: end for

16: Jaccard(Shost, Si) =
|Shost∩Si|
|Shost∪Si|

17: // Causality Analysis

18: for t = ts + q; t < te; t++ do

19: ptalarm = â0 +
∑q

j=1 âjp
t−j
alarm + ε̂t

20: ptalarm = a0 +
∑q

j=1 ajp
t−j
alarm +

∑q
j=1 bjp

t−j
i + εt

21: end for

22: Fvm→host =
∑te

t=ts+q(ε̂
2
t−ε2t)/q

∑te
t=ts+q ε

2
t /(te−ts−2q−1)

23: ci = λ× Jaccard(Shost, Si) + (1− λ)× Fvm→host

24: end for

25: return ci

CHAPTER 6. EFFICIENT KPI ROOT CAUSE LOCALIZATION 134

the KPI length, so the complexity of similarity analysis is O(√n).
On the other hand, the complexity of Granger causality mainly de-

pends on the autoregression of Phost, which is O(√n × q3), where

q is the time lag of Granger causality (usually very small). Thus,

the complexity of KPIRoot is O(√n× (q3 + 2)). As a comparison,

the time efficiency of methods like AID (based on DTW) is O(n2),
let alone more complex deep learning-based methods like CMMD.

Therefore, KPIRoot is a more suitable method for industrial appli-

cations that demand real-time root cause localization.

6.4 EVALUATION

To fully evaluate the effectiveness of our proposed approach, KPI-

Root, we use three real-world monitoring KPI datasets from the

cloud service systems of Cloud H. Particularly, we aim to answer

the following research questions (RQs):

• RQ1: How effective is KPIRoot compared with KPI root cause

localization baselines?

• RQ2: How effective is each component of KPIRoot in root cause

localization?

• RQ3: How efficient is KPIRoot in localizing root cause KPIs com-

pared to baselines?

Table 6.1: Statistics of Industrial Dataset

Industrial Dataset A Dataset B Dataset C

Host Clusters 16 6 7

VM Number 120∼803 21∼26 41∼57

KPI Length 5,928,480 17,040 37,200

Root Causes 4∼36 3∼8 2∼15

CHAPTER 6. EFFICIENT KPI ROOT CAUSE LOCALIZATION 135

6.4.1 Experiment Setting

Datasets

To confirm the practical significance of KPIRoot, we collect three

datasets from large-scale online services in three Available Zones

(AZs) of Cloud H. The statistics of three industrial datasets are

shown in Table 6.1. Various VM KPIs and alarm KPIs monitor the

status of the service. The VM KPIs typically measure the healthy

status of each VM, including resource usage metrics like CPU, mem-

ory, I/O, and bandwidth usage. The alarm KPI monitors the runtime

status at the host cluster level, which is usually positively corre-

lated to the VM KPIs. Both the artifacts and data are available on

https://github.com/WenweiGu/KPIRoot.

Evaluation Metrics

In the following experiments, the F1-score is utilized to evaluate

the performance of root cause localization results. We employ Pre-

cision: PC = TP
TP+FP

, Recall: RC = TP
TP+FN

, F1 score: F1 =

2 · PC·RC
PC+RC

. To be specific, TP is the number of correctly localized

VM KPIs; FP is the number of incorrectly predicted VM KPIs;

FN is the number of root cause VM KPIs that failed to be predicted

by the model. F1 score is the harmonic mean of the precision and

recall. In real-world applications, since the number of root cause

KPIs is unknown, software engineers will first investigate top k rec-

ommended results by root cause localization methods. Hit Rate@k

is a widely used metric to measure whether the correct root causes

(in our case, the root cause VM KPIs) are within the recommended

top k results. We adopt Hit Rate@5 and Hit Rate@10 as evaluation

metrics in our experiments.

https://github.com/WenweiGu/KPIRoot

CHAPTER 6. EFFICIENT KPI ROOT CAUSE LOCALIZATION 136

6.4.2 Experimental Results

RQ1 The effectiveness of KPIRoot

To answer this research question, we compare the performance of

KPIRoot with three statistical correlation measurements based meth-

ods, namely, Kendall correlation, Spearman correlation, and Cloud-

Scout [222], a DTW distance-based method AID [221], a graph

centrality-based method LOUD [141], a conditional entropy-based

method HALO [238] and a graph neural network based method

CMMD [218]. The results are shown in Table 6.2, where the best

F1 scores, Hit@5 and Hit@10 are all marked with boldface, while

the second-best results are underlined. We can see that the average

F1 scores, Hit@5 and Hit@10 of KPIRoot outperform all baseline

methods in three datasets. In Dataset B and Dataset C, we can ob-

serve that the improvement achieved by KPIRoot is more significant

than in Dataset A. This is because Dataset B and Dataset C focus on

KPIs (e.g., requests rate) related to the load balancer that manages

the distribution of network traffic across physical machines, which

makes the VM request rate anomalies inherently precede host clus-

ter anomalies. It should be noted that, as indicated in Table 6.2,

the number of root causes is often larger than 5. Therefore, not

all root causes can be captured within the top 5 predictions. Given

this, achieving Hit@5 scores of over 70% is significant enough, as

it means our method is correctly identifying a large portion of the

root causes within just the top 5 predictions. Furthermore, we ob-

serve that the F1 score and Hit@10 are high enough for industrial

application, further demonstrating their effectiveness.

We can observe that baseline models like Kendall, Spearman,

CloudScout, and AID have worse performance. These coefficient-

based methods fundamentally measure the similarity between the

shape of KPIs. However, high similarity does not necessarily imply

causality because a high similarity can occur due to a shared under-

lying cause, rather than one KPI directly influencing another KPI.

CHAPTER 6. EFFICIENT KPI ROOT CAUSE LOCALIZATION 137

Though CMMD has the ability to capture complex, nonlinear rela-

tionships between KPIs through graph attention neural networks and

achieves a Hit@10 of 0.801∼0.848, it still falls short of considering

the causality between VM KPIs and the host cluster KPI. HALO

computes the conditional entropy between VM KPIs and the host

KPI, which somehow alleviates the defect of neglecting the causality

between KPIs. In contrast, our method incorporates both the simi-

larity analysis through SAX representation similarity and causality

analysis through the Granger causality test, leading to better root

cause localization accuracy. The LOUD method applies graph cen-

trality to pinpoint the root causes of issues. However, the way in

which the graph is constructed can significantly impact the results.

As a result, the LOUD method fails to deliver optimal performance,

making it less effective in accurately identifying the root causes of

problems in our context.

Table 6.2: Experimental Results of Different Root Cause Localization Methods

Methods
Dataset A Dataset B Dataset C

F1 Score Hit@5 Hit@10 F1 Score Hit@5 Hit@10 F1 Score Hit@5 Hit@10

Kendall 0.651 0.562 0.728 0.605 0.594 0.770 0.657 0.635 0.727

Spearman 0.681 0.587 0.753 0.619 0.591 0.737 0.681 0.598 0.715

CloudScout 0.699 0.612 0.788 0.673 0.607 0.772 0.715 0.612 0.706

LOUD 0.736 0.652 0.813 0.736 0.625 0.824 0.709 0.653 0.829

AID 0.746 0.652 0.749 0.673 0.618 0.794 0.665 0.613 0.729

HALO 0.734 0.651 0.842 0.632 0.569 0.811 0.719 0.635 0.789

CMMD 0.776 0.632 0.833 0.679 0.594 0.848 0.721 0.667 0.801

KPIRoot 0.859 0.731 0.909 0.860 0.749 0.946 0.829 0.713 0.895

RQ2 The effectiveness of components in KPIRoot

To answer this research question, we conducted an ablation study on

KPIRoot. Particularly, we compare two baseline models, removing

the similarity and causality analysis part of KPIRoot to investigate

the contribution of these two designs.

• KPIRoot w/o Similarity This baseline is a variant of KPIRoot that

calculates the correlation score between KPIs merely based on the

CHAPTER 6. EFFICIENT KPI ROOT CAUSE LOCALIZATION 138

Granger causality test.

• KPIRoot w/o Causality This baseline removes the causality anal-

ysis part and computes the correlation score based on the SAX

representation similarity.

Table 6.3 shows the performance comparison between KPIRoot

and its variants. In summary, the effectiveness of KPIRoot is en-

hanced with the utilization of similarity analysis and causality anal-

ysis, with the former making a more significant contribution. In-

deed, the variant without the Granger causality test is better than

all correlation coefficient-based methods. SAX representation cap-

tures the shape and trends in the data, rather than just the raw values,

which is less sensitive to noise. Thus it allows for the detection of

patterns that could be missed by other methods that focus only on

pointwise correlations. In contrast, Pearson, Kendall, and Spearman

correlations are susceptible to noise because they perform pointwise

calculations. As such, outliers within the KPIs can have a signifi-

cant impact on the results of the correlation coefficients. The vari-

ants without SAX representation similarity can still yield relatively

satisfactory performance because Granger causality predicts the fu-

ture values of a KPI based on its own past and the past of another

KPI, which makes it powerful for identifying the potential causal re-

lationships between two KPIs. While the Granger causality test may

not capture the comprehensive and complex relationships between

KPIs, it is still effective for identifying potential causality thus pro-

viding valuable insights for root cause analysis.

Table 6.3: Experimental Results of the Ablation Study of KPIRoot

Methods
Dataset A Dataset B Dataset C

F1 Score Hit@5 Hit@10 F1 Score Hit@5 Hit@10 F1 Score Hit@5 Hit@10

KPIRoot w/o Similarity 0.735 0.646 0.797 0.709 0.694 0.777 0.659 0.627 0.780

KPIRoot w/o Causality 0.801 0.694 0.858 0.748 0.706 0.869 0.731 0.675 0.823

KPIRoot 0.859 0.731 0.909 0.860 0.749 0.946 0.829 0.713 0.895

CHAPTER 6. EFFICIENT KPI ROOT CAUSE LOCALIZATION 139

Figure 6.5: Root Cause Localization Time for All Methods

RQ3 The efficiency of KPIRoot

In this section, we evaluate the efficiency of KPIRoot in large-scale

cloud systems of CloudH. The average running time of each method

is shown in Fig. 6.5, from which we can observe that KPIRoot is the

most efficient with an average execution time of around only 5 sec-

onds, which suggests that KPIRoot is capable of providing real-time

root cause analysis, meeting the requirements of large-scale cloud

systems where timely identification of root causes is critical. The

observed result is aligned with the time complexity analysis detailed

in Section 6.3.6. As for methods like AID and CMMD, their perfor-

mances are less than satisfactory due to their inherent computational

complexities. AID, with its time complexity of O(n2), suffers from

an average runtime of more than one hundred seconds. On the other

hand, CMMD, which applies graph attention neural networks, re-

quires high computational resources, which also leads to a slower

execution time and makes it less efficient. Therefore, both AID and

CMMD fail to deliver the desired levels of efficiency, particularly in

large-scale, real-time environments. Baseline methods like Kendall

and Spearman may seem appealing due to their lower computation

times. However, these apparent gains are offset by their inferior ac-

curacy levels. As a result, their use can lead to inaccurate root-cause

diagnoses and subsequently ineffective problem-solving solutions.

In summary, the evaluation results highlight KPIRoot’s superior-

CHAPTER 6. EFFICIENT KPI ROOT CAUSE LOCALIZATION 140

ity in terms of both efficiency and accuracy, which makes KPIRoot

a highly promising tool for conducting real-time root cause analysis

within large-scale cloud systems.

6.5 Industrial Experience

In this section, we share our experience of deploying KPIRoot in

the cloud system of CloudH, a full-stack cloud system that consists

of an infrastructure layer, a platform layer, and an application layer.

To support a large number of customers, each of our services is sup-

ported by multiple clusters with tens of hundreds of virtual instances

(e.g., virtual router) or devices. The collective workload of each

cluster is continuously monitored using an alarm KPI. When abnor-

mal traffic impacts these services, for instance, due to overwhelming

requests overloading a service, an anomaly is swiftly detected based

on the alarm KPI. This triggers a root cause analysis procedure to

pinpoint the specific nodes (e.g., VMs) and take prompt mitigating

actions. In our previous practice, manual inspection is feasible given

the limited scale of each cluster. So, we can check each specific KPI

of the node, compare it with the alarm KPI (with similarity compar-

ison tools), and find the root cause. However, this process proved to

be error-prone and labor-intensive, particularly as the scale of each

service expanded. On average, it took between thirty minutes to one

hour to identify and mitigate the root causes.

To alleviate these issues, we have deployed KPIRoot in Cloud

H since Nov 2022. Specifically, KPIRoot operates by automatically

fetching KPIs collected from the monitoring backends and applying

the algorithm to calculate the correlation score in real time. Using

KPIRoot, the potential root causes are returned to engineers. In addi-

tion, visualization tools are provided, making it easier for engineers

to understand the system’s behavior and performance.

In Fig. 6.6, we demonstrate the practical application of the root

cause analysis tool KPIRoot in real industrial scenarios. While our

CHAPTER 6. EFFICIENT KPI ROOT CAUSE LOCALIZATION 141

Figure 6.6: Case Study of KPIRoot

system may encompass tens to hundreds of KPIs, as outlined in Ta-

ble 6.1, for the sake of conciseness, we showcase only two KPIs in

this illustration. In this case, we initially received an alert indicating

that the overall traffic for the host cluster had abruptly surpassed the

predefined threshold. This requires immediate measures to pinpoint

the root cause and throttle its throughput to avoid resource exhaus-

tion within the cluster. However, this is quite challenging given the

large number of KPIs needed to check, and the root-cause KPI may

not be readily identifiable visually, as its shape similarity may not

correspond directly with the alarm KPI. Given that, the root cause

analysis takes tens of minutes to one hour to check manually, lead-

ing to delayed mitigation of the sudden traffic spike. With KPIRoot,

the root cause of KPI can be quickly localized, generally within five

minutes. With this result, we throttle the throughput of VM1 im-

mediately after the alarm KPI is fired. As shown in Figure 6.6, the

overall traffic is limited, and the alarm KPI returns back to a normal

range quickly.

KPIRoot has been deployed in all major regions of our com-

CHAPTER 6. EFFICIENT KPI ROOT CAUSE LOCALIZATION 142

pany, covering eighteen critical network services, e.g., Linux Virtual

Server (LVS), NGINX, Network Address Translation (NAT), and

DNS services. It has been serving in our production environment

for more than ten months, reducing the average root cause localiza-

tion time from 30 minutes to 5 minutes. Following the deployment

of the KPIRoot service, the feedback from engineers has been over-

whelmingly positive. In terms of computational efficiency, KPIRoot

has reduced the computational load significantly compared to previ-

ous methods. The system can perform real-time RCA, identifying

potential issues quickly and allowing engineers to take immediate

action. In terms of accuracy, KPIRoot’s design of combining simi-

larity and causality analysis has proven highly precise in identifying

root causes. This leads to more effective problem resolution and

significantly reduced revenue loss.

6.6 Discussion

In this section, we discuss the difference between our approach and

existing root cause analysis approaches for microservice systems

and why they are not applicable in our industrial scenario. Besides,

we discuss the influence of SAX representation in KPIRoot. Finally,

we identified some potential threats to the validity of our study.

6.6.1 Root Cause Analysis for Microservice System

Our objective shares some similarities with root cause analysis in

microservice systems, however, there are several main differences

in terms of the application scenarios. Firstly, rather than localiz-

ing the root causes of application/service failures in microservice

systems, where these applications are at the same level, our prob-

lem is top-down root localization. When we observe an anomaly

at the system level, we investigate and analyze the underlying VM

instance-level information. Secondly, due to VM isolation, each VM

CHAPTER 6. EFFICIENT KPI ROOT CAUSE LOCALIZATION 143

instance operates independently and is isolated from other VMs and

the host system. This leads to sparse or even non-existent invoca-

tion dependency among them, making the construction of a service

dependency graph as done in existing works very challenging.

Existing Methods like FRL-MFPG [21] and ServiceRank [134]

rely on the construction of a service dependency graph and the ex-

ecution of a second-order random walk, which can become highly

time-consuming with complexity exceeding O(n2). As for HRLHF [200],

the large graph size makes causal discovery computationally inten-

sive. Furthermore, the delay incurred by waiting for engineers to

provide human feedback poses an additional obstacle for real-time

localization. However, the analysis delay should be less than the

sampling interval, e.g., 1 minute in our practical scenarios, making

these methods unsuitable for industrial deployment.

6.6.2 The Influence of SAX Representation

The anomaly segment detection serves as a precursor to root cause

localization and may influence the subsequent task. Since SAX rep-

resentation is a downsampling method, it may induce the omission

of the original KPI information. However, the alarm KPI is carefully

selected by experienced engineers based on their experience. These

KPIs typically exhibit distinct anomaly patterns when system-level

issues occur, making them highly reliable system health indicators,

even if SAX may cause some content of information loss. Given the

detected anomalies in alarm KPIs, our target is to find the VMs caus-

ing performance anomalies, which should also have obvious patterns

in the VM KPI. So the SAX representation has little influence on the

localization part.

6.6.3 Threats to Validity

We have identified the following potential threats to the validity of

our study:

CHAPTER 6. EFFICIENT KPI ROOT CAUSE LOCALIZATION 144

Internal threats. The implementation of baselines and parame-

ter settings constitutes one of the internal threats to our work’s va-

lidity. To mitigate these threats, we utilized the open-sourced code

released by the authors of the papers or packages on GitHub for all

baselines. As for our proposed approach, the source code has been

reviewed meticulously by the authors, as well as several experienced

software engineers, to minimize the risk of errors and increase the

overall confidence in our results. For parameter settings, as our algo-

rithm KPIRoot has few parameters, we find the most suitable config-

urations based on the best results obtained in different parameters.

External threats. Our experiments are conducted based on real-

world datasets collected from Cloud H over more than two years.

The evaluation requires engineers to inspect and label the root cause

KPIs manually. Label noises are inevitable during the manual la-

beling process. However, alleviation strategies taken by engineers

further ensure the accuracy of labeled root causes. Therefore, we

believe the amount of noise is small and does not have a significant

impact on the experiment results. On the other hand, the results may

vary between different cloud service providers, industries, or spe-

cific use cases. Nevertheless, we believe that our experimental re-

sults, obtained from large-scale online systems within a prominent

cloud service company serving millions of users, can demonstrate

the generality and effectiveness of our proposed approach, KPIRoot.

6.6.4 Limitations of KPIRoot

While KPIRoot demonstrates state-of-the-art performance and prac-

tical utility in localizing root causes, its current design presents sev-

eral avenues for future improvement. This section details two key

limitations and proposes corresponding enhancements to broaden its

applicability and accuracy.

First, the current efficacy of KPIRoot is primarily centered on

performance issues that manifest as trend variations, where root-

CHAPTER 6. EFFICIENT KPI ROOT CAUSE LOCALIZATION 145

cause KPIs exhibit anomalous trends similar to the overall service

KPI. However, performance degradation in complex cloud systems

can arise from various anomaly types, such as sudden spikes, tran-

sient glitches, or shifts in data variance, which may not present as

clear correlative trends. This focus implicitly limits KPIRoot’s abil-

ity to diagnose issues whose root causes have a different morpho-

logical signature. A significant direction for future work is to de-

couple anomaly detection from the core root cause analysis logic.

This could be achieved by integrating a more comprehensive, multi-

pattern anomaly detection module to identify a broader spectrum of

anomalous behaviors across all KPIs. The similarity and causality

analysis of KPIRoot could then be applied specifically to this pre-

filtered set of anomalous KPIs, making the entire framework more

robust and versatile in handling diverse, real-world failure scenarios.

Second, a limitation arises from the information compression in-

herent in the SAX representation. While SAX effectively improves

computational efficiency by converting a time-series segment into a

single symbol, it discards the sub-window dynamics. For instance,

two KPI segments might be assigned the same high-value symbol,

but one could be on a sharp upward trajectory while the other is de-

clining. This loss of intra-window trend information can be critical

for precise causality assessment. To address this, a promising future

enhancement is to enrich the symbolic representation itself. We pro-

pose augmenting the standard SAX alphabet with a secondary set of

symbols that explicitly encode the intra-window trend e.g., increas-

ing, decreasing, or stable. This dual-component symbolic represen-

tation would provide a more nuanced input to the causality analysis

module, potentially improving localization accuracy without fully

sacrificing the significant efficiency gains afforded by the symbolic

approach.

CHAPTER 6. EFFICIENT KPI ROOT CAUSE LOCALIZATION 146

6.7 CONCLUSION

In this chapter, we propose KPIRoot, an effective and efficient frame-

work for root cause analysis in practical cloud systems with monitor-

ing KPIs. Specifically, KPIRoot integrates the strength of similarity

analysis and causality analysis, offering a more comprehensive cor-

relation evaluation of KPI, thus enhancing the accuracy of root cause

localization. Additionally, the utilization of SAX representation of

KPI significantly improves the efficiency of the method. Extensive

experiments on three industrial datasets show that KPIRoot achieves

0.850 F1-Score and 0.916 Hit@10 with the highest efficiency, out-

performing all the baselines. Moreover, the successful deployment

of our approach in large-scale industrial applications further demon-

strates its practicality.

2 End of chapter.

Chapter 7

Conclusion and Future Work

7.1 Conclusion

Cloud systems play a crucial role in supporting daily activities by of-

fering scalable and accessible computing resources, making their re-

liability essential for ensuring seamless and uninterrupted services.

However, achieving high reliability in these systems is challenging

due to their vast scale and inherent complexity. This thesis explores

our research efforts to tackle these challenges, presenting innova-

tive approaches and solutions designed to enhance the reliability of

cloud systems in the face of increasing demands and complex archi-

tectures.

In chapter 4, we address the critical challenge of identifying per-

formance issues in cloud systems, which are often comprised of var-

ious components like microservices that can lead to service-level

agreement violations and financial losses. Traditional methods, which

focus on independent analysis of metrics, fail to account for com-

plex dependencies among components. While some graph neural

network-based approaches consider temporal and relational infor-

mation, they struggle to detect correlation violations in metrics that

indicate underlying issues. Additionally, the vast volume of compo-

nents results in a myriad of noisy metrics, complicating engineers’

ability to accurately identify performance issues. To overcome these

limitations, we propose ISOLATE, a learning-based approach that

147

CHAPTER 7. CONCLUSION AND FUTURE WORK 148

harnesses relational and temporal features of metrics to pinpoint per-

formance issues. ISOLATE employs a graph neural network with

attention to characterize metric relations and utilizes a GRU and a

convolution network to extract long-term and multi-scale temporal

patterns. The approach also incorporates a positive unlabeled learn-

ing strategy to mitigate noisy data impact by tagging pseudo labels

from confirmed negative examples. Our extensive evaluation reveals

ISOLATE’s superior performance, achieving a 0.945 F1-score and

0.920 Hit rate@3, and its practical success in identifying perfor-

mance issues in Huawei Cloud underscores its effectiveness.

In chapter 5, we tackle the challenge of practical anomaly detec-

tion in cloud systems, where traditional methods struggle to detect

diverse and evolving anomalies across services and fail to bridge

the gap between technical and business interpretations of anoma-

lies. To address these issues, we introduce ADAMAS, an adap-

tive AutoML-based framework designed to enhance anomaly detec-

tion capabilities in production environments. ADAMAS features

a novel unsupervised evaluation function to optimize model struc-

ture and parameters for cross-service anomaly detection and inte-

grates a lightweight human-in-the-loop design to incorporate expert

knowledge, adapting to evolving anomaly patterns while connect-

ing predicted anomalies to actual business exceptions. By moni-

toring misprediction rates, ADAMAS dynamically reconfigures its

optimal model, establishing a continuous improvement loop. Eval-

uations show ADAMAS’s superiority over baseline models with a

0.891 F1-score, and the ablation study confirms the effectiveness of

its evaluation function and expert knowledge integration.

In chapter 6, we confront the challenge of root cause localiza-

tion in cloud systems, essential for diagnosing and resolving perfor-

mance issues efficiently. Existing methods typically focus on identi-

fying KPIs with trends similar to overall service performance, which

is insufficient for systems with complex interdependent services.

Although deep learning-based approaches offer improved modeling

CHAPTER 7. CONCLUSION AND FUTURE WORK 149

of dependencies, they suffer from high computational demands and

lack interpretability. To address these limitations, we propose KPI-

Root, a method integrating similarity analysis and causality analysis

for effective root cause localization. KPIRoot measures trend align-

ment and sequential variation order of KPIs, leveraging symbolic

aggregate approximation for compact KPI representation, enhanc-

ing efficiency. Our experimental results demonstrate KPIRoot’s su-

periority, outperforming seven state-of-the-art baselines by 7.9% to

28.3%, while reducing time cost by 56.9%. The deployment of KPI-

Root in Huawei Cloud showcases its practical efficacy in large-scale

production environments.

7.2 Future Work

Ensuring the reliability of software systems is a significant task. This

thesis primarily focuses on enhancing the reliability management

of large-scale cloud systems. As large language models (LLMs)

are reshaping the world and gaining significant traction in various

industries, new research problems and challenges arise in the era of

LLMs. My future work focuses on enhancing the reliability of LLM

systems.

Large language models (LLMs) have emerged as epochal tech-

nologies, with recent advancements significantly enhancing their ca-

pabilities [84]. These models have demonstrated remarkable po-

tential across various domains, including machine translation, con-

versational agents, and even AIOps-related tasks, such as log pars-

ing [85]. The scaling law [91] dictates that model size and training

data size are critical factors that determine the model’s capability.

Consequently, there has been a rapid increase in dataset sizes and

the number of parameters in LLMs, i.e., with trillions of parameters

on trillions of tokens. For example, the GPT-4 model [1] demon-

strates this growth with its 1.8T parameters. Training LLMs with

such huge sizes is a daunting task, requiring distributed model train-

CHAPTER 7. CONCLUSION AND FUTURE WORK 150

ing on large-scale GPU clusters. It involves a huge amount of com-

putation, communication, and storage resources, as well as software

support for the training tasks. Consequently, the possibility of task

failures can be high. According to the experience of ByteDance [36],

the economic loss for a customer can reach more than $ 1,700 in

a 128-machine task lasting 40 minutes. If the training process is

frequently interrupted by such faults, operating expenses and time

costs will increase significantly, which will cause customer dissatis-

faction. Thus, the reliability of LLM training systems is crucial, and

there is a critical need for intelligent monitoring and diagnosis for

LLM training systems.

To improve the reliability of LLM training systems, we will fo-

cus on predicting failures of high-bandwidth memory as our future

work.

7.2.1 Failure Prediction of High-bandwidth Memory in LLM

Training Platforms

With the emergence of large language models (LLMs), e.g., GPT-

4 and LLaMA, there has been a considerable increase in the scale

of ultra-massive datasets, leading to a growing demand for rapid

computation [95]. There is an exponentially growing trend of AI ac-

celerators, e.g.,, neural-network processing units (NPU), that focus

on increasing computing performance [105]. However, the growing

exponent for GPUs or NPUs is substantially larger than that for dy-

namic random-access memories (DRAMs) [46]. Thus, the latency

of data movement between memory and AI accelerators is becoming

the bottleneck in large-scale AI model training [92]. The increasing

gap between the computing power and the memory bandwidth is

known as the memory wall, especially in modern LLM training sys-

tems [211]. Recently, high-bandwidth memory (HBM) has gained

tremendous attention as a promising solution to alleviate memory

bottlenecks fundamentally [95, 185, 232] and has established itself

CHAPTER 7. CONCLUSION AND FUTURE WORK 151

Figure 7.1: Examples of Bank-level Failure Patterns

as the memory solution for LLM training.

In modern LLM training systems, hardware failures, especially

memory failures, are among the most significant reasons for train-

ing job crashes or slowdowns [14, 28, 40, 43, 213, 236]. Unfortu-

nately, due to its stacking structure, HBMs not only exhibit the er-

rors of DRAM but also suffer from new errors, e.g., TSV faults [8,

151]. Besides, conventional error correction codes (ECC) are insuf-

ficient to correct malfunctions of sub-wordline drivers (SWDs) in

HBMs [149], a primary cause of errors, making HBM even more

vulnerable to unexpected errors. Thus, it is of great significance to

proactively predict HBM failures to ensure the reliability of the high-

performance computing platform that serves for AI model training.

As an initial exploration, we have conducted an empirical study

to understand the characteristics of HBMs in the LLM training plat-

form, especially in the sudden uncorrectable error required action

(UER), the bank-level failure pattern, and the locality of UER rows,

which motivates a preliminary method design.

Sudden UER Ratio. As described in the literature [228, 229],

there are two types of UERs: sudden UERs, which result from

component malfunctions that immediately corrupt data, and non-

sudden UERs, which are predictable and initially appear as CEs and

UEOs but evolve into UERs over time. Sudden UERs are typically

considered unpredictable, meaning existing in-row failure predic-

tion frameworks cannot effectively address them. In Table 7.1, we

present the ratio of sudden UERs observed in an industrial dataset,

CHAPTER 7. CONCLUSION AND FUTURE WORK 152

Figure 7.2: Bank Failure Pattern Distribution

Table 7.1: In-row Predictable Ratio of UERs

Micro-level Sudden UER Non-sudden UER Predictable Ratio

NPU 243 175 41.86%

HBM 246 175 41.56%

SID 260 180 40.91%

PS-CH 311 185 37.29%

BG 434 252 36.73%

Bank 760 314 29.23%

Row 4980 229 4.39%

which includes more than 10,000 NPUs and 80,000 HBMs. Our

analysis reveals that the behavior of sudden UERs in HBMs is markedly

different from that of traditional DDR4 and DDR5 memory systems.

Specifically, the ratio of sudden UERs increases drastically as we

move from the NPU level to the row level, with sudden row UERs

accounting for more than 95% of all UERs. This underscores the

limitations of existing in-row prediction methods, rendering them

impractical for managing sudden UERs at the row level.

Bank-Level Failure Patterns. Our empirical analysis has iden-

tified several distinct failure patterns at the bank level: double-row

clustering pattern (including half total-row clustering), single-row

clustering pattern, scattered pattern, and a special case of scattered

pattern known as the whole column pattern with the error dispread

CHAPTER 7. CONCLUSION AND FUTURE WORK 153

Figure 7.3: Statistic Significance of Difference Distance Thresholds

in nearly all the rows. Figure 7.1 illustrates examples of these fail-

ure patterns. The single-row clustering pattern, comprising 68.2% of

observed UER banks, is characterized by errors concentrated within

a contiguous, narrow area, facilitating easier failure prediction due

to its spatial locality. Double-row clustering, which includes the

half total-row clustering variant, accounts for 9.9% of UERs. This

pattern features two clusters of UERs with a consistent interval be-

tween them, making prediction manageable by leveraging the pre-

dictable spacing between clusters. The scattered pattern is more

complex, with UERs distributed irregularly across the bank, rep-

resenting 12.5% of UERs. Within this category, column failure—a

special case where UERs appear across all rows of a column—accounts

for 7.3%. This pervasive distribution necessitates bank-sparing tech-

niques, as the unpredictable nature of errors complicates row-level

failure mitigation.

Our analysis of the industrial dataset, as depicted in Figure 7.2,

reveals that while scattered patterns pose challenges, the prevalence

of aggregation patterns (78.1% combined) indicates that cross-row

failure prediction remains feasible for the majority of cases. This in-

sight underscores the practical applicability of targeted prediction

strategies in managing memory failures within high-performance

computing systems.

CHAPTER 7. CONCLUSION AND FUTURE WORK 154

Figure 7.4: The Overview of Our Proposed Method Cordial

Locality of Cross-row UER. Since the single-row clustering pat-

tern is characterized by UERs concentrated within a narrow and

contiguous area, this spatial concentration can be advantageous for

cross-row UER prediction, as it suggests that subsequent UERs are

likely to occur in the vicinity of the existing UER row. Thus, we ex-

plore the locality of cross-row UERs to determine the effective range

within which predictions can be made. To quantify this locality,

we compute the chi-square statistic of subsequent UERs occurring

within various row distance thresholds from the current UER row.

These thresholds range from 4 to 2048 rows. Our analysis indicates

that the strongest statistical significance is achieved at a threshold

of 128 rows, as shown in Figure 7.3. This suggests that predicting

UERs within a 128-row range is both manageable and effective, en-

abling us to focus our prediction efforts and redundant resources on

the most likely areas for subsequent UERs.

Based on insights from our empirical study, we propose the Cross-

row Failure Prediction Method Based on Bank-level Error Locality

(Cordial). Cordial is designed to predict failures in a cross-row man-

ner, effectively addressing the limitations of existing in-row predic-

tion methods.

The overall workflow of Cordial is illustrated in Figure 7.4, which

consists of three stages: failure pattern feature extraction, failure

pattern classification and cross-row failure prediction. We first col-

lect the raw error log from the baseboard management controller

CHAPTER 7. CONCLUSION AND FUTURE WORK 155

Table 7.2: Performance of Different Failure Prediction Methods

Methods Precision Recall F1 Score ICR (%)

Neighbor Rows 0.322 0.393 0.347 13.31%

Cordial-LGBM 0.642 0.504 0.563 18.60%

Cordial-XGB 0.732 0.509 0.591 18.87%

Cordial-DT 0.806 0.580 0.662 19.58%

(BMC) and then generate a set of spatial and temporal features (e.g.,

the average row difference between two successive UER rows) with

all CEs, UEOs and the first three UERs for each bank. Then, we

use the generated features to train tree-based predictors and output

the failure pattern of the current bank. We finally utilize the cross-

row UER predictors to anticipate whether there are UER rows in the

neighboring rows for aggregation patterns and conduct isolation for

these predicted error rows. Otherwise, all banks with scattered row

patterns will be isolated directly.

7.2.2 Preliminary Evaluation Results

The preliminary experimental result is shown in Table 7.2. As previ-

ously mentioned, the sudden UER ratio can reach as high as 95.61%

at the row level, indicating that existing methods are ideally capable

of predicting only 4.39% of UERs. Therefore, to ensure a fair com-

parison, we benchmark our approach against an industrial baseline.

This baseline method isolates the eight rows adjacent to an identified

UER row, aiming to prevent further propagation of errors within the

immediate vicinity. Compared to this baseline, our method demon-

strates significantly improved performance across various metrics,

including weighted precision, recall, and F1 score of all prediction

blocks, as well as in practical industrial evaluation metrics such as

Isolation Coverage Rate (ICR), which is shown in Table 7.2. No-

tably, the strong performance of Random Forest aligns with the re-

CHAPTER 7. CONCLUSION AND FUTURE WORK 156

sults of the failure pattern classification, reinforcing its effective-

ness. Though our method achieves a 19.58% isolation coverage rate

due to the inherent randomness of UER rows that adds complex-

ity to the problem, it is substantially higher compared to traditional

in-row failure prediction (19.58% over 4.39%). This randomness

underscores the challenge of accurately predicting failure patterns,

yet our framework’s intelligent block selection strategy effectively

addresses these difficulties. By adopting our new paradigm of cross-

row failure prediction, we believe industries can achieve more robust

and proactive management of memory failures, ultimately improv-

ing system stability and performance.

7.2.3 Limitations of Our Preliminary Approach

We further recognize three main limitations of our preliminary method,

Cordial, which we will address accordingly in our future work:

• First, in Cordial, the bank group information is not leveraged.

However, our observations indicate that, in cases of multi-bank

error HBM, there is a significant correlation between bank-

level failure patterns and error rows across different banks within

the same bank group. This information could enhance both

failure pattern prediction and row-level failure prediction. To

address this limitation, we propose incorporating bank group-

related features into the prediction model, which allows for

a more precise identification of error patterns across related

banks.

• Second, Cordial relies on block-level prediction, which can be

overly coarse-grained. The resource cost to isolate potential

error rows can significantly exceed that of directly predicting a

single block that encompasses the true UER. We propose lever-

aging a temporal-spatial regressor instead of a multi-block clas-

sification approach. This method would refine the prediction

CHAPTER 7. CONCLUSION AND FUTURE WORK 157

granularity, reducing unnecessary isolation of non-error rows

and optimizing resource usage.

• Third, the block size used in Cordial’s prediction is fixed. How-

ever, the potential range for covering errors can vary with dif-

ferent patterns, and this inflexibility can affect prediction accu-

racy and increase the isolation resource budget. To address this,

we suggest developing a dynamic block sizing mechanism that

adapts to different error patterns, thereby improving prediction

accuracy and optimizing resource allocation for isolation.

2 End of chapter.

Chapter 8

List of Publications

1. Wenwei Gu, Jiazhen Gu, Renyi Zhong, Wenyu Zhang, Ming

Li and Michael R. Lyu. “Cordial: Cross-row Failure Prediction

Method Based on Bank-level Error Locality for HBMs.” In

Proceedings of the 55th IEEE/IFIP International Conference

on Dependable Systems and Networks (DSN 2025), Industry

Track.

2. Zhihan Jiang, Rui Ren, Guangba Yu, Yulun Wu, Wenwei Gu,

Yichen Li, Yujie Huang, Cong Feng, Zengyin Yang, Yongqiang

Yang and Michael R. Lyu. “LLMPrism: Black-box Perfor-

mance Diagnosis for Production LLM Training Platforms.” In

Proceedings of the 55th IEEE/IFIP International Conference

on Dependable Systems and Networks (DSN 2025), Industry

Track.

3. Renyi Zhong, Yichen Li, Jinxi Kuang, Wenwei Gu, Yintong

Huo, and Michael R. Lyu. “LogUpdater: Automated Detec-

tion and Repair of Specific Defects in Logging Statements.” In

ACM Transactions on Software Engineering and Methodology

(TOSEM).

4. Wenwei Gu, Jiazhen Gu, Jinyang Liu, Zhuangbin Chen, Jian-

ping Zhang, Jinxi Kuang, Cong Feng, Yongqiang Yang and

Michael R. Lyu. “ADAMAS: Adaptive Domain-Aware Per-

158

CHAPTER 8. LIST OF PUBLICATIONS 159

formance Anomaly Detection in Cloud Service Systems.” In

Proceedings of the 47th IEEE/ACM International Conference

on Software Engineering (ICSE 2025).

5. Wenwei Gu, Jinyang Liu, Zhuangbin Chen, Jianping Zhang,

Yuxin Su, Jiazhen Gu, Cong feng, Zengyin Yang, Yongqiang

Yang and Michael R. Lyu. “Identifying Performance Issues

in Cloud Service Systems Based on Relational-Temporal Fea-

tures.” In ACM Transactions on Software Engineering and

Methodology (TOSEM), Volume 34, Issue 3.

6. Wenwei Gu, Xinying Sun, Jinyang Liu, Yintong Huo, Zhuang-

bin Chen, Jianping Zhang, Jiazhen Gu, Yongqiang Yang and

Michael R. Lyu. “KPIRoot: Efficient Monitoring Metric-based

Root Cause Localization in Large-scale Cloud Systems.” In

Proceedings of the 35th International Symposium on Software

Reliability Engineering (ISSRE 2024).

7. Jianping Zhang, Wenwei Gu, Yizhan Huang, Zhihan Jiang, Weibin

Wu and Michael R. Lyu. “Curvature-Invariant Adversarial At-

tacks for 3D Point Clouds.” In Proceedings of the 39th AAAI

Conference on Artificial Intelligence (AAAI 2024).

8. Yun Peng, Shuqing Li, Wenwei Gu, Yichen Li, Wenxuan Wang,

Cuiyun Gao and Michael R. Lyu. “Revisiting, Benchmark-

ing and Exploring API Recommendation: How Far Are We?”

In IEEE Transactions on Software Engineering (TSE), Volume

49, Issue 4.

Chapter 4 is an adapted reprint of the publication “Identifying

Performance Issues in Cloud Service Systems Based on Relational-

Temporal Features.” that was published in the ACM Transactions on

Software Engineering and Methodology Volume 34, Issue 3 (TOSEM).

The thesis author is the primary author of this publication. This

is a joint work with Jinyang Liu, Jianping Zhang, Jiazhen Gu, and

CHAPTER 8. LIST OF PUBLICATIONS 160

Michael R. Lyu from The Chinese University of Hong Kong. Ad-

ditionally, Zhuangbin Chen and Yuxin Su from the School of Soft-

ware Engineering, Sun Yat-sen University, also played a significant

role. The collaboration extends to Cong Feng, Zengyin Yang, and

Yongqiang Yang from the Computing and Networking Innovation

Lab at Huawei Cloud Computing Technology Co., Ltd.

Chapter 5 is an adapted reprint of the publication “ADAMAS:

Adaptive Domain-Aware Performance Anomaly Detection in Cloud

Service Systems.” that was published in the IEEE/ACM 47th In-

ternational Conference on Software Engineering (ICSE 2025). The

thesis author is the primary author of this publication. This is a joint

work with Jiazhen Gu, Jinyang Liu, Jianping Zhang, Jinxi Kuang,

and Michael R. Lyu from The Chinese University of Hong Kong.

Additionally, Zhuangbin Chen from the School of Software Engi-

neering, Sun Yat-sen University, also played a significant role. The

collaboration extends to Cong Feng and Yongqiang Yang from the

Computing and Networking Innovation Lab at Huawei Cloud Com-

puting Technology Co., Ltd.

Chapter 6 is an adapted reprint of the publication “KPIRoot: Ef-

ficient Monitoring Metric-based Root Cause Localization in Large-

scale Cloud Systems.” that was published in the 35th International

Symposium on Software Reliability Engineering (ISSRE 2024). The

thesis author is the primary author of this publication. This is a joint

work with Jinyang Liu, Yintong Huo, Jianping Zhang, Jiazhen Gu,

and Michael R. Lyu from The Chinese University of Hong Kong.

Additionally, Zhuangbin Chen from the School of Software Engi-

neering, Sun Yat-sen University, also played a significant role. The

collaboration extends to Xinying Sun and Yongqiang Yang from the

Computing and Networking Innovation Lab at Huawei Cloud Com-

puting Technology Co., Ltd.

2 End of chapter.

Bibliography

[1] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya,

F. L. Aleman, D. Almeida, J. Altenschmidt, S. Altman,

S. Anadkat, et al. Gpt-4 technical report. arXiv preprint

arXiv:2303.08774, 2023.

[2] S. Agarwal, S. Chakraborty, S. Garg, S. Bisht, C. Jain,

A. Gonuguntla, and S. Saini. Outage-watch: Early predic-

tion of outages using extreme event regularizer. In Proceed-

ings of the 31st ACM Joint European Software Engineering

Conference and Symposium on the Foundations of Software

Engineering, pages 682–694, 2023.

[3] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. Op-

tuna: A next-generation hyperparameter optimization frame-

work. In Proceedings of the 25th ACM SIGKDD international

conference on knowledge discovery & data mining, pages

2623–2631, 2019.

[4] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu,

and M. Zhang. {CherryPick}: Adaptively unearthing the best

cloud configurations for big data analytics. In 14th USENIX

Symposium on Networked Systems Design and Implementa-

tion (NSDI 17), pages 469–482, 2017.

[5] Y. Amannejad, D. Krishnamurthy, and B. Far. Detecting per-

formance interference in cloud-based web services. In 2015

IFIP/IEEE International Symposium on Integrated Network

Management (IM), pages 423–431. IEEE, 2015.

161

BIBLIOGRAPHY 162

[6] A. Arnold, Y. Liu, and N. Abe. Temporal causal modeling

with graphical granger methods. In Proceedings of the 13th

ACM SIGKDD international conference on Knowledge dis-

covery and data mining, pages 66–75, 2007.

[7] J. Audibert, P. Michiardi, F. Guyard, S. Marti, and M. A. Zu-

luaga. Usad: Unsupervised anomaly detection on multivariate

time series. In Proceedings of the 26th ACM SIGKDD Inter-

national Conference on Knowledge Discovery & Data Mining

(KDD), pages 3395–3404, 2020.

[8] K. Bae and J. Park. Efficient tsv fault detection scheme for

high bandwidth memory using pattern analysis. In 2020 In-

ternational SoC Design Conference (ISOCC), pages 19–20.

IEEE, 2020.

[9] M. Bahri, F. Salutari, A. Putina, and M. Sozio. Automl: state

of the art with a focus on anomaly detection, challenges, and

research directions. International Journal of Data Science

and Analytics, 14(2):113–126, 2022.

[10] M. Balandat, B. Karrer, D. Jiang, S. Daulton, B. Letham,

A. G. Wilson, and E. Bakshy. Botorch: A framework for effi-

cient monte-carlo bayesian optimization. Advances in neural

information processing systems, 33:21524–21538, 2020.

[11] M. S. Bali and S. Khurana. Effect of latency on network and

end user domains in cloud computing. In 2013 International

Conference on Green Computing, Communication and Con-

servation of Energy (ICGCE), pages 777–782. IEEE, 2013.

[12] S. Belakaria, A. Deshwal, and J. R. Doppa. Max-value en-

tropy search for multi-objective bayesian optimization. Ad-

vances in neural information processing systems, 32, 2019.

[13] A. Beloglazov and R. Buyya. Optimal online deterministic al-

gorithms and adaptive heuristics for energy and performance

BIBLIOGRAPHY 163

efficient dynamic consolidation of virtual machines in cloud

data centers. Concurrency and Computation: Practice and

Experience, 24(13):1397–1420, 2012.

[14] I. Boixaderas, D. Zivanovic, S. Moré, J. Bartolome, D. Vi-

cente, M. Casas, P. M. Carpenter, P. Radojković, and

E. Ayguadé. Cost-aware prediction of uncorrected dram er-

rors in the field. In SC20: International Conference for High-

Performance Computing, Networking, Storage and Analysis,

pages 1–15. IEEE, 2020.

[15] A. Borghesi, A. Bartolini, M. Lombardi, M. Milano, and

L. Benini. Anomaly detection using autoencoders in high

performance computing systems. In Proceedings of the AAAI

Conference on artificial intelligence, volume 33, pages 9428–

9433, 2019.

[16] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof:

identifying density-based local outliers. In Proceedings of

the 2000 ACM SIGMOD international conference on Man-

agement of data, pages 93–104, 2000.

[17] S. Brody, U. Alon, and E. Yahav. How attentive are graph

attention networks? arXiv preprint arXiv:2105.14491, 2021.

[18] C. Cangea, P. Veličković, N. Jovanović, T. Kipf, and P. Liò.

Towards sparse hierarchical graph classifiers. arXiv preprint

arXiv:1811.01287, 2018.

[19] C. Chai, L. Cao, G. Li, J. Li, Y. Luo, and S. Madden. Human-

in-the-loop outlier detection. In Proceedings of the 2020 ACM

SIGMOD International Conference on Management of Data,

pages 19–33, 2020.

[20] X. Chen, J. Shi, J. Chen, P. Wang, and W. Wang. High-

precision online log parsing with large language models. In

BIBLIOGRAPHY 164

Proceedings of the 2024 IEEE/ACM 46th International Con-

ference on Software Engineering: Companion Proceedings,

pages 354–355, 2024.

[21] Y. Chen, D. Xu, N. Chen, and X. Wu. Frl-mfpg: Propagation-

aware fault root cause location for microservice intelligent op-

eration and maintenance. Information and Software Technol-

ogy, 153:107083, 2023.

[22] Z. Chen, D. Chen, X. Zhang, Z. Yuan, and X. Cheng. Learn-

ing graph structures with transformer for multivariate time-

series anomaly detection in iot. IEEE Internet of Things Jour-

nal, 9(12):9179–9189, 2021.

[23] Z. Chen, Z. Jiang, Y. Su, M. R. Lyu, and Z. Zheng.

Tracemesh: Scalable and streaming sampling for distributed

traces. In 2024 IEEE 17th International Conference on Cloud

Computing (CLOUD), pages 54–65. IEEE, 2024.

[24] Z. Chen, Y. Kang, L. Li, X. Zhang, H. Zhang, H. Xu, Y. Zhou,

L. Yang, J. Sun, Z. Xu, et al. Towards intelligent incident

management: why we need it and how we make it. In Pro-

ceedings of the 28th ACM Joint Meeting on European Soft-

ware Engineering Conference and Symposium on the Foun-

dations of Software Engineering, pages 1487–1497, 2020.

[25] Z. Chen, J. Liu, Y. Su, H. Zhang, X. Ling, Y. Yang, and M. R.

Lyu. Adaptive performance anomaly detection for online ser-

vice systems via pattern sketching. In Proceedings of the 44th

International Conference on Software Engineering, pages 61–

72, 2022.

[26] Z. Chen, J. Liu, Y. Su, H. Zhang, X. Wen, X. Ling, Y. Yang,

and M. R. Lyu. Graph-based incident aggregation for large-

scale online service systems. In 2021 36th IEEE/ACM In-

BIBLIOGRAPHY 165

ternational Conference on Automated Software Engineering

(ASE), pages 430–442. IEEE, 2021.

[27] Q. Cheng, D. Sahoo, A. Saha, W. Yang, C. Liu, G. Woo,

M. Singh, S. Saverese, and S. C. Hoi. Ai for it operations

(aiops) on cloud platforms: Reviews, opportunities and chal-

lenges. arXiv preprint arXiv:2304.04661, 2023.

[28] Z. Cheng, S. Han, P. P. Lee, X. Li, J. Liu, and Z. Li. An in-

depth correlative study between dram errors and server fail-

ures in production data centers. In 2022 41st International

Symposium on Reliable Distributed Systems (SRDS), pages

262–272. IEEE, 2022.

[29] M. B. Chhetri, Q. B. Vo, and R. Kowalczyk. Cl-slam: Cross-

layer sla monitoring framework for cloud service-based appli-

cations. In Proceedings of the 9th International Conference

on Utility and Cloud Computing, pages 30–36, 2016.

[30] G. Chu, J. Wang, Q. Qi, H. Sun, Z. Zhuang, B. He, Y. Jing,

L. Zhang, and J. Liao. Anomaly detection on interleaved log

data with semantic association mining on log-entity graph.

IEEE Transactions on Software Engineering, 2025.

[31] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura,

and R. Bianchini. Resource central: Understanding and pre-

dicting workloads for improved resource management in large

cloud platforms. In Proceedings of the 26th Symposium on

Operating Systems Principles, pages 153–167, 2017.

[32] H. Dai, H. Li, C.-S. Chen, W. Shang, and T.-H. Chen. Lo-

gram: Efficient log parsing using n n-gram dictionaries. IEEE

Transactions on Software Engineering (TSE), 48(3):879–892,

2020.

[33] Z. Dang, S. He, P. Hong, Z. Li, X. Zhang, X.-H. Sun, and

G. Chen. Nvalloc: rethinking heap metadata management

BIBLIOGRAPHY 166

in persistent memory allocators. In Proceedings of the 27th

ACM International Conference on Architectural Support for

Programming Languages and Operating Systems, pages 115–

127, 2022.

[34] U. Degenbaev, J. Eisinger, K. Hara, M. Hlopko, M. Lip-

pautz, and H. Payer. Cross-component garbage collec-

tion. Proceedings of the ACM on Programming Languages,

2(OOPSLA):1–24, 2018.

[35] A. Deng and B. Hooi. Graph neural network-based anomaly

detection in multivariate time series. In Proceedings of the

AAAI conference on artificial intelligence, volume 35, pages

4027–4035, 2021.

[36] Y. Deng, X. Shi, Z. Jiang, X. Zhang, L. Zhang, Z. Zhang,

B. Li, Z. Song, H. Zhu, G. Liu, et al. Minder: Faulty machine

detection for large-scale distributed model training. arXiv

preprint arXiv:2411.01791, 2024.

[37] M. Du and F. Li. Spell: Streaming parsing of system event

logs. In 2016 IEEE 16th International Conference on Data

Mining (ICDM), pages 859–864. IEEE, 2016.

[38] M. Du, F. Li, G. Zheng, and V. Srikumar. Deeplog: Anomaly

detection and diagnosis from system logs through deep learn-

ing. In Proceedings of the 2017 ACM SIGSAC conference

on computer and communications security, pages 1285–1298,

2017.

[39] C. Duan, T. Jia, H. Cai, Y. Li, and G. Huang. Afalog: A

general augmentation framework for log-based anomaly de-

tection with active learning. In 2023 IEEE 34th Interna-

tional Symposium on Software Reliability Engineering (IS-

SRE), pages 46–56. IEEE, 2023.

BIBLIOGRAPHY 167

[40] J. Duan, S. Zhang, Z. Wang, L. Jiang, W. Qu, Q. Hu, G. Wang,

Q. Weng, H. Yan, X. Zhang, et al. Efficient training of

large language models on distributed infrastructures: A sur-

vey. arXiv preprint arXiv:2407.20018, 2024.

[41] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. A density-

based algorithm for discovering clusters in large spatial

databases with noise. In kdd, volume 96, pages 226–231,

1996.

[42] R. Fu, Z. Zhang, and L. Li. Using lstm and gru neural net-

work methods for traffic flow prediction. In 2016 31st Youth

Academic Annual Conference of Chinese Association of Au-

tomation (YAC), pages 324–328. IEEE, 2016.

[43] Y. Gao, X. Shi, H. Lin, H. Zhang, H. Wu, R. Li, and M. Yang.

An empirical study on quality issues of deep learning plat-

form. In 2023 IEEE/ACM 45th International Conference

on Software Engineering: Software Engineering in Practice

(ICSE-SEIP), pages 455–466. IEEE, 2023.

[44] J. Gardner, G. Pleiss, K. Q. Weinberger, D. Bindel, and A. G.

Wilson. Gpytorch: Blackbox matrix-matrix gaussian process

inference with gpu acceleration. Advances in neural informa-

tion processing systems, 31, 2018.

[45] P. Garraghan, R. Yang, Z. Wen, A. Romanovsky, J. Xu,

R. Buyya, and R. Ranjan. Emergent failures: Rethinking

cloud reliability at scale. IEEE Cloud Computing, 5(5):12–

21, 2018.

[46] A. Gholami, Z. Yao, S. Kim, C. Hooper, M. W. Mahoney, and

K. Keutzer. Ai and memory wall. IEEE Micro, 2024.

[47] E. J. Ghomi, A. M. Rahmani, and N. N. Qader. Load-

balancing algorithms in cloud computing: A survey. Journal

of Network and Computer Applications, 88:50–71, 2017.

BIBLIOGRAPHY 168

[48] S. Ghosh, M. Shetty, C. Bansal, and S. Nath. How to fight pro-

duction incidents? an empirical study on a large-scale cloud

service. In Proceedings of the 13th Symposium on Cloud

Computing (SoCC), pages 126–141, 2022.

[49] J. Gu, C. Luo, S. Qin, B. Qiao, Q. Lin, H. Zhang, Z. Li,

Y. Dang, S. Cai, W. Wu, et al. Efficient incident identifica-

tion from multi-dimensional issue reports via meta-heuristic

search. In Proceedings of the 28th ACM Joint Meeting on

European Software Engineering Conference and Symposium

on the Foundations of Software Engineering, pages 292–303,

2020.

[50] J. Gu, C. Luo, S. Qin, B. Qiao, Q. Lin, H. Zhang, Z. Li,

Y. Dang, S. Cai, W. Wu, et al. Efficient incident identifica-

tion from multi-dimensional issue reports via meta-heuristic

search. In Proceedings of the 28th ACM Joint Meeting on

European Software Engineering Conference and Symposium

on the Foundations of Software Engineering, pages 292–303,

2020.

[51] J. Gu, J. Wen, Z. Wang, P. Zhao, C. Luo, Y. Kang, Y. Zhou,

L. Yang, J. Sun, Z. Xu, et al. Efficient customer incident

triage via linking with system incidents. In Proceedings of the

28th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software

Engineering, pages 1296–1307, 2020.

[52] W. Gu, J. Liu, Z. Chen, J. Zhang, Y. Su, J. Gu, C. Feng,

Z. Yang, and M. Lyu. Performance issue identification in

cloud systems with relational-temporal anomaly detection.

arXiv preprint arXiv:2307.10869, 2023.

[53] W. Gu, J. Liu, Z. Chen, J. Zhang, Y. Su, J. Gu, C. Feng,

Z. Yang, Y. Yang, and M. R. Lyu. Identifying performance

issues in cloud service systems based on relational-temporal

BIBLIOGRAPHY 169

features. ACM Transactions on Software Engineering and

Methodology (TOSEM), 2024.

[54] W. Gu, X. Sun, J. Liu, Y. Huo, Z. Chen, J. Zhang, J. Gu,

Y. Yang, and M. R. Lyu. Kpiroot: Efficient monitoring metric-

based root cause localization in large-scale cloud systems. In

2024 IEEE 35th International Symposium on Software Relia-

bility Engineering (ISSRE), pages 403–414. IEEE, 2024.

[55] C. Guo, H. Li, and D. Pan. An improved piecewise aggre-

gate approximation based on statistical features for time se-

ries mining. In Knowledge Science, Engineering and Man-

agement: 4th International Conference, KSEM 2010, Belfast,

Northern Ireland, UK, September 1-3, 2010. Proceedings 4,

pages 234–244. Springer, 2010.

[56] X. Guo, X. Peng, H. Wang, W. Li, H. Jiang, D. Ding, T. Xie,

and L. Su. Graph-based trace analysis for microservice archi-

tecture understanding and problem diagnosis. In Proceedings

of the 28th ACM Joint Meeting on European Software En-

gineering Conference and Symposium on the Foundations of

Software Engineering (ESEC/FSE), pages 1387–1397, 2020.

[57] Z. Guo, Y. Xu, Y.-F. Liu, S. Liu, H. J. Chao, Z.-L. Zhang, and

Y. Xia. Aggreflow: Achieving power efficiency, load balanc-

ing, and quality of service in data center networks. IEEE/ACM

Transactions on Networking, 29(1):17–33, 2020.

[58] H. Hamooni, B. Debnath, J. Xu, H. Zhang, G. Jiang, and

A. Mueen. Logmine: Fast pattern recognition for log analyt-

ics. In Proceedings of the 25th ACM International Conference

on Information and Knowledge Management (CIKM), pages

1573–1582, 2016.

[59] S. Han and S. S. Woo. Learning sparse latent graph repre-

sentations for anomaly detection in multivariate time series.

BIBLIOGRAPHY 170

In Proceedings of the 28th ACM SIGKDD Conference on

Knowledge Discovery and Data Mining, pages 2977–2986,

2022.

[60] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu. An evaluation study

on log parsing and its use in log mining. In 2016 46th annual

IEEE/IFIP international conference on dependable systems

and networks (DSN), pages 654–661. IEEE, 2016.

[61] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu. Towards automated

log parsing for large-scale log data analysis. IEEE Transac-

tions on Dependable and Secure Computing, 15(6):931–944,

2017.

[62] P. He, J. Zhu, Z. Zheng, and M. R. Lyu. Drain: An online

log parsing approach with fixed depth tree. In Proceedings of

the IEEE International Conference on Web Services (ICWS),

pages 33–40. IEEE, 2017.

[63] S. He, B. Feng, L. Li, X. Zhang, Y. Kang, Q. Lin, S. Ra-

jmohan, and D. Zhang. Steam: Observability-preserving

trace sampling. In Proceedings of the 31st ACM Joint Eu-

ropean Software Engineering Conference and Symposium on

the Foundations of Software Engineering, pages 1750–1761,

2023.

[64] S. He, P. He, Z. Chen, T. Yang, Y. Su, and M. R. Lyu. A

survey on automated log analysis for reliability engineering.

ACM computing surveys (CSUR), 54(6):1–37, 2021.

[65] S. He, Q. Lin, J.-G. Lou, H. Zhang, M. R. Lyu, and D. Zhang.

Identifying impactful service system problems via log analy-

sis. In Proceedings of the 2018 26th ACM Joint Meeting on

European Software Engineering Conference and Symposium

on the Foundations of Software Engineering, pages 60–70,

2018.

BIBLIOGRAPHY 171

[66] S. He, J. Zhu, P. He, and M. R. Lyu. Experience report: Sys-

tem log analysis for anomaly detection. In 2016 IEEE 27th

International Symposium on Software Reliability Engineering

(ISSRE), pages 207–218. IEEE, 2016.

[67] X. He, C. Shao, and Y. Xiong. A non-parametric symbolic ap-

proximate representation for long time series. Pattern Analy-

sis and Applications, 19:111–127, 2016.

[68] Y. He, R. Guo, Y. Xing, X. Che, K. Sun, Z. Liu, K. Xu, and

Q. Li. Cross container attacks: The bewildered {eBPF} on

clouds. In 32nd USENIX Security Symposium (USENIX Se-

curity 23), pages 5971–5988, 2023.

[69] Z. He, P. Chen, X. Li, Y. Wang, G. Yu, C. Chen, X. Li, and

Z. Zheng. A spatiotemporal deep learning approach for unsu-

pervised anomaly detection in cloud systems. IEEE Transac-

tions on Neural Networks and Learning Systems, 34(4):1705–

1719, 2020.

[70] P. Hennig and C. J. Schuler. Entropy search for information-

efficient global optimization. Journal of Machine Learning

Research, 13(6), 2012.

[71] J. M. Hernández-Lobato, M. W. Hoffman, and Z. Ghahra-

mani. Predictive entropy search for efficient global optimiza-

tion of black-box functions. Advances in neural information

processing systems, 27, 2014.

[72] M. W. Hoffman and Z. Ghahramani. Output-space predic-

tive entropy search for flexible global optimization. In NIPS

workshop on Bayesian Optimization, pages 1–5, 2015.

[73] T. Huang, P. Chen, and R. Li. A semi-supervised vae-based

active anomaly detection framework in multivariate time se-

ries for online systems. In Proceedings of the ACM Web Con-

ference 2022, pages 1797–1806, 2022.

BIBLIOGRAPHY 172

[74] T. Huang, P. Chen, J. Zhang, R. Li, and R. Wang. A trans-

ferable time series forecasting service using deep transformer

model for online systems. In 37th IEEE/ACM International

Conference on Automated Software Engineering (ASE), pages

1–12, 2022.

[75] Z. Huang, P. Chen, G. Yu, H. Chen, and Z. Zheng. Sieve:

Attention-based sampling of end-to-end trace data in dis-

tributed microservice systems. In 2021 IEEE International

Conference on Web Services (ICWS), pages 436–446. IEEE,

2021.

[76] K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and

T. Soderstrom. Detecting spacecraft anomalies using lstms

and nonparametric dynamic thresholding. In Proceedings of

the 24th ACM SIGKDD international conference on knowl-

edge discovery & data mining (KDD), pages 387–395, 2018.

[77] Y. Huo, Y. Su, C. Lee, and M. R. Lyu. Semparser: A seman-

tic parser for log analytics. In 2023 IEEE/ACM 45th Inter-

national Conference on Software Engineering (ICSE), pages

881–893. IEEE, 2023.

[78] O. Ibidunmoye, F. Hernández-Rodriguez, and E. Elmroth.

Performance anomaly detection and bottleneck identification.

ACM Computing Surveys (CSUR), 48(1):1–35, 2015.

[79] O. Ibidunmoye, A.-R. Rezaie, and E. Elmroth. Adap-

tive anomaly detection in performance metric streams.

IEEE Transactions on Network and Service Management,

15(1):217–231, 2017.

[80] M. N. Injadat, F. Salo, A. B. Nassif, A. Essex, and A. Shami.

Bayesian optimization with machine learning algorithms to-

wards anomaly detection. In 2018 IEEE Global Communica-

tions Conference (GLOBECOM), pages 1–6. IEEE, 2018.

BIBLIOGRAPHY 173

[81] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In

International conference on machine learning (ICML), pages

448–456. PMLR, 2015.

[82] M. S. Islam, W. Pourmajidi, L. Zhang, J. Steinbacher, T. Er-

win, and A. Miranskyy. Anomaly detection in a large-scale

cloud platform. In 2021 IEEE/ACM 43rd International Con-

ference on Software Engineering: Software Engineering in

Practice (ICSE-SEIP), pages 150–159. IEEE, 2021.

[83] M. Jiang, M. A. Munawar, T. Reidemeister, and P. A. Ward.

System monitoring with metric-correlation models: problems

and solutions. In Proceedings of the 6th international confer-

ence on Autonomic computing, pages 13–22, 2009.

[84] Z. Jiang, H. Lin, Y. Zhong, Q. Huang, Y. Chen, Z. Zhang,

Y. Peng, X. Li, C. Xie, S. Nong, et al. Megascale: Scaling

large language model training to more than 10,000 gpus. In

21st USENIX Symposium on Networked Systems Design and

Implementation (NSDI 24), pages 745–760, 2024.

[85] Z. Jiang, J. Liu, Z. Chen, Y. Li, J. Huang, Y. Huo, P. He,

J. Gu, and M. R. Lyu. Lilac: Log parsing using llms with

adaptive parsing cache. Proceedings of the ACM on Software

Engineering, 1(FSE):137–160, 2024.

[86] Z. Jiang, J. Liu, J. Huang, Y. Li, Y. Huo, J. Gu, Z. Chen,

J. Zhu, and M. R. Lyu. A large-scale evaluation for log parsing

techniques: How far are we? In Proceedings of the 33rd ACM

SIGSOFT International Symposium on Software Testing and

Analysis, pages 223–234, 2024.

[87] Z. M. Jiang, A. E. Hassan, P. Flora, and G. Hamann. Abstract-

ing execution logs to execution events for enterprise applica-

BIBLIOGRAPHY 174

tions (short paper). In 2008 The Eighth International Confer-

ence on Quality Software, pages 181–186. IEEE, 2008.

[88] H. Jin, Z. Li, H. Liu, X. Liao, and Y. Zhang. Hotspot-

aware hybrid memory management for in-memory key-value

stores. IEEE Transactions on Parallel and Distributed Sys-

tems, 31(4):779–792, 2019.

[89] M. Jin, H. Y. Koh, Q. Wen, D. Zambon, C. Alippi, G. I. Webb,

I. King, and S. Pan. A survey on graph neural networks

for time series: Forecasting, classification, imputation, and

anomaly detection. arXiv preprint arXiv:2307.03759, 2023.

[90] A. Kane and N. Shiri. Multivariate time series representation

and similarity search using pca. In Advances in Data Mining.

Applications and Theoretical Aspects: 17th Industrial Con-

ference, ICDM 2017, pages 122–136. Springer, 2017.

[91] J. Kaplan, S. McCandlish, T. Henighan, T. B. Brown,

B. Chess, R. Child, S. Gray, A. Radford, J. Wu, and

D. Amodei. Scaling laws for neural language models. arXiv

preprint arXiv:2001.08361, 2020.

[92] F. Karimzadeh, M. Imani, B. Asgari, N. Cao, Y. Lin, and

Y. Fang. Memory-based computing for energy-efficient ai:

Grand challenges. In 2023 IFIP/IEEE 31st International Con-

ference on Very Large Scale Integration (VLSI-SoC), pages

1–8. IEEE, 2023.

[93] P. Kaushik, A. M. Rao, D. P. Singh, S. Vashisht, and S. Gupta.

Cloud computing and comparison based on service and per-

formance between amazon aws, microsoft azure, and google

cloud. In 2021 International Conference on Technologi-

cal Advancements and Innovations (ICTAI), pages 268–273.

IEEE, 2021.

BIBLIOGRAPHY 175

[94] Z. A. Khan, D. Shin, D. Bianculli, and L. Briand. Guidelines

for assessing the accuracy of log message template identifica-

tion techniques. In Proceedings of the 44th International Con-

ference on Software Engineering (ICSE), pages 1095–1106,

2022.

[95] K. Kim and M.-j. Park. Present and future, challenges of high

bandwidth memory (hbm). In 2024 IEEE International Mem-

ory Workshop (IMW), pages 1–4. IEEE, 2024.

[96] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.

[97] D. P. Kingma and M. Welling. Auto-encoding variational

bayes. arXiv preprint arXiv:1312.6114, 2013.

[98] T. N. Kipf and M. Welling. Semi-supervised classifica-

tion with graph convolutional networks. arXiv preprint

arXiv:1609.02907, 2016.

[99] R. Kiryo, G. Niu, M. C. Du Plessis, and M. Sugiyama.

Positive-unlabeled learning with non-negative risk estima-

tor. Advances in neural information processing systems

(NeurIPS), 30, 2017.

[100] J. Kuang, J. Liu, J. Huang, R. Zhong, J. Gu, L. Yu, R. Tan,

Z. Yang, and M. R. Lyu. Knowledge-aware alert aggregation

in large-scale cloud systems: a hybrid approach. In Proceed-

ings of the 46th International Conference on Software Engi-

neering: Software Engineering in Practice, pages 369–380,

2024.

[101] M. Latah and L. Toker. Artificial intelligence enabled

software-defined networking: a comprehensive overview. IET

networks, 8(2):79–99, 2019.

BIBLIOGRAPHY 176

[102] V.-H. Le and H. Zhang. Log parsing with prompt-based few-

shot learning. In 2023 IEEE/ACM 45th International Con-

ference on Software Engineering (ICSE), pages 2438–2449.

IEEE, 2023.

[103] C. Lee, T. Yang, Z. Chen, Y. Su, and M. R. Lyu. Maat: Per-

formance metric anomaly anticipation for cloud services with

conditional diffusion. In 2023 38th IEEE/ACM International

Conference on Automated Software Engineering (ASE), pages

116–128. IEEE, 2023.

[104] J. Lee, I. Lee, and J. Kang. Self-attention graph pooling. In

International conference on machine learning (ICML), pages

3734–3743. PMLR, 2019.

[105] J. Lee, J. M. Lee, Y. Oh, W. J. Song, and W. W. Ro. Snake-

byte: A tlb design with adaptive and recursive page merging

in gpus. In 2023 IEEE International Symposium on High-

Performance Computer Architecture (HPCA), pages 1195–

1207. IEEE, 2023.

[106] N. Lee, T. Ajanthan, and P. Torr. Snip: single-shot net-

work pruning based on connection sensitivity. In Interna-

tional Conference on Learning Representations. Open Re-

view, 2019.

[107] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Tal-

walkar. Hyperband: A novel bandit-based approach to hyper-

parameter optimization. Journal of Machine Learning Re-

search, 18(185):1–52, 2018.

[108] L. Li, X. Zhang, S. He, Y. Kang, H. Zhang, M. Ma, Y. Dang,

Z. Xu, S. Rajmohan, Q. Lin, et al. Conan: Diagnosing batch

failures for cloud systems. In 2023 IEEE/ACM 45th Inter-

national Conference on Software Engineering: Software En-

BIBLIOGRAPHY 177

gineering in Practice (ICSE-SEIP), pages 138–149. IEEE,

2023.

[109] X. Li, G. Yu, P. Chen, H. Chen, and Z. Chen. Going through

the life cycle of faults in clouds: Guidelines on fault handling.

In 2022 IEEE 33rd International Symposium on Software Re-

liability Engineering (ISSRE), pages 121–132. IEEE, 2022.

[110] Z. Li, C. Luo, T.-H. Chen, W. Shang, S. He, Q. Lin, and

D. Zhang. Did we miss something important? studying

and exploring variable-aware log abstraction. arXiv preprint

arXiv:2304.11391, 2023.

[111] Z. Li, N. Zhao, M. Li, X. Lu, L. Wang, D. Chang, X. Nie,

L. Cao, W. Zhang, K. Sui, et al. Actionable and interpretable

fault localization for recurring failures in online service sys-

tems. In Proceedings of the 30th ACM Joint European Soft-

ware Engineering Conference and Symposium on the Foun-

dations of Software Engineering, pages 996–1008, 2022.

[112] Z. Li, Y. Zhao, J. Han, Y. Su, R. Jiao, X. Wen, and D. Pei.

Multivariate time series anomaly detection and interpretation

using hierarchical inter-metric and temporal embedding. In

Proceedings of the 27th ACM SIGKDD conference on knowl-

edge discovery & data mining, pages 3220–3230, 2021.

[113] Z. Li, Y. Zhao, R. Liu, and D. Pei. Robust and rapid clustering

of kpis for large-scale anomaly detection. In 2018 IEEE/ACM

26th International Symposium on Quality of Service (IWQoS),

pages 1–10. IEEE, 2018.

[114] D. Lin, R. Raghu, V. Ramamurthy, J. Yu, R. Radhakrish-

nan, and J. Fernandez. Unveiling clusters of events for alert

and incident management in large-scale enterprise it. In Pro-

ceedings of the 20th ACM SIGKDD international conference

BIBLIOGRAPHY 178

on Knowledge discovery and data mining, pages 1630–1639,

2014.

[115] J. Lin, P. Chen, and Z. Zheng. Microscope: Pinpoint per-

formance issues with causal graphs in micro-service environ-

ments. In Service-Oriented Computing: 16th International

Conference, ICSOC 2018, Hangzhou, China, November 12-

15, 2018, Proceedings 16, pages 3–20. Springer, 2018.

[116] J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A symbolic repre-

sentation of time series, with implications for streaming algo-

rithms. In Proceedings of the 8th ACM SIGMOD workshop

on Research issues in data mining and knowledge discovery,

pages 2–11, 2003.

[117] Q. Lin, K. Hsieh, Y. Dang, H. Zhang, K. Sui, Y. Xu, J.-G.

Lou, C. Li, Y. Wu, R. Yao, et al. Predicting node failure in

cloud service systems. In Proceedings of the 2018 26th ACM

joint meeting on European software engineering conference

and symposium on the foundations of software engineering,

pages 480–490, 2018.

[118] Q. Lin, J.-G. Lou, H. Zhang, and D. Zhang. idice: prob-

lem identification for emerging issues. In Proceedings of

the 38th International Conference on Software Engineering,

pages 214–224, 2016.

[119] Q. Lin, H. Zhang, J.-G. Lou, Y. Zhang, and X. Chen. Log

clustering based problem identification for online service sys-

tems. In Proceedings of the 38th International Conference on

Software Engineering Companion, pages 102–111, 2016.

[120] F. Liu, X. Zhou, J. Cao, Z. Wang, T. Wang, H. Wang, and

Y. Zhang. Anomaly detection in quasi-periodic time series

based on automatic data segmentation and attentional lstm-

BIBLIOGRAPHY 179

cnn. IEEE Transactions on Knowledge and Data Engineer-

ing, 34(6):2626–2640, 2020.

[121] F. T. Liu, K. M. Ting, and Z.-H. Zhou. Isolation forest.

In 2008 eighth ieee international conference on data mining

(ICDM), pages 413–422. IEEE, 2008.

[122] J. Liu, W. Gu, Z. Chen, Y. Li, Y. Su, and M. R. Lyu. Mtad:

Tools and benchmarks for multivariate time series anomaly

detection. arXiv preprint arXiv:2401.06175, 2024.

[123] J. Liu, S. He, Z. Chen, L. Li, Y. Kang, X. Zhang, P. He,

H. Zhang, Q. Lin, Z. Xu, et al. Incident-aware dupli-

cate ticket aggregation for cloud systems. arXiv preprint

arXiv:2302.09520, 2023.

[124] J. Liu, J. Huang, Y. Huo, Z. Jiang, J. Gu, Z. Chen, C. Feng,

M. Yan, and M. R. Lyu. Scalable and adaptive log-based

anomaly detection with expert in the loop. arXiv preprint

arXiv:2306.05032, 2023.

[125] J. Liu, Z. Jiang, J. Gu, J. Huang, Z. Chen, C. Feng, Z. Yang,

Y. Yang, and M. R. Lyu. Prism: Revealing hidden functional

clusters from massive instances in cloud systems. In 2023

38th IEEE/ACM International Conference on Automated Soft-

ware Engineering (ASE), pages 268–280. IEEE, 2023.

[126] J. Liu, S. Wang, A. Zhou, S. A. Kumar, F. Yang, and

R. Buyya. Using proactive fault-tolerance approach to en-

hance cloud service reliability. IEEE Transactions on Cloud

Computing, 6(4):1191–1202, 2016.

[127] J. Liu, T. Yang, Z. Chen, Y. Su, C. Feng, Z. Yang, and M. R.

Lyu. Practical anomaly detection over multivariate monitor-

ing metrics for online services. In 2023 IEEE 34th Inter-

national Symposium on Software Reliability Engineering (IS-

SRE), pages 36–45. IEEE, 2023.

BIBLIOGRAPHY 180

[128] X. Liu, J. Wen, Z. Chen, D. Li, J. Chen, Y. Liu, H. Wang, and

X. Jin. Faaslight: General application-level cold-start latency

optimization for function-as-a-service in serverless comput-

ing. ACM Transactions on Software Engineering and Method-

ology, 32(5):1–29, 2023.

[129] Y. Liu, X. Zhang, S. He, H. Zhang, L. Li, Y. Kang, Y. Xu,

M. Ma, Q. Lin, Y. Dang, et al. Uniparser: A unified log parser

for heterogeneous log data. In Proceedings of the ACM Web

Conference 2022 (WWW), pages 1893–1901, 2022.

[130] J.-G. Lou, Q. Fu, S. Yang, Y. Xu, and J. Li. Mining invariants

from console logs for system problem detection. In USENIX

annual technical conference, pages 1–14, 2010.

[131] R. Lu, E. Xu, Y. Zhang, F. Zhu, Z. Zhu, M. Wang, Z. Zhu,

G. Xue, J. Shu, M. Li, et al. Perseus: A {Fail-Slow} detection

framework for cloud storage systems. In 21st USENIX Con-

ference on File and Storage Technologies (FAST 23), pages

49–64, 2023.

[132] S. Lu, X. Wei, Y. Li, and L. Wang. Detecting anomaly

in big data system logs using a convolutional neural net-

work. In 2018 IEEE 16th Intl Conf on Dependable, Auto-

nomic and Secure Computing, 16th Intl Conf on Pervasive

Intelligence and Computing, 4th Intl Conf on Big Data In-

telligence and Computing and Cyber Science and Technol-

ogy Congress (DASC/PiCom/DataCom/CyberSciTech), pages

151–158. IEEE, 2018.

[133] S. Luo, H. Xu, C. Lu, K. Ye, G. Xu, L. Zhang, Y. Ding,

J. He, and C. Xu. Characterizing microservice dependency

and performance: Alibaba trace analysis. In Proceedings

of the ACM Symposium on Cloud Computing (SoCC), pages

412–426, 2021.

BIBLIOGRAPHY 181

[134] M. Ma, W. Lin, D. Pan, and P. Wang. Servicerank: Root cause

identification of anomaly in large-scale microservice architec-

tures. IEEE Transactions on Dependable and Secure Comput-

ing, 19(5):3087–3100, 2021.

[135] M. Ma, Z. Yin, S. Zhang, S. Wang, C. Zheng, X. Jiang, H. Hu,

C. Luo, Y. Li, N. Qiu, et al. Diagnosing root causes of inter-

mittent slow queries in cloud databases. Proceedings of the

VLDB Endowment, 13(8):1176–1189, 2020.

[136] M. Ma, S. Zhang, J. Chen, J. Xu, H. Li, Y. Lin, X. Nie,

B. Zhou, Y. Wang, and D. Pei. {Jump-Starting} multivari-

ate time series anomaly detection for online service systems.

In 2021 USENIX Annual Technical Conference (USENIX ATC

21), pages 413–426, 2021.

[137] Z. Ma, A. R. Chen, D. J. Kim, T.-H. Chen, and S. Wang. Llm-

parser: An exploratory study on using large language models

for log parsing. In Proceedings of the IEEE/ACM 46th Inter-

national Conference on Software Engineering, pages 1–13,

2024.

[138] Z. Ma, D. J. Kim, and T.-H. P. Chen. Librelog: Accurate and

efficient unsupervised log parsing using open-source large

language models. In 2025 IEEE/ACM 47th International

Conference on Software Engineering (ICSE), pages 924–936,

2025.

[139] P.-J. Maenhaut, B. Volckaert, V. Ongenae, and F. De Turck.

Resource management in a containerized cloud: Status and

challenges. Journal of Network and Systems Management,

28:197–246, 2020.

[140] A. A. Makanju, A. N. Zincir-Heywood, and E. E. Milios.

Clustering event logs using iterative partitioning. In Proceed-

ings of the 15th ACM SIGKDD international conference on

BIBLIOGRAPHY 182

Knowledge discovery and data mining (KDD), pages 1255–

1264, 2009.

[141] L. Mariani, C. Monni, M. Pezzé, O. Riganelli, and R. Xin.

Localizing faults in cloud systems. In 2018 IEEE 11th In-

ternational Conference on Software Testing, Verification and

Validation (ICST), pages 262–273. IEEE, 2018.

[142] L. Mariani, M. Pezzè, O. Riganelli, and R. Xin. Predicting

failures in multi-tier distributed systems. Journal of Systems

and Software, 161:110464, 2020.

[143] J. Mellor, J. Turner, A. Storkey, and E. J. Crowley. Neural

architecture search without training. In International confer-

ence on machine learning, pages 7588–7598. PMLR, 2021.

[144] W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen,

R. Zhang, S. Tao, P. Sun, et al. Loganomaly: Unsupervised

detection of sequential and quantitative anomalies in unstruc-

tured logs. In IJCAI, volume 19, pages 4739–4745, 2019.

[145] S. Messaoudi, A. Panichella, D. Bianculli, L. Briand, and

R. Sasnauskas. A search-based approach for accurate iden-

tification of log message formats. In Proceedings of the

26th Conference on Program Comprehension, pages 167–

177, 2018.

[146] A. S. Milani and N. J. Navimipour. Load balancing mecha-

nisms and techniques in the cloud environments: Systematic

literature review and future trends. Journal of Network and

Computer Applications, 71:86–98, 2016.

[147] D. Minnen, C. Isbell, I. Essa, and T. Starner. Detecting sub-

dimensional motifs: An efficient algorithm for generalized

multivariate pattern discovery. In Seventh IEEE International

Conference on Data Mining (ICDM 2007), pages 601–606.

IEEE, 2007.

BIBLIOGRAPHY 183

[148] M. Mizutani. Incremental mining of system log format. In

2013 IEEE International Conference on Services Computing,

pages 595–602. IEEE, 2013.

[149] Y. Moon, S. H. Shin, S. Jang, D. Won, and S. Kang. A novel

prediction-based two-tiered ecc for mitigating swd errors in

hbm. IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 2024.

[150] M. Nagappan and M. A. Vouk. Abstracting log lines to log

event types for mining software system logs. In 2010 7th

IEEE Working Conference on Mining Software Repositories

(MSR), pages 114–117. IEEE, 2010.

[151] P. J. Nair, D. A. Roberts, and M. K. Qureshi. Citadel: Effi-

ciently protecting stacked memory from tsv and large granu-

larity failures. ACM Transactions on Architecture and Code

Optimization (TACO), 12(4):1–24, 2016.

[152] H. Nguyen, Y. Tan, and X. Gu. Pal: Propagation-aware

anomaly localization for cloud hosted distributed applica-

tions. In Managing Large-Scale Systems via the Analysis of

System Logs and the Application of Machine Learning Tech-

niques, SLAML ’11. Association for Computing Machinery,

2011.

[153] A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,

A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu.

Wavenet: A generative model for raw audio. arXiv preprint

arXiv:1609.03499, 2016.

[154] R. P. Padhy. Big data processing with hadoop-mapreduce in

cloud systems. International Journal of Cloud Computing

and Services Science, 2(1):16, 2013.

[155] B. Panda, D. Srinivasan, H. Ke, K. Gupta, V. Khot, and H. S.

Gunawi. {IASO}: A {Fail-Slow} detection and mitigation

BIBLIOGRAPHY 184

framework for distributed storage services. In 2019 USENIX

Annual Technical Conference (USENIX ATC 19), pages 47–

62, 2019.

[156] J. Paparrizos, Y. Kang, P. Boniol, R. S. Tsay, T. Palpanas, and

M. J. Franklin. Tsb-uad: an end-to-end benchmark suite for

univariate time-series anomaly detection. Proceedings of the

VLDB Endowment, 15(8):1697–1711, 2022.

[157] D. Park, Y. Hoshi, and C. C. Kemp. A multimodal anomaly

detector for robot-assisted feeding using an lstm-based vari-

ational autoencoder. IEEE Robotics and Automation Letters,

3(3):1544–1551, 2018.

[158] M. Peiris, J. H. Hill, J. Thelin, S. Bykov, G. Kliot, and

C. Konig. Pad: Performance anomaly detection in multi-

server distributed systems. In IEEE 7th International Con-

ference on Cloud Computing, pages 769–776. IEEE, 2014.

[159] V. Perrone, R. Jenatton, M. W. Seeger, and C. Archambeau.

Scalable hyperparameter transfer learning. Advances in neu-

ral information processing systems, 31, 2018.

[160] A. Putina, M. Bahri, F. Salutari, and M. Sozio. Autoad: an

automated framework for unsupervised anomaly detection. In

2022 IEEE 9th International Conference on Data Science and

Advanced Analytics (DSAA), pages 1–10. IEEE, 2022.

[161] J. Qi, S. Huang, Z. Luan, S. Yang, C. Fung, H. Yang, D. Qian,

J. Shang, Z. Xiao, and Z. Wu. Loggpt: Exploring chatgpt

for log-based anomaly detection. In 2023 IEEE International

Conference on High Performance Computing & Communica-

tions, Data Science & Systems, Smart City & Dependability

in Sensor, Cloud & Big Data Systems & Application (HPC-

C/DSS/SmartCity/DependSys), pages 273–280. IEEE, 2023.

BIBLIOGRAPHY 185

[162] L. Qian, Z. Luo, Y. Du, and L. Guo. Cloud computing: An

overview. In IEEE international conference on cloud comput-

ing, pages 626–631. Springer, 2009.

[163] J. Qiu, Q. Du, K. Yin, S.-L. Zhang, and C. Qian. A causal-

ity mining and knowledge graph based method of root cause

diagnosis for performance anomaly in cloud applications. Ap-

plied Sciences, 10(6):2166, 2020.

[164] H. Ren, B. Xu, Y. Wang, C. Yi, C. Huang, X. Kou, T. Xing,

M. Yang, J. Tong, and Q. Zhang. Time-series anomaly de-

tection service at microsoft. In Proceedings of the 25th ACM

SIGKDD international conference on knowledge discovery &

data mining, pages 3009–3017, 2019.

[165] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic

backpropagation and approximate inference in deep genera-

tive models. In International conference on machine learning

(ICML), pages 1278–1286. PMLR, 2014.

[166] D. Scheinert, A. Acker, L. Thamsen, M. K. Geldenhuys, and

O. Kao. Learning dependencies in distributed cloud applica-

tions to identify and localize anomalies. In 2021 IEEE/ACM

International Workshop on Cloud Intelligence (CloudIntelli-

gence), pages 7–12. IEEE, 2021.

[167] S. Schmidl, P. Wenig, and T. Papenbrock. Anomaly detection

in time series: a comprehensive evaluation. Proceedings of

the VLDB Endowment, 15(9):1779–1797, 2022.

[168] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola,

and R. C. Williamson. Estimating the support of a high-

dimensional distribution. Neural computation, 13(7):1443–

1471, 2001.

[169] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu.

Dbscan revisited, revisited: why and how you should (still)

BIBLIOGRAPHY 186

use dbscan. ACM Transactions on Database Systems (TODS),

42(3):1–21, 2017.

[170] P. Senin and S. Malinchik. Sax-vsm: Interpretable time series

classification using sax and vector space model. In 2013 IEEE

13th international conference on data mining, pages 1175–

1180. IEEE, 2013.

[171] H. Shan, Y. Chen, H. Liu, Y. Zhang, X. Xiao, X. He, M. Li,

and W. Ding. ?-diagnosis: Unsupervised and real-time di-

agnosis of small-window long-tail latency in large-scale mi-

croservice platforms. In The World Wide Web Conference

(WWW), pages 3215–3222, 2019.

[172] L. K. Shar, A. Goknil, E. J. Husom, S. Sen, Y. N. Tun, and

K. Kim. Autoconf: Automated configuration of unsupervised

learning systems using metamorphic testing and bayesian op-

timization. In 2023 38th IEEE/ACM International Confer-

ence on Automated Software Engineering (ASE), pages 1326–

1338. IEEE, 2023.

[173] Y. Sharma, D. Bhamare, N. Sastry, B. Javadi, and R. Buyya.

Sla management in intent-driven service management sys-

tems: A taxonomy and future directions. ACM Computing

Surveys, 2023.

[174] L. Shen, Z. Li, and J. Kwok. Timeseries anomaly de-

tection using temporal hierarchical one-class network. Ad-

vances in Neural Information Processing Systems (NeurIPS),

33:13016–13026, 2020.

[175] Y. Shen, Y. Li, J. Zheng, W. Zhang, P. Yao, J. Li, S. Yang,

J. Liu, and B. Cui. Proxybo: Accelerating neural architec-

ture search via bayesian optimization with zero-cost proxies.

In Proceedings of the AAAI Conference on Artificial Intelli-

gence, volume 37, pages 9792–9801, 2023.

BIBLIOGRAPHY 187

[176] X. Shi, Z. Ke, Y. Zhou, H. Jin, L. Lu, X. Zhang, L. He, Z. Hu,

and F. Wang. Deca: A garbage collection optimizer for in-

memory data processing. ACM Transactions on Computer

Systems (TOCS), 36(1):1–47, 2019.

[177] K. Shima. Length matters: Clustering system log messages

using length of words. arXiv preprint arXiv:1611.03213,

2016.

[178] A. Shojaie and E. B. Fox. Granger causality: A review and

recent advances. Annual Review of Statistics and Its Applica-

tion, 9:289–319, 2022.

[179] M. A. Siddiqui, A. Fern, T. G. Dietterich, R. Wright, A. The-

riault, and D. W. Archer. Feedback-guided anomaly discov-

ery via online optimization. In Proceedings of the 24th ACM

SIGKDD international conference on knowledge discovery &

data mining, pages 2200–2209, 2018.

[180] S. Singh, R. Batheri, and J. Dias. Predictive analytics: How

to improve availability of manufacturing equipment in auto-

motive firms. IEEE Engineering Management Review, 2023.

[181] J. Soldani and A. Brogi. Anomaly detection and failure root

cause analysis in (micro) service-based cloud applications: A

survey. ACM Computing Surveys (CSUR), 55(3):1–39, 2022.

[182] Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei. Ro-

bust anomaly detection for multivariate time series through

stochastic recurrent neural network. In Proceedings of the

25th ACM SIGKDD international conference on knowledge

discovery & data mining, pages 2828–2837, 2019.

[183] Y. Su, Y. Zhao, W. Xia, R. Liu, J. Bu, J. Zhu, Y. Cao, H. Li,

C. Niu, Y. Zhang, et al. Coflux: robustly correlating kpis by

fluctuations for service troubleshooting. In Proceedings of the

BIBLIOGRAPHY 188

International Symposium on Quality of Service, pages 1–10,

2019.

[184] S. V. Subramanyam. Cloud-based enterprise systems: Bridg-

ing scalability and security in healthcare and finance. IJSAT-

International Journal on Science and Technology, 16(1),

2025.

[185] M. B. Sullivan, N. Saxena, M. O’Connor, D. Lee, P. Racunas,

S. Hukerikar, T. Tsai, S. K. S. Hari, and S. W. Keckler. Char-

acterizing and mitigating soft errors in gpu dram. In MICRO-

54: 54th Annual IEEE/ACM International Symposium on Mi-

croarchitecture, pages 641–653, 2021.

[186] E. Sylligardos, P. Boniol, J. Paparrizos, P. Trahanias, and

T. Palpanas. Choose wisely: An extensive evaluation of model

selection for anomaly detection in time series. Proceedings of

the VLDB Endowment, 16(11):3418–3432, 2023.

[187] H. Tanaka, D. Kunin, D. L. Yamins, and S. Ganguli. Prun-

ing neural networks without any data by iteratively conserv-

ing synaptic flow. Advances in neural information processing

systems, 33:6377–6389, 2020.

[188] L. Tang, T. Li, and C.-S. Perng. Logsig: Generating sys-

tem events from raw textual logs. In Proceedings of the 20th

ACM International Conference on Information and Knowl-

edge Management (CIKM), pages 785–794, 2011.

[189] S. Tuli, G. Casale, and N. R. Jennings. Tranad: Deep trans-

former networks for anomaly detection in multivariate time

series data. arXiv preprint arXiv:2201.07284, 2022.

[190] S. Tuli, S. S. Gill, P. Garraghan, R. Buyya, G. Casale, and

N. Jennings. Start: Straggler prediction and mitigation for

cloud computing environments using encoder lstm networks.

IEEE Transactions on Services Computing, 2021.

BIBLIOGRAPHY 189

[191] R. Vaarandi. A data clustering algorithm for mining pat-

terns from event logs. In Proceedings of the 3rd IEEE Work-

shop on IP Operations & Management (IPOM)(IEEE Cat.

No. 03EX764), pages 119–126. Ieee, 2003.

[192] R. Vaarandi and M. Pihelgas. Logcluster-a data clustering

and pattern mining algorithm for event logs. In 2015 11th

International conference on network and service management

(CNSM), pages 1–7. IEEE, 2015.

[193] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,

A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all

you need. Advances in neural information processing systems

(NeurIPS), 30, 2017.

[194] A. Visheratin, A. Struckov, S. Yufa, A. Muratov, D. Nasonov,

N. Butakov, Y. Kuznetsov, and M. May. Peregreen–modular

database for efficient storage of historical time series in cloud

environments. In 2020 USENIX Annual Technical Conference

(USENIX ATC 20), pages 589–601, 2020.

[195] C. Wang, Z. Chen, and M. Zhou. Automl from software engi-

neering perspective: Landscapes and challenges. In Proceed-

ings of the 20th International Conference on Mining Software

Repositories. MSR, 2023.

[196] D. Wang, Z. Chen, J. Ni, L. Tong, Z. Wang, Y. Fu,

and H. Chen. Hierarchical graph neural networks for

causal discovery and root cause localization. arXiv preprint

arXiv:2302.01987, 2023.

[197] H. Wang, P. Nguyen, J. Li, S. Kopru, G. Zhang, S. Katariya,

and S. Ben-Romdhane. Grano: Interactive graph-based root

cause analysis for cloud-native distributed data platform. Pro-

ceedings of the VLDB Endowment, 12(12):1942–1945, 2019.

BIBLIOGRAPHY 190

[198] H. Wang, Z. Wu, H. Jiang, Y. Huang, J. Wang, S. Kopru, and

T. Xie. Groot: An event-graph-based approach for root cause

analysis in industrial settings. In 2021 36th IEEE/ACM In-

ternational Conference on Automated Software Engineering

(ASE), pages 419–429. IEEE, 2021.

[199] L. Wang, S. Chen, and Q. He. Concept drift-based runtime re-

liability anomaly detection for edge services adaptation. IEEE

Transactions on Knowledge and Data Engineering, 2021.

[200] L. Wang, C. Zhang, R. Ding, Y. Xu, Q. Chen, W. Zou,

Q. Chen, M. Zhang, X. Gao, H. Fan, et al. Root cause

analysis for microservice systems via hierarchical reinforce-

ment learning from human feedback. In Proceedings of the

29th ACM SIGKDD Conference on Knowledge Discovery and

Data Mining, pages 5116–5125, 2023.

[201] W. Wang, P. Chen, Y. Xu, and Z. He. Active-mtsad: mul-

tivariate time series anomaly detection with active learning.

In 2022 52nd Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN), pages 263–274.

IEEE, 2022.

[202] X. Wang, Y. Jin, S. Schmitt, and M. Olhofer. Recent ad-

vances in bayesian optimization. ACM Computing Surveys,

55(13s):1–36, 2023.

[203] X. Wang, X. Zhang, L. Li, S. He, H. Zhang, Y. Liu, L. Zheng,

Y. Kang, Q. Lin, Y. Dang, et al. Spine: a scalable log parser

with feedback guidance. In Proceedings of the 30th ACM

Joint European Software Engineering Conference and Sym-

posium on the Foundations of Software Engineering, pages

1198–1208, 2022.

[204] Y. Wang, G. Li, Z. Wang, Y. Kang, Y. Zhou, H. Zhang, F. Gao,

J. Sun, L. Yang, P. Lee, et al. Fast outage analysis of large-

BIBLIOGRAPHY 191

scale production clouds with service correlation mining. In

2021 IEEE/ACM 43rd International Conference on Software

Engineering (ICSE), pages 885–896. IEEE, 2021.

[205] Z. Wang and S. Jegelka. Max-value entropy search for effi-

cient bayesian optimization. In International Conference on

Machine Learning, pages 3627–3635. PMLR, 2017.

[206] J. S. Ward and A. Barker. Semantic based data collection for

large scale cloud systems. In Proceedings of the fifth inter-

national workshop on Data-Intensive Distributed Computing

Date, pages 13–22, 2012.

[207] C. Wen, H. Wang, Y. Li, S. Qin, Y. Liu, Z. Xu, H. Chen,

X. Xie, G. Pu, and T. Liu. Memlock: Memory usage guided

fuzzing. In Proceedings of the ACM/IEEE 42nd International

Conference on Software Engineering, pages 765–777, 2020.

[208] J. Weng, J. H. Wang, J. Yang, and Y. Yang. Root cause

analysis of anomalies of multitier services in public clouds.

IEEE/ACM Transactions on Networking (TON), 26(4):1646–

1659, 2018.

[209] B. Wickremasinghe, R. N. Calheiros, and R. Buyya. Cloudan-

alyst: A cloudsim-based visual modeller for analysing cloud

computing environments and applications. In 2010 24th IEEE

international conference on advanced information network-

ing and applications, pages 446–452. IEEE, 2010.

[210] J. Wilson, F. Hutter, and M. Deisenroth. Maximizing acquisi-

tion functions for bayesian optimization. Advances in neural

information processing systems, 31, 2018.

[211] R. Wu, S. Zhou, J. Lu, Z. Shen, Z. Xu, J. Shu, K. Yang, F. Lin,

and Y. Zhang. Removing obstacles before breaking through

the memory wall: A close look at hbm errors in the field. In

BIBLIOGRAPHY 192

2024 USENIX Annual Technical Conference (USENIX ATC

24), pages 851–867, 2024.

[212] Y. Wu, Z. Yu, M. Wen, Q. Li, D. Zou, and H. Jin. Under-

standing the threats of upstream vulnerabilities to downstream

projects in the maven ecosystem. In 2023 IEEE/ACM 45th

International Conference on Software Engineering (ICSE),

pages 1046–1058. IEEE, 2023.

[213] Y. Xiong, Y. Jiang, Z. Yang, L. Qu, G. Zhao, S. Liu, D. Zhong,

B. Pinzur, J. Zhang, Y. Wang, et al. {SuperBench}: Im-

proving cloud {AI} infrastructure reliability with proactive

validation. In 2024 USENIX Annual Technical Conference

(USENIX ATC 24), pages 835–850, 2024.

[214] B. Xu, N. Wang, T. Chen, and M. Li. Empirical evaluation of

rectified activations in convolutional network. arXiv preprint

arXiv:1505.00853, 2015.

[215] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao,

D. Pei, Y. Feng, et al. Unsupervised anomaly detection via

variational auto-encoder for seasonal kpis in web applica-

tions. In Proceedings of the 2018 World Wide Web Confer-

ence, pages 187–196, 2018.

[216] J. Xu, R. Yang, Y. Huo, C. Zhang, and P. He. Divlog: Log

parsing with prompt-enhanced in-context learning. In Pro-

ceedings of the IEEE/ACM 46th International Conference on

Software Engineering, pages 1–12, 2024.

[217] W. Xu, L. Huang, A. Fox, D. Patterson, and M. Jordan. Large-

scale system problem detection by mining console logs. In

Proceedings of SOSP, volume 9, pages 1–17. Citeseer, 2009.

[218] S. Yan, C. Shan, W. Yang, B. Xu, D. Li, L. Qiu, J. Tong,

and Q. Zhang. Cmmd: Cross-metric multi-dimensional root

BIBLIOGRAPHY 193

cause analysis. In Proceedings of the 28th ACM SIGKDD

Conference on Knowledge Discovery and Data Mining, pages

4310–4320, 2022.

[219] S. Yan, B. Tang, J. Luo, X. Fu, and X. Zhang. Unsuper-

vised anomaly detection with variational auto-encoder and lo-

cal outliers factor for kpis. In 2021 IEEE Intl Conf on Par-

allel & Distributed Processing with Applications, Big Data

& Cloud Computing, Sustainable Computing & Communica-

tions, Social Computing & Networking (ISPA/BDCloud/So-

cialCom/SustainCom), pages 476–483. IEEE, 2021.

[220] L. Yang, J. Chen, Z. Wang, W. Wang, J. Jiang, X. Dong, and

W. Zhang. Semi-supervised log-based anomaly detection via

probabilistic label estimation. In 2021 IEEE/ACM 43rd Inter-

national Conference on Software Engineering (ICSE), pages

1448–1460. IEEE, 2021.

[221] T. Yang, J. Shen, Y. Su, X. Ling, Y. Yang, and M. R. Lyu. Aid:

efficient prediction of aggregated intensity of dependency in

large-scale cloud systems. In 2021 36th IEEE/ACM Interna-

tional Conference on Automated Software Engineering (ASE),

pages 653–665. IEEE, 2021.

[222] J. Yin, X. Zhao, Y. Tang, C. Zhi, Z. Chen, and Z. Wu. Cloud-

scout: A non-intrusive approach to service dependency dis-

covery. IEEE Transactions on Parallel and Distributed Sys-

tems, 28(5):1271–1284, 2016.

[223] B. Yu, J. Yao, Q. Fu, Z. Zhong, H. Xie, Y. Wu, Y. Ma, and

P. He. Deep learning or classical machine learning? an em-

pirical study on log-based anomaly detection. In Proceedings

of the 46th IEEE/ACM International Conference on Software

Engineering, pages 1–13, 2024.

BIBLIOGRAPHY 194

[224] G. Yu, P. Chen, Z. He, Q. Yan, Y. Luo, F. Li, and Z. Zheng.

Changerca: Finding root causes from software changes in

large online systems. Proceedings of the ACM on Software

Engineering, 1(FSE):24–46, 2024.

[225] G. Yu, P. Chen, P. Li, T. Weng, H. Zheng, Y. Deng, and

Z. Zheng. Logreducer: Identify and reduce log hotspots in

kernel on the fly. In 2023 IEEE/ACM 45th International Con-

ference on Software Engineering (ICSE), pages 1763–1775.

IEEE, 2023.

[226] G. Yu, P. Chen, Y. Li, H. Chen, X. Li, and Z. Zheng. Nezha:

Interpretable fine-grained root causes analysis for microser-

vices on multi-modal observability data. In Proceedings of the

31st ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineering,

pages 553–565, 2023.

[227] G. Yu, P. Chen, and Z. Zheng. Microscaler: Cost-effective

scaling for microservice applications in the cloud with an on-

line learning approach. IEEE Transactions on Cloud Comput-

ing, 10(2):1100–1116, 2020.

[228] Q. Yu, W. Zhang, J. Cardoso, and O. Kao. Exploring error bits

for memory failure prediction: An in-depth correlative study.

In 2023 IEEE/ACM International Conference on Computer-

Aided Design (ICCAD), pages 01–09. IEEE, 2023.

[229] Q. Yu, W. Zhang, M. Zhou, J. Yu, Z. Sheng, J. Bogati-

novski, J. Cardoso, and O. Kao. Investigating memory fail-

ure prediction across cpu architectures. In 2024 54th Annual

IEEE/IFIP International Conference on Dependable Systems

and Networks-Supplemental Volume (DSN-S), pages 88–95.

IEEE, 2024.

BIBLIOGRAPHY 195

[230] Z. Yu, C. Pei, S. Zhang, X. Wen, J. Li, G. Xie, and D. Pei.

Autokad: Empowering kpi anomaly detection with label-free

deployment. In 2023 IEEE 34th International Symposium

on Software Reliability Engineering (ISSRE), pages 13–23.

IEEE, 2023.

[231] C. Zhang, D. Song, Y. Chen, X. Feng, C. Lumezanu,

W. Cheng, J. Ni, B. Zong, H. Chen, and N. V. Chawla. A deep

neural network for unsupervised anomaly detection and diag-

nosis in multivariate time series data. In Proceedings of the

AAAI conference on artificial intelligence, volume 33, pages

1409–1416, 2019.

[232] C. Zhang, H. Sun, S. Li, Y. Wang, H. Chen, and H. Liu. A

survey of memory-centric energy-efficient computer architec-

ture. IEEE Transactions on Parallel and Distributed Systems,

2023.

[233] J. Zhang, W. Gu, Y. Huang, Z. Jiang, W. Wu, and M. R. Lyu.

Curvature-invariant adversarial attacks for 3d point clouds.

In Proceedings of the AAAI Conference on Artificial Intelli-

gence, volume 38, pages 7142–7150, 2024.

[234] J. Zhang, Y. Huang, W. Wu, and M. R. Lyu. Transferable

adversarial attacks on vision transformers with token gradient

regularization. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 16415–

16424, 2023.

[235] J. Zhang, W. Wu, J.-t. Huang, Y. Huang, W. Wang, Y. Su, and

M. R. Lyu. Improving adversarial transferability via neuron

attribution-based attacks. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 14993–15002, 2022.

BIBLIOGRAPHY 196

[236] P. Zhang, Y. Wang, X. Ma, Y. Xu, B. Yao, X. Zheng, and

L. Jiang. Predicting dram-caused node unavailability in

hyper-scale clouds. In 2022 52nd Annual IEEE/IFIP Inter-

national Conference on Dependable Systems and Networks

(DSN), pages 275–286. IEEE, 2022.

[237] S. Zhang, D. Li, Z. Zhong, J. Zhu, M. Liang, J. Luo, Y. Sun,

Y. Su, S. Xia, Z. Hu, et al. Robust system instance clustering

for large-scale web services. In Proceedings of the ACM Web

Conference 2022, pages 1785–1796, 2022.

[238] X. Zhang, C. Du, Y. Li, Y. Xu, H. Zhang, S. Qin, Z. Li, Q. Lin,

Y. Dang, A. Zhou, et al. Halo: Hierarchy-aware fault local-

ization for cloud systems. In Proceedings of the 27th ACM

SIGKDD Conference on Knowledge Discovery & Data Min-

ing, pages 3948–3958, 2021.

[239] X. Zhang, J. Kim, Q. Lin, K. Lim, S. O. Kanaujia, Y. Xu,

K. Jamieson, A. Albarghouthi, S. Qin, M. J. Freedman,

et al. Cross-dataset time series anomaly detection for cloud

systems. In 2019 USENIX Annual Technical Conference

(USENIX ATC 19), pages 1063–1076, 2019.

[240] X. Zhang, S. Shi, H. Sun, D. Chen, G. Wang, and K. Wu. Ac-

vae: A novel self-adversarial variational auto-encoder com-

bined with contrast learning for time series anomaly detec-

tion. Neural Networks, 171:383–395, 2024.

[241] X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie,

X. Yang, Q. Cheng, Z. Li, et al. Robust log-based anomaly

detection on unstable log data. In Proceedings of the 2019

27th ACM joint meeting on European software engineering

conference and symposium on the foundations of software en-

gineering, pages 807–817, 2019.

BIBLIOGRAPHY 197

[242] G. Zhao, S. Hassan, Y. Zou, D. Truong, and T. Corbin.

Predicting performance anomalies in software systems at

run-time. ACM Transactions on Software Engineering and

Methodology (TOSEM), 30(3):1–33, 2021.

[243] H. Zhao, Y. Wang, J. Duan, C. Huang, D. Cao, Y. Tong,

B. Xu, J. Bai, J. Tong, and Q. Zhang. Multivariate time-series

anomaly detection via graph attention network. In 2020 IEEE

International Conference on Data Mining (ICDM), pages

841–850. IEEE, 2020.

[244] N. Zhao, J. Chen, X. Peng, H. Wang, X. Wu, Y. Zhang,

Z. Chen, X. Zheng, X. Nie, G. Wang, et al. Understand-

ing and handling alert storm for online service systems. In

Proceedings of the ACM/IEEE 42nd International Conference

on Software Engineering: Software Engineering in Practice

(ICSE-SEIP), pages 162–171, 2020.

[245] N. Zhao, J. Chen, Z. Wang, X. Peng, G. Wang, Y. Wu,

F. Zhou, Z. Feng, X. Nie, W. Zhang, et al. Real-time incident

prediction for online service systems. In Proceedings of the

28th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software

Engineering, pages 315–326, 2020.

[246] N. Zhao, P. Jin, L. Wang, X. Yang, R. Liu, W. Zhang, K. Sui,

and D. Pei. Automatically and adaptively identifying se-

vere alerts for online service systems. In IEEE INFOCOM

2020-IEEE Conference on Computer Communications, pages

2420–2429. IEEE, 2020.

[247] N. Zhao, H. Wang, Z. Li, X. Peng, G. Wang, Z. Pan, Y. Wu,

Z. Feng, X. Wen, W. Zhang, et al. An empirical investiga-

tion of practical log anomaly detection for online service sys-

tems. In Proceedings of the 29th ACM Joint Meeting on Eu-

ropean Software Engineering Conference and Symposium on

BIBLIOGRAPHY 198

the Foundations of Software Engineering, pages 1404–1415,

2021.

[248] N. Zhao, J. Zhu, R. Liu, D. Liu, M. Zhang, and D. Pei. Label-

less: A semi-automatic labelling tool for kpi anomalies. In

IEEE INFOCOM 2019-IEEE Conference on Computer Com-

munications, pages 1882–1890. IEEE, 2019.

[249] Y. Zhao, Z. Nasrullah, and Z. Li. Pyod: A python toolbox for

scalable outlier detection. arXiv preprint arXiv:1901.01588,

2019.

[250] Y. Zhao, R. Rossi, and L. Akoglu. Automatic unsupervised

outlier model selection. Advances in Neural Information Pro-

cessing Systems, 34:4489–4502, 2021.

[251] R. Zhong, Y. Li, J. Kuang, W. Gu, Y. Huo, and M. R. Lyu. Au-

tomated defects detection and fix in logging statement. arXiv

preprint arXiv:2408.03101, 2024.

[252] F. Zhou, M. Goel, P. Desnoyers, and R. Sundaram. Scheduler

vulnerabilities and coordinated attacks in cloud computing.

Journal of Computer Security, 21(4):533–559, 2013.

[253] T. Zhou, C. Zhang, X. Peng, Z. Yan, P. Li, J. Liang, H. Zheng,

W. Zheng, and Y. Deng. Tracestream: Anomalous service lo-

calization based on trace stream clustering with online feed-

back. In 2023 IEEE 34th International Symposium on Soft-

ware Reliability Engineering (ISSRE), pages 601–611. IEEE,

2023.

[254] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R.

Lyu. Tools and benchmarks for automated log parsing. In

2019 IEEE/ACM 41st International Conference on Software

Engineering: Software Engineering in Practice (ICSE-SEIP),

pages 121–130. IEEE, 2019.

BIBLIOGRAPHY 199

[255] B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu,

D. Cho, and H. Chen. Deep autoencoding gaussian mixture

model for unsupervised anomaly detection. In International

conference on learning representations (ICLR), 2018.

	Abstract
	Acknowledgement
	Introduction
	Overview
	Thesis Contributions
	Thesis Organization

	Reliability Engineering in Cloud Systems
	Architecture of Cloud Service Systems
	Cloud System Monitoring Data
	Metric-based Intelligent Reliability Engineering
	Metric-based Anomaly Detection
	Metric-based Root Cause Analysis
	Metric-based Clustering

	Literature Survey on Monitoring Metric-based Intelligent Cloud Reliability Management
	Metric-based Analysis
	Metric-based Anomaly Detection
	Metric-based Root Cause Analysis
	Monitoring Metric-based Clustering

	Log-based Analysis
	Log Parsing
	Advancements in Log-based Anomaly Detection

	Multivariate KPI Anomaly Detection
	Introduction
	Background
	Monitoring Metrics in Cloud Service Systems
	Performance Issues due to Correlation Violation

	METHODOLOGY
	Problem Formulation
	Overview
	Relational-Temporal Embedding
	Performance Issues Identification with LC-VAE
	Correlation Violation Metrics Localization

	EVALUATION
	Datasets
	Experiment Setting
	Experimental Results
	Case Study

	DISCUSSION
	Industrial Experience
	Threats to Validity
	Limitations of ISOLATE

	CONCLUSION

	Adaptive AutoML-based Anomaly Detection
	Introduction
	Background
	Performance Anomaly Detection in Cloud Service Systems
	Automated Machine Learning

	Methodology
	Problem Formulation
	Overview
	Label-free Configuration Search
	Feedback-based Adaptive Learning

	Experiments
	Experiment Settings
	RQ1: The Effectiveness of ADAMAS
	RQ2: The Effectiveness of Each Components of ADAMAS
	RQ3: Parameter Sensitivity of ADAMAS
	Case Study

	Discussion
	The Reduction of Human Efforts
	The overhead of ADAMAS
	Threats to Validity
	Limitations of ADAMAS

	Conclusion

	Efficient KPI Root Cause Localization
	Introduction
	Background and Motivation
	KPI-based Root Cause Localization in Cloud Systems
	A Motivating Example

	METHODOLOGY
	Problem Formulation
	Overview
	Anomaly Segment Detection
	Similarity Analysis
	Causality Analysis
	Complexity Analysis

	EVALUATION
	Experiment Setting
	Experimental Results

	Industrial Experience
	Discussion
	Root Cause Analysis for Microservice System
	The Influence of SAX Representation
	Threats to Validity
	Limitations of KPIRoot

	CONCLUSION

	Conclusion and Future Work
	Conclusion
	Future Work
	Failure Prediction of High-bandwidth Memory in LLM Training Platforms
	Preliminary Evaluation Results
	Limitations of Our Preliminary Approach

	List of Publications
	Bibliography

