
Towards Reliable Cloud

Microservices with Intelligent

Operations

YANG, Tianyi

A Thesis Submitted in Partial Fulfilment

of the Requirements for the Degree of

Doctor of Philosophy

in

Computer Science and Engineering

The Chinese University of Hong Kong

September 2022

Thesis Assessment Committee

Professor LEE Ho Man (Chair)

Professor LYU Rung Tsong Michael (Thesis Supervisor)

Professor LEE Pak Ching (Committee Member)

Professor CAO Jiannong (External Examiner)

Abstract of thesis entitled:

Towards Reliable Cloud Microservices with Intelligent Oper-

ations

Submitted by YANG, Tianyi

for the degree of Doctor of Philosophy

at The Chinese University of Hong Kong in September 2022

The reliability of cloud services is crucial to both customers

and cloud providers. However, the increasing scale and complex-

ity of modern cloud systems pose great challenges for service

reliability engineering. Specifically, since online cloud services

are often composed of a complex hierarchy of small-grained mi-

croservices, unplanned service failures may cause severe cascad-

ing impacts, deteriorating customer satisfaction. The massive

amount of logs and alerts also obstructs engineers’ prompt inter-

vention upon the occurrence of cloud anomalies. In this thesis,

I propose intelligent operations based on microservice runtime

data including metrics, traces, logs, and alerts. I focus on three

closely-related tasks for reliable microservices, i.e., predicting

the intensity of microservice dependencies, testing microservice

systems, and improving the quality of alerts and logs.

Firstly, I study the outages and the procedure for failure di-

agnosis in two cloud providers to motivate the definition of the

intensity of dependency. I define the intensity of dependency

between two services as how much the status of the callee ser-

vice influences the caller service. Then I propose AID, the first

i

approach to predict the Aggregated Intensity of Dependencies

between cloud services. The experimental results show that AID

can efficiently and accurately predict the intensity of dependen-

cies. I further demonstrate the usefulness of our method in a

leading public cloud provider.

Secondly, for the resilience testing of microservice systems, I

identify the scalability and adaptivity issues of current human-

dependent practice for resilience testing. Then I empirically

compare the manifestations of common failures in resilient and

unresilient microservice systems. The empirical study demon-

strates the feasibility of self-adaptive resilience testing. Observ-

ing that the resilience of a service is related to the degradation

propagation from system performance metrics to business met-

rics, I propose AVERT, the first framework for self-AdaptiVE

Resilience Testing that can automatically index the resilience

of a microservice system to different failures. AVERT measures

the degradation propagation from system performance metrics

to business metrics. The higher the propagation, the lower the

resilience. The evaluation of two open-source benchmark mi-

croservice systems indicates that AVERT can effectively and

efficiently test the resilience of microservice systems.

Thirdly, I empirically study how to improve the quality of

alerts and logs. For alerts, I observe on-call engineers being

hindered from quickly locating and fixing faulty cloud services

because of the vast existence of misleading, non-informative,

non-actionable alerts. I call the ineffectiveness of alerts “anti-

patterns of alerts”. I conduct the first empirical study on the

practices of mitigating anti-patterns of alerts in an industrial

cloud system. I summarized six anti-patterns of alerts, four cur-

rent reactions to mitigate the anti-patterns of alerts, as well as

ii

the general preventative guidelines for the configuration of alert

strategy. For logs, I survey 33 papers in the last 23 years across

a variety of topics in the practice of logging, including where-to-

log, what-to-log, and how-to-log. Based on our empirical study,

I summarize the best practices of logging and propose bridging

the gap between manual alert strategies and cloud service up-

grades by automatically evaluating the Quality of Alerts (QoA).

In summary, this thesis targets to assist software engineers

with intelligent operations to improve reliability in cloud mi-

croservices. Comprehensive experiments on industrial and pub-

lic datasets confirm the effectiveness and efficiency of our pro-

posed methods.

iii

論文題目：面嚮微服務可靠性的智能運維

作者 ：楊天益

學校 ：香港中文大學

學系 ：計算機科學與工程學系

修讀學位：哲學博士

摘要 ：

雲服務的可靠性對客戶和雲服務提供者都至關重要。然而，現

代雲系統日益增加的規模和複雜性對雲服務的可靠性工程增加

了巨大挑戰。具體來說，由於雲服務通常由多層次的小細微性

微服務組成，計畫外的故障可能會造成嚴重的級聯影響，從而

降低客戶滿意度。大量的日誌和警報也阻礙了工程師在異常發

生時的及時干預。在本文中，我提出了基於微服務運行時資料

（包括監控指標、調用鏈、日誌和警報）的智慧化系統運維。

我專注於保證微服務可靠性的三項密切相關的任務，即預測微

服務之間的依賴強度、測試微服務系統、以及提高警報和日誌

的品質。

第一，我調研了兩個雲服務提供者的故障記錄。基於此調

研，我提出了聚合依賴強度的定義。我將兩個服務之間的聚合

依賴強度定義為被調用方服務的狀態對調用方服務的影響程

度。然後，我提出了AID，這是第一種預測雲服務之間的聚合

依賴強度的方法。在類比的和真實的雲系統上的實驗結果表

明，AID可以高效、準確地預測依賴強度。我在領先的公共雲

服務提供者的系統中進一步展示了我所提出的方法的實用性。

第二，對於微服務系統的韌性測試，我指出了當前依賴人

工審視的韌性測試實踐的擴展性和適應性問題。然後，我

iv

實驗對比了韌性高的和韌性低的微服務系統在常見故障下的

表現。我觀察到微服務的韌性與監控指標從系統性能指標降

級傳播到業務指標降級的程度有關，這表明了自適應的韌性

測試的可行性。我提出了AVERT，第一個自適應的韌性測

試框架。AVERT可以自動索引微服務系統對不同故障的韌

性。AVERT測量從系統性能指標降級到業務指標降級的傳播

程度。傳播程度越高，韌性越低。對兩個開源基準微服務系統

的評估表明，AVERT可以有效地測試微服務系統的韌性。

第三，我實證研究了提高告警和日誌品質的方法。對於告警品

質，我觀察到，由於大量存在誤導性、非資訊性、不可操作的

警報，使運維工程師無法快速定位和修復故障雲服務。我將告

警的無效性稱為“告警的反模式”。我首次對應對雲系統鐘告警

的反模式的工業實踐進行了實證研究。我研究了華為的告警策

略和告警處理流程。我總結了六種告警的反模式，四種應對告

警反模式的方法，以及告警策略配置的一般預防指南。對於日

誌品質，我調研了過去23年中的33篇相關論文。這些論文涉及

日誌中的各種主題，包括在哪裡記錄日誌、記錄什麼日誌內容

以及記錄日誌的方法。基於我的實證研究，我總結了記錄日誌

的最佳實踐，並提出通過自動評估警報品質的方法來提高告警

和日誌的品質。

總之，本文旨在幫助軟體工程師進行智慧操作，以提高雲微服

務的可靠性。在工業和公共數據集上的實驗證實了我提出的方

法的有效性和高效性。

v

Acknowledgement

First and foremost, I would like to thank my supervisor, Prof.

Michael R. Lyu, for his excellent supervision during my Ph.D.

study at CUHK. From choosing the research topic to technical

writing, his inspiring guidance and patience help me conduct

challenging research work. During the long Ph.D. study period,

I have learned so much from his knowledge and attitude in doing

research and being a nice person.

I am grateful to my thesis assessment committee members, Prof.

LEE Ho Man Jimmy and Prof. Lee Pak Ching Patrick, for

their constructive comments and valuable suggestions for this

thesis and all my term presentations. Many thanks to Prof.

CAO Jiannong from The Hong Kong Polytechnic University,

who kindly serves as the external examiner for this thesis.

Thank Prof. Cuiyun Gao from Harbin Institute of Technology

(Shenzhen), Prof. Yuxin Su from Sun Yat-Sen University, Dr.

Yu Kang and Dr. Si Qin from Microsoft Research Asia, and

Mr. Guangsheng Wei from Huawei Cloud for their insightful

discussions about the research topics included in this thesis.

Thank my fantastic collaborators, Jiacheng Shen and Baitong

Li for their precious suggestions and collaboration during my

Ph.D. study.

I am also thankful to my excellent group fellows, Jian Li, Peng-

peng Liu, Xiaotian Yu, Wang Chen, Yue Wang, Han Shao,

vi

Shilin He, Haoli Bai, Wenxiang Jiao, Yifan Gao, Jingjing Li,

Weibin Wu, Xiaoxue Ren, Zhuangbin Chen, Wenchao Gu, Jen-

Tse Huang, Yun Peng, Jianping Zhang, Jinyang Liu, Yintong

Huo, WenxuanWang, Yichen Li, Shuqing Li, Wenwei Gu, Yizhan

Huang, and Renyi Zhong.

Lastly, I want to thank my family. Their deep love and constant

support are the driving force for me to pursue my doctorate.

vii

To my family.

viii

Contents

Abstract i

Acknowledgement vi

1 Introduction 1

1.1 Overview . 1

1.2 Thesis Contributions 8

1.3 Thesis Organization 10

2 Research Foundations 13

2.1 Research Background 13

2.1.1 Microservice Systems 13

2.1.2 Monitoring Microservice Systems 15

2.2 Research Problems 24

2.2.1 Intensity of Microservice Dependency . . . 24

2.2.2 Microservice Resilience Testing 26

2.2.3 Anti-patterns of Alerts 28

3 Predicting the Aggregated Intensity of Depen-

dency 31

3.1 Introduction . 31

3.2 Motivation . 34

3.2.1 A Survey of the Outages in AWS 35

ix

3.2.2 Drawbacks of Current Failure Diagnosis

Methods 37

3.2.3 Intensity of Service Dependency 39

3.3 Problem Definition 41

3.4 Methodology . 41

3.4.1 Overview 42

3.4.2 Candidate Selection 43

3.4.3 Service Status Generation 44

3.4.4 Intensity Prediction 46

3.5 Evaluation . 49

3.5.1 Experimental Setup 49

3.5.2 RQ1: Effectiveness 53

3.5.3 RQ2: Impact of Different Parameter Set-

tings . 54

3.5.4 RQ3: Impact of Different Similarity Mea-

sures . 55

3.5.5 RQ4: Efficiency 56

3.6 Use Cases . 57

3.6.1 Optimization of Dependencies 58

3.6.2 Mitigation of Cascading Failures 58

3.7 Discussion . 59

3.7.1 Practical Usage and Perceived Limitations 59

3.7.2 Threat to Validity 60

3.8 Related Work . 61

4 Self-adaptive Microservice Resilience Testing 66

4.1 Introduction . 66

4.2 Motivation . 70

4.2.1 RQ1: Issues of Current Practice 71

4.2.2 RQ2: Failures and Their Impact 73

x

4.3 Methodology . 76

4.3.1 Design Objectives 77

4.3.2 Overview 78

4.3.3 Failure Execution 79

4.3.4 Degradation-based Metric Lattice Search . 80

4.3.5 Resilience Indexing 85

4.4 Evaluation . 85

4.4.1 Experiment Settings 86

4.4.2 RQ3: Effectiveness 90

4.4.3 RQ4: Ablation Study 91

4.4.4 RQ5: Efficiency 92

4.5 Discussion . 92

4.5.1 Threats to Validity 92

4.6 Related Work . 94

5 Empirical Study on Alerting and Logging 97

5.1 Introduction . 97

5.2 The Anti-patterns of Alerts 102

5.2.1 RQ1: Anti-patterns in Alerts 103

5.2.2 RQ2: Standard Alert Processing Procedure 110

5.2.3 RQ3: Reactions to Anti-patterns 111

5.2.4 RQ4: Avoidance of Anti-patterns 113

5.3 The Practice of Logging 114

5.3.1 RQ5: Logging Mechanism and Libraries . 115

5.3.2 RQ6: Challenges for Logging 117

5.3.3 RQ7: Logging Approaches 119

5.4 Discussion . 126

5.4.1 Detecting Anti-patterns of Alerts 126

5.4.2 Best Practices for Logging 128

5.5 Related Work . 129

xi

6 Conclusion and Future Work 132

6.1 Conclusion . 132

6.2 Future Directions 134

6.2.1 Trace Compression based on Service Topol-

ogy . 135

6.2.2 Analysis-Oriented Logging 135

6.2.3 Automated Generation of Logging State-

ments . 136

7 Publications during Ph.D. Study 137

Bibliography 140

xii

List of Figures

1.1 An illustration of the microservice architecture. . 2

1.2 Overview of the research in this thesis. 4

1.3 Categorization of the research in this thesis. . . . 5

2.1 The components of a microservice monitoring sys-

tem. 15

2.2 A trace with six spans. 16

2.3 An example of logging statements by SLF4J and

the generated logs. 20

2.4 The significance of alerts for cloud reliability. . . . 21

2.5 The monitoring metrics during the normal period

(the green area) and the failure injection period

(the red area). 27

3.1 The statuses of service A, B and C. A invokes B and

C but B has a greater effect on A. 39

3.2 The overall workflow of AID. 41

3.3 Prediction loss under different bin size τ 54

3.4 The use case of AID. 57

4.1 Overall framework of AVERT. 77

xiii

4.2 An example metric lattice constructed from M =

{m1, · · · ,m4}. I set number of monitoring met-

rics as a small value, 4, for a clear illustration.

The path of all solid red edges forms a ranked list. 82

5.1 A survey about the current practice of mitigating

the anti-patterns of alerts. 103

5.2 Repeating alerts in an alert storm. 108

5.3 An example Standard Operation Procedure. . . . 110

5.4 Answers to Q1 “Overall Helpfulness” regarding

OCEs’ working experience. 110

5.5 An example of logging statements by SLF4J and

the generated logs. 116

5.6 Incorporating human knowledge and machine learn-

ing to detect anti-patterns of alerts. 127

xiv

List of Tables

2.1 The attributes of a span. 17

2.2 A span generated by the train-ticket benchmark. . 18

2.3 Sample reliability alerts in a cloud system. The

names of microservices are omitted due to confi-

dentiality. 22

3.1 Summary of AWS outages related to service de-

pendency. 35

3.2 Dataset statistics. 50

3.3 Performance Comparison of Different Methods on

Two Datasets . 53

3.4 The impact of different similarity measures 55

4.1 Dataset Statistics 88

4.2 Performance Comparison of AVERT on Two Datasets 90

4.3 Ablation Study of AVERT on Two Datasets . . . 91

4.4 Typical faults and the corresponding degradation

with and without the resilience mechanisms men-

tioned in § 4.2.2 96

5.1 The Terminology Adopted in This Chapter. . . . 99

5.2 Summary of logging approaches. 120

xv

Chapter 1

Introduction

1.1 Overview

Modern online services are moving towards the microservice

architecture [108], where a monolithic online service is split

into fine-grained, independently-managed microservices which

collectively serve user requests. A microservice is a small in-

dependent program that communicate over well-defined APIs.

Multiple microservices serve users’ requests as a whole. Under

this architecture, microservice runtime management frameworks

like Kubernetes will be responsible for managing the life cycles

of microservices. Figure 1.1 illustrates a microservice system

comprised of three cloud services, each of which is composed of

multiple microservices. Developers can focus on the application

logic instead of the bothering tasks of resource management and

failure recovery. All the component microservices of an online

service and the additional components for the orchestration of

microservices (e.g., load balancer, message queues, and service

registries) constitute a microservice system.

The microservice architecture exhibits three prominent attributes.

First, a microservice system is highly decoupled [7, 9]. Each

1

CHAPTER 1. INTRODUCTION 2

MICROSERVICES

NetworkingAuthentication Computing

CLOUD SERVICES

Figure 1.1: An illustration of the microservice architecture.

microservice in a microservices system can be developed, de-

ployed, operated, and scaled without affecting the functioning

of other services. Microservices do not need to share any of their

code or implementation with other microservices. The individ-

ual microservices communicate with each other through well-

defined APIs. Second, the microservice architecture is highly

dynamic [7]. New features and updates are delivered continu-

ously and frequently [55]. Last, microservices are specialized [7].

Different from other existing distributed systems (e.g., Hadoop,

Spark, and Blockchain), each microservice is designed for a set of

capabilities and focuses on serving a specific problem. If devel-

opers contribute more code to a service over time and the service

becomes complex, it can be broken into smaller services. As a

result, the microservice failures are usually cascaded due to the

multi-layer deployment and inter-service dependencies architec-

ture [91, 149, 159]. Such three attributes lead to the challenges

that are specific to the microservice architecture.

Challenges to the reliability of cloud microservices originate from

both internal and external aspects of microservices. Internal as-

pects are the flaws of the microservice itself, e.g., software bugs

and software resilience issues, etc. On the one hand, a soft-

ware bug is an error, flaw or fault in the design, development,

CHAPTER 1. INTRODUCTION 3

or operation of software. Bugs lead to erroneous behaviors of

the microservice. On the other hand, service resilience [127],

i.e., the ability to maintain performance at an acceptable level

and recover the service back to normal under service failures, is

essentially a desired ability of microservices. Resilience issues

affect the availability of the microservice, which is harmful for

cloud providers’ revenue. I exemplify a resilience issue with Fig-

ure 2.5, which illustrates the request throughput of a service dur-

ing the normal (green) and the failure (red) period. Intuitively,

the resilience of the service is low because the failure causes ser-

vice degradation, reflected by the throughput decrement. Since

faults and failures are unavoidable [68, 91], test engineers con-

duct resilience tests on microservices to ensure service reliability.

All new or updated microservices need to pass a lot of resilience

tests before their deployments. Specifically, test engineers pur-

posefully inject failures into the system to discover flaws [65,106].

Improvements on architectural design are then adopted accord-

ing to the test results. External aspects indicate the threats

from outside a microservice, such as cascading failures and low-

quality logs and alerts. Cascading failures that result in service

degradation are ubiquitous in a microservice system. Although

microservice management frameworks provide automatic mech-

anisms for failure recovery, unplanned service failures may still

cause severe cascading effects. For example, failures of critical

services that provide basic request routing functions will impact

the invocation of cloud services, slow down request processing,

and deteriorate customer satisfaction. Therefore, evaluating the

impact of service failures rapidly and accurately is critical to

the operation and maintenance of cloud services. Knowing the

scope of the impact, reliability engineers can put more emphasis

CHAPTER 1. INTRODUCTION 4

on services that have greater impacts on others. Low-quality

logs and alerts are due to system-level misconfigurations. As

On-Call Engineers (OCEs) usually inspect the logs and alerts

to locate and diagnose failures when failures occur, if the logs

and alerts are low-quality or misleading, the process of manual

diagnosis will be hindered.

Intelligent Operations
for Microservices

AlertsQuality of Alerts Logs Logging Practices

Traces
Prediction of the

Intensity of
Dependency

Metrics Self-adaptive
Resilience Testing

Figure 1.2: Overview of the research in this thesis.

To tackle the challenges above, in this thesis, I resort to in-

telligent operations for improving the reliability of microservice

systems. As illustrated in Figure 1.2, the intelligent operations

are based on microservice runtime data including logs, metrics,

traces, and alerts. Logs, metrics, and traces reflect the runtime

status of the microservices. Specifically, traces record the sta-

tus of each microservice invocation, including the return value,

the duration of execution, etc. Logs are semi-structured text

printed by logging statements (e.g., logger.info()) in the source

code. Metrics are fixed-interval time series reflecting the statuses

of the microservice system [39]. Alerts, in addition, are notifi-

cations sent to On-Call Engineers (OCEs), of the form defined

by the alert strategy, of specific abnormal states of the cloud

service or microservice. The monitoring data are collected and

processed by the microservice monitoring system. When an ab-

normal state is detected and a pre-configured alert strategy is

activated, the alerting module will send an alert to the OCEs.

In Figure 1.3, I further categorize the reliability measures dis-

cussed in this thesis into three types, i.e., proactive measures,

CHAPTER 1. INTRODUCTION 5

reactive measures, and retrospective measures. Proactive mea-

sures examine the microservice system to detect possible flaws

of the system before the occurrence of a failure. Reactive mea-

sures assist OCEs to reduce the impact of a failure during failure

mitigation. Retrospective measures aim at discovering the in-

effectiveness of the failure mitigation process so that engineers

can make optimizations accordingly.

AID (§3)

AVERT (§4)

Alerting (§5)

Logging (§5)

Proactive Reactive Retrospective

Alerts

Logs

Traces

Metrics

Measures

Data

Figure 1.3: Categorization of the research in this thesis.

In this thesis, I focus on three closely-related tasks towards re-

liable microservices. The task details are listed as follows:

Predicting the Intensity of Microservice Dependency:

Service invocations cause dependencies between services. Iden-

tifying whether one service depends on another (i.e., binary de-

pendency) in online service systems can be well solved by indus-

trial tracing frameworks like Dapper, Jaeger, and Zipkin. How-

ever, modeling the relations of services solely with binary depen-

dencies is not precise enough. The callee microservice impact

the caller microservice in different ways. Hence, the procedure of

failure recovery can be sped up by skipping those unimportant

services. Manual examination of different dependencies with-

out any priority is inefficient, especially in microservice systems

CHAPTER 1. INTRODUCTION 6

where the microservice components could be highly decoupled

and dynamic. Based on this observation, I argue that it will be

helpful to measure the dependency as a continuous value that

indicates the intensity of this dependency. Specifically, by check-

ing microservices that are dependent on the failed microservice

with large intensity values, OCEs can find the root cause of

a failure with a higher probability. By recovering the services

that are strongly dependent on the failed one, the whole sys-

tem could be restored faster. To this end, I propose an effective

and efficient approach to predict the intensity of microservice

dependency based on traces.

Resilience Testing of Microservice Systems: The resilience

of a microservice system refers to the ability to maintain the

performance of services at an acceptable level and recover the

service back to normal when a failure in one or more parts of

the system causes the service degradation [127, 152]. Resilience

testing [106] is one of the primary ways to measure the resilience

of software. By purposefully introducing failures into the sys-

tem, the test engineers can monitor how the microservice system

performs and improve the architectural design according to the

discovered flaws [65]. Automation of the resilience testing pro-

cedure is possible, but standardization of test parameters is still

required. In practice, to standardize the resilience testing proce-

dure, test engineers need to manually determine the set of rules

for each failure type, which is burdensome and unscalable. This

is due to microservice systems’ decoupled and specialized nature.

To solve this problem, I propose a self-adaptive framework for

resilience testing of microservice systems.

Improving the Quality of Alerts and Logs: The quality

issues of logs and alerts stem from the dynamic and special-

CHAPTER 1. INTRODUCTION 7

ized attribute of microservice systems. The configuration of

alert strategies is empirical, which heavily depends on human

expertise. There are no one-fits-all criteria for “when to gen-

erate an alert” and “what attributes and descriptions an alert

should have”. In practice, I observe on-call engineers being

hindered from quickly locating and fixing faulty cloud services

because of the vast existence of misleading, non-informative,

non-actionable alerts. I call the ineffectiveness of alerts “anti-

patterns of alerts”. To better understand the anti-patterns of

alerts and provide actionable measures to mitigate anti-patterns,

in this thesis, I conduct the first empirical study on the prac-

tices of mitigating anti-patterns of alerts in an industrial cloud

system. I study the alert strategies and the alert processing pro-

cedure at Huawei Cloud, a leading cloud provider. I also survey

current reactions to mitigate the anti-patterns of alerts, and

the general preventative guidelines for the configuration of alert

strategy. Logs are also crucial for service reliability. The prac-

tice of logging has attracted attention from both academia [107,

123, 128, 146] and industry [14, 26, 47, 123, 154, 158] across a va-

riety of application domains because logging is a fundamental

step for all the subsequent log mining tasks. However, logging

practice is scarcely documented or regulated by strict standard,

such as the logging mechanism and APIs [14]. Essentially, log-

ging is a subjective task that relies heavily on human exper-

tise [47, 62, 118, 123, 132]. I review the challenges and existing

solutions of the practice of logging. In the end, I propose the

roadmap for improving the quality of alerts and summarize the

best practices of logging for system reliability.

CHAPTER 1. INTRODUCTION 8

1.2 Thesis Contributions

In this thesis, I mainly focus on intelligent operations for improv-

ing the reliability of microservice systems. I build the foundation

of intelligent operations on microservice runtime data including

logs, metrics, traces, and alerts. Then, I focus on three closely-

related tasks towards reliable microservices, as illustrated in Fig-

ure 1.3. For proactive and reactive reliability, I attribute the mi-

croservice dependency with the concept of aggregated intensity

and propose an effective and efficient way to measure it. For

microservice resilience testing, I identify the issues of current

industrial practice and propose the first self-adaptive resilience

testing framework that can automatically index the resilience of

a microservice system to different failures. For improving the

quality of alerts, I characterize the ineffective patterns in alerts,

summarize the mitigating the ineffective patterns, and propose

the criteria for evaluating and optimizing the quality of alerts.

Besides, I conduct a survey across a variety of topics in log-

ging practice and propose the best practices for logging. The

contributions of this thesis are summarized as follows:

• For predicting the intensity of dependency, I conduct a com-

prehensive industrial survey and an empirical study to iden-

tify the inefficiency of using binary-valued dependency for

failure diagnosis and failure recovery. I propose AID, the first

method to quantify the intensity of dependencies between

different services. The evaluation results on both simulated

environment and industrial environment show the effective-

ness and efficiency of the proposed method. I release a sim-

ulated dataset and an industrial dataset from a production

cloud system to facilitate future studies. Additionally, Our

CHAPTER 1. INTRODUCTION 9

method have been successfully applied in a leading public

cloud provider, and helped greatly reduce manual mainte-

nance effort.

• For the resilience testing of microservice systems, I iden-

tify the scalability and adaptivity issues of current indus-

trial practice for resilience testing. Then I conduct the first

empirical study on the failures’ manifestations on resilient

and unresilient microservice systems. The empirical study

demonstrates the feasibility for self-adaptive resilience test-

ing. I propose AVERT, the first self-adaptive resilience test-

ing framework that can automatically index the resilience

of a microservice system to different failures. AVERT mea-

sures the degradation propagation from system performance

metrics to business metrics. The higher the propagation,

the lower the resilience. The evaluation on two open-source

benchmark microservice systems indicates that AVERT can

effectively and efficiently produce accurate test results.

• For improving the quality of alerts, I conduct the first em-

pirical study on characterizing and mitigating anti-patterns

of alerts in an industrial cloud system. I identify six anti-

patterns of alerts in a production cloud system. Specifi-

cally, the six anti-patterns can be divided into two cate-

gories, namely individual anti-patterns and collective anti-

patterns. Individual anti-patterns result from the ineffective

patterns in one single alert strategy, including Unclear Name

or Description, Misleading Severity, Improper and Outdated

Alert Strategy, and Transient and Toggling Alerts. Collective

anti-patterns are ineffective patterns that a bunch of alerts

collectively exhibit, including repeating and cascading alerts.

CHAPTER 1. INTRODUCTION 10

I summarize the current industrial practices for mitigating

the anti-patterns of alerts, including postmortem reactions

to mitigate the effect of anti-patterns and the preventative

guidelines to avoid the anti-patterns. The postmortem reac-

tions include rule-based alert blocking and alert aggregation,

pattern-based alert correlation analysis, and emerging alert

detection. I also describe three aspects of designing preventa-

tive guidelines for alert strategies according to our experience

in Huawei Cloud. Lastly, I share our thoughts on prospective

directions to achieve automatic alert governance. I propose

to bridge the gap between manual alert strategies and cloud

service upgrades by automatically evaluating the Quality of

Alerts (QoA) in terms of indicativeness, impact, and han-

dleability.

• As for the practice of logging, I survey 33 papers in the last 23

years across a variety of topics in logging practice, including

where-to-log, what-to-log, and how-to-log. The papers under

exploration are mainly from top venues in three related fields:

software engineering (e.g., ICSE), system (e.g., SOSP), and

networking (e.g., NSDI). Thus, the readers can obtain a deep

understanding of the advantages and limitations of the SOTA

approaches.

1.3 Thesis Organization

The remainder of this thesis is organized as follows.

• Chapter 2

In this chapter, I provide a systematic review of the back-

ground knowledge about microservice systems that underpins

CHAPTER 1. INTRODUCTION 11

our approach. Firstly, I introduce the microservice architec-

ture and sort out the monitoring data of the microservice

system in Section § 2.1. Then, Section § 2.2.1 provides the

problem definition of predicting the intensity of microservice

dependency. Section § 2.2.2 gives a brief review of the re-

silience testing techniques. At last, Section § 2.2.3 describes

the reliability measures for cloud services and the alerting

mechanism in cloud systems., then explains why the ineffec-

tiveness of alerts is a crucial problem.

• Chapter 3

At first, Section § 3.1 provide a general introduction to this

chapter. I describe our survey and empirical study on real

outages that motivate our proposed method in Section § 3.2.

I define the intensity prediction problem in Section § 3.3. Sec-
tion § 3.4 elaborates on the proposed methodology, AID, for

evaluating the intensity of dependency in detail. Section § 3.5
introduces the datasets, baselines and shows the experimen-

tal results. Successful use cases of the proposed method in a

production cloud system are demonstrated in Section § 3.6.

I discuss the practical usage, the perceived limitations, and

the possible threats to validity in Section § 3.7. Section § 3.8

reviews existing work on service dependency analysis.

• Chapter 4

I give a general introduction of this chapter in Section § 4.1.

I describe our empirical study on the current industrial prac-

tice and the failures’ manifestations of microservices in Sec-

tion § 4.2 as the motivation that underpin our approach. Sec-

tion § 3.4 elaborates on the entire workflow of AVERT in de-

tail. Section § 4.4 introduces the datasets, baseline methods,

CHAPTER 1. INTRODUCTION 12

and discusses the experimental results. I present a discussion

about the threats to validity in Section § 4.5 and review the

existing research on testing the ability of tolerate possible

system failures in Section § 4.6.

• Chapter 5

A general introduction of this chapter in presented Section § 5.1.
Section § 5.2 presents our empirical study on the anti-patterns

of alerts. Particularly, I first introduce the general procedure

to process an alert, then present six anti-patterns. I sum-

marize the current postmortem measures and preventative

guidelines to mitigate the anti-patterns. Section § 5.3 intro-

duces approaches that automate or improve logging practices,

including where-to-log, what-to-log, and how-to-log. Section § 5.4
discusses the prospective directions towards the automatic

evaluation of QoA and the best practices for logging. Sec-

tion § 5.5 reviews existing alert management techniques.

• Chapter 6

The last chapter first summarizes this thesis in Section § 6.1.

Then in Section § 6.2, I discuss some potential future direc-

tions about reliability engineering in modern cloud systems,

including both microservice systems and serverless comput-

ing platforms.

2 End of chapter.

Chapter 2

Research Foundations

2.1 Research Background

2.1.1 Microservice Systems

Microservices are small, independent, and loosely coupled soft-

ware modules that can be deployed independently [108, 115].

Modern large-scale online services, such as Netflix, Facebook,

Amazon store, Alibaba Cloud, etc., are often constructed from

a complex and large-scale hierarchy of small-grained microser-

vices [9]. Nowadays, the common practice is to develop and de-

ploy multiple microservices that collectively comprise an online

service [38]. Different microservices serve different responsibil-

ities [38, 121, 129] like user authentication, resource allocation,

virtual network management, billing, etc. Additional compo-

nents (e.g., API gateways, message queues, service registries,

etc.) are usually employed for service decoupling and orchestra-

tion. When an external request arrives, it will be routed through

the system and served by dozens of microservices that rely on

one another. The microservices communicate with each other

through well-defined APIs and, therefore, can be refactored and

scaled independently and dynamically to adapt to incidents like

13

CHAPTER 2. RESEARCH FOUNDATIONS 14

surges of requests and service failures [140]. Such an architecture

is called the microservice architecture (MSA) [108].

The microservice architecture becomes increasingly popular due

to its high flexibility, reusability, and scalability [11]. It enables

agile development and supports polyglot programming, i.e., mi-

croservices developed under different technical stacks can work

together smoothly. However, the loosely coupled nature of mi-

croservices makes it difficult for engineers to conduct system

maintenance. First, the dependencies between microservices are

hard to grasp. Different microservices in a large cloud system are

usually developed and managed by separate teams. Each team

only has access to their own services as well as services that are

closely related, which means they only have a local view of the

whole system [144]. Second, the failures become hard to diag-

nose due to the multi-layered, virtualized, and inter-dependent

architecture. Microservices are typically deployed using virtual-

ized infrastructure such as virtual machines and containers. As a

result, the failure diagnosis, fault localization, and performance

debugging in a large microservice system become more complex

than ever [30, 51, 143]. Despite various fault tolerance mech-

anisms introduced by modern microservice systems, it is still

possible for minor anomalies to magnify their impact and esca-

late into system outages. As exemplified in Section § 3.2, when

a cloud service enters an anomalous state and does not return

results in a timely manner, other services that depend on it will

also suffer from the increased request latency. Such anomalous

states can propagate through the service-calling structure and

eventually affect the entire system, resulting in a degraded user

experience or even a service outage. The propagated impacts of

system anomalies and failures are more complex compared with

CHAPTER 2. RESEARCH FOUNDATIONS 15

monolithic applications.

2.1.2 Monitoring Microservice Systems

One of the major drawbacks of the microservice architecture is

the difficulty in system maintenance [165, 174]. The highly de-

coupled nature of the microservice architecture makes the per-

formance debugging, failure diagnosis, and fault localization in

cloud systems more complex than ever [31,51,160,162].

Monitoring Collection Analysis Alerting

Configuration

Storage

Figure 2.1: The components of a microservice monitoring system.

A common way to tackle the difficulties in system maintenance is

to deploy monitoring systems. The microservice monitoring sys-

tems improve system observability [63,64,67,123,150] by tracing,

logging, performance monitoring. Figure 2.1 illustrates the com-

ponents of a typical microservice monitoring system. First, the

monitoring modules generate monitoring data, i.e., logs, met-

rics, and traces. Second, the monitoring data are collected by

the data collection module and processed by the analysis mod-

ule. The analysis module continuously run anomaly detection

on traces, logs and metrics. When an abnormal state is de-

tected and a pre-configured alert strategy is activated, the alert-

ing module will send an alert to the On-Call Engineers (OCEs).

CHAPTER 2. RESEARCH FOUNDATIONS 16

Distributed Tracing

For online service providers, it is crucial to troubleshoot and fix

the failures in a timely manner because massive user applications

may be affected even by a small failure [29]. Distributed tracing

is a crucial technique for gaining insight and observability to

cloud systems.

Span 0

Span 1 Span 2 Span 3

Span 4 Span 5

ParentID NameSpanID Timestamp Duration …Result

Figure 2.2: A trace with six spans.

In large-scale microservice systems, a request is usually han-

dled by multiple chained microservice invocations. As clues to

defective microservices are hidden in the intricate network, it

is difficult for even knowledgeable On-Call Engineers (OCEs)

to infer how a request is processed in the microservice system.

Distributed tracing provides an approach to monitor the execu-

tion path of each request. For chained microservice invocations,

e.g., service A invokes service B, and service B invokes service

C, it is important to know the status of each microservice in-

vocation, including the return value, the duration of execution,

etc. By adding hooks to the microservices in the system, dis-

tributed tracing techniques [13, 46, 136] can record the contex-

tual information of each service invocation. Such records are

called spans. A span represents a logical unit of execution that

is handled by a microservice in the microservice system. All

the spans that serve for the same request collectively form a

CHAPTER 2. RESEARCH FOUNDATIONS 17

directed graph of spans, as illustrated in Figure 2.2. Such a di-

rected graph of spans generated by a request is called a trace.

A trace represents an execution path through the microservice

system. With a trace, engineers can track how the request prop-

agates through the microservice system. Collectively analyzing

the traces of the entire microservice system can help engineers

obtain in-depth execution reports that could assist failure diag-

nosis, fault localization, and surface performance degradation in

the microservice system.

Table 2.1: The attributes of a span.

Notation Meaning

sidi The ID of span si
spidi The ID of the parent span of si
stidi The ID of the trace that si belongs to
sname
i The name of service/microservice corresponding to si
stsi The time stamp of si
sdi The duration of execution of si
sri The result of execution of si

Although the actual implementation of distributed tracing sys-

tems varies a lot, the types of information they record are simi-

lar. For clarity, I formally describe the attributes of spans as fol-

lows. Suppose I have a trace T composed of spans {s1, s2, ..., sn},
a span si ∈ T contains the attributes1 shown in Table 2.1.

Table 2.2 illustrates the contents of a span generated by the

train-ticket benchmark [173]. It means that service ts-preserve-service

was invoked at 04:58 on April 17, 2020. The duration of execu-

tion is 1126 µs, and the execution result is SUCCESS.

1Other additional contextual information [119] is omitted as I do not use them in the
thesis.

CHAPTER 2. RESEARCH FOUNDATIONS 18

Span ID e22f30bdbfd09134
Parent Span ID b42a04bf18997d5d
Name ts-preserve-service
Timestamp (µs) 1618589098705000
Duration (µs) 1126
Result SUCCESS
Trace ID c0d17d481f47bdd9
Additional Logs ...

Table 2.2: A span generated by the train-ticket benchmark.

Performance Monitoring

Performance monitoring techniques observe real-time statuses

(i.e., monitoring metrics) of microservice systems [39]. The mi-

croservice architecture produces comprehensive monitoring met-

rics, i.e., float-valued or integer-valued time series. The types

of monitoring metrics vary depending on the microservice sys-

tem’s architecture and implementation. Generally, monitoring

metrics can be categorized into system performance metrics and

business metrics.

System Performance Metrics

System performance metrics directly reflect the runtime sta-

tus of the microservices and the underlying orchestration sys-

tem. For example, Kubernetes2, a popular microservice or-

chestration platform, employs a multi-level isolation architec-

ture for container orchestration. Every microservice running in

the Kubernetes environment executes in a container in an iso-

lated virtual environment called “pod”. Each pod resides in

a “node” which can either be a virtual machine or a physical

machine. Besides, Kubernetes also has many components for

network management, proxy, and task scheduling. As any fail-

2http://kubernetes.io/

http://kubernetes.io/

CHAPTER 2. RESEARCH FOUNDATIONS 19

ure of these components may result in the degradation of service,

all the pods, nodes, and other components will be monitored,

producing various system performance metrics, e.g., CPU us-

age, memory usage, network throughput, network transmit (tx)

and receive (rx) rate, disk I/O speed and error rate, number of

TCP connections, etc. These system performance metrics are

collected at both infrastructure-level (machines) and container-

level (microservices).

Business Metrics

Business metrics, in addition, reflect the quality of service in a

specific time period from the users’ aspect. Business metrics,

such as response latency, error rate, throughput, mean time to

recovery, and availability rate, are also crucial system indicators.

Different online services value different business metrics. For ex-

ample, availability and error rate are common performance at-

tributes of transactional services, while video streaming services

are usually based on throughput.

Owing to the distributed and virtualized nature of microservices,

the number of monitoring metrics explodes. Also, the mutual

influence between monitoring metrics becomes exquisite, making

the metric analysis more complex than ever [49,51].

Logging

Software logs have been widely employed in a variety of relia-

bility assurance tasks. Logs also play an indispensable role in

data-driven decision-making in industry [123]. In general, logs

are semi-structured text printed by logging statements (e.g.,

printf(), logger.info()) in the source code. They often record

software runtime information with text. For example, in Fig-

ure 2.3, the two log messages are printed by the two logging

CHAPTER 2. RESEARCH FOUNDATIONS 20

1 public void setTemperature(Integer temperature) {

2 // ...

3 logger.debug("Temperature set to {}. Old temperature was {}.", t,

↪→ oldT);

4 if (temperature.intValue() > 50) {

5 logger.info("Temperature has risen above 50 degrees.");

6 }

7 }

⇓
1 0 [setTemperature] DEBUG Wombat - Temperature set to 61. Old

↪→ temperature was 42.

2 0 [setTemperature] INFO Wombat - Temperature has risen above 50

↪→ degrees.

Figure 2.3: An example of logging statements by SLF4J and the generated
logs.

statements in the source code. The first few words (e.g., ”Wom-

bat”) of the log messages are decided by the corresponding log-

ging framework (e.g., SLF4J) and they are in structured form.

On the contrary, the remaining words (e.g., ”50 degrees”) are

unstructured because they are written by developers to describe

specific system runtime events.

Alerting

Alerting is a practical way to call for immediate human inter-

vention upon system anomalies. I introduce the necessities, at-

tributes, generation, and clearance of alerts as the background

knowledge. I also provide some typical examples of alerts from

production cloud systems.

Necessities of Alerts

Service reliability is one of the most important factors for both

online service providers and their clients. To clients, unplanned

service failure may cause serious damages to their applications.

To service providers, offering reliable services can attract more

CHAPTER 2. RESEARCH FOUNDATIONS 21

clients and will bring them higher market share and more profit.

Service providers and clients will reach a Service Level Agree-

ment (SLA) on the reliability of the target services. Service

available time, as a direct indicator, is often included in SLAs.

Failures that prevent online services from properly functioning

are inevitable [31]. In order to satisfy SLAs, online service

providers need to deal with service and microservice anoma-

lies before they escalate their effect into severe failures and inci-

dents. Alerting is a practical way to achieve this goal. Figure 2.4

demonstrates the significance of alerts. By continuously mon-

itoring online services via traces, logs, metrics, the monitoring

system will send alerts3 to OCEs upon detecting anomalous ser-

vice states. With the information provided in the alerts, OCEs

can judge with their domain knowledge, fix the problems, and

clear the alert. As a result, unplanned failures and incidents can

be avoided or quickly mitigated.

Figure 2.4: The significance of alerts for cloud reliability.

Attributes of Alerts

Alerts have many attributes that are helpful for OCEs’ diagno-

sis, including title of alerts, severity level, time, service name,

duration, location information. The Title of an Alert concisely

describes the alert. Typically, the title should contain informa-

tion like “the affected service or microservice” and “the manifes-
3Here I only focuses on the alerts that indicate potential bugs and failures, i.e., the

system reliability alerts.

CHAPTER 2. RESEARCH FOUNDATIONS 22

T
ab

le
2.
3:

S
am

p
le

re
li
ab

il
it
y
al
er
ts

in
a
cl
ou

d
sy
st
em

.
T
h
e
n
am

es
of

m
ic
ro
se
rv
ic
es

ar
e
om

it
te
d
d
u
e
to

co
n
fi
d
en
ti
al
it
y.

N
o.

S
ev
er
it
y

T
im

e
S
er
v
ic
e

A
le
rt

T
it
le

D
u
ra
ti
on

L
o
ca
ti
on

1
M
in
or

20
21
/0
5/
18

21
:0
4

E
la
st
ic

C
om

p
u
ti
n
g

C
on

n
ec
ti
on

to
A
u
th
en
-

ti
ca
ti
on

se
rv
ic
e

ti
m
ed

ou
t

52
se
c

R
eg
io
n
=
X
;D

C
=
2;
..
.

2
M
a
jo
r

20
21
/0
5/
18

06
:3
6

B
lo
ck

S
to
ra
ge

F
ai
le
d

to
al
lo
ca
te

n
ew

b
lo
ck
s,
d
is
k
fu
ll

10
m
in

R
eg
io
n
=
X
;D

C
=
1;
..
.

3
C
ri
ti
ca
l

20
21
/0
5/
18

06
:3
8

D
at
ab

as
e

F
ai
le
d

to
co
m
m
it

ch
an

ge
s
..
.

2
m
in

R
eg
io
n
=
X
;D

C
=
1;
..
.

4
C
ri
ti
ca
l

20
21
/0
5/
18

06
:3
8

D
at
ab

as
e

F
ai
le
d

to
co
m
m
it

ch
an

ge
s
..
.

5
m
in

R
eg
io
n
=
X
;D

C
=
1;
..
.

5
C
ri
ti
ca
l

20
21
/0
5/
18

06
:3
9

D
at
ab

as
e

F
ai
le
d

to
co
m
m
it

ch
an

ge
s
..
.

5
m
in

R
eg
io
n
=
X
;D

C
=
1;
..
.

6
W
ar
n
in
g

20
21
/0
5/
18

09
:0
1

A
P
I
G
at
ew

ay
R
eq
u
es
ts

to
A
P
IG

W
ex
ce
ed

th
re
sh
ol
d

2
m
in

R
eg
io
n
=
Y
;D

C
=
1;
..
.

CHAPTER 2. RESEARCH FOUNDATIONS 23

tation of the failure”. The OCEs will look up the alert title to

find the corresponding SOP and perform predefined actions to

mitigate the alert. The Severity Level indicates how severe the

alert is. The corresponding Alert Strategy defines the severity

level and alert title according to the nature of the affected ser-

vice or microservice. The Time means the time of occurrence of

the alert, and Duration is the duration between the occurrence

and the clearance of the alert. The Location Information con-

tains the necessary information to locate the anomalous service

or microservice. Table 2.3 shows the samples of alerts from the

monitoring system of Huawei Cloud.

Generation of Alerts

An alert represents a specific abnormal state of the cloud system.

The first and foremost step of alert generation is anomaly detec-

tion. Anomaly detection in logs [63,81,167], traces [59,149,174],

and monitoring metrics [92, 105, 164] of the cloud system have

been widely studied.

The cloud monitoring system will continuously detect anoma-

lies and generate system reliability alerts according to the alert

strategies associated with specific services or microservices. The

strategies for system reliability alerts can be divided into three

categories, i.e., probes, logs, and metrics.

• Probes: The cloud monitoring system will send probing re-

quests to the target services and receive the heartbeat from

the target services. Typically, OCEs set fixed thresholds

of no-response time for different services as the strategy of

probes. If a target service does not respond to the probing

requests for a long time, an alert will be generated.

• Logs: The cloud monitoring system will process logs of the

CHAPTER 2. RESEARCH FOUNDATIONS 24

target services. OCEs can set flexible rules for different ser-

vices. Typical rules of logs are keyword matching, e.g., “IF

the logs contain 5 ERRORs in the past 2 minutes, THEN gen-

erate an alert.” Traces can also be viewed as special logs and

will be processed similarly.

• Metrics: Performance metrics are time series that show the

states of a running service, e.g., latency, no. of requests, net-

work throughput, CPU utilization, disk usage, memory uti-

lization, etc. The alert strategy for metrics varies from static

threshold to algorithmic anomaly detection. Typical rules

of metrics are like “IF the disk usage exceeds 90%, THEN

generate an alert” and “If abnormal network throughput is

detected, then generate an alert”.

Clearance of Alerts

Alerts can be cleared manually or automatically. On the one

hand, after the human intervention, if the OCE confirms the

mitigation of the anomaly, the OCE can manually mark the alert

as “cleared”. On the other hand, the cloud monitoring system

can automatically clear some alerts. For system reliability alerts

of probes and metrics, the cloud monitoring system will continue

to monitor the status of the associated service. If the service

returns to a normal state, the cloud monitoring system will mark

the corresponding alert as “automatically cleared”.

2.2 Research Problems

2.2.1 Intensity of Microservice Dependency

A failed service will only affect services that will invoke it. In

other words, service invocations cause dependencies between ser-

CHAPTER 2. RESEARCH FOUNDATIONS 25

vices. Many recent approaches [99, 151] propose to use the de-

pendencies of services to approximate their failure impact. All

the services and dependencies in an online service system collec-

tively construct a directed graph of services, which is also called

a dependency graph. Identifying whether one service depends

on another in online service systems can be well solved by indus-

trial tracing frameworks like Dapper, Jaeger, and Zipkin. By us-

ing these frameworks, all the invocations between the caller and

callee services can be recorded as traces that are composed of

spans. The attributes about each invocation, like duration, sta-

tus, invoked service name, timestamp, etc., are recorded in each

span. Based on the spans, current dependency detection meth-

ods treat the dependency as a binary value indicating whether

one service invokes another or not.

However, modeling the relations of services solely with binary

dependencies is not precise enough. Our empirical study on

the outages of Amazon Web Service and Huawei Cloud points

out that the existing binary definition of dependency will cause

inefficiency in fault diagnosis and failure recovery. This is be-

cause the callee microservice impact the caller services in differ-

ent ways. Hence, the procedure of failure recovery can be sped

up by skipping those unimportant services. Manual examina-

tion of different dependencies without any priority is inefficient,

especially in cloud systems where the number of dependencies

could be large. Based on this observation, I argue that it will be

helpful if the dependency can be measured as a continuous value

that indicates the intensity of this dependency. Specifically, by

checking services that are dependent on the failed service with

large intensity values, OCEs can find the root cause of a sys-

tem failure with a higher probability. By recovering the services

CHAPTER 2. RESEARCH FOUNDATIONS 26

that are strongly dependent on the failed one, the whole system

could be restored faster.

2.2.2 Microservice Resilience Testing

The resilience of a microservice system refers to the ability to

maintain the performance of services at an acceptable level and

recover the service back to normal when a failure in one or more

parts of the system causes the service degradation [127, 152].

Building resilient online services becomes necessary as faults and

failures are unavoidable [68, 91]. Resilience to unexpected fail-

ures is also essential for reducing downtime, maintaining the

quality of service, and meeting the service-level agreement.

Resilience testing [106] is one of the primary ways to measure

the resilience of software. All new or updated microservices need

to pass many resilience tests to ensure the resilience of online

services. Unlike other test techniques that ensure the functional

correctness of software [8], resilience testing focuses on making

applications perform core functions and avoid data loss under

stress or in chaotic environments. By purposefully introducing

failures into the system, the test engineers can monitor how the

microservice system performs and improve the architectural de-

sign according to the discovered flaws [65]. If the microservice

can still provide acceptable service and is not affected by the

failures, it passes the resilience tests. Industrial practitioners

also employ chaos engineering [15, 22] to test their software’s

resilience in the production environment with live traffic. On

balance, the steps involved in resilience testing include [83] de-

termining metrics, generating load, introducing failures, collect-

ing metrics, and getting test results.

For example, the resilience test of a program when it encoun-

CHAPTER 2. RESEARCH FOUNDATIONS 27

rx_bytes
M

et
ri

cs tx_bytes

Time

throughput

Figure 2.5: The monitoring metrics during the normal period (the green
area) and the failure injection period (the red area).

ters a high network packet loss should be accomplished by the

following steps. First, test engineers need to introduce network

packet loss failure with proper tools. The failure should be in-

jected into the network interface. Then the second step will be

collecting the corresponding monitoring metrics based on their

domain knowledge. Network tx and rx rate, request throughput

will be selected in this case. Suppose the monitoring metrics are

shown in Figure 2.5. The green area is the normal period, and

the red area is the failure injection period. After comparing the

duration and magnitude of the monitoring metrics, engineers

can conclude that the program is not resilient to the network

packet loss failure because the throughput dropped a lot. In

conclusion, the program failed this resilience test.

Automation of the resilience testing procedure is possible, but

burdensome standardization of test parameters is still required.

In practice, to standardize the resilience testing procedure, test

engineers manually determine the set of rules for each failure

type. Each set of rules contains five parts, i.e., failure type, load,

CHAPTER 2. RESEARCH FOUNDATIONS 28

target metrics, degradation measurement, and pass criteria. The

five parts are explained below.

• Failure type is the failure to inject. Tested service is expected

to be resilient to the failure.

• Load should be based on the maximum load that the service

can handle without encountering performance issues.

• Target metrics are the metrics to examine. They should man-

ifest the degradation caused by the injected failure clearly.

This may include I/O rates, throughput, mean time to re-

covery, latency, as well as the relationship between the afore-

mentioned metrics.

• Degradation measurement measures the degree of degrada-

tion. It is usually measured by the duration and magnitude

change of the target metrics.

• Pass criteria is the criteria for deciding whether the resilience

test is passed. The monitoring metrics under normal and

faulty periods should be analyzed, and a PASS/FAIL conclu-

sion will be drawn. The criteria should be decided concerning

the anticipated service quality.

For each failure type, test engineers follow the aforementioned

procedure for resilience testing.

2.2.3 Anti-patterns of Alerts

An alert is a notification about a specific abnormal state of the

microservice system sent to on-call engineers. Alerts are crucial

for requesting prompt human intervention upon system anoma-

lies. The configuration of alert strategies is empirical, which

CHAPTER 2. RESEARCH FOUNDATIONS 29

heavily depends on human expertise. Since different cloud ser-

vices exhibit different attributes and serve different purposes,

their alert strategies vary significantly. In particular, the em-

piricalness of alert strategies results from two aspects of cloud

services. On the one hand, a cloud service’s abnormal state

may differ because each cloud service implements its own busi-

ness logic. There is no one-fits-all rule for anomaly detection

on cloud services, i.e., when to generate an alert. On the other

hand, the attributes of an alert that helps the manual inspec-

tion and mitigation of the abnormal state, e.g., the location

information and the free-text title that describes the alert, are

also service-specific and lack comprehensive guidelines. In other

words, “what attributes and descriptions an alert should have”

also depends on human expertise. In summary, the configura-

tion of alert strategies, as a precursor step for human interven-

tion in cloud anomalies, is an empirical procedure. The quality

of alerts significantly affects the cloud reliability and the cloud

provider’s business revenue. In practice, I observe on-call en-

gineers being hindered from quickly locating and fixing faulty

cloud services because of the vast existence of misleading, non-

informative, non-actionable alerts. I call the ineffectiveness of

alerts “anti-patterns of alerts”.

To better understand the anti-patterns of alerts and provide

actionable measures to mitigate anti-patterns, in this thesis, I

conduct the first empirical study on the practices of mitigating

anti-patterns of alerts in an industrial cloud system. I will study

the alert strategies and the alert processing procedure at Huawei

Cloud, a leading cloud provider. I also survey current reactions

to mitigate the anti-patterns of alerts, and the general preventa-

tive guidelines for the configuration of alert strategy. Our study

CHAPTER 2. RESEARCH FOUNDATIONS 30

combines the quantitative analysis of millions of alerts in two

years and a survey with eighteen experienced engineers.

2 End of chapter.

Chapter 3

Predicting the Aggregated

Intensity of Dependency

3.1 Introduction

Service reliability is one of the key challenges that cloud providers

have to deal with. The common practice nowadays is devel-

oping and deploying small, independent, and loosely coupled

cloud microservices that collectively serve users’ requests. The

microservices that serve the same purpose are called cloud ser-

vices1. The microservices communicate with each other through

well-defined APIs. Such an architecture is called microservice ar-

chitecture [108]. The microservice architecture has been widely

adopted in cloud systems because of its reliability and flexibility.

Under this architecture, microservice management frameworks

like Kubernetes will be responsible for managing the life cycles

of microservices. Developers can focus on the application logic

instead of the bothering tasks of resource management and fail-

ure recovery.

Although microservice management frameworks provide auto-

1For simplicity, in this chapter, “cloud service” and “cloud microservice” are inter-
changeable when they are used alone.

31

CHAPTER 3. AGGREGATED INTENSITY OF DEPENDENCY 32

matic mechanisms for failure recovery, unplanned service failures

may still cause severe cascading effects. For example, failures

of critical services that provide basic request routing functions

will impact the invocation of cloud services, slow down request

processing, and deteriorate customer satisfaction. Therefore,

evaluating the impact of service failures rapidly and accurately

is critical to the operation and maintenance of cloud systems.

Knowing the scope of the impact, reliability engineers can put

more emphasis on services that have greater impacts on others.

A failed service will only affect services that will invoke it. In

other words, service invocations cause dependencies between ser-

vices. Many recent approaches [99, 151] propose to use the de-

pendencies of services to approximate their failure impact. All

the services and dependencies in a cloud system collectively con-

struct a directed graph of services, which is also called a de-

pendency graph. Identifying whether one service depends on

another in cloud systems can be well solved by industrial trac-

ing frameworks like Dapper and Jaeger. By using these frame-

works, all the invocations between the caller and callee services

can be recorded as traces that are composed of spans. The at-

tributes about each invocation, like duration, status, invoked

service name, timestamp, etc., are recorded in each span. Based

on the spans, current dependency detection methods treat the

dependency as a binary value indicating whether one service

invokes another or not.

However, modeling the relations of services solely with binary

dependencies is not precise enough. To show the insufficiency of

existing methods, I first conduct an empirical study on the out-

ages of Amazon Web Service and Huawei Cloud. I point out that

it is inefficient to conduct failure diagnosis and recovery based

CHAPTER 3. AGGREGATED INTENSITY OF DEPENDENCY 33

on binary dependencies. This is because the different depen-

dencies of a cloud service impact the cloud service in different

ways. Manual examination of different dependencies without

any priority is inefficient, especially in cloud systems where the

number of dependencies could be large. Based on this obser-

vation, I argue that it will be helpful if the dependency can be

measured as a continuous value that indicates the intensity of

this dependency. Specifically, by checking services that are de-

pendent on the failed service with large intensity values, on-call

engineers (OCEs) can find the root cause of a system failure

with a higher probability. By recovering the services that are

strongly dependent on the failed one, the whole system could be

restored faster.

To improve the reliability of cloud systems, in this thesis, I pro-

pose AID, an end-to-end approach to predict the intensity of

dependencies between cloud microservices for cascading failure

prediction. I first generate a set of candidate dependency pairs

from the spans. Then I distribute each span into different fixed-

length bins according to their timestamp and service name. I

calculate the statistics of all spans in each bin as the Key Per-

formance Indicators (KPIs) for the bin. The KPIs of one service

form a multivariate time series that will be treated as the repre-

sentation of the service’s status. For each candidate dependency

pair, I calculate the similarities between the statuses of the two

services in the pair. Finally, I aggregate the similarities to pro-

duce a unified value as the intensity of the pair.

To show the effectiveness of AID, I evaluate AID on two datasets.

One is a simulated dataset, and the other is an industrial dataset.

For the simulated dataset, I deploy train-ticket, an open-source

microservice benchmark system, simulate users’ requests, and

CHAPTER 3. AGGREGATED INTENSITY OF DEPENDENCY 34

collect the traces. For the industrial dataset, I collect the traces

from a production cloud system. Then I evaluate AID on the

datasets and compare its performance with several baselines.

The experimental results show that our proposed method can

accurately measure the intensity of dependencies and outper-

form the baselines. Furthermore, I showcase the successful us-

age of our method in a large-scale production cloud system. In

addition, I release both datasets to facilitate future studies.

The main contributions of this work are highlighted as follows:

• I conduct a comprehensive industrial survey and the first em-

pirical study to identify the inefficiency of using binary-valued

dependency for failure diagnosis and failure recovery.

• I propose AID, the first method to quantify the intensity of

dependencies between different services.

• The evaluation results show the effectiveness and efficiency

of the proposed method.

• I release a simulated dataset and an industrial dataset from

a production cloud system to facilitate future studies.

• Additionally, AID have been successfully applied in a lead-

ing public cloud provider, and helped greatly reduce manual

maintenance effort.

3.2 Motivation

The research described in this thesis is motivated by the main-

tenance of a real-world cloud system in production. In this sec-

tion, I first survey thirteen publicly known service outages that

severely affected Amazon Web Services (AWS) from 2011 to

CHAPTER 3. AGGREGATED INTENSITY OF DEPENDENCY 35

Table 3.1: Summary of AWS outages related to service dependency.

Date
Consequences

Cascading Failure Slow Recovery
Apr 21, 2011 ✓
June 29, 2012 ✓
Oct 22, 2012 ✓
Aug 7, 2014 ✓
Nov, 25 2020 ✓ ✓

2020. Among the thirteen outages, I identify five that are re-

lated to service dependency and summarized the consequences

of inappropriate management of service dependency. Second, I

empirically study the diagnosis records of five real outages in the

cloud system of Huawei Cloud that are related to inappropriate

management of service dependency. Our study indicates that

the information in the traces has not been used efficiently and

current practice heavily relies on the engineers’ familiarity with

the dependencies in the system. Lastly, I propose to measure

the intensity of dependency in terms of status propagation be-

tween dependent cloud services. I demonstrate the usefulness of

the intensity by motivating examples in real cloud systems.

3.2.1 A Survey of the Outages in AWS

Service outages are inevitable in the cloud [31]. In this section,

I empirically analyzed over 1000 incidents of Huawei Cloud in

2019 and thirteen publicly known major outages2 of AWS from

2011 to 2020. Among the incidents of Huawei Cloud, I found

that improper service dependency is the most frequent reason

for failures in Huawei Cloud. Among the outage summaries of

2https://aws.amazon.com/premiumsupport/technology/pes/

https://aws.amazon.com/premiumsupport/technology/pes/

CHAPTER 3. AGGREGATED INTENSITY OF DEPENDENCY 36

AWS, I also identified that five of the outages (38%) are related3

to service dependency. As shown in Table 3.1, among the five

outages that are related to service dependency, three of them

are due to cascading failures triggered by erroneous upgrades of

services. During the failure recovery, the inappropriate depen-

dencies lead to slow failure recovery in three outages.

AWS is the worldwide leading cloud provider. It operates in

many regions, each consisting of multiple Availability Zones

(AZs). Each AZ uses separate physical facilities and indepen-

dently provides various cloud services [38], including Steam Data

Processing (Kinesis), API Usage Analysis (Cognito), Customer

Dashboard (Cloudwatch), Elastic Compute Cloud (EC2), Rela-

tional Database Service (RDS), Elastic Load Balancing (ELB),

and Low-level Block Storage (EBS), etc. For brevity’s sake, I

simplify the dependencies as 1) EC2, RDS, and ELB all depend

on EBS, and 2) Cognito and Cloudwatch depend on Kinesis4.

The outages on April 21, 2011, and October 22, 2012, are both

caused by erroneous upgrades of EBS. When EBS failed, the

services that depend on EBS, i.e., EC2,ELB, and RDS, are all

affected. The cascading failures resulted in service disruptions

of over 48 hours in the US-East-1 Region of AWS.

The outages on June 29, 2012, and August 7, 2014, are both

triggered by the blackouts. After the blackout, the RDS and

ELB services restarted quickly as expected, but they are still

unable to fully recover because they both depend on EBS service

which, at that time, can not recover simultaneously. The slow

failure recovery incurred by service dependencies affected the

3The outages are usually caused by various reasons that mutually affect each other.
Service dependency is one of the reasons, so I use the word “related”.

4The actual dependency relations between these services are complicated. I omit the
details here.

CHAPTER 3. AGGREGATED INTENSITY OF DEPENDENCY 37

service availability for days in the US-East-1 Region and the

EU West-1 Region of AWS. As a follow-up optimization, ELB

service reduced the dependency on EBS after the outage in 2014.

On November, 25 2020, the erroneous upgrade of Kinesis lead

to its failure, cascadingly causing the failure of Cognito and

Cloudwatch. More severely, during the recovery, AWS could

not notify the customers via the normal way because the normal

customer notification service also relied on Cognito. Due to the

inner mechanism of Kinesis, the recovery of Kinesis took more

than ten hours. Thus the recoveries of Cognito and Cloudwatch

were also slowed down. As a follow-up optimization, Cognito

and Cloudwatch services reduced the dependency on Kinesis

after the severe outage.

3.2.2 Drawbacks of Current Failure Diagnosis Meth-

ods

To gain more knowledge about the procedure of failure diag-

nosis in industrial circumstances, I first interviewed engineers

in Huawei Cloud5. Then I summarize the procedure of failure

diagnosis, and point out the drawbacks of current practice in

Huawei Cloud.

In Huawei Cloud, the failure diagnosis can be triggered by two

systems, i.e., the customer support system and the monitoring

system. When a customer experiences a service disruption, the

customer can submit a support ticket in the customer support

system. The on-call engineers will distribute the support ticket

to the corresponding engineers responsible for the service. The

monitoring system, on the other hand, monitors the Key Per-

5AWS does not disclose the detailed procedures of failure diagnosis related to the five
outages, so I cannot analyze the aforementioned outages in depth.

CHAPTER 3. AGGREGATED INTENSITY OF DEPENDENCY 38

formance Indicators (KPIs) and the logs of each service in the

cloud system. If the KPIs or the number of erroneous logs of one

service increased abnormally or reached predefined thresholds,

the monitoring system will send an alert to the corresponding

engineers. Upon receiving the support ticket or alert, engineers

start diagnosing the failures.

I summarize the common practice of failure diagnosis in Huawei

Cloud as follows. Suppose the anomalous service is A, OCEs will

first check whether the failure is caused by the faults of service

A (e.g., an erroneous upgrade). If so, the development team of

service A will handle the failure. If service A is in good condition,

OCEs will analyze the status of all services that A depends on.

The status includes the number of calls, the error rate, etc. If

they found the failure of a service B is likely to cause the failure

of service A, then engineers will continue to investigate service

B. Recall that all the services construct a directed graph where

each node represents a service. The failure diagnosis procedure

can be viewed as a recursive search on the service dependency

graph.

The practice works well in small cloud systems that contain tens

of cloud services. However, the dependencies in large-scale cloud

systems are much more complicated [51], making manual failure

diagnosis inefficient and difficult for engineers. Engineers may

have trouble identifying the cause of the failure. In this case, the

development teams of all cloud services have to check whether

the failure is caused by their corresponding services. Sometimes

engineers may infer the possible causes of a failure, but it heavily

relies on the engineer’s familiarity with the dependencies in the

system. In summary, the complex dependency relations in large-

scale cloud systems make failure diagnosis difficult, and current

CHAPTER 3. AGGREGATED INTENSITY OF DEPENDENCY 39

practice is inefficient and dependent on the human experience.

3.2.3 Intensity of Service Dependency

0

100

200

300

400

N
um

be
r

of
 In

vo
ca

tio
ns Service A

Service B
Service C

0.0

0.5

1.0

D
ur

at
io

n
(s

ec
on

d)

06:00 08:00 10:00 12:00 14:00 16:00 18:00
Time (minute)

0.0

0.1

0.2

E
rr

or
 R

at
e

Figure 3.1: The statuses of service A, B and C. A invokes B and C but B has a
greater effect on A.

A cloud system is composed of many services. The dependency

between two services is caused by one service invoking the other

via predefined APIs. Existing tools [97, 99, 157] treat the de-

CHAPTER 3. AGGREGATED INTENSITY OF DEPENDENCY 40

pendency as a binary relation, i.e., if the caller service invokes

the callee service, then the caller is dependent on the callee. I

suggest that this binary dependency metric is not fine-grained

enough for cloud maintenance. Figure 3.1 shows the statuses of

three services6 A, B, and C in Huawei Cloud. Service A invokes

both service B and service C. Service B encountered failures. The

x-axis represents time in minute. The y-axes represent the num-

ber of invocations per minute, the average duration of invoca-

tions per minute, and the error rate per minute of A, B, and C.

Although service A invokes service B and service C, it is obvious

that the statuses of B and C influence the status of A in dif-

ferent degrees. The reason is that the functionalities provided

by service A and B are creating virtual machines, and allocating

block storage, respectively. Creating a virtual machine requires

allocating one or more block storage. Thus, the failure of ser-

vice B inevitably affects service A. On the contrary, due to the

fault tolerance mechanism of service A, the failure of service C

will not affect service A a lot. Thus, it is more accurate to say

that the intensity of dependency between service A and service

B is higher than the intensity of dependency between service A

and service C. As can be seen in Figure 3.1, the similarity of the

statuses reflect the difference in the intensities.

Ideally, if the development team of every cloud microservice ac-

curately provides the intensity of dependencies for every depen-

dent services, the failure diagnosis could be accelerated. OCEs

can prioritize the services that exhibit higher intensity of de-

pendency instead of inspecting all the dependent services (Sec-

tion § 3.2.1) if they have accurate intensity information. How-

ever, due to the complexity and the fast-evolving nature of cloud

6For confidentiality reasons, I cannot reveal the names of related services.

CHAPTER 3. AGGREGATED INTENSITY OF DEPENDENCY 41

systems [3], manually maintaining the dependency relations with

intensity is very difficult. As a result, OCEs often struggle in

diagnosing failures due to the lack of intensities. In order to

relieve the pressure on OCEs, I propose to predict the intensity

of dependency from the statuses of services.

3.3 Problem Definition

Motivated by Section § 3.2, I define the intensity of dependency

between two microservices as how much the status of the callee

microservice influences the status of the caller microservice. For-

mally, given a pair of microservices (P,C) where P means the

caller microservice and C means the callee microservice, the pro-

posed approach should produce an intensity value I ∈ (0, 1) that

represents to what extent the status of C will affect the status

of P .

3.4 Methodology

Raw
Traces

Service Status
Generation

Dependency
Graph with

Intensity

Intensity
Prediction

Status Series
of Services

Candidate
Dependency

List

Candidate
Selection

Figure 3.2: The overall workflow of AID.

In this section, I present AID, a framework for predicting the

Aggregated Intensity of service Dependency in large-scale cloud

systems. I first present the overall workflow of AID. Then I

CHAPTER 3. AGGREGATED INTENSITY OF DEPENDENCY 42

elaborate on each step in detail, i.e., candidate selection, service

status generation, and intensity prediction.

3.4.1 Overview

The intensity of dependency is inherently determined by the

program logic of microservices. Manual evaluation of the inten-

sity of dependency is hard due to the dynamic and decoupled

nature of microservice systems. Thus, in this thesis, I propose

AID to predict the intensity of dependency based on all the

spans between microservices (P,C) over a period T . In this

way, non-intrusive prediction of intensity of dependency can be

achieved, which eases the system integration and increases the

applicability of AID.

The overall workflow of AID is illustrated in Figure 3.2. AID

consists of three steps: candidate selection, status generation,

and intensity prediction. Given the raw traces, AID first gen-

erates a set of candidate service pairs (P,C) where service P

directly invokes service C (Section § 3.4.2). The intuition is that

direct service invocation incurs direct dependency to some de-

gree. Indirect dependencies through the transitivity of service

invocation will be discussed in Section § 3.7.1. For status gener-

ation, AID generate the status of all services (Section § 3.4.3).

The status of one service is composed of three aspects of de-

pendency, i.e., number of invocations, duration of invocations,

error of invocations. Each aspect of the service’s status contains

one or more Key Performance Indicators (KPIs), depending on

the actual implementation of the distributed tracing system. A

KPI is an aggregated value of a service status of all the spans

of a service in a fixed time interval, e.g., 1 minute. AID use

the statistical indicators of each aggregation as the values of

CHAPTER 3. AGGREGATED INTENSITY OF DEPENDENCY 43

the KPIs. Motivated by the experience of engineers introduced

in Section § 3.2.2, I propose to predict the intensity of service

dependencies from the similarity of the statuses of dependent

services. The intuition behind using the similarity of time series

is to evaluate the propagation of service statuses. The inten-

sity prediction step (Section § 3.4.4) predicts the intensity of

dependency by measuring the similarity between two service’s

statuses. The similarity between two service’s statuses is a nor-

malized and weighted average of the similarity of all the KPIs of

the two services. AID calculate the similarity between two KPIs

by a dynamic status warping algorithm. Finally, AID produces

the dependency graph with intensity.

3.4.2 Candidate Selection

In general, direct service invocations can be divided into two

categories, i.e., synchronous invocations and asynchronous invo-

cations. Modern tracing mechanisms can keep track of both syn-

chronous and asynchronous invocations [120]. Given all the raw

traces of the cloud system, in this step, AID generate a candi-

date dependency set Cand. The candidate dependency set Cand

contains service invocation pairs (P1, C1), (P2, C2), · · · , (Pn, Cn).

Each pair (Pi, Ci) in the candidate dependency set denotes that

the service named Pi invokes the service named Ci at least once.

Therefore, service Pi depends on service Ci. This step is to

shrink the search space of possible dependent pairs because the

service invocations indicate direct dependencies.

To generate the candidate dependency set, AID need to know

the name of the caller service and the callee service. The name of

callee service is clearly recorded in the span, but the name of the

caller service is not. Hence, AID first augments each span s by

CHAPTER 3. AGGREGATED INTENSITY OF DEPENDENCY 44

adding another attribute spname which denotes the service name

of the parent span. Specifically, the augmentation of attribute

spname is achieved by 1) looking for another span s′ whose id

is the same as spid, and 2) set the name of s′ as spname. Then

AID iterates over all the spans and add (spname, sname) to the

candidate dependency set by the union operation.

For example, assuming the name of services are the same as

the index of spans, the six spans in Figure 2.2 will result in

a candidate set of { (Service0,Service1), (Service1, Service4),

(Service0, Service2), (Service0,Service3), (Service3,Service5)

} .

3.4.3 Service Status Generation

In this step, AID generates the status of all cloud services from

the traces. AID starts by defining the status of a cloud service

(i.e., service status) and then describe the procedure of service

status generation.

Definition of Service Status

A service invocation is composed of three logical components,

i.e., the caller service, the callee service, and the network com-

munication. In particular, the caller service initiates an invo-

cation to the callee service via the network. The callee service

then processes the invocation, during which it may invoke other

services. After the processing is finished, the callee service will

send the result, e.g., status, to the caller service via the network.

Hence, AID could derive three aspects of service invocations:

initiation of invocation, processing, result. As service invoca-

tions occur repeatedly, the three aspects of service invocations

CHAPTER 3. AGGREGATED INTENSITY OF DEPENDENCY 45

can derive three aspects of service dependency:

• Number of Invocations : The number of invocations from the

caller to the callee.

• Duration of Invocations : The duration of invocations.

• Error of Invocations : The number of successful invocations

from the caller to the callee.

Representation of Service Status

In a cloud system, the spans record information about every

invocation. Intuitively, the status of a cloud service can be easily

obtained from the spans of that service. Inspired by the common

practice in cloud monitoring [1], AID distributes the spans of

one service into many bins according to the spans’ timestamps.

Each bin accepts spans whose timestamp is in a short, fixed-

length period. I denote the length of the short period as τ . For

example, the span shown in Table 2.2 will be put in the bin of

ts-preserve-service at time 04:58, April 17 2020. AID can

then represent the status of a cloud service in a short period by

the statistical indicators of all the spans in the corresponding

bin.

Formally, given all the spans in the cloud system over a long

period T , AID first initiates S×N empty bins of the predefined

size τ . S is the number of microservices. N, determined by
T
τ , is the number of bins. Then AID distributes all spans into

different bins according to their timestamp sts and service name

sname. After that, AID calculates the following three types of

indicators as the KPIs for each bin.

• invoMt : Total number of invocations (spans) in the bin;

CHAPTER 3. AGGREGATED INTENSITY OF DEPENDENCY 46

• errMt : Error rate of the bin, i.e., the number of errors divided

by the number of invocations;

• durMt : Averaged duration of all spans in the bin;

where t is the time of the bin and M is the microservice name

of the bin. If a service is not invoked in a particular bin (i.e.,

the corresponding bin is empty), all the KPIs will be zero. In

the end, AID gets the KPIs of every service M at every period

t. Ordering the bins by t, AID gets three time series of KPIs for

each cloud service, denoted as invoM , errM , and durM . I name

the time series of server KPIs as status series.

3.4.4 Intensity Prediction

In this thesis, I define the intensity of dependency between two

services as how much the status of the callee service influences

the status of the caller service. The step of intensity prediction

quantitatively predicts the intensity of dependency by measuring

the similarity between two services’ status series. Specifically,

AID calculates the similarity of two different status series with

dynamic status warping and aggregate all the similarities to get

the overall similarity.

Dynamic Status Warping

Inspired by the dynamic time warping algorithm (DTW) [75],

I propose the dynamic status warping (DSW) algorithm (Al-

gorithm 1) to calculate the distance between two status series.

DSW automatically warps the time in chronological order to

make the two status series as similar as possible and get the

similarity by summing the cost of warping. It utilizes dynamic

CHAPTER 3. AGGREGATED INTENSITY OF DEPENDENCY 47

Algorithm 1: Dynamic Status Warping

Input: The status series of caller service and callee service
statusP , statusC ; duration series of callee durC , estimated
round trip time δrtt, max time drift δd

Output: The similarity between two status series
1 Set the warping window w = max(durC) + δrtt
2 K = length(statusC)
3 N = length(statusP)
4 Initialize the cost matrix C ∈ RK×N , set the initial values as +∞
5 C1,1 = (statusP1 − statusC1)

2

6 for i = 2 . . .min(δd, K) do // Initialize the first column
7 Ci,1 = Ci−1,1 + (statusP1 − statusCi)

2

8 end
9 for j = 2 . . .min(w + δd, N) do // Initialize the first row

10 C1,j = C1,j−1 + (statusPj − statusC1)
2

11 end
12 for i = 2 . . . K do
13 for j = max(2, i− δd) . . .min(N, i+ w + δd) do
14 Ci,j = min(Ci−1,j−1,Ci−1,j,Ci,j−1) + (statusPj − statusCi)

2

15 end

16 end
17 return CK,N

CHAPTER 3. AGGREGATED INTENSITY OF DEPENDENCY 48

programming to calculate an optimal matching between two sta-

tus series. Given two services P , C, and their status series invoP ,

invoC , errP , errC , durP , and durC , the warping from the callee

C to the caller P is specially designed for the cloud environment.

The design considerations include:

Directed warping: Due to the latency of the network and the

time of processing, it takes some time for the status of the callee

service to affect the status of the caller service. Therefore, dif-

ferent from dynamic time warping, the time warping of DSW

is directed, meaning that the matching from the callee to the

caller can only happen in chronological order.

Adaptive propagation window: In cloud systems, after the round

trip time (δrtt) plus the duration of request processing, the caller

can receive the result of an invocation. Thus, the size of the

directed warping window w is automatically set as the maximum

duration of the callee’s spans plus δrtt.

Time drift: The machine time may drift due to issues with time

synchronization in cloud systems, so I add an undirected time

drift δd to the warping window.

In summary, statusCi can only be matched with one of the times-

tamp in [statusPi−δd
, statusPi+w+δd

]. The DSW returns the warp-

ing cost CM,N as the measure of similarity.

Similarity Aggregation

For all (Pi, Ci) ∈ Cand, AID calculates similarities between

their status series, denoted as d
(Pi,Ci)
invo , d

(Pi,Ci)
err , and d

(Pi,Ci)
dur . AID

normalizes the similarity across the whole candidate set with

a min-max normalization with Equation 3.1, where status ∈
{invo, err, dur}.

CHAPTER 3. AGGREGATED INTENSITY OF DEPENDENCY 49

d
(Pi,Ci)
status =

d
(Pi,Ci)
status −min(d

(P,C)
status)

max(d
(P,C)
status)−min(d

(P,C)
status)

(3.1)

The intensity of dependency between Pi and Ci is the average

similarity of all three similarities between their status series.

I(Pi,Ci) =
1

3

∑
status∈S

d
(Pi,Ci)
status , S = {invo, err, dur} (3.2)

Finally, AID can build the dependency graph with intensity from

the candidate set and the corresponding intensity values.

3.5 Evaluation

In this section, I evaluate AID on both a simulated dataset and

an industrial dataset. Particularly, I aim to answer the following

research questions (RQs):

• RQ1. How effective is AID in predicting the intensity of

dependency?

• RQ2. What is the impact of different parameter settings?

• RQ3. What is the impact of different similarity measures?

• RQ4. How efficient is AID?

3.5.1 Experimental Setup

Dataset

To show the practical effectiveness of AID, I further conduct

experiments on the simulated dataset and an industrial dataset

from the cloud system of Huawei Cloud. Since there are no ex-

isting datasets of trace logs, I deploy a benchmark microservice

CHAPTER 3. AGGREGATED INTENSITY OF DEPENDENCY 50

system to simulate a real cloud system. I simulate user requests

and collect the generated trace logs to construct the simulated

dataset. I release both datasets with the paper to facilitate fu-

ture studies in this field7.

Table 3.2: Dataset statistics.

Dataset TT Industry8

Microservices 25 192

Spans 17,471,024 About 1.0e10

Strong 18 67

Weak 1 8

Simulated dataset: For the simulated dataset, I deploy train-

ticket [173], an open-source microservice benchmark, for data

collection. Train-ticket is a web-based ticketing system with

25 microservices, through which users can search for tickets,

reserve tickets, and pay for the reserved tickets. An open-source

tracing framework, Jaeger, is used to trace all the API calls.

To generate traces, I develop a request simulator that simulates

normal users’ access to the ticketing system. The simulator will

log in to the system, search for tickets, reserve a ticket according

to the results of the search, and pay for the ticket. Then I collect

the traces from Jaeger and transform the traces into 17,471,024

spans. The dataset is termed as “TT” in Table 3.2.

Industrial dataset: Apart from the simulated dataset, I also

collected traces from a region of Huawei Cloud to evaluate AID.

To support tens of millions of users worldwide, the cloud system

of Huawei Cloud contains numerous cloud services and microser-

vices. The service invocations are monitored and recorded by

7https://github.com/OpsPAI/aid
8Only 75 dependencies that the engineers are familiar with are labeled.

https://github.com/OpsPAI/aid

CHAPTER 3. AGGREGATED INTENSITY OF DEPENDENCY 51

an independently developed distributed tracing system. The

complex dependency relations in the cloud system increase the

burden of OCEs. The OCEs can diagnose problematic microser-

vices timely if the intensity of dependencies can be automatically

detected in real-time. To evaluate the practical effectiveness of

our method, I collected a 7-day-long trace dataset with 192 mi-

croservices in April 2021. The dataset is termed as “Industry”

in Table 3.2.

Manual labeling: Since our method is unsupervised, labels are

only for evaluation. Neither of the datasets has labels about the

intensity of dependency, so manual labeling is needed. I set two

candidate labels for the intensity of dependency, i.e., “strong”

and “weak”. Given a candidate dependency pair (P,C), if the

failure of service C will cause the failure of service P , the in-

tensity between (P,C) should be labeled “strong”; otherwise

it should be labeled “weak”. For the simulated dataset, two

Ph.D. students inspect the source code of all microservices and

label every service dependency independently. For the industrial

dataset, several senior engineers are invited to manually label

the intensity of dependency. In both processes, disagreement on

labels will be discussed until consensus is reached. Finally, I con-

vert the “strong” labels to 1 and the “weak” labels to 0 so that

they can be effectively compared with the computed intensities.

The statistics of the datasets are listed in Table 3.2. “# Mi-

croservices” denotes the number of microservices in the dataset.

“# Spans” denotes the number of spans in the dataset. “#

Strong” and “# Weak” denote the number of dependencies that

are labeled with “strong” or “weak” respectively.

CHAPTER 3. AGGREGATED INTENSITY OF DEPENDENCY 52

Baselines

Since there is no existing work that measures the intensity of

service dependency, I use Pearson correlation coefficient, Spear-

man correlation coefficient, and Kendall Rank correlation coef-

ficient as the baseline. Particularly, I calculate correlation on

the status series of a candidate dependency pair (P,C), denoted

as corrp
(P,C)
status and corrs

(P,C)
status. For the baselines, I directly use

the implementation from the Python package scipy. I map the

correlation to [0, 1] with the function f(x) = (x + 1)/2. The

intensities of dependencies are then produced in the same way

as Equation 3.2.

Evaluation Metrics

I employ Cross Entropy (CE), Mean Absolute Error (MAE),

and Root Mean Squared Error (RMSE), as calculated in Equa-

tion 3.3, to evaluate the effectiveness of AID in predicting the

intensity of dependency. Specifically, cross entropy calculates

the difference between the probability distributions of the label

and the prediction. Mean absolute error and root mean squared

error measures the absolute and squared error. Lower CE, MAE,

and RMSE values indicate a better prediction.

CE =
1

N

N∑
i=1

−[yi · log(pi) + (1− yi) · log(1− pi)]

MAE =

∑N
i=1 |yi − pi|

n

RMSE =

√∑N
i=1(yi − pi)2

N

(3.3)

CHAPTER 3. AGGREGATED INTENSITY OF DEPENDENCY 53

Experimental Environments

I run the experiments on the simulated dataset on a Linux server

with Intel Xeon E5-2670 CPU @ 2.40GHZ and 128 GB RAM.

The experiments on the industrial dataset run on a Laptop with

Intel Core i7 CPU @ 2.60 GHz and 16 GB RAM.

3.5.2 RQ1: Effectiveness

Table 3.3: Performance Comparison of Different Methods on Two Datasets

Dataset Method
Metric

CE MAE RMSE

TT

Pearson 0.6872 0.3305 0.4388
Spearman 0.7512 0.3735 0.4697
Kendall 0.6464 0.3749 0.4577
AID 0.4562 0.3435 0.3859

Industry

Pearson 0.6076 0.4524 0.4563
Spearman 0.6030 0.4501 0.4537
Kendall 0.6258 0.4636 0.4656
AID 0.3270 0.1751 0.3044

To study the effectiveness of AID, I compare its performance

with the baseline models on both the simulated dataset and the

industrial dataset collected from Huawei Cloud. For the param-

eters of AID, I set the bin size τ = 1 minute, the estimated

round trip time δrtt = 0. Specially, I set the max time drift

δd = 1 minute for the industrial dataset and set δd = 0 for the

simulated dataset. I do this because the simulated dataset is de-

ployed in a single server, so the time drift will not be a problem.

In addition, I use moving average to smoothen the status series

for the baselines and our method. The outputs are scalar values

ranging from 0 to 1. A larger value indicates higher intensity.

CHAPTER 3. AGGREGATED INTENSITY OF DEPENDENCY 54

The overall performance is shown in Table 3.3, where I mark

the smallest loss for each loss metric and dataset.

AID achieves the best performance on the industrial dataset and

reduces the loss by 45.8%, 61.1%, and 33.2% in terms of cross en-

tropy, mean absolute error, and root mean squared error. On the

simulated dataset, AID achieves the best performance in terms

of cross entropy and root mean squared error. Pearson corre-

lation coefficient marginally outperforms AID on the simulated

dataset. The improvement of AID on the simulated dataset is

smaller than that on the industrial dataset. This is because

the benchmark for simulation did incorporate very few fault tol-

erance mechanisms, making most of the dependencies strong.

Moreover, since the service invocations of the TT benchmark

are very fast, the statuses of TT’s services are relatively similar,

making simple baselines and our approach perform similarly.

3.5.3 RQ2: Impact of Different Parameter Settings

1 2 3 4 5 6 7 8 9 10
Bin size (minutes)

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

L
os

s Cross Entropy
Mean Absolute Error
Root Mean Squared Error

Figure 3.3: Prediction loss under different bin size τ .

CHAPTER 3. AGGREGATED INTENSITY OF DEPENDENCY 55

Since the estimated round trip time δrtt and the max time drift δd
are minuscule, I only study the impact of the bin size τ . As the

range of time of the simulated dataset is small, I only study the

impact of the bin size τ in the industrial dataset. In particular,

I conduct experiments on with the bin size τ ∈ [1, 10](minutes),

and keep δrtt = 0 and δd = 1 minute. I did not set larger

bin sizes because larger bin sizes result in more coarse-grained

sampling of the service status, which will add difficulty to the

similarity calculation in the subsequent DSW algorithm.

Figure 3.3 shows the prediction loss under different bin size τ .

The x-axis denotes the bin size and the y-axis shows the three

loss metrics. The results indicate that the impact of different

bin sizes in a reasonable range is small, but τ = 1 minute gives

the best performance on the industrial dataset.

3.5.4 RQ3: Impact of Different Similarity Measures

Table 3.4: The impact of different similarity measures

Dataset
/Bin size

Method
Metric

CE MAE RMSE

TT
/1min

AIDDSW 0.4562 0.3435 0.3859

AIDDTW 0.4494 0.3467 0.3832

Industry
/1min

AIDDSW 0.3270 0.1751 0.3044

AIDDTW 0.3584 0.1996 0.3169

I further study the impact of different similarity measures on

both datasets. AIDDSW denotes AID that uses the proposed

DSW to measure the similarity between status series. AIDDTW

denotes AID that uses the DTW [75] to measure the similarity.

I keep the bin size τ = 1 minute and the estimated round trip

CHAPTER 3. AGGREGATED INTENSITY OF DEPENDENCY 56

time δrtt = 0 as usual. Similar to previous experiments, I set

the max time drift δd = 1 minute for the industrial dataset and

set δd = 0 for the simulated dataset.

Table 3.4 shows the performance of AIDDSW and AIDDTW on

both datasets. On the industrial dataset, the proposed DSW al-

gorithm improves the performance, but on the simulated dataset,

the performance is almost the same. This is probably because

the duration of spans in the simulated dataset is too small so

that the effect of directed warping is weak. The results imply

that the proposed DSW algorithm works better in real-world

cloud environments.

3.5.5 RQ4: Efficiency

The most time-consuming operations are the candidate selection

and service status generation steps because I have to iterate over

all the spans in the cloud system. Theoretically, the time com-

plexities of the candidate selection and service status generation

steps are O(S), where S is the number of spans to process in the

cloud system. In practice, the industrial dataset contains about

1.0 × 1010 spans, so I process it with a distributed computing

service in Huawei Cloud. Since the preprocessing is dynamically

scheduled and mixed with other teams’ tasks, I could not count

the actual time spent on preprocessing. In practice, the pre-

processing took less than one hour to process one day’s traces.

However, in extreme cases, if the number of traces are too large

that exceeds the capacity of the distributed computing service,

the preprocessing step can be a bottleneck for prompt intensity

prediction. For the intensity prediction step, the time complex-

ity is O(kN2), where N = T
τ is the number of bins and k is

proportional to the warping window w. In practice, the inten-

CHAPTER 3. AGGREGATED INTENSITY OF DEPENDENCY 57

sity prediction step takes 155 seconds on average to process two

status series both with 1440 bins on a laptop. Since the similar-

ity calculation of different (P,C) pairs are independent, I could

easily parallelize the intensity prediction step to further improve

the time efficiency.

3.6 Use Cases

In Huawei Cloud, AID has been successfully incorporated into

the dependency management system that serves hundreds to

thousands of cloud services. Figure 3.4 illustrates the concep-

tual workflow. AID processes trace logs and continuously up-

dates the aggregated intensity in the dependency management

system. The reliability engineers will categorize the intensity

into different levels by referring to both the output of AID and

their domain expertise. Then the dependency management sys-

tem will provide reference to the engineers in optimizing depen-

dencies and mitigating cascading failures.

Cloud
Services

Dependency
Management

Center

Fault
Injection

Engineers

End User

Intensity
Prediction

(AID)

Manual
Correction

Prevention
/Mitigation
of Failures

Figure 3.4: The use case of AID.

CHAPTER 3. AGGREGATED INTENSITY OF DEPENDENCY 58

3.6.1 Optimization of Dependencies

In a cloud system, service failures are inevitable, but I can pre-

vent the failures from affecting other services by optimizing im-

proper dependencies. AID assists in the discovery of unneces-

sary strong dependency on critical cloud services. If a critical

cloud service depends on another service with high intensity,

the dependency management system will remind the engineers

to check whether the dependency is necessary. If the depen-

dency is unnecessary, the development team has to reduce the

intensity of the dependency to improve the robustness of the

critical cloud service. Since AID’s deployment, more than ten

unnecessary dependencies of critical cloud services have been

discovered by AID and optimized by the development team.

3.6.2 Mitigation of Cascading Failures

AID also assists in the mitigation of cascading failures. During

a cascading failure, AID can provide the latest intensity of de-

pendency to OCEs, so that they can diagnose service failures

efficiently. In addition, when a cascading failure occurs, OCEs

can limit the traffic to critical cloud services and recover the

dependencies marked as “strong” first. By doing so, the service

disruption can get under control. Once a critical failure occurs,

the manually confirmed “strong” dependencies will be treated

with high priority. I conduct field interviews with OCEs to col-

lect feedback. Based on the feedback, I have seen our method

shedding light on reducing the impact of critical failures.

CHAPTER 3. AGGREGATED INTENSITY OF DEPENDENCY 59

3.7 Discussion

3.7.1 Practical Usage and Perceived Limitations

Indirect Dependencies

In this work, I mainly considered direct dependencies, which is

caused by direct service invocations. The proposed approach

does not explicitly consider indirect dependencies through tran-

sitivity of service invocation because the intensity of indirect de-

pendencies can be easily inferred from direct dependencies. In

practice, the intensity of indirect dependencies can be inferred

by a “cascading conduction mechanism” that if A intensively

depends on B and B intensively depends on C then A intensively

depends on C. The proposed approach also works well on depen-

dencies caused by circuit breakers as long as the circuit breakers

work transparently.

Extension of Service Status

In this chapter, I only derive three aspects of service invoca-

tions, i.e., number of invocations, duration of invocations, er-

ror of invocations. I utilized them because they are part of the

state-of-the-art tracing system. Other aspects like the content of

invocation responses can also be important to determine status.

In practice, cloud providers can incorporate additional informa-

tion to extend the representation of service status in their own

implementation of AID.

Limitations on Asynchronous Invocations

Although modern tracing mechanisms can keep track of asyn-

chronous invocations, AID may suffer from inaccuracies when

CHAPTER 3. AGGREGATED INTENSITY OF DEPENDENCY 60

dealing with asynchronous invocations. This is because the max

time drift δd in Algorithm 1 is hard to estimate for asynchronous

service invocations. Furthermore, if the traces of synchronous

and asynchronous invocations are mixed, AID may not work

well since the time drift of synchronous and asynchronous in-

vocations usually differs a lot. I leave this problem as future

work.

3.7.2 Threat to Validity

In this work, I identified the following major threats to validity.

Labeling accuracy

In this chapter, I propose to measure the intensity of service

dependency with AID. To evaluate the practical usage of AID,

I conduct experiments on a simulated dataset and an industrial

dataset. As it is a new relation between cloud services, man-

ual labeling is needed for the evaluation. The evaluation on the

industrial dataset requires engineers to manually inspect the de-

pendencies and label the intensity of dependencies. Limited by

the experience of engineers and the lack of resilience rules on the

open-source benchmarks, the labels may not be 100% accurate.

The fast evolution of cloud services may also change their fault

tolerance mechanism, resulting in inaccurate labels. However,

the engineers I invited have rich domain knowledge and are in

charge of the architecture design of the cloud system of Huawei

Cloud. They also discuss with each other when there are dis-

agreements. Moreover, the labeled dependencies are the core

cloud services in Huawei Cloud, so the intensity of dependencies

are stable during the data collection period. I could set fixed

CHAPTER 3. AGGREGATED INTENSITY OF DEPENDENCY 61

rules (e.g., the golden criteria for “failure” of a microservice)

to make the labeling process more reproducible. The Cohen’s

Kappa index could also be used to measure the inter-annotator

agreement (IAA) between the labelers. But most importantly,

our method is unsupervised, so inaccurate labels will not affect

the prediction results of the proposed method.

Insufficiency of the simulation

For the evaluation purpose, I deploy an open-source microser-

vice benchmark to simulate a real cloud system. The benchmark

only contains 25 microservices, which is far below the number

of cloud microservices in a real cloud. Additionally, the imple-

mentation of the open-source benchmark did not fully consider

the fault tolerance, resulting in only one weak dependency in

the simulation. Hence, the simulated dataset may not exhibit

some common attributes of a real cloud system. For example,

the proportion of “strong” dependency in the simulated dataset

is twice the proportion of “strong” dependency in the industrial

dataset. However, the insufficiency of the simulation will not

hinder the practical usefulness of AID in the real cloud system.

On the contrary, as I show in Section § 3.5, the proposed method

works better on the industrial dataset. The experimental results

on the simulated dataset only confirm the insufficiency of the

simulation.

3.8 Related Work

Cloud Monitoring

Monitoring cloud services properly with low overhead is the key

to provide reliable services. Distributed Tracing, as a means of

CHAPTER 3. AGGREGATED INTENSITY OF DEPENDENCY 62

monitoring distributed cloud services, has been widely studied

in the literature. All the distributed tracing approaches can be

classified as intrusive tracing and non-intrusive tracing. Intru-

sive tracing requires modification to application code either in

run time or at compile time. Google proposes Dapper [136] to

help engineers understand system behavior and reasoning about

performance issues. It reduces the tracing overhead by sampling

and restricting the instrumentation number. Pivot Tracing [100]

provide the causal relationship of system events by combining

dynamic instrumentation and happen-before join. X-Trace [46]

monitors and reconstructs the whole request path from a client

by modifying all the network protocols and embedding the trac-

ing data to the package header.

Non-intrusive tracing approaches do not require code modifica-

tion and usually have a lower overhead. Normally, these ap-

proaches leverage information like the system runtime logs and

the source code to reconstruct the real event traces. Zhao et

al. [171] propose lprof to reconstruct the execution flow of dis-

tributed systems using the runtime log of these systems. lprof

conducts static analysis on the call-graph of request processing

code of the system to attribute a log output to a client request.

Chow et al. [33] also leverage system runtime logs to conduct

performance monitoring and analysis. They propose ÜberTrace

to reconstruct traces from the existing logs, then use The Mys-

tery Machine to construct a causal model and conduct analyses.

Zhao et al. [170] propose Stitch, a non-intrusive performance

monitoring tool, to obtain and present information that is help-

ful to locate performance bugs. Stitch uses pattern matching

on logs to reconstruct the hierarchical relationship of events in

a system. Pensieve [163] automatically reconstructs a chain of

CHAPTER 3. AGGREGATED INTENSITY OF DEPENDENCY 63

causally dependent events that leads to a system failure exploit-

ing the log files and system bytecode.

Dependency Mining

Automatically discovering service dependencies is critical to cloud

system administration and maintenance. There are two ma-

jor types of dependency mining approaches, i.e., passive depen-

dency mining and active ones. Passive dependency mining gen-

erates service dependency based purely on the runtime logs or

KPIs. Shah et al. [131] propose to use Recurrent Neural Net-

works (RNNs) to analyze and extract dependencies in KPIs and

use the discovered dependencies to identify early indicators for

a given performance metric, analyze lagged and temporal de-

pendencies, and to improve forecast accuracy. EIDefrawy et

al. [43] use Transfer Entropy to passively mine the dependen-

cies. Luo et al. [97] apply log parsing and Bayesian decision

theory to estimate the direction of dependencies among ser-

vices. They employ time delay consistency to reduce false de-

pendencies. Zand et al. [156] construct a service correlation

graph based on network measures and extract dependencies us-

ing hypothesis-testing. They further compute an importance

metric for network’s components to facilitate administration.

CloudScout [151] employs Pearson Product-moment Correction

Coefficient over machine-level KPIs such as TCP/UDP connec-

tion numbers and CPU utilization to calculate the similarity

between different services. The similarity measure is used to

cluster different services together and to conduct VM consolida-

tion based on the service clusters. Unlike all these approaches

that mostly use physical machine metrics to infer service depen-

dencies, our method is designed for the emerging microservice

CHAPTER 3. AGGREGATED INTENSITY OF DEPENDENCY 64

architecture and utilizes the trace logs that directly record ser-

vice invocations.

Active dependency mining requires modification to services. Ma

et al. propose GMAT [99], which generates service dependen-

cies in the microservice architecture leveraging the reflection

feature of Java and visualizes the dependencies to engineers.

Rippler [157] extracts the dependencies by randomly injecting

temporal perturbation patterns in request arrival timings for

different services and investigates the propagation of the pat-

terns. Wang et al. [141] constructs a service knowledge graph

using real-time measures, operational metadata, and business

features. They propose new metrics to measure the popularity of

services based on their dependencies. Novotny et al. [117] focus

on mining dependencies on the highly dynamic mobile networks.

They use local monitors to collect local views of dependencies

and generate a global view of dependency on demand.

Time Series Similarity

One important task in time series data mining is to measure the

similarity between two time series. Similar to human intuition,

the similarity measure is usually based on the similarity between

the shapes of two time series [45]. In particular, the similarity

measure of time series should be consistent with human percep-

tion and intuition and abide the following properties [44,124]:

• It should resemble human intuition and identify perceptually

similar datasets, even if they are not identical mathemati-

cally.

• It should not be restricted to particular time series or con-

straints.

CHAPTER 3. AGGREGATED INTENSITY OF DEPENDENCY 65

• It should be robust to noise, distortions and set of transfor-

mations like amplitude, scaling, temporal warping.

• It should be able to capture global and local similarities.

Dynamic time warping (DTW) [126] is a widely-used similarity

measure when two time series have the same overall component

shapes but are not aligned on the timeline. It attempts to align

two time series along a timeline by distorting the timeline for

one time series so that its converted form is better aligned with

the second time series. DTW was initially used in speech recog-

nition applications [126] and extended and optimized by many

works [20,113,116].

2 End of chapter.

Chapter 4

Self-adaptive Microservice

Resilience Testing

4.1 Introduction

Modern online services are moving towards the microservice ar-

chitecture [108], where a monolithic application is split into fine-

grained, independently-managed microservices. The microser-

vice architecture exhibits three prominent attributes. First, a

microservice system is highly distributed [9] and contains a large

number of microservices. For example, the system of Netflix

contains hundreds to thousands of microservices [65]. Second,

new features and updates are delivered continuously and fre-

quently [55], making microservices dynamic. Last, the failures

resulting in service degradation are usually cascaded due to the

multi-layer deployment and inter-service dependencies architec-

ture [91, 149,159].

Resilience [127], i.e., the ability to maintain performance at an

acceptable level and recover the service back to normal under

service failures, is essentially a desired ability of microservices.

Figure 2.5 illustrates the request throughput of a service dur-

ing the normal (green) and the failure (red) period. Intuitively,

66

CHAPTER 4. SELF-ADAPTIVE RESILIENCE TESTING 67

the resilience of the service is low because the failure causes ser-

vice degradation, reflected by the throughput decrement. Since

faults and failures are unavoidable [68, 91], test engineers con-

duct resilience tests on microservices to ensure service reliability.

All new or updated microservices need to pass a lot of resilience

tests before their deployments. Specifically, test engineers pur-

posefully inject failures into the system to discover flaws [65,106].

Improvements on architectural design are then adopted accord-

ing to the test results.

The current practice [83] for resilience testing involves manually

setting resilience rules, including the concerned failure types,

the metrics to monitor, the measure of degradation, and the

criteria for passing or failing the tests. However, as the scale

and complexity of microservice systems keep growing, existing

approaches suffer from scalability and adaptivity issues (Sec-

tion § 4.2.1). On the one hand, manual rule identification is

labor-intensive and cannot scale to the large-scale evolving ser-

vices. The manual identification of the rule sets relies heavily on

domain expertise to define the rule sets that can represent the

degradation caused by failures. It usually takes days or weeks of

discussion before the engineers reaching a consensus on the rule

sets. Furthermore, the fast-evolving nature [9] of microservices

requires frequent updates of rule sets, increasing the burden on

test engineers. On the other hand, pass/fail criteria defined by

fixed rules cannot adapt to online services’ various refined re-

silience mechanisms. This is because microservices fail in many

ways, and the manifestations of metrics are also manifold. Re-

silience rules usually focus on a few metrics like mean time to

recover (MTTR) and set fixed thresholds for evaluation. Yet,

fixed rules and thresholds cannot discriminate the subtle differ-

CHAPTER 4. SELF-ADAPTIVE RESILIENCE TESTING 68

ence in an online service’s resilience, resulting in the adaptivity

issue.

This thesis empirically studies the manifestations of common

failures in two different deployments of an open-source microser-

vice system (Section § 4.2.2). One deployment employs common

resilience mechanisms while the other does not. Depending on

the employed resilience mechanism applied to the system, the

same failure causes different degradation in system performance

metrics and business metrics. System performance metrics (e.g.,

memory usage, network throughput) directly reflect the runtime

status of the microservice system. In contrast, business metrics

(e.g., response latency, mean time to recovery) reflect the qual-

ity of service from the users’ aspect. By comparing the differ-

ence in failures’ manifestations between the two deployments, I

discover that although services’ degradation is manifold, a re-

silient service’s degradation manifests more in system perfor-

mance metrics than business metrics. Therefore, our insight

is that self-adaptive resilience testing can be achieved by com-

paring the degradation contributed by the business metrics and

performance metrics. If the degradation cannot propagate from

system performance metrics to business metrics, the resilience

is higher. Otherwise, the resilience is lower.

Motivated by the findings, I present AVERT, the first self-

AdaptiVE Resilience Testing framework for microservice sys-

tems. AVERT consists of three phases, i.e., failure execution,

degradation-based metric lattice search, and resilience indexing.

The failure execution comprises the failure injection phase and

the failure clearance phase. Given a specified failure, an online

service to test, and a predefined load generator, AVERT col-

lects the service’s monitoring metrics in the normal and fault-

CHAPTER 4. SELF-ADAPTIVE RESILIENCE TESTING 69

injection period. For the degradation-based metric lattice search,

I propose a degradation-based algorithm that ranks all the mon-

itoring metrics according to their contributions to the overall

service degradation. I construct a metric lattice from the power

set (i.e., the set of all the subsets) of the monitoring metric

set.The ranking is based on a degradation-based path search in

the metric lattice. Lastly, for resilience indexing, I index the

resilience in (0, 1) by how much the degradation manifestation

in system performance metrics propagates to the degradation

manifestation in business metrics.

To show the effectiveness of AVERT, I evaluate AVERT on two

open-source benchmark microservice systems: Train-Ticket [173]

and Social-Network [50]. I inject failures into both systems and

compare the performance of resilience testing by AVERT and

several baselines. I compare the resilience index with the binary

PASS/FAIL test results with cross entropy, root mean squared

error, and mean absolute error for evaluation. The experimen-

tal results demonstrate that our proposed method accurately

outputs the resilience test results and outperforms the base-

lines. Specifically, in terms of cross entropy, AVERT achieves

the best performance of 0.1775 on the Train-Ticket benchmark

and 0.1159 on Social-Network benchmark. I make the code

and dataset publicly available (https://github.com/yttty/

avert).

The contributions of this work are highlighted as follows:

• I are the first to identify the scalability and adaptivity issues

of current industrial practice for resilience testing. Then I

conduct the first empirical study on the failures’ manifesta-

tions on resilient and unresilient microservice systems. The

empirical study demonstrates the feasibility for self-adaptive

https://github.com/yttty/avert
https://github.com/yttty/avert

CHAPTER 4. SELF-ADAPTIVE RESILIENCE TESTING 70

resilience testing.

• I propose AVERT, the first self-adaptive resilience testing

framework that can automatically index the resilience of a

microservice system to different failures. AVERT measures

the degradation propagation from system performance met-

rics to business metrics. The higher the propagation, the

lower the resilience.

• The evaluation on two open-source benchmark microservice

systems indicates that AVERT can effectively and efficiently

produce accurate test results.

4.2 Motivation

The research described in this thesis is motivated by the real-

world requirements arising from testing the resilience of mi-

croservices in Huawei Cloud. In current industrial practice,

test engineers conduct resilience tests by manual configuration

and fixed rules. First, I argue that current practice is unscal-

able and inadaptive in testing the microservice system (Sec-

tion § 4.2.1). Under the fast-evolving microservice [42], an au-

tomated approach is needed to accelerate the resilience test pro-

cedure. Then, to explore the opportunity to automate the re-

silience evaluation process, I study the failures’ manifestations

that affect the resilience of microservices (Section § 4.2.2).

Specifically, I conducted an empirical study on the following

research questions (RQs):

• RQ1: How scalable and adaptive is the current industrial

practice in conducting resilience testing of a microservice sys-

tem?

CHAPTER 4. SELF-ADAPTIVE RESILIENCE TESTING 71

• RQ2: What are the differences in monitoring metrics of re-

silient and unresilient services?

4.2.1 RQ1: Issues of Current Practice

In the current practice, to evaluate the resilience of an online

service, test engineers will manually set a bunch of fixed rules

for each service and each failure type. Setting the rules heavily

depends on human expertise in the metric selection and the re-

sult analysis. It works well on traditional monolithic software,

which usually fails as a whole. Nevertheless, as demonstrated

below, current practice suffers from scalability and adaptivity

issues when evaluating the resilience of an online service com-

posed of multiple fast-evolving microservices.

Scalability Issue: The failures of microservice systems are

complex and variant. Though the analysis of monitoring metrics

can be automated once the resilience rule sets have been manu-

ally defined, the rule definition is still labor-intensive. Current

practice cannot scale with the microservice systems.

Due to the complex dependency [149, 159] between microser-

vices, the number of failure rule sets increases exponentially

with the number of microservice architecture. In addition, the

manual identification of the failure rule sets relies heavily on do-

main expertise to define the failure rule sets that can represent

the degradation caused by failures. For example, Huawei Cloud

provides many cloud services. Each cloud service comprises 26

microservices on average, while the largest cloud service has over

190 microservices. Each microservice generates over 40 monitor-

ing metrics. Then one cloud service can have around 1040 mon-

itoring metrics. Though the analysis of monitoring metrics can

be automated once the resilience rule sets have been manually

CHAPTER 4. SELF-ADAPTIVE RESILIENCE TESTING 72

defined, the rule definition is still labor-intensive, which requires

a huge amount of time and domain expertise. In Huawei Cloud,

it usually takes three man-months to tease out the resilience

rule set of a single cloud service. Moreover, the fast-evolving

nature [9] of microservices requires frequent updates of failure

rule sets, increasing the burden on test engineers. As a result,

the manual identification of failure rule sets does not scale.

Adaptivity Issue: Setting fixed failure rule sets for resilience

evaluation is inadaptive because the boundary of “resilient” and

“not resilient” is not absolute. A binary PASS/FAIL test re-

sult cannot depict the subtle difference in an online service’s

resilience.

The reasons are two-fold. First, the impact of a failure is diversi-

form in a microservice system. Owing to the distributed nature

and complicated communication model [78], the microservices

of an online service usually fail partially [48]. Second, online

services adopting the microservice architecture usually employs

multiple ways for fault tolerance, e.g., multiple replications and

active traffic control [79]. With these fault tolerance mecha-

nisms, the online service can be in a gray-failure status [68]

instead of failing as a whole. Consequently, the current prac-

tice of defining fixed failure rule sets for evaluating resilience is

inadaptive.

For example, suppose I conduct a resilience test on two ver-

sions of an online service. The passing criteria require the mean

time to recovery (MTTR) to be 5 minutes, which means the

microservice should recover to the normal status in 5 minutes

after the failure injection. Suppose I have the throughput of

a microservice’s two versions A and B under the same failure.

The only difference is that version A takes 5 minutes to recover,

CHAPTER 4. SELF-ADAPTIVE RESILIENCE TESTING 73

but version B only takes 2 minutes. The resilience of version B

is better than version A. However, the passing criteria will let

both versions pass the resilience test. Thus, the fixed rule sets

cannot satisfy the need of the microservice architecture.

Finding 1: Setting rule sets for resilience testing relies on

manual configuration and domain knowledge, so it suffers

from the scalability issue in microservice systems. The im-

pact of failures is diversiform, the current practice cannot

depict the subtle difference in an online service’s resilience,

which results in the adaptivity issue.

4.2.2 RQ2: Failures and Their Impact

In answering this research question, I first summarize the com-

mon failures and their manifestations in microservice systems. I

demonstrate our insight for discriminating the monitoring met-

rics that pass and fail the resilience test.

Failures posing threats to the resilience of microservices are ubiq-

uitous in the microservice architecture [152,159], e.g., microser-

vice bugs [173,174], unstable message passing between microser-

vices [70], faulty cloud infrastructure like unreliable containers,

virtual machines or bare metal servers [91, 130], etc. Even nor-

mal operations taken in the cloud environment, such as software

/ hardware upgrades and dynamic changes to configuration files,

can lead to serious service interruption [58].

To know what failures are related to microservice resilience, I

quantitatively analyzed many1 incident reports related to ser-

vice resilience over the last three years in Huawei Cloud. Each

1I hide the precise amount as required by our industrial collaborator.

CHAPTER 4. SELF-ADAPTIVE RESILIENCE TESTING 74

incident report contains the failure description in plain text.

I asked two senior Ph.D. students familiar with the cloud com-

puting system to go through all the incident reports and classify

each failure mentioned in the incident reports with a failure level

(infrastructure or container level) and a failure type (memory,

network, machine, etc.). A failure in the infrastructure level

may cause cascading failures at the container level, but not vise

versa. All the failures that (1) happened once or more and (2)

are related to service resilience are collected. Also, I consulted

an experienced cloud system architect to make sure I have in-

cluded all the failures related to service resilience. In the end,

I get 26 failures related to service resilience, listed in Table 4.4.

I divide the failures into two architectural levels and then cat-

egorize them according to the type of the failed resource. Note

that I exclude software bugs since software bugs are supposed

to be detected via functional tests.

To understand the service degradation caused by the failures, I

conducted an empirical study on two different deployments of an

open-source microservice benchmark system. One deployment is

equipped with the common resilience mechanisms described be-

low and the other deployment is not. By injecting the same fail-

ures into the two deployments, I can compare the manifestations

with and without the common resilience mechanisms. Specifi-

cally, the resilience mechanisms applied are (1) two replications

for each microservice, and (2) load balancing for each replication

using Ingress2. I set up a Kubernetes cluster on one physical

server with 128 GB memory and 24 CPU cores. Then I cre-

ate one deployment of the Train-Ticket benchmark system [173]

without the resilience mechanisms. User requests with feasible

2https://kubernetes.io/docs/concepts/services-networking/ingress/

https://kubernetes.io/docs/concepts/services-networking/ingress/

CHAPTER 4. SELF-ADAPTIVE RESILIENCE TESTING 75

parameters are generated as the load of the benchmark system.

I inject failures listed in Table 4.4 into the Kubernetes cluster

with ChaosBlade [4], and record how the system degrades under

such failures. I employ cAdvisor [54] and Prometheus3 to col-

lect and visualize the monitoring metrics. After that, I repeat

the steps on the other deployment equipped with the common

resilience mechanisms.

Service degradation manifests the impact of the injected fail-

ures. The degraded status of the service can be measured by

how much the service performance is lower than the service per-

formance benchmark [152]. As the environment for the empirical

study is simple, I simply use the service’s average performance

without any injected failures as the service performance bench-

mark in this chapter. Then the service degradation is measured

by the performance difference between the normal period and

the fault-injection period. In Table 4.4, the penultimate col-

umn describes the failure manifestations without applying the

resilience mechanisms described below, and the last column de-

picts the failure manifestations with the resilience mechanisms.

Depending on the employed resilience mechanism of the service,

the same failure may cause different degradations.

Comparing the last two columns in Table 4.4, I can discover that

although services’ degradations are manifold, a resilient service’s

degradation manifests more in performance metrics than in busi-

ness metrics. I argue that self-adaptive resilience evaluation can

be achieved by measuring the degradation propagated from the

system performance metrics to the business metrics. For exam-

ple, a container CPU overload failure will keep one container’s

CPU usage at 100% for a long time, affecting the end user’s

3https://prometheus.io/

https://prometheus.io/

CHAPTER 4. SELF-ADAPTIVE RESILIENCE TESTING 76

experience. However, if there are multiple replications, the high

CPU usage will impact less on the business metric, e.g., the

throughput will drop less. For another example, a microser-

vice with two active replications can quickly recover from the

“container instance killed” failure. In contrast, a microservice

without such a replication mechanism will take much longer to

recover or even be broken. In conclusion, if the degradations of

business metrics are similar to the degradations of system per-

formance metrics, the failure’s impact is propagated from the

system performance metrics to the business metrics. Thus the

service is less resilient. The higher the degradation propagation,

the lower the resilience of the microservice system.

Finding 2: Microservices have a variety of failure mod-

els, and the impact on metrics is also manifold. Service

degradation is the primary manifestation of the failures’

impact. The less the degradations of system performance

metrics propagate to the degradations of business metrics,

the higher the resilience.

In summary, the findings of RQ1 and RQ2 promise the necessity

and feasibility of designing a self-adaptive framework for the

evaluation of a microservice application’s resilience to different

failures without the manual definition of resilience rule sets.

4.3 Methodology

I present AVERT, a self-AdaptiVE Resilience Testing framework

for microservice systems. The diversiform impact of failures in

a microservice system makes self-adaption to different failures

CHAPTER 4. SELF-ADAPTIVE RESILIENCE TESTING 77

non-trivial. This section first enumerates the properties deemed

necessary for a self-adaptive resilience testing framework, which

deeply root in the empirical study in Section § 4.2. I then present

an overall architecture of the proposed framework of AVERT.

Then I elaborate on each part of AVERT in the following sub-

sections.

Resilience
Indexing

Load
Generation

Failure
Injection

Failure
Clearance

Ranked
Metrics

Failure Execution Degradation-based Metric Lattice Search Resilience Indexing

Metric Laice
Construction

Degradation-based
Metric Selection

Metric Laice
Search

Figure 4.1: Overall framework of AVERT.

4.3.1 Design Objectives

Inspired by our empirical study and previous works [106, 127,

152], I consider the following desirable properties to design the

self-adaptive resilience testing framework:

• Measure performance loss : Performance loss quantifies the

degree of service degradation in monitoring metrics. It mea-

sures the cumulative degraded performance during service

degradation. Performance loss can reveal the business loss

in service degradation. For example, if a throughput-based

service is degraded, performance loss can consider how much

less data is transmitted than expected.

• Measure disruption tolerance: Disruption tolerance measures

CHAPTER 4. SELF-ADAPTIVE RESILIENCE TESTING 78

the degree of degradation in system performance metrics com-

pared with that in business metrics. A resilient microservice

system shall keep the degradation within the system perfor-

mance metrics, which is less impactful to users.

• Self-adaption: Since the failures’ impact on the monitoring

metrics is manifold, the method should be able to adapt to

different failures and different services. It should have a small

number of parameters.

4.3.2 Overview

The overall workflow of AVERT is illustrated in Figure 4.1.

AVERT consists of three phases, i.e., failure execution, degradation-

based metric lattice search, and resilience indexing. The failure

execution is composed of the failure injection phase and the fail-

ure clearance phase. Given a specified failure, an online service

to test, and a predefined load generator, AVERT collects the

service’s monitoring metrics in the normal and failure-injection

period. For the degradation-based metric lattice search, I pro-

pose a degradation-based metric selection algorithm to search

the metric lattice, a partially ordered data structure constructed

from the power set (i.e., the set of all subests) of the entire

monitoring metric set. Figure 4.2 illustrates an example met-

ric lattice. Specifically, AVERT first organizes all subsets into a

metric lattice. Then AVERT search the lattice in a degradation-

based manner. In this way, the search path naturally produces

a ranked list of monitoring metrics along with their contribution

to the overall service degradation. Lastly, for resilience indexing,

AVERT calculates the resilience index by how much the degra-

dation manifestation in system performance metrics propagates

CHAPTER 4. SELF-ADAPTIVE RESILIENCE TESTING 79

to the degradation manifestation in business metrics.

AVERTmeasures the performance loss (i.e., the degree of service

degradation in monitoring metrics) by comparing the difference

in metrics between normal and failure-injection period, and mea-

sures the disruption tolerance by ranking the monitoring metrics

affected by the injected failures and quantifying the degradation

propagated from the performance metrics to the business met-

rics. The less the degradation of system performance metrics

propagate to the degradation of business metrics, the higher

the resilience. As AVERT does not need any knowledge about

the system architecture or the adopted resilience mechanisms,

it can easily adapt to various microservice systems. Moreover,

once the types of failures are determined, test engineers do not

need to define resilience testing rules for different microservice

systems, which means that resilience testing with AVERT can

easily scale.

4.3.3 Failure Execution

The failure execution consists of the failure injection and the

failure clearance phases. First, a test engineer needs to provide

a load generator to the online service being tested. The load

generator should mimic real-world requests from users. Second,

the test engineer selects a list of failures to test. The failure

can be injected in the infrastructure level or in the container

level. Then, AVERT automatically generates a failure injection

pipeline. For each failure, AVERT injects the failure, clears the

failure, and collects the service’s monitoring metrics in the mean-

while. The duration of failure injection and failure clearance are

the same for each failure.

During the two phases, AVERT collects two types of metrics,

CHAPTER 4. SELF-ADAPTIVE RESILIENCE TESTING 80

i.e., business metrics and system performance metrics. Suppose

B is the business metrics set and P is the system performance

metrics set in the system, I denote the set of all the business

metrics and system performance metrics as M = B ∪ P . Sup-

pose card(M) = M , I index all the monitoring metrics from

m1 to mM . In other words, M = {m1,m2, · · · ,mM}. Thus, for
any i ∈ [1,M], either mi ∈ B or mi ∈ P stands. I denote the

monitoring metrics during the failure injection period as Mf =

{mf
1 ,m

f
2 , · · · ,m

f
M}. For each i, mf

i is a univariate time se-

ries denoting the monitoring metrics during the failure injection

period. Likewise, I denote the monitoring metrics during the

failure clearance (normal) period as Mn = {mn
1 ,m

n
2 , · · · ,mn

M}.
Also, for each i, mn

i is a univariate time series denoting the

monitoring metrics during the failure clearance (normal) period.

AVERT ensures that length(mf
i) = length(mn

i) = T .

4.3.4 Degradation-based Metric Lattice Search

Algorithm 2: Degradation-based Metric Lattice Search

Input: The monitoring metrics M = {m1,m2, · · · ,mM}; The
monitoring metrics during the failure injection period
Mf = {mf

1 ,m
f
2 , · · · ,m

f
M}; The monitoring metrics during

the failure clearance period Mn = {mn
1 ,m

n
2 , · · · ,mn

M}
Output: An ranked list of metrics M̂

1 Construct the metric lattice
2 L = EmptyList()
3 M = M
4 while M ̸= ∅ do // Metric Lattice Search
5 cmax,mimax = MetricSelection(M)
6 L.append((cmax,mimax))
7 M = M − {mimax}
8 end
9 return L

CHAPTER 4. SELF-ADAPTIVE RESILIENCE TESTING 81

The degradation-based metric lattice search aims at compar-

ing and ranking the contribution of different monitoring metrics

to the overall service degradation caused by the failure. Algo-

rithm 2 shows the procedure for degradation-based metric lattice

search. I introduce the degradation-based metric lattice search

from the following three aspects, i.e., metric lattice construction,

degradation-based metric selection, and metric lattice search.

Metric Lattice Construction

Formally, a lattice is a partially ordered set in which each pair of

elements has a least upper bound and a greatest lower bound.

Inspired by the frequent itemset mining algorithm [60, 110], I

construct a lattice from the power set (i.e., the set of all subests)

of the entire monitoring metric set. Let each subset of the entire

monitoring metrics set M be a node in the metric lattice L. I

define the order between any two nodes of the lattice as the

subset-superset relation. Formally, suppose I have a, b ⊆ M
and a ̸= b, then a ⊂ b(⊆ M) (in the monitoring metric set)

indicates a ≤ b (b → b in the metric lattice). The metric lattice

will be searched starting from the node M in later steps.

Figure 4.2 illustrates an example metric lattice constructed from

M = {m1, · · · ,m4}. Each directed edge indicates a subset-

superset relation, pointing from the metric superset to the met-

ric subset. Note that I set the number of monitoring metrics as

a small value, 4, for a clear illustration.

Degradation-based Metric Selection

As mentioned in Section § 4.2.2, service degradation is the pri-

mary manifestation of the failures’ impact. I propose to mea-

sure the service degradation via the fluctuation of system per-

CHAPTER 4. SELF-ADAPTIVE RESILIENCE TESTING 82

Figure 4.2: An example metric lattice constructed from M = {m1, · · · ,m4}.
I set number of monitoring metrics as a small value, 4, for a clear illustration.
The path of all solid red edges forms a ranked list.

formance metrics and business metrics. If the degradation of

system performance metrics cannot propagate to the degrada-

tion of business metrics, the resilience is higher. Otherwise, the

resilience is lower. Therefore, the key is to select the monitoring

metric that contributes most to the overall service degradation

among all the monitoring metrics.

Algorithm 3 shows how to select the metric that contributes

most to the overall service degradation. Expressly, given a sub-

set of the entire monitoring metrics set M′ ⊆ M and the met-

rics during the failure injection and clearance period M′f and

M′n. AVERT first measures the performance difference δi of

each monitoring metric mi by calculating the absolute differ-

ence of monitoring metrics between the failure injection period

and the failure clearance period. All metrics’ performance dif-

ference naturally forms a performance difference matrix D. By

reducing D to 1 dimension with Principal Component Anal-

CHAPTER 4. SELF-ADAPTIVE RESILIENCE TESTING 83

Algorithm 3: Degradation-based Metric Selection

Input: The monitoring metric subset M′; The monitoring metrics
during the failure injection period M′f ; The monitoring
metrics during the failure clearance period M′n

Output: The metric mi ∈ M′ where mi contribute most to the
overall service degradation

1 Function MetricSelection(M′, M′f , M′n):
2 T = length of the monitoring metrics
3 D = []
4 for mi ∈ M′ do
5 // Compute the performance difference of each individual

metric
6 for t = 1 . . . T do

7 δi(t) = |mf
i (t)−mn

i (t)|
8 end

9 δ̂i = δi − δ̄i // Normalize δi

10 D = [D; δ̂i] // Concatenate the normalized performance
difference

11 end
12 δPC1 = PCA(D, dim = 1) // Reduce to one dimension via

Principal Component Analysis
13 // Select the metric that contribute most to the performance

difference
14 for δ̂i ∈ D do

15 ci = Contribution(δPC1, δ̂i)
16 end
17 cmax = max(ci)
18 imax = argmaxi(ci)
19 return cmax, mimax

20 End

CHAPTER 4. SELF-ADAPTIVE RESILIENCE TESTING 84

ysis (PCA) [60, 139], AVERT gets δPC1, a sequence of length

T . Let δPC1 represent the overall service degradation caused by

the injected failure. AVERT computes the contribution of each

metric to the overall degradation via a contribution measure

Contribution(). The higher the similarity between δPC1 and

δi, the larger the Contribution() outputs. Contribution()

can be a correlation coefficient (e.g., Pearson correlation coef-

ficient) or any other distance measure (e.g., Euclidean distance

or dynamic time warping distance) deemed appropriate. I dis-

cuss the selection of Contribution() in Section § 4.4.3. In

the end, the function returns the metric mimax that contributes

most to the overall service degradation, along with its contribu-

tion cmax. mimax will guide the metric lattice search, and cmax

will be used to calculate resilience in Section § 4.3.5.

Metric Lattice Search

The metric lattice search is straightforward with the degradation-

based metric selection. As shown in Algorithm 2, the search

starts from the node of the entire metric set M. At each node

M′ ∈ M, AVERT selects the metric mimax that contributes

most to the service degradation on the metric set M′. AVERT

then eliminates the monitoring metric mimax from M′ and pro-

ceed to the next node until all the monitoring metrics are elim-

inated. The path from M to ∅ naturally forms an ordered list

of all the monitoring metrics m and their contribution value c,

denoted as L. For example, in Figure 4.2, the path of all solid

red edges forms the ordered list [m2,m4,m1,m3].

CHAPTER 4. SELF-ADAPTIVE RESILIENCE TESTING 85

4.3.5 Resilience Indexing

Section § 4.2.2 finds that the resilience can be inferred from

whether the degradation manifestation in system performance

metrics propagates to the degradation manifestation in busi-

ness metrics. AVERT calculates the degradation in system per-

formance metrics and business metrics with Equation 4.1 and

Equation 4.2 respectively.

DP =
∑
mi∈P

ci
log2(rank(mi;L) + 1)

(4.1)

DB =
∑
mi∈B

ci
log2(rank(mi;L) + 1)

(4.2)

In the end, AVERT utilizes the sigmoid function to map the

difference between B’s and P ’s contribution to a float value r ∈
(0, 1), as shown in Equation 4.3.

r =
1

1 + eDB−DP
(4.3)

r measures the “degradation propagation ratio” from the system

performance metrics to the business metrics. The larger r is, the

higher the resilience is.

4.4 Evaluation

This section introduces the experiment settings, including the

dataset, parameter settings, evaluation metrics, and baseline

methods, and then analyze the experimental results. I aim to

investigate the following research questions.

• RQ3. How effective is AVERT in evaluating the resiliency

CHAPTER 4. SELF-ADAPTIVE RESILIENCE TESTING 86

of online services?

• RQ4. How do different contribution measures affect the per-

formance of AVERT?

• RQ5. How efficient is AVERT?

4.4.1 Experiment Settings

Dataset

To illustrate the practical effectiveness of aid, I carried out ex-

periments on two simulated datasets. Since there is no exist-

ing dataset for resilience testing, I deployed two benchmark mi-

croservice systems and conducted resilience tests on then. I col-

lect the monitoring metrics and manually labeled the resilience

testing results to build the datasets. I release both datasets in

the paper to promote future research in this field.

Dataset I: For collecting the first dataset, I deploy Train-Ticket [173],

an open-source microservice benchmark system, with “Kuber-

netes”, a popular microservice orchestrator. Train-Ticket is a

web-based ticketing system with 15 microservices. Users can

search for tickets, reserve tickets, order food and insurance, and

pay for reserved tickets through the system. For load gener-

ation, I develop a request simulator to simulate the access of

ordinary users to the ticketing system. The simulator will log

in to the system, search for tickets, order tickets, foods, and in-

surance according to the search results, and make the payment.

I inject 24 failures listed in Table 4.4 into the benchmark mi-

croservice system with ChaosBlade. (I omit the three failures

in “Infrastructure - Machine” as I do not have access to the

physical server.) For each failure, the failure injection period

CHAPTER 4. SELF-ADAPTIVE RESILIENCE TESTING 87

and failure clearance period both lasts for 10 minutes, during

which the request simulator continuously send external requests

to the system. cAdvisor [54] is used to collect 13 system per-

formance metrics. The system performance metrics cover all

major aspects of the microservice system, including CPU, file

system, memory, network. As for the business metrics, I use

Jaeger, an open-source tracing framework, to trace all the API

calls. Following the existing research [149], I calculate the aver-

age response time and the request error rate in seconds as the

business metrics. The dataset is referred to as “Train-Ticket”

in Table 4.1.

Dataset II: To illustrate the universality of our method, I

collected another dataset on another widely-used microservice

orchestrator “docker-compose” to evaluate AVERT. Compared

with “Kubernetes”, “docker-compose” runs on a single server

for microservice orchestration. The resilience of a microservice

system managed by “docker-compose” depends more on the mi-

croservice developer. I select Social-Network [50] as the bench-

mark microservice system. It is a Twitter-like social media plat-

form composed of multiple microservices, including 12 microser-

vices for processing user requests and 13 microservices for data

storage. The business metrics of the dataset include the average

response time and the request error rate. As “docker-compose”

employs few resilience mechanisms at the infrastructure level,

I do only inject failures at the container level. Similarly, I in-

ject 10 failures using ChaosBlade. Each failure lasts for 5 min-

utes since the Social-Network benchmark responses faster than

Train-Ticket. This data set is referred to as “Social-Network”

in Table 4.1.

Manual labeling: As AVERT is unsupervised, labels are only

CHAPTER 4. SELF-ADAPTIVE RESILIENCE TESTING 88

Table 4.1: Dataset Statistics

Dataset |B| |P| #Microservices #Failures

Train-Ticket 30 209 15 24

Social-Network 50 325 25 10

for evaluation. For both datasets, I adopt the criteria in Sec-

tion § 4.2 for resilience, i.e., whether the degradation in system

performance metrics propagates to the degradation in business

metrics. I invited two senior Ph.D. students to inspect the col-

lected monitoring data and give PASS/FAIL conclusions on each

injected failure. I use PASS/FAIL to make it easier to reach an

agreement. In case of disagreement on labels, I will invite a

third student to judge and label the case. I also invited the

test engineers from Huawei Cloud to investigate the monitoring

data and draw PASS/FAIL conclusions according to the existing

resilience rule sets in Huawei Cloud. Finally, I convert PASS to

1 and FAIL to 0 so that they can be effectively compared with

the computed resilience values.

Table 4.1 shows the statistics of the two datasets. As the num-

ber of monitoring metrics varies with the microservice system

architecture, I list the number of system performance metrics

(denoted as |P|) and business metrics (denoted as |B|) in Ta-

ble 4.1. “# Microservices” and “# Failures” means the num-

ber of microservices, and the number of injected failures in the

dataset, respectively.

Baselines

Since there is no existing public work that measures the re-

silience of a microservice system, I adopt the common predic-

tive methods as baselines, i.e., Support Vector Machine Classi-

CHAPTER 4. SELF-ADAPTIVE RESILIENCE TESTING 89

fier [37] (denoted as SVC), Random Forest [23] (denoted as RF),

and Extra Trees [53] (denoted as ET). Specifically, let the input

Xt be all the monitoring data at time t, and the output yt be

whether t is in the failure injection period, I train the baseline

models with all Xt and yt. I use the rank of feature impor-

tance (for ET and RF) and the rank of coefficient (for SVC) as

the ordered sequence of the monitoring metrics. For the base-

lines, I directly use the implementation from the Python package

sklearn4. Then I set ci = 1 then calculate the resilience index

the same way as in Section § 4.3.5.

Evaluation Metrics

Since the labels are binary values and the prediction results are

float values, I employ Mean Absolute Error MAE =
∑N

i=1 |yi−pi|
n ,

Root Mean Squared Error RMSE =

√∑N
i=1(yi−pi)2

N , and Cross

Entropy CE = 1
N

∑N
i=1−[yi log(pi)+ (1− yi) log(1−pi)] to eval-

uate the effectiveness of AVERT in predicting the resilience.

Specifically, cross entropy calculates the difference between the

label and the predicted probability distribution. Mean absolute

error and root mean square error measurement absolute error

and root mean square error. Lower CE, MAE, and RMSE val-

ues indicate better prediction results.

Experimental Environments

I deployed the Train-Ticket benchmark in a Kubernetes cluster

of two physical servers. Both servers have 128 GB RAM and 24

CPU cores. The Social-Network benchmark was deployed in a

t2.2xlarge EC2 instance of AWS with 8 GB RAM and 8 CPU

4https://scikit-learn.org/

https://scikit-learn.org/

CHAPTER 4. SELF-ADAPTIVE RESILIENCE TESTING 90

cores. For both datasets, I run the degradation-based metric

lattice search and the resilience indexing on a laptop with 4

Intel CPU cores and 8 GB RAM.

4.4.2 RQ3: Effectiveness

To study the effectiveness of AVERT, I compare its performance

with the baseline models on both the simulated dataset and the

industrial dataset collected from Huawei Cloud. For the con-

tribution measure of AVERT, I employ dynamic time warpping

(dtw) [75] algorithm. Specifically, for the parameters of dtw, I

set the warpping window to be 5 seconds (for Train-Ticket) and

2 seconds (for Social-Network), and use the square of the abso-

lute difference as the distance measure. I do this because the

Social-Network benchmark is deployed in a single server, and it

responds faster than the Train-Ticket benchmark. In addition, I

use moving average of a window size 3 to smoothen the monitor-

ing metrics for the baselines and our method. The outputs are

scalar values in the range (0, 1). A larger value indicates higher

resilience. The overall performance is shown in Table 4.2, where

I mark the smallest loss for each loss metric and dataset.

Table 4.2: Performance Comparison of AVERT on Two Datasets

Method
Train-Ticket Social-Network

CE MAE RMSE CE MAE RMSE

SVC 0.8864 0.4875 0.5594 0.7483 0.4426 0.5165

RF 0.6973 0.4259 0.5005 0.5646 0.3787 0.4416

ET 0.8766 0.4682 0.5470 0.6546 0.4199 0.4893

AVERT 0.1775 0.1572 0.1842 0.1159 0.1078 0.1203

AVERT achieves the best performance on both the datasets and

reduces the loss by 79.5%, 77.6%, and 72.7.2% in terms of cross

CHAPTER 4. SELF-ADAPTIVE RESILIENCE TESTING 91

entropy, mean absolute error, and root mean squared error. The

improvement of AVERT on the Train-Ticket dataset is smaller

than that on the Social-Network dataset. This is because the

Social-Network benchmark incorporates very few fault tolerance

mechanisms, making it fail many resilience tests.

4.4.3 RQ4: Ablation Study

I study the impact of different contribution measures on the

performance of AVERT. In particular, I conduct experiments

on with varying contribution measures, i.e., Euclidean Distance

(denoted as “AVERT-euc”), Pearson Correlation (denoted as

“AVERT-corr”), Complexity Invariant Distance [17,18] (denoted

as “AVERT-cid”), and keep other parameters identical. I rep-

resent our method as “AVERT-dtw” in the table. Table 4.3

shows the prediction loss under different contribution measures.

I marked models with the best performance in terms of CE,

MAE, and RMSE. The results indicate that the impact of dif-

ferent contribution measures in a reasonable range is small, but

“AVERT-dtw” gives the overall best performance on the Train-

Ticket dataset.

Table 4.3: Ablation Study of AVERT on Two Datasets

Method
Train-Ticket Social-Network

CE MAE RMSE CE MAE RMSE

AVERT-euc 0.3379 0.2735 0.3067 0.1874 0.1655 0.1905

AVERT-corr 0.2320 0.1985 0.2296 0.2532 0.2148 0.2449

AVERT-cid 0.1784 0.1589 0.1810 0.3131 0.2542 0.2933

AVERT-dtw 0.1775 0.1572 0.1842 0.1159 0.1078 0.1203

CHAPTER 4. SELF-ADAPTIVE RESILIENCE TESTING 92

4.4.4 RQ5: Efficiency

The efficiency of AVERT is composed of three parts, including

(1) the time spent on failure execution, (2) the time spent on the

degradation-based metric lattice search, and (3) the resilience

indexing. As the frequency of the external request (or the load

generator) is unique to each service, the required duration of fail-

ure injection varies dramatically. Therefore, the time spent on

failure execution are omitted when I discuss efficiency. Among

the remaining two phases, the most time-consuming phase is the

degradation-based metric lattice search. Theoretically, the time

complexity of Algorithm 3 depends on the length T of the mon-

itoring metrics, the number of monitoring metrics |M|, and the

time complexity of Cont(). Since |M| << T in practice, I treat

|M| as a constant. The computation of performance difference

costs O(T), and the dimension reduction with PCA costs O(T 3).

As dynamic time warpping can be easily parallelized, I treat the

time complexity of Contribution() as O(T). Merging together,

upper bound of the time complexity is O(T 3). Considering the

average time of failure injection is usually several hours, a time

complexity of O(T 3) will not be a problem. On average, the

latter two phases take 302 seconds to process a failure test case

of T = 1200 on a laptop.

4.5 Discussion

4.5.1 Threats to Validity

Labeling accuracy

To evaluate AVERT, I conduct experiments on two simulated

datasets. The evaluation on both datasets requires Ph.D. stu-

CHAPTER 4. SELF-ADAPTIVE RESILIENCE TESTING 93

dents to inspect the monitoring metrics and label the resilience

test results. Limited by their knowledge, the label may not be

100% accurate. However, the test engineers I invited have rich

domain knowledge and are in charge of the resilience assurance of

the cloud services of Huawei Cloud. Moreover, since the bench-

mark systems are simple and the resilience mechanisms and de-

ployment environment of the benchmark systems are clear to

all the labelers, the resilience test results are straightforward.

I could use existing resilience testing results that are based on

fixed rules (e.g., the rules described in Section § 4.2.1) to make

the labeling process more reproducible. The Cohen’s Kappa

index could be used to measure the inter-annotator agreement

(IAA) between the labelers. But most importantly, our method

is unsupervised, so inaccurate labels will not affect the predic-

tion results of the proposed method.

Insufficiency of the simulation

For the evaluation, I deploy open-source benchmark microser-

vice systems to simulate real cloud services. The numbers of

microservices are small, and the implementation of the open-

source benchmark did not fully consider fault tolerance, result-

ing in poor resilience in the simulation. Hence, the simulated

dataset may not exhibit some common attributes of a real on-

line service. After consulting with the test engineers in Huawei

Cloud, I deployed one benchmark on bare metal machines and

another benchmark on AWS EC2 instances to increase the repre-

sentativeness of the datasets. Moreover, I deploy the benchmark

microservice systems with two widely-used microservice orches-

trators to show the practical usefulness of AVERT in different

environments. Last but not least, conducting simulation on pro-

CHAPTER 4. SELF-ADAPTIVE RESILIENCE TESTING 94

duction or large-scale microservice systems could alleviate the

insufficiency of simulation.

4.6 Related Work

Resilience Testing of Online Services

Modern online services have been moving towards the microser-

vice architecture. To ensure the ability of the system to min-

imize the impact of potential failures, considerable attention

has been paid to resilience testing of microservices, including

model-based resilience representation and analysis [103, 152],

non-intrusive and automated fault injection [6, 16, 65, 96], scal-

ability resilience testing [2]. [103] used the PRISM probabilistic

model checker to analyze the behavior of the Retry and Circuit

Breaker resiliency patterns. [152] proposed a Microservice Re-

silience Measurement Model (MRMM) represent the resilience

requirements on MSA Systems. [6] proposed a lineage-driven

fault injection approach to infer whether injected faults can

prevent correct outcomes by exploring historical data lineage

and satisfiability testing. [65] presented a non-intrusive resilience

testing framework that injects faults by manipulating the net-

work packets communicated between microservices. [2] simu-

lated delay latency injection to assess the fault scenario’s impact

on the cloud software service’s scalability resilience. [2, 6, 65] all

require test engineers to write test descriptions and manually

check assertions. Netflix proposed chaos engineering [16] to ran-

domly inject faults in the system. A resent study [96] propose to

automatically generate resilience test cases by inferring whether

the injected faults can result in severe failures. However, the

existing approaches either highly rely on human labors or his-

CHAPTER 4. SELF-ADAPTIVE RESILIENCE TESTING 95

torical cases, making them less practical in cloud-scale service

systems with high dynamism and complex failure models. In

contrast, AVERT is an adaptive and efficient approach to eval-

uate the resilience of online services, which is dispensed with

historical testing cases.

Combination Searching

Many combination searching techniques [12, 24, 57] have shown

its promise in reducing information redundancy and enhanc-

ing the performances of data-driven models. The combination

searching approaches fall into three categories: score-based [24]

and embedding-based [40, 66, 77, 101], and wrapper-based [19,

112, 114, 125]. Specifically, filter approaches attempt to con-

struct a proxy measure to score a feature combination. For ex-

ample, Kendall’s τ coefficient [24] uses a non-parametric hypoth-

esis test to measure the ordinal association between two features

to identify similar features. Embedding-based approaches per-

form combination selection during the model construction, such

as [77], which shrinks many of regression coefficients to zero and

remains non-zero regression coefficients for downstream models.

Wrapper-based approaches uses different combinations of fea-

tures to train the same downstream model, whose performances

of hold-out testing can be leveraged to qualify the usefulness of

the combination. Some heuristic approaches [19,125] have been

developed to narrow the searching space due to the high search-

ing complexity. AVERT employs a wrapper-based method and

overcomes the demerits of high computation cost and over-fitting

by proper pruning.

2 End of chapter.

CHAPTER 4. SELF-ADAPTIVE RESILIENCE TESTING 96

Table 4.4: Typical faults and the corresponding degradation with and with-
out the resilience mechanisms mentioned in § 4.2.2

Level Type Failure Degradation w/o re-
silience mechanisms

Degradation w/ re-
silience mechanisms

Infrastructure

CPU CPU overload High physical CPU usage,
slow response speed

Decreased but acceptable
response speed

Memory Memory over-
load

High physical memory us-
age, slow response speed

Decreased but acceptable
response speed

Storage

Disk partition
full

Unable to read/write, in-
ternal error (500)

Response normally

High disk I/O
throughput

High physical I/O
throughput

Response normally

High disk I/O la-
tency

Slow I/O Response normally

High disk I/O er-
ror

Slow and erroneous I/O Response normally

Block storage
service stopped

I/O rate drop to zero, in-
ternal error (500)

Response normally

Network

High HTTP
packet loss rate

High retransmission rate Response normally

High HTTP re-
quest latency

High connection latency,
slow response

Return to normal re-
sponse speed shortly

TCP disconnec-
tion

Connection error, discon-
nected

Return to normal re-
sponse speed shortly

Port in use Connection initialization
error

(same as left)

NIC down Connection error, un-
reachable network

(same as left)

Running out of
network connec-
tions

Unable to create new con-
nections

Response normally

Process Critical process
killed

Unresponsive process, ex-
isting connection down

Response normally after
some time

Machine
Unplaned reboot Machine offline Response normally after

some time
Power outage Machine offline Response normally after

some time
System time
shift

Process error Automaitc time correction

Container

CPU Container CPU
overload

High container CPU us-
age, slow response speed

Decreased but acceptable
response speed

Memory Container mem-
ory overload

High container memory
usage, slow response speed

Decreased but acceptable
response speed

Network

Container TCP
disconnection

Connection error within
container

Return to normal re-
sponse speed shortly

Unreachable net-
work

Network unreachable er-
ror in container

Return to normal re-
sponse speed shortly

Container port
in use

Connection initialization
error

(same as left)

Container net-
work packet loss

High retransmission rate Return to normal re-
sponse speed shortly

Container vir-
tual NIC down

Connection error Return to normal re-
sponse speed shortly

Storage Container disk
full

Unable to read/write, in-
ternal error (500)

Response normally after
some time

Instance
Container in-
stance killed

Instance offline, unrespon-
sive microservice endpoint

Response normally after
some time

Container in-
stance sus-
pended

Instance offline, unrespon-
sive microservice endpoint

Response normally after
some time

Chapter 5

Empirical Study on Alerting

and Logging

5.1 Introduction

The boost of cloud adoption puts forward higher requirements

on the reliability and availability of cloud services. Typically,

cloud services are organized and managed as microservices that

interact with each other and serve user requests as a whole.

In a large-scale cloud microservice system, unplanned microser-

vice anomalies happen from time to time. Some anomalies are

transient, while others persist and require human intervention.

If anomalies are not detected and mitigated timely, they may

cause severe cloud failures and incidents, affect the availability

of cloud services, and deteriorate user satisfaction [31]. Hence,

prompt detection, human intervention, and mitigation of service

anomalies are critical for the reliability of cloud services. To ac-

complish that, cloud service providers employ large-scale cloud

monitoring systems that monitor the system state and generate

alerts that require human intervention. Whenever anomalous

states of services emerge, alerts will be generated to notify en-

gineers to prevent service failures.

97

CHAPTER 5. ALERTING AND LOGGING 98

In a cloud system, an alert is a notification sent to On-Call

Engineers (OCEs), of the form defined by the alert strategy, of

a specific abnormal state of the cloud service, i.e., an anomaly.

A severe enough alert (or a group of related alerts) can escalate

to an incident, which, by definition, is any unplanned interrup-

tion or performance degradation of a service or product, which

can lead to service shortages at all service levels [31]. An alert

strategy defines the policy of alert generation, i.e., when to gen-

erate an alert, what attributes and descriptions an alert should

have, and to whom the alert should be sent. Once an OCE re-

ceives an alert, the OCE will follow the corresponding predefined

Standard Operating Procedure (SOP) to inspect the state of the

cloud service and mitigate the service anomaly based on their

domain knowledge. The alert strategies and SOPs are two key

aspects to ensure a prompt and effective response to cloud alerts

and incidents. In industrial practice, the two aspects are often

considered and managed together because improperly designed

alert strategies may lead to non-informative or delayed alerts,

affecting the diagnosis and mitigation of the cloud alerts and

incidents. I call the unified management of alert strategies and

SOPs alert governance. Table 5.1 summarizes the terminolo-

gies used in this chapter.

In industrial practice, a cloud provider usually deploys a cloud

monitoring system to obtain the telemetry data that reflects the

running state of their cloud services [39, 90]. Multiple monitor-

ing techniques are employed to collect various types of teleme-

try data, including the performance indicators of the monitored

service, the low-level resource utilization, the logs printed by

the monitored service, etc. For normally functioning services,

it is assumed that their states, as well as their telemetry data,

CHAPTER 5. ALERTING AND LOGGING 99

Table 5.1: The Terminology Adopted in This Chapter.

Term Explanation

Anomaly A deviation from the normal state of the cloud sys-
tem, which will possibly trigger an alert.

Alert A notification sent to On-Call Engineers (OCEs), of
the form defined by the alert strategy, of a specific
anomaly of the cloud system.

Incident Any unplanned interruption or performance degra-
dation of a service or product, which can lead to
service shortages at all service levels [31].

Alert Strategy The policy of alert generation, including when to
generate an alert, what attributes and descriptions
an alert should have, and to whom the alert should
be sent.

SOP A predefined Standard Operating Procedure (SOP)
to inspect the state of the cloud system and mitigate
the system abnormality upon receiving an alert.
The operations can be conducted by OCEs or au-
tomatically.

Alert Governance The unified management of alert strategies and
SOPs.

will be stable. For a service that will fail soon, its telemetry

data will fluctuate from the normal state [69,142]. Hence, cloud

providers typically conduct anomaly detection on the teleme-

try data to detect the deviation from the normal state. If an

anomaly triggers an alert strategy, an alert will be generated,

and the cloud monitoring system will notify OCEs according to

the configuration of the alert strategy.

The configuration of alert strategies is empirical, which heavily

depends on human expertise. Since different cloud services ex-

hibit different attributes and serve different purposes, their alert

strategies vary significantly. In particular, the empiricalness of

alert strategies results from two aspects of cloud services. On the

one hand, a cloud service’s abnormal state may differ because

CHAPTER 5. ALERTING AND LOGGING 100

each cloud service implements its own business logic. There is

no one-fits-all rule for anomaly detection on cloud services, i.e.,

when to generate an alert. For example, network overload is a

crucial anomaly for a virtual network service. However, high

connection number becomes a real issue for a database service.

On the other hand, the attributes of an alert that helps the

manual inspection and mitigation of the abnormal state, e.g.,

the location information and the free-text title that describes

the alert, are also service-specific and lack comprehensive guide-

lines. In other words, “what attributes and descriptions an alert

should have” also depends on human expertise. For example,

the title “Instance x is abnormal” is non-informative. In sum-

mary, the configuration of alert strategies, as a precursor step

for human intervention in cloud anomalies, is an empirical pro-

cedure.

Manually-configured alert strategies are flexible but can also be

ineffective (e.g., misleading, non-informative, and non-actionable)

when the engineer is inexperienced or unfamiliar with the mon-

itored cloud service. The ineffectiveness of alerts becomes anti-

patterns that hinder the OCEs’ diagnosis, especially for inexpe-

rienced OCEs. The anti-patterns of alerts, which I will elaborate

in Section § 5.2, will frustrate OCEs and deteriorate cloud reli-

ability in the long term.

In this thesis, I conduct the first empirical study on the indus-

trial practice of alert governance in Huawei Cloud1. The cloud

system considered in this study consists of 11 cloud services and

192 cloud microservices. The procedure of our study includes

1) a quantitative assessment of over 4 million alerts in the time

1Huawei Cloud is a global cloud provider and ranked fifth in Gartner’s report [21] on
the global market share of Infrastructure as a Service in 2020.

CHAPTER 5. ALERTING AND LOGGING 101

range of two years to identify the anti-patterns of alerts; 2) inter-

views with 18 experienced on-call engineers (OCEs) to confirm

the identified anti-patterns and summarize the current practice

to mitigate the identified anti-patterns. To sum up, I make the

following contributions:

• I conduct the first empirical study on characterizing and mit-

igating anti-patterns of alerts in an industrial cloud system.

• I identify six anti-patterns of alerts in a production cloud

system. Specifically, the six anti-patterns can be divided

into two categories, namely individual anti-patterns and col-

lective anti-patterns. Individual anti-patterns result from

the ineffective patterns in one single alert strategy, includ-

ing Unclear Name or Description, Misleading Severity, Im-

proper and Outdated Alert Strategy, and Transient and Tog-

gling Alerts. Collective anti-patterns are ineffective patterns

that a bunch of alerts collectively exhibit, including repeating

and cascading alerts.

• I summarize the current industrial practices for mitigating

the anti-patterns of alerts, including postmortem reactions

to mitigate the effect of anti-patterns and the preventative

guidelines to avoid the anti-patterns. The postmortem reac-

tions include rule-based alert blocking and alert aggregation,

pattern-based alert correlation analysis, and emerging alert

detection. I also describe three aspects of designing preventa-

tive guidelines for alert strategies according to our experience

in Huawei Cloud.

• Lastly, I share our thoughts on prospective directions to achieve

automatic alert governance. I propose to bridge the gap

between manual alert strategies and cloud service upgrades

CHAPTER 5. ALERTING AND LOGGING 102

by automatically evaluating the Quality of Alerts (QoA) in

terms of indicativeness, impact, and handleability.

5.2 The Anti-patterns of Alerts

The research described in this chapter is motivated by the pain

point of alert governance in a production cloud system. In this

section, I present the first empirical study of characterizing the

anti-patterns of alerts2 and how I mitigate the anti-patterns in

the production cloud system. Specifically, I study the following

research questions (RQs).

• RQ1: What anti-patterns exist in alerts? How do these anti-

patterns prevent OCEs from promptly and precisely diagnos-

ing the alert?

• RQ2: What is the standard procedure to process alerts? Can

the standard procedure handle the anti-patterns?

• RQ3: What are the current reactions to the anti-patterns

of alerts? How about their performance?

• RQ4: What are the current measures to avoid the anti-

patterns of alerts? How about their performance?

To answer these research questions, I quantitatively analyzed

over 4 million alerts from the production system of Huawei

Cloud which serves tens of millions of users and contains hun-

dreds of services. The time range of the alerts spans over two

years. I conducted a survey involving 18 experienced OCEs to

find out the current practice of mitigating the anti-patterns of

alerts. Among them, 10 (55.6%) OCEs have more than 3 years

2An alert always corresponds to an alert strategy. Therefore, I do not discriminate
“anti-pattern of alerts” and “anti-patterns of alert strategies”.

CHAPTER 5. ALERTING AND LOGGING 103

of working experience. The number of OCEs with 2 to 3 years’

working experience and 1 to 2 years’ working experience are 3

(16.7%) and 2 (11.1%). Lastly, 3 (16.7%) OCEs’ experience are

less than 1 year.

3 (16.7%)

2 (11.1%)
3 (16.7%)

10 (55.6%)

< 1 year
1 ~ 2 years

2 ~ 3 years
> 3 years

(a) How long have you been working as an
OCE?

A1

A2

A3

A4

A5

A6

11
8

13
7
7

14

7
8

4
10
10

4

2
1
1
1

High Low No Impact

(b) How about the impact of different anti-
patterns to alert diagnosis?

Q1: Overall

Q2: Individual

Q3: Collective

4

9

5

14

7

13

2

Helpful Limited Help Not Helpful

(c) How helpful are the predefined SOPs?

R1

R2

R3

R4

18

16

18

13

2

3 2

Effective Limited Effect Not Effective

(d) How about the effectiveness of current
reactions to anti-patterns?

Figure 5.1: A survey about the current practice of mitigating the anti-
patterns of alerts.

5.2.1 RQ1: Anti-patterns in Alerts

Anti-patterns of alerts are misconfigured and ineffective pat-

terns in alerts that hinder alert processing in practice. Al-

though alerts provide essential information to OCEs for diag-

nosing and mitigating failures, anti-patterns of alerts hinder this

process. I divide the anti-patterns into two categories, i.e., in-

dividual anti-patterns and collective anti-patterns. Individual

anti-patterns result from the ineffectiveness of one single alert.

CHAPTER 5. ALERTING AND LOGGING 104

In practice, OCEs usually have limited time to diagnose alerts. If

one alert and its SOP are poorly designed, e.g., misleading steps

to diagnose or non-informative description, the manual diagno-

sis will be difficult. Collective anti-patterns are ineffectiveness

that alerts collectively exhibit. Sometimes, due to inappropriate

configuration of alert strategy, complex dependency, and inter-

influence effect in the cloud, numerous alerts may simultaneously

occur. If alerts flood to OCEs or are collectively hard to handle,

it will be too complicated for manual diagnosis, especially for

inexperienced OCEs. Characterizing these anti-patterns is the

leading step for alert governance.

For this research question, I analyzed more than 4 million alerts

over two years to characterize the anti-patterns of alerts. The

total number of alert strategies in this empirical study is 2010.

To select the candidates of individual anti-patterns, I group

the alerts according to the alert strategies, then calculate each

strategies’ average processing time. The alert strategies that

take the top 30% longest time to process are selected as the

candidates of individual anti-patterns. To find cases of collec-

tive anti-patterns, I first group all the alerts by the hour they

occur and the region they belong to. Then I count the number

of alerts per hour per region. If the number of alerts per hour

per region exceeds 2003, I select all the alerts in this group as

the candidate of collective anti-patterns. I also went through

the incident reports over the past two years to seek the ineffec-

tiveness in alerts recorded by OCEs. I get five candidate cases

of individual anti-patterns and two candidate cases of collective

anti-patterns. After that, I ask two experienced OCEs to mark

3I set the threshold as 200 as the estimated maximum number of alerts an OCE team
can deal with is 200. Experienced OCEs confirm the threshold.

CHAPTER 5. ALERTING AND LOGGING 105

whether they think the candidate ineffective pattern in alerts

is an anti-pattern. If they both agree, I include it as an anti-

pattern. If disagreements occur, another experienced OCE is

invited to examine the pattern. As a result, I summarized four

individual anti-patterns and two collective anti-patterns.

Our survey asked the OCEs to determine the impact of differ-

ent anti-patterns on alert diagnosis. Figure 5.1(b) shows the

answers’ distributions. Each bar represents one anti-pattern,

which is elaborated below.

Individual anti-patterns

Individual anti-patterns are the ineffectiveness of a single alert,

including unclear name or description, misleading severity, and

improper and outdated generation rule.

[A1] Unclear Name or Description. Unclear alert name or alert

description obstructs the OCEs from gaining intuitive judgment

at the first sight, which slows down the diagnosis and even hin-

ders OCEs from knowing the logical connections from the alert

to other alerts. Typical unclear alert names describe the sys-

tem state in a very general way with vague words, e.g., “Elas-

tic Computing Service is abnormal”, “Instance x is abnormal”,

“Component y encounters exceptions”, and “Computing cluster

has risks”. All OCEs agree with the impact of unclear name or

description, and 61.1% of them think the impact is high.

[A2] Misleading Severity. Severity helps OCEs to prioritize

which alert to diagnose first. Inappropriately high severity level

takes up OCE’s time for dealing with less essential alerts, while

too low severity level may lead to missing important alerts. In

our survey, 88.9% of OCEs agree with the impact of misleading

severity. In practice, I find that the setting of severity heavily

CHAPTER 5. ALERTING AND LOGGING 106

depends on domain knowledge. With the update of the cloud

system, especially the enhancement of fault tolerance mecha-

nisms, the severity may also change.

[A3] Improper and Outdated Generation Rule. Typically, the

cloud monitoring system will continuously monitor the perfor-

mance indicators of both lower-level infrastructures (e.g., CPU

usage, disk usage) and higher-level services (e.g., request per sec-

ond, response latency). If any indicator increases over or drops

below the predefined thresholds, an alert will be generated. Al-

though the performance indicators of lower-level infrastructures

can provide valuable information when the root cause of the alert

is failures of lower-level infrastructures (e.g., high CPU usage),

due to the fault-tolerance techniques applied in cloud services,

the performance indicators of lower-level infrastructures do not

have definite effect on the quality of cloud services from the per-

spective of customers. According to our survey, 72.2% of OCEs

agree that the impact of improper and outdated generation rule

is high.

[A4] Transient and Toggling Alerts. As mentioned in Section § 2.1.2,
the cloud monitoring system can automatically clear some alerts.

When the interval between the generation time and automatic

clearance time of an alarm is less than a certain value (known

as the intermittent interruption threshold), the alert is called a

transient alert. Commonly speaking, a transient alert is an alert

that lasts for a short time. When the same alert is generated

and cleared multiple times (i.e., oscillation), and the number

of oscillations is greater than a certain value (known as the os-

cillation threshold), it is called a toggling alert. Transient and

toggling alerts are usually caused by alert strategies being too

sensitive to the fluctuation of the metrics. Transient and tog-

CHAPTER 5. ALERTING AND LOGGING 107

gling alerts cause fatigue of OCEs and also distract the OCEs

from being dealing with other important alerts. Although there

are disagreements on the level of impact, most OCEs (94.4%)

think the impact exists.

Collective anti-patterns

Collective anti-patterns result from the ineffective patterns of a

bunch of alerts that occur in a short time scope. Zhao et al. [165]

defined numerous alerts (e.g., hundreds of alerts) from different

cloud services in a short time (e.g., one minute) as “alert storm”,

and conducted several case studies of alert storms. In alert

storms, even if all the individual alerts are effective, the large

number of alerts may still set obstacles for OCEs and greatly

affect the system reliability in the following three ways. Firstly,

during an alert storm, many alerts are generated. If OCEs check

each alert manually, the troubleshooting will take unacceptably

long time. Secondly, since alert storms occur frequently [165],

the OCEs will continually receive alerts by email, SMS, or even

phone call. According to our study, alert storms occur weekly or

even daily, and 17 out of 18 interviewed OCEs say that the alert

storms greatly fatigue them. Lastly, the overwhelming number

of alerts adds pressure to the monitoring system, so the latency

of generating new alerts may increase.

Inspired by [165], I summarize the following collective anti-

patterns from confirmed cases of alert storms in Huawei Cloud.

In this study, if the number of alerts from a region exceeds 100

in an hour, I count it as an alert storm. Consecutive hours of

alert storm will be merged into one. Among the two collec-

tive anti-patterns, “cascading alerts” has already been observed

by [165], but “repeating alerts” has not. In particular, I demon-

CHAPTER 5. ALERTING AND LOGGING 108

strate the collective anti-patterns of alerts with a representative

alert storm that happened from 7:00 AM to 11:59 AM in Huawei

Cloud. During the alert storm, totally 2751 alerts were gener-

ated, among which I observeed both collective anti-patterns as

described below.

06 07 08 09 10 11 12
Hour

0

200

400

600

of

 A
le

rt
s

HAProxy Kafka Others

Figure 5.2: Repeating alerts in an alert storm.

[A5] Repeating Alerts. Repeating alerts means that alerts from

the same alert strategy appear repeatedly. Sometimes the re-

peated alerts may last for several hours. This is usually due

to the inappropriate frequency of alert generation. For exam-

ple, in Figure 5.2, I count the number of alerts per strategy.

The total number of alerts is 2751, and the number of effective

alert strategies is 200. To make the figure clear, I only show

the name of the top two alerts. All other alerts are classified

as “Others” in the figure. The alert “haproxy process number

warning”, abbreviated as HAProxy in the figure, takes up around

30% of the total number of alerts in each hour. However, it is

only a WARNING level alert, i.e., the lowest level. Even though

an individual alert is straightforward to process, it is still time-

consuming to deal with it when it occurs repeatedly. If one rule

continually generates alerts, it will distract OCEs from dealing

with the more essential alerts. Most OCEs (94.4%) agree with

the impact of repeating alerts.

CHAPTER 5. ALERTING AND LOGGING 109

[A6] Cascading Alerts. Modern cloud systems are composed of

many microservices that depend on each other [149]. When a

service enters an anomalous state, other services that rely on it

will probably suffer from anomalous states as well. Such anoma-

lous states can propagate through the service-calling structure [38].

Despite various fault tolerance mechanisms being introduced,

minor anomalies are still common to magnify their impact and

eventually affect the entire system. Each of the affected services

will generate many anomalous monitoring metrics, resulting in

many alerts (e.g., thousands of alerts per hour). As a conse-

quence, the alerts burst and flood to the OCEs. Although the

alerts are different, they are implicitly related because they orig-

inate from the cascading effect of one single failure. Manually

inspecting the alerts is hard without sufficient knowledge of the

dependencies in the cloud system. All interviewed OCEs agree

with the impact of cascading alerts. Table 2.3 shows a simplified

sample of cascading alerts. By manually inspecting the alerts,

experienced OCEs would infer that the alert 1 possibly cause

alert 2 because 1) Alert 2&3 occurred right after alert 1 and 2)

The relational database service relies on the block storage ser-

vice as the backend. If the relational database service failed to

commit changes, i.e., write data, one possible reason is that the

storage service failed.

Finding 1: Individual anti-patterns and collective anti-

patterns widely exist. They hinder alert diagnosis to dif-

ferent extent.

CHAPTER 5. ALERTING AND LOGGING 110

SOP for alert nginx_cpu_usage_over_80

Description CPU usage of nginx instance is higher than 80%

Generation Rule Continuously check the CPU usage of nginx instance,
generate the alert when usage is higher than 80%.

Potential Impact Affects the forwarding of all requests.

Possible Causes a) The workload is too high. b)

Steps to Diagnose Step 1: execute command top -bn1 in the instance.
Step 2:

Figure 5.3: An example Standard Operation Procedure.

5.2.2 RQ2: Standard Alert Processing Procedure

The Standard Operation Procedure (SOP) defines the procedure

to process a single alert. For each alert, its SOP includes the

alert name, the alert description, the generation rule of the alert

(i.e., alert strategy), the potential impact on the cloud system,

the possible causes, and the steps to process the alert. Figure 5.3

shows an example SOP of the alert nginx cpu usage over 80.

The OCEs can follow the SOP to process the alert upon receiv-

ing the alert.

Figure 5.4: Answers to Q1 “Overall Helpfulness” regarding OCEs’ working
experience.

According to our survey, only 22.2% of OCEs think current

SOPs are helpful (Q1, Figure 5.1(c)), and the other 77.8% of

CHAPTER 5. ALERTING AND LOGGING 111

OCEs say the help is limited. The SOPs are deemed to show

limited help by all OCEs with over 3 years’ experience, taking up

71.4% of all OCEs selected ”Limited Help” for Q1 (Figure 5.4).

Moreover, SOPs are considered much less helpful for diagnos-

ing collective anti-patterns (Q3, Figure 5.1(c)) than individual

anti-patterns (Q2, Figure 5.1(c)).

Finding 2: SOPs can help OCEs quickly process alerts,

but the help is limited. SOPs are considered less helpful

when dealing with collective anti-patterns.

5.2.3 RQ3: Reactions to Anti-patterns

Depending on the number of alerts, OCEs react differently.

When the number of alerts is relatively small, OCEs will scan

through all the reported alerts. Then they will manually rule

out alerts that are not of great importance and deal with critical

alerts that will affect the whole system.

OCEs react differently when the number of alerts becomes too

large. According to our interview with senior OCEs in Huawei

Cloud, they typically take four kinds of reactions, i.e., alert

blocking, alert aggregation, alert correlation analysis, and emerg-

ing alert detection. In practice, I observe that although the re-

actions are considered effective, they need to be reconfigured

after the update of cloud services or alert strategies.

[R1] Alert Blocking. When OCEs find that transient alerts, tog-

gling alerts, and repeating alerts provide no information about

service anomaly, they can treat these alerts as noise and block

them with alert blocking rules. As a result, these non-informative

alerts will not distract OCEs from quickly identifying the root

CHAPTER 5. ALERTING AND LOGGING 112

causes of service anomalies.

[R2] Alert Aggregation. When dealing with large amounts of

alerts, there may be many duplicate alerts in a time period. For

the non-informative alerts, OCEs will employ alert blocking in-

troduced before to facilitate analysis. For the informative ones,

they will adopt alert aggregation. To be more specific, OCEs

will set rules to aggregate alerts in a period and use the number

of alerts as another feature [32]. By doing so, OCEs can quickly

identify critical alerts and focus more on the information pro-

vided by them.

[R3] Alert Correlation Analysis. Apart from the information

provided by the alerts and their statistical characteristics, OCEs

will also leverage other exogenous information to analyze the

correlation of alerts. Two kinds of exogenous information are

used to correlate alerts. The first is the dependencies of alert

strategies, which indicate the spread of alerts in the cloud ser-

vices [102]. For instance, if a source alert triggers another alert,

OCEs will be more interested in the source alert, potentially the

root cause of future service failures. They will associate all the

derived alerts with their source alerts and diagnose the source

alerts only. Another exogenous information is the topology of

cloud services. Based on the topology of services, OCEs will

set rules to correlate alerts based on the services that generated

them. With this kind of correlation, OCEs can quickly pinpoint

the root cause of a large number of alerts by following the topo-

logical correlation.

[R4] Emerging Alert Detection. Due to the large scale of cloud

services, manually configured dependencies of alert strategies

could not cover all the alert strategies. This may lead to the

failure of alert correlation analysis. For example, a few alerts

CHAPTER 5. ALERTING AND LOGGING 113

corresponding to a root cause (i.e., emerging alerts) appear first.

If they are not dealt with seriously, when the root cause esca-

lates its influence, numerous cascading alerts will be generated.

The lack of critical association rules will prevent the OCEs from

discovering the correlation and quickly alert diagnosis. This

usually happens on gray failures like memory leak and CPU

overloading. Hence, it would be helpful to capture the implicit

dependencies. I employ the adaptive online Latent Dirichlet Al-

location [52, 148] to capture the implicit dependencies. OCEs

could detect these emerging alerts as early as possible for faster

alert diagnosis with the implicit dependencies.

Figure 5.1(d) shows OCEs’ opinions about the effectiveness of

the four reactions. In general, the effectiveness of all four reac-

tions is relatively high.

Finding 3: Current reactions are considered effective, but

the configurations of such reactions still require domain

knowledge.

5.2.4 RQ4: Avoidance of Anti-patterns

To avoid the alert anti-patterns from occurring, Huawei Cloud

also adopts preventative guidelines and conducts periodical re-

views on alert strategies. I summarize the generic aspects to

consider when designing the guidelines. The guidelines are de-

signed by experienced OCEs and guide from three aspects of

alerts.

• Target means what to monitor. The performance metrics

highly related to the service quality should be monitored.

• Timing means when to generate an alert upon the manifes-

CHAPTER 5. ALERTING AND LOGGING 114

tation of anomalies. Sometimes an anomaly does not neces-

sarily mean the service quality will be affected.

• Presentation means whether the alerts’ attributes are helpful

for alert diagnosis.

However, our interview with OCEs shows that the preventative

guidelines are not strictly obeyed in practice. Most (88.9%)

OCEs agree that strictly following the guidelines will make alert

diagnosis easier.

Finding 4: The preventative guidelines could reduce the

anti-patterns and assist in alert diagnosis if they are care-

fully designed and strictly obeyed.

5.3 The Practice of Logging

Logging is the task of constructing logging statements with proper

description and necessary program variables, and inserting the

logging statements to the right positions in the source code.

Logging has attracted attention from both academia [107, 123,

128,146] and industry [14,26,47,123,154,158] across a variety of

application domains because logging is a fundamental step for

all the subsequent log mining tasks.

However, the practice of logging is scarcely documented or reg-

ulated by strict standard, such as the logging mechanism and

APIs [14]. Essentially, logging is a subjective task that relies

heavily on human expertise [47,62,118,123,132].

In this section, I first define the basic mechanism of logging,

then review the challenges and existing solutions. Specifically, I

study the following research questions (RQs).

CHAPTER 5. ALERTING AND LOGGING 115

• RQ5: What are the general mechanism to generate logs?

• RQ6: What are the challenges for logging?

• RQ7: What are the current approaches to solve the chal-

lenges for logging?

To answer these research questions, I searched several popular

online digital libraries (e.g., IEEE Xplore, ACM Digital Library,

Springer Online, Elsevier Online, Wiley Online, and ScienceDi-

rect) with the following keywords: “log”, “logging”. The “log”

term is broadly quoted in various domains, such as the query

log in database, web search log in recommendation, and the log-

arithm function in mathematics. Hence, to precisely collect the

set of papers of our interest, I mainly focused on regular pa-

pers published in top venues (i.e., conferences and journals) of

relevant domains, including ICSE, FSE, ASE, TSE, TOSEM,

EMSE, SOSP, OSDI, ATC, NSDI, TDSC, DSN, ASPLOS, and

TPDS. Then, I manually inspected each reference of these pa-

pers to collect additional publications that are related to the

survey topics. In this section, I focus on publications studying

the reliability issues with logging in software systems. In the

end, I get 33 papers in the last 23 years across a variety of top-

ics in logging practice, including where-to-log, what-to-log, and

how-to-log. The papers under exploration are mainly from top

venues in three related fields: software engineering (e.g., ICSE),

system (e.g., SOSP), and networking (e.g., NSDI).

5.3.1 RQ5: Logging Mechanism and Libraries

CHAPTER 5. ALERTING AND LOGGING 116

1 public void setTemperature(Integer temperature) {

2 // ...

3 logger.debug("Temperature set to {}. Old temperature was

↪→ {}.", t, oldT);

4 if (temperature.intValue() > 50) {

5 logger.info("Temperature has risen above 50 degrees.");

6 }

7 }

8

⇓
1 0 [setTemperature] DEBUG Wombat - Temperature set to 61. Old

↪→ temperature was 42.

2 0 [setTemperature] INFO Wombat - Temperature has risen above 50

↪→ degrees.

3

Figure 5.5: An example of logging statements by SLF4J and the generated
logs.

Logging Mechanism

Logging mechanism is the set of logging statements and their

activation code implemented by developers or a given software

platform [123]. Figure 5.5 shows two example logging state-

ments and the collected logs during the execution of the pro-

gram. The logging statement at line 3 is executed every time

the setTemperature method is called, with no specific activation

code. The logging statement at line 5 is controlled by the acti-

vation code if (temperature.intValue() > 50) at line 4. According

to the data collected by [123], the most widely-adopted cod-

ing pattern that is used to activate the logging statements is if

(condition) then log error().

Logging Libraries

To improve flexibility, industrial developers often utilizes logging

libraries [28,123], which are software components that facilitate

CHAPTER 5. ALERTING AND LOGGING 117

logging and provide advanced features (e.g., thread-safety, log

archive configuration, and API separation). Toward this end,

a lot of open-source logging libraries have been developed (e.g.,

Log4j [95], SLF4J [137], AspectJ [10], spdlog [138]). Log4j and

SLF4J are popular logging libraries for Java. SLF4J serves as

a simple and flexible abstraction for various logging frameworks

(e.g. Log4j, a fully-fledged logging library from Apache Software

Foundation). AspectJ is an aspect-oriented extension of Java.

spdlog is a very fast cross-platform logging library written in

C++11. It has an asynchronous mode, multi-threaded logging,

rich formatting, and a lot more features.

5.3.2 RQ6: Challenges for Logging

Logging in a software system is usually decided by an empirical

process in the development phase [123]. In general, logging prac-

tice, i.e., how developers conduct the task of logging, is scarcely

documented or regulated by strict standard, such as the logging

mechanism and APIs [14]. Thus, logging relies heavily on hu-

man expertise [47,62,118,123,132]. In the following, I summarize

three main challenges for automated logging, which also align

with the taxonomy mentioned by Chen and Jiang [25]: where-

to-log, what-to-log, and how-to-log. Under this categorization,

every problem exhibits aspects that represent the primary con-

cerns of the actual practice of logging. Accordingly, I summarize

three major aspects, i.e., diagnosability, maintenance, and per-

formance.

CHAPTER 5. ALERTING AND LOGGING 118

where-to-log

Where-to-log is about determining the appropriate location of

logging statements. Although logging statements provide rich

information and can be inserted almost everywhere, excessive

logging results in performance degradation [25] and incurs ad-

ditional maintenance overhead. In addition, it is challenging

to diagnose problems by analyzing a large volume of logs as

most logs are unrelated to the problematic scenarios [71]. On

the other hand, insufficient logging will also impede the logs’

diagnosability. For example, an incomplete sequence of logs

may hinder the reproduction of precise execution paths [169].

Therefore, developers need to be circumspect in their choices of

where-to-log.

what-to-log

What-to-log is about providing sufficient and concise informa-

tion within the three major components of a logging statement,

i.e., verbosity level, static text, and dynamic content. Mis-

configured verbosity level has similar consequences with inap-

propriate logging points. As developers typically filter logs ac-

cording to the verbosity levels, under-valued verbosity levels

may result in missing or ignored log messages while over-valued

verbosity levels lead to overwhelming log messages [71]. When

composing a snippet of logging code, the static text should be

concise and the dynamic content should be coherent and up-

to-date. Poorly written static text and inconsistent dynamic

content could affect the subsequent diagnosis and maintenance

activities [73,93,104,161].

CHAPTER 5. ALERTING AND LOGGING 119

how-to-log

How-to-log is the ”design pattern” and maintenance of logging

statements systematically. Most software testing techniques fo-

cus on verifying the quality of feature code, but a few papers [25,

26,61,133,154] pay attention to the quality and anti-patterns in

the logging code. Although the Aspect-Oriented Programming

(AOP) paradigm [76] provides a systematic approach to modu-

larize the logging statements, most industrial and open source

systems choose to scatter logging statements across the entire

code base, intermixing with feature code [25], which also hardens

the maintenance of logging code.

5.3.3 RQ7: Logging Approaches

Numerous solutions have been proposed to address the chal-

lenges mentioned in Section § 5.3.2. Table 5.2 summarizes ex-

isting studies along with corresponding problems and aspects.

Each row represents a challenge. The approaches fall into three

categories: static code analysis, machine learning, and empirical

study. A bunch of early work utilized static code analysis to an-

alyze logging in a program without executing the source code.

Machine learning-based approaches focus on learning from data.

By concentrating on the inherent statistical properties of exist-

ing logging statements, learning-based approaches automatically

give suggestions on improving the logging statements. In the re-

mainder of this section, I discuss solutions by their aspects.

Diagnosability

Logs are valuable for investigating and diagnosing failures. How-

ever, a logging statement is only as helpful as the information it

CHAPTER 5. ALERTING AND LOGGING 120

Table 5.2: Summary of logging approaches.

Problems Aspects Objectives

where-to-log

Diagnosability Suggest appropriate placement of logging
statements into source code [35, 36, 88, 150,
153, 168, 169, 175] ; Study logging practices
in industry [47,84].

Performance Minimize or reduce performance over-
head [41,153].

what-to-log

Diagnosability Enhance existing logging code to aid debug-
ging [155]; Suggest proper variables and text
description in log [62,85,93].

Maintenance Determine whether a logging statement is
likely to change in the future [74]; Charac-
terize and detect duplicate logging code [89].

Performance Study the performance overhead and energy
impact of logging in mobile app [34,158]; Au-
tomatically change the log level of a system
in case of anomaly [109].

how-to-log

Diagnosability Characterize the anti-patterns in the logging
code [134]; Optimize the implementation of
logging mechanism to facilitate failure diag-
nosis [98].

Maintenance Characterize and detect the anti-patterns
in the logging code [25, 26, 61, 86, 87, 154];
Characterize and prioritize the maintenance
of logging statements [73]; Study the rela-
tionship between logging characteristics and
the code quality [27, 133]; Propose new ab-
straction or programming paradigm of log-
ging [76,94].

Performance Optimize the compilation and execution of
logging code [147].

Security Mitigate the flood attack of access logs [80];
Detect and prevent tampering in system logs
for system auditing [122].

CHAPTER 5. ALERTING AND LOGGING 121

provides. The research on this aspect aims at (1) understanding

the helpfulness of logs for failure diagnosis and (2) making logs

informative for diagnosis.

(1) Understanding the helpfulness of logs for failure diagnosis.

This is of great importance because logs are widely adopted for

failure diagnosis. According to a survey [47] involving 54 ex-

perienced developers in Microsoft, almost all the participants

agreed that “logging statements are important in system de-

velopment and maintenance” and “logs are a primary source

for problem diagnosis”. Fu et al. [47] also studied the types

of logging statements in industrial software systems by source

code analysis, and summarized five types of logging snippets,

i.e., assertion-check logging, return-value-check logging, excep-

tion logging, logic-branch logging, and observing-point logging.

Besides, Fu et al. [47] further demonstrated the potential feasi-

bility of predicting where to log. Shang et al. [134] conducted the

first empirical study to provide a taxonomy for user inquiries of

logs. By manually going through emails in the mailing list and

StackOverflow questions for Hadoop, Cassandra and Zookeeper,

they identified five types of information that were often sought

from log lines by practitioners, i.e., meaning, cause, context,

impact, and solution. Shang et al. [134] were also the first to

associate the development knowledge at present in various de-

velopment repositories (e.g., code commits and issues reports)

with the log lines and to assist practitioners in resolving real-life

log inquiries. In addition, Li et al. [84] highlighted the feasibil-

ity of guiding developers’ logging practice with topic models by

investigating six open source systems.

(2) Making logs informative for failure diagnosis. As printed

logs are often the only run-time information source for debug-

CHAPTER 5. ALERTING AND LOGGING 122

ging and analysis, the quality of log data is critically important.

LogEnhancer [155] made the first attempt to systematically and

automatically augment existing logging statements in order to

reduce the number of possible code paths and execution states

for developers to pinpoint the root cause of a failure. Zhao et

al. [168,169] followed the idea of LogEnhancer and proposed an

algorithm capable of completely disambiguating the call path

of HDFS requests. Yuan et al. [153] found that the majority

of unreported failures were manifested via a generic set of error

patterns (e.g., system call return errors) and proposed the tool

Errlog to proactively add pattern-specific logging statements by

static code analysis.

As modern software becomes more complex, where-to-log has

become an important but difficult decision, largely limited to

the developer’s domain knowledge. Around 60% of failures due

to software faults do not leave any trace in logs, and 70% of

the logging pattern aims to detect errors via a checking code

placed at the end of a block of instructions [35, 36]. Cinque et

al. [36] concluded that the traditional logging mechanism has

limited capacity due to the lack of a systematic error model.

They further formalized the placement of the logging instruc-

tion and proposed to use system design artifacts to manually

define rule-based logging which utilizes error models about what

cause errors to fail. Zhu et al. [175] made an important first

step towards the goal of “learning to log”. They proposed a log-

ging recommendation tool, LogAdvisor, that learns the common

logging rules on where-to-log from existing code via training

a classifier and further leverages it for informative and viable

recommendations to developers. Yao et al. [150] leveraged a

statistical performance model to suggest the need for updating

CHAPTER 5. ALERTING AND LOGGING 123

logging locations for performance monitoring. Li et al. [88] pro-

posed a deep learning framework to suggest where-to-log at the

block level. Li et al. also concluded that there might be similar

rules regarding the implementation of logging mechanism across

different systems and development teams, which agreed with the

industrial survey by Pecchia et al. [123].

The lack of strict logging guidance and domain-specific knowl-

edge makes it difficult for developers to decide what-to-log. To

address this need, Li et al. [85] employed ordinal regression

model to suggest proper verbosity level based in software met-

rics. He et al. [62] conducted the first empirical study on the

usage of natural language in logging statements. They showed

the global (i.e., in a project) and local (i.e., in a file) repeata-

bility of text descriptions. Furthermore, they demonstrated the

potential of automated description text generation for logging

statements. Liu et al. [93] proposed a deep learning-based ap-

proach to recommend variables in logging statements by learn-

ing embeddings of program tokens. In order to troubleshoot

transiently-recurring problems in cloud-based production sys-

tems, Luo et al. [98] put forward a new logging mechanism that

assigns a blame rank to methods based on their likelihood of be-

ing relevant to the root cause of the problem. With the blame

rank, logs generated by a method over a period of time are pro-

portional to how often it is blamed for various misbehavior, thus

facilitating diagnosis.

Maintenance

The maintenance of logging code has also attracted researchers’

interest. The research on this aspect aims at (1) characterizing

the maintenance and detecting anti-patterns of logging state-

CHAPTER 5. ALERTING AND LOGGING 124

ments and (2) proposing new abstractions of logging.

(1) Characterizing the maintenance and detecting anti-patterns

of logging statements. Anti-patterns in logging statements are

bad coding patterns that undermine the quality and effective-

ness of logging statements and increases the maintenance effort

of projects. Many papers [26, 27, 61, 133] performed empirical

studies to reveal the link between logs and defects. These pa-

pers observed a positive correlation between logging character-

istics and post-release defects. Therefore, practitioners should

allocate more effort to source code files with more logging state-

ments.

Yuan et al. [154] made the first attempt to conduct a quantita-

tive characteristic study of how developers log within four pieces

of large open-source software. They described common anti-

patterns and provided insights into where developers spend most

of their efforts in modifying the log messages and how to improve

logging practice. They further implemented a prototype checker

to verify the feasibility of detecting unknown problematic state-

ments using historical commit data. Chen and Jiang [25] and

Hassani et al. [61] both studied the problem of how-to-log by

characterizing and detecting the anti-patterns in the logging

code. The analysis [25] of well-maintained open-source systems

revealed six anti-patterns that are endorsed by developers. Chen

and Jiang [25] then encoded these anti-patterns into a static code

analysis tool to automatically detect anti-patterns in the source

code. Li et al. [89] developed an automated static analysis tool,

DLFinder, to detect duplicate logging statements that have the

same static text description.

Just like feature code, logging code updates with time [74].

Moreover, logging statements are often changed without con-

CHAPTER 5. ALERTING AND LOGGING 125

sideration for other stakeholders, resulting in sudden failures

of log analysis tools and increased maintenance costs for such

tools. Pecchia et al. [123] reviewed the industrial practice in the

reengineering of logging code. Kabinna et al. [73] empirically

studied the migration of logging libraries and the main reasons

for the migration. Li et al. [86] derived and used a set of mea-

sures to predict whether a code commit requires log changes.

Kabinna et al. [74] later examined the important metrics for de-

termining the stability of logging statements and further lever-

aged learning-based models (random forest classifier and Cox

proportional hazards) to determine whether a logging statement

is likely to remain unchanged in the future. Their findings were

helpful to build robust log analysis tools by ensuring that these

tools relied on logs generated by more stable logging statements.

Li et al. [87] designed a tool to learn log revision rules from log-

ging context and modifications and recommend candidate log

revisions.

(2) Proposing new abstractions of logging. Maintaining logging

code along with feature code has proven to be error-prone [26,

61,133]. Hence, additional logging approaches [76,94] have been

proposed to resolve this issue. Kiczales et al. [76] proposed a new

programming paradigm that improves the modularity of the log-

ging code. To tackle the ordering problem of logs in distributed

systems, Lockerman et al. [94] introduced FuzzyLog that fea-

tured strong consistency, durability, and failure atomicity.

Performance

The intermixing nature of the logging code and feature code usu-

ally incurs performance overhead, storage cost, and development

and maintenance efforts [34,41,109,155,158]. Tools like LogEn-

CHAPTER 5. ALERTING AND LOGGING 126

hancer [155], Errlog [153], Log2 [41], and INFO-logging [168] all

took performance into consideration while dealing with diagnos-

ability and maintenance issues. Mizouchi et al. [109] proposed

a dynamical adjusting verbosity level to record irregular events

while reducing performance overhead. Yang et al. [147] proposed

NanoLog, a nanosecond scale logging system that achieved rela-

tively low latency and high throughput by moving the workload

of logging from the runtime hot path to the post-compilation

and execution phases of the application. Chowdhury et al. [34]

were the first to explore the energy impact of logging in mobile

apps. Zeng et al. [158] conducted a case study that characterized

the performance impact of logging on Android apps.

Security

Another common and significant research topic about logs is

security. This topic focuses on making logging statements in-

vulnerable and mitigating attacks by the logging mechanism.

For instance, Lam et al. [80] proposed Carousel to mitigate the

flood attack of hundreds of millions of duplicate log records. Re-

cently, Paccagnella et al. [122] introduced a practical framework,

CUSTOS, for the detection of tampering in system logs. System

security is a central concern, but it is beyond the scope of this

thesis, so I will not go into this topic too much.

5.4 Discussion

5.4.1 Detecting Anti-patterns of Alerts

Although several postmortem reactions and preventative guide-

lines are adopted (Section § 5.2), according to our study, the

CHAPTER 5. ALERTING AND LOGGING 127

problem of alert anti-patterns is still prevailing in industrial

cloud monitoring systems because most current measures still

require manual configuration. As for the alert blocking, OCEs

need to inspect each alert and set rules manually. How to define

the blocking rules and when to invalidate these rules become

a crucial problem. A similar problem also exists in alert cor-

relation. As for alert correlation analysis, OCEs also need to

inspect alert generating rules and service topology documents

apart from reading alerts, which incurs a considerable burden

to OCEs. Moreover, the effectiveness of the reactions also lacks

clear criteria to evaluate. OCEs can only estimate the effec-

tiveness of the reactive measures by their feeling. Therefore,

outdated reactive measures is hard to detect. As a result, the

whole process of alert governance becomes time-consuming and

laborious.

Automatic Detection
Reaction

Section III.C
Avoidance
Section III.D

Figure 5.6: Incorporating human knowledge and machine learning to detect
anti-patterns of alerts.

In Figure 5.6, I formulate the three stages of the mitigation of

alert anti-patterns. I already shared our experience of avoiding

and reacting to alert anti-patterns in Section § 5.2. To close

the gap between manual alert strategies and cloud system up-

grades, I propose to explore the automatic detection of alert

anti-patterns. Automatic evaluation of the Quality of Alerts

(QoA) will be a promising approach to the automatic detection

of alert anti-patterns.

CHAPTER 5. ALERTING AND LOGGING 128

Based on our empirical study, I propose three criteria to measure

the quality of alerts (QoA), including indicativeness, precision,

and handleability.

• Indicativeness measures whether the alert can indicate the

failures that will affect the end users’ experience.

• Precision measures whether the alert can correctly reflect the

severity of the anomaly.

• Handleability measures whether the alert can be quickly han-

dled. The handleability depends on the target and the pre-

sentation of the alert. Improper target or unclear presenta-

tion decreases the handleability.

In the future, incorporating human knowledge and machine learn-

ing to evaluate the three aspects of alerts deserves more explo-

ration. In particular, OCEs provide their domain knowledge

by creating labels like “high/low precision/handleability/indica-

tiveness” for each alerts during alert processing. With the labels,

a machine learning model could be trained and continuously up-

dated so that it can automatically absorb the human knowledge

for future QoA evaluation.

5.4.2 Best Practices for Logging

I discuss the current industrial best practices based on our ex-

perience and surveyed papers and articles.

Practice 1: Always follow the logging standards It is crucial to

follow the standards of logging during development, otherwise

the produced logs would be hard to maintain, search and ana-

lyze. For example, the following logging standards are shared

CHAPTER 5. ALERTING AND LOGGING 129

by various systems: (1) Timestamp: timestamp helps developers

understand the sequential relationship among log events. Using

correct timestamps (UTC/timezone adjusted) is necessary for

debugging and analytic purposes. (2) Verbosity levels: proper

verbosity levels ease log parsing and searching. In addition, ag-

gregating logs by verbosity level is beneficial. (3) Format: log

format is highly correlated with the parse and search procedures

while most people might ignore. It is recommended to structure

logs following an agreed standard (e.g., in JSON format) within

the same project group. (4) Log message: meaningful log mes-

sages facilitates the identification of the correct root cause for

a failure. To construct meaning log messages, it is suggested

to avoid duplicate logging descriptions (e.g., by assignment a

unique ID to each logging statement).

Practice 2: Keep proper quantity of log messages Controlling

the number of logging statements in the source code is very

tricky. If logging too little, engineers may not have adequate

information for problem diagnosis. On the contrary, if logging

too much, engineers can easily get overwhelmed by the huge

volume of logs and problem diagnosis is like looking for needles in

haystacks. Moreover, too many logging statements could lead to

unnecessary performance overhead [41,153]. Hence, it is crucial

to keep proper quantity of log messages.

5.5 Related Work

Many approaches are proposed to manage the alerts and inci-

dents of cloud services. In this section, I introduce related work

on improving service reliability using alerts and incidents on

CHAPTER 5. ALERTING AND LOGGING 130

cloud platforms.

Alert Management

As for incident management, many works focus on incident man-

agement. Incident triage is to assign incidents to the teams that

are responsible for repairing the services that cause this inci-

dent. For incident assignment, existing approaches mine his-

torical outage triage records with Named-Entity Recognition

(NER) [135] and service correlation [145]. Shetty et al. [135]

employ Named-Entity Recognition (NER) to extract knowledge

from incident tickets and conduct incident triage with the ex-

tracted knowledge. Wang et al. [145] focuses on outages and

propose to assign outages to teams that are responsible for the

failed services using service correlation mined from historical

outage triage records. Chen et al. [29] empirically study the

possibility of applying multiple bug triage methods to deal with

incidents. To understand the challenges of employing AIOps

to automatically conduct IT Operations on the cloud, Chen et

al. [31] conducted a thorough empirical study over two years

of incident management practices at Microsoft. They find that

the incomplete service/resource dependencies and imprecise re-

source health assessment are two critical challenges of AIOps.

Zeng et al. [172] resolves incidents by the text information in

the incident tickets. Specifically, they adopt machine learning

to provide a matching score for each ticket and historical resolu-

tion pair, which can be viewed as recommendation of resolution.

Finally, Zhao et al. [166] apply multi-instance learning to pre-

dict potential future incidents. Machine-learning interpretation

methods are adopted to provide an interpretable report to facil-

itate incident triaging.

CHAPTER 5. ALERTING AND LOGGING 131

Cloud Monitoring

Mormul et al. [111] proposes DEAR to automatically distribute

alerting rules to the monitored resources to reduce the network

traffic while preserving alert precision. Li et al. [90] proposes

Gandalf, an end-to-end analytics service for safe deployment in a

large-scale system infrastructure. It uses a spatial and temporal

correlation algorithm to correlate fault signals with ongoing roll-

outs to find rollouts that may cause widespread outages. Levy

et al. [82] find that reactively dealing with failures in the cloud is

inadequate for providing reliable services. They propose Narya,

a preventive and adaptive failure mitigation service which pre-

dicts imminent host failures and decide proper actions. Gu et

al. [56] proposes MID to detect incidents from large-amount,

multi-dimensional issue reports.

2 End of chapter.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Recent years have witnessed the wide adoption of microservice

architecture in online services. The reliability of online services

is crucial to both customers and service providers. However, the

increasing complexity and scale in microservice systems make

the system reliability harder to ensure, which poses great chal-

lenges for microservice reliability engineering. In this thesis, I

study the intelligent operations based on the traces, metrics,

logs, and alerts in microservice systems, which is crucial to im-

prove the reliability of cloud microservices. Specifically, I ex-

plore three types of measures for reliability engineering, i.e.,

proactive measures, reactive measures, and retrospective mea-

sures. I propose a metric-based self-adaptive resilience testing

framework as the proactive measure and a trace-based approach

for predicting the aggregated intensity of microservice depen-

dency. Furthermore, I study the anti-patterns and best prac-

tices for generating logs and alerts for assisting the reliability

engineers. The contributions are summarized as follows:

In Chapter 3, I first conduct a comprehensive empirical study on

132

CHAPTER 6. CONCLUSION AND FUTURE WORK 133

the maintenance of AWS and Huawei Cloud. I identify the inef-

ficiency in failure diagnosis and recovery with the binary-valued

dependencies and define the intensity of dependency for the first

time. To facilitate cloud maintenance, I propose AID, the first

approach to predict the intensity of dependencies between cloud

microservices. AID first generates a set of candidate depen-

dency pairs from the spans. AID then represents the status of

each cloud service with a multivariate time series aggregated

from the spans and calculates the similarities between the sta-

tuses of the caller and callee of each candidate pair. Finally,

AID aggregate the similarities to produce a unified value as the

intensity of the dependency. For the evaluation, I collect and

manually label a new dataset from an open-source microservice

benchmark and evaluate AID on it. Furthermore, I evaluate

AID using the data of Huawei Cloud and showcase the practical

usage of AID. Both the evaluation results and case studies show

the efficiency and effectiveness of AID. In the future, I plan to

incorporate more information from the traces and other service

logs for more accurate predictions.

In Chapter 4, based on our empirical study on the failures’ man-

ifestations in resilient and unresilient microservice systems, I

propose AVERT for the self-adaptive resilience evaluation of

microservice systems to mitigate the scalability and adaptiv-

ity issue of current human-dependent resilience testing proce-

dure. I achieve this by measuring the propagation of degrada-

tion from system performance metrics to business metrics. The

higher the degradation propagation, the lower the resilience of

the microservice system. The experimental results on two open-

source benchmark microservice systems show that AVERT can

efficiently and accurately test the resilience of microservice sys-

CHAPTER 6. CONCLUSION AND FUTURE WORK 134

tems. AVERT achieves the best performance of 0.1159 in terms

of cross entropy, outperforming all baseline methods.

In Chapter 5, I conduct an empirical study on alerting and log-

ging for improving the reliability of cloud systems. For alerting,

I study the alert strategies and the alert processing procedure

at Huawei Cloud, a leading cloud provider. I conduct the first

empirical study to characterize the anti-patterns in cloud alerts.

I also summarize the industrial practices of mitigating the anti-

patterns by postmortem reactions and preventative guidelines.

For logging, I mainly cover four major aspects, i.e., diagnos-

ability, maintenance, performance, security. Additionally, I in-

troduce the available open-source toolkits. Based on the inves-

tigation of recent advances, I propose new insights and discuss

several future directions. Our study aims at inspiring further re-

search on automatic QoA evaluation and analysis-oriented log-

ging, and benefit the reliability of the cloud services in the long

run.

6.2 Future Directions

In this section, I would like to discuss promising future direc-

tions. Although a number of novel techniques for microservice

reliability have been proposed, in the near future, I expect more

interesting and inspiring research studies in the microservice re-

liability field. Aside from the microservice architecture, I also

share our thoughts on serverless computing, which is the next-

generation of cloud computing [72]. In the following, I introduce

the following future directions:

CHAPTER 6. CONCLUSION AND FUTURE WORK 135

6.2.1 Trace Compression based on Service Topology

Traces record the status of each microservice invocation, includ-

ing the return value, the duration of execution, etc. Owing

to the complex service invocations, the number of traces grows

exponentially with the number of microservices. Since large-

scale microservice systems run on a 24 × 7 basis, the size of

the generated traces is huge. For example, the open-source mi-

croservice benchmark, Social-Network, generates 40 gigabytes

of traces per hour when I continuously simulate users’ browsing

behavior. Long term archiving of such a huge amount of data

will bring unimaginable heavy burden to storage space, power

and transmission network bandwidth. Although a series of stud-

ies have focused on log compression, the compression of traces

problem have not attracted much attention yet. As traces are

closely related with the topology of services, it is promising to

explore trace compression based on service topology, which aims

to eliminate the redundancy in traces and reduce their storage

consumption.

6.2.2 Analysis-Oriented Logging

As the foundation of automated log analysis, current logging

practices mostly focus on characterization and recommendation

of logging statements (i.e., where, what, and how to log). Mean-

while, a recent industrial study [14] pointed out that the incon-

sistent presentation format with-in and among teams poses a

significant challenge in developing automated log analysis tools.

In addition, even an effective log mining algorithm could gener-

ate meaningless results if the software runtime information is not

well-documented in the collected logs. Thus, a crucial direction

CHAPTER 6. CONCLUSION AND FUTURE WORK 136

is designing advanced logging mechanisms that can coordinate

with the subsequent log analysis steps during the development.

6.2.3 Automated Generation of Logging Statements

The automated generation of logging statements can alleviate

developers’ burden. Recent research at the intersection of ma-

chine learning, programming languages, and software engineer-

ing has taken an important step toward proposing learnable

code-generating models that utilize rich patterns in source code [5].

Automatically generating logging statements is approachable by

incorporating code-generating models with existing approaches

that suggest where, what, and how to log.

2 End of chapter.

Chapter 7

Publications during Ph.D.

Study

(i) Tianyi Yang, Jiacheng Shen, Yuxin Su, Xiaoxue Ren, Xiao

Ling, Yongqiang Yang, and Michael R. Lyu. Characterizing

and Mitigating Anti-patterns of Alerts in Industrial Cloud

Systems. In Proceedings of the 52nd Annual IEEE/IFIP In-

ternational Conference on Dependable Systems and Networks

(DSN’22) June 27-30, 2022, Baltimore, Maryland, USA. IEEE,

2022, pp. 393-401.

(ii) Tianyi Yang, Baitong Li, Jiacheng Shen, Yuxin Su, Yongqiang

Yang, and Michael R. Lyu. Managing Service Dependency

for Cloud Reliability: The Industrial Practice. In Proceed-

ings of the 33rd IEEE International Symposium on Software

Reliability Engineering Workshops (ISSREW’22) October 31

- November 3, 2022, Charlotte, North Carolina, USA. IEEE,

2022. pp. 1-2.

(iii) Tianyi Yang, Jiacheng Shen, Yuxin Su, Xiao Ling, Yongqiang

Yang, and Michael R. Lyu. AID: Efficient Prediction of Ag-

gregated Intensity of Dependency in Large-scale Cloud Sys-

tems. In Proceedings of the 36th IEEE/ACM International

137

CHAPTER 7. PUBLICATIONS DURING PH.D. STUDY 138

Conference on Automated Software Engineering (ASE’21)

November 15-19, 2021, Australia. IEEE/ACM, 2021, pp.

653-665.

(iv) Tianyi Yang, Cuiyun Gao, Jingya Zang, David Lo, and

Michael R. Lyu. TOUR: Dynamic Topic and Sentiment Anal-

ysis of User Reviews for Assisting App Release. In Compan-

ion Proceedings of the Web Conference 2021 (WWW’21),

April 19–23, 2021, Ljubljana, Slovenia. ACM, 2021, pp.

708–712.

(v) Jiacheng Shen, Tianyi Yang, Yuxin Su, Yangfan Zhou, and

Michael R. Lyu. Defuse: A Dependency-Guided Function

Scheduler to Mitigate Cold Starts on FaaS Platforms. In

Proceedings of the 41st IEEE International Conference on

Distributed Computing Systems (ICDCS’21) July 7-10, 2021,

Washington DC, USA. IEEE, 2021, pp. 194-204.

(vi) Shilin He, Pinjia He, Zhuangbin Chen, Tianyi Yang, Yuxin

Su, and Michael R. Lyu. A Survey on Automated Log Anal-

ysis for Reliability Engineering. ACM Computing Survey

(CSUR), April, 2021. ACM, New York, NY, USA. ACM,

2021, pp. 1-37.

(vii) (In submission) Tianyi Yang, Baitong Li, Jiacheng Shen,

Yuxin Su, Yongqiang Yang, Michael R. Lyu. AVERT: A

Self-adaptive Resilience Testing Framework for Microservice

Systems.

(viii) (In submission) Baitong Li, Tianyi Yang, Zhuangbin Chen,

Yuxin Su, Shijian Chen, Michael R. Lyu. Eadro: Integrating

Anomaly Detection and Root Cause Localization on Multi-

source Monitoring Data for Microservices.

CHAPTER 7. PUBLICATIONS DURING PH.D. STUDY 139

(ix) (In submission) Baitong Li, Tianyi Yang, Zhuangbin Chen,

Yuxin Su, Yongqiang Yang, Michael R. Lyu. HADES: Het-

erogeneous Anomaly Detection for Software Systems via At-

tentive Multi-modal Learning.

(x) (In submission) Jiacheng Shen, Pengfei Zuo, Xuchuan Luo,

Tianyi Yang, Yuxin Su, Yangfan Zhou, Michael R. Lyu.

ScaleStore: Scalable and Fault-Tolerant Key-Value Store on

Disaggregated Memory.

2 End of chapter.

Bibliography

[1] G. Aceto, A. Botta, W. De Donato, and A. Pescapè. Cloud

monitoring: A survey. Computer Networks, 57(9):2093–

2115, 2013.

[2] A. A. Ahmad and P. Andras. Scalability resilience frame-

work using application-level fault injection for cloud-based

software services. J. Cloud Comput., 11:1, 2022.

[3] A. B. M. B. Alam, A. Haque, and M. Zulkernine. CREM:

A cloud reliability evaluation model. In IEEE Global Com-

munications Conference, GLOBECOM 2018, Abu Dhabi,

United Arab Emirates, December 9-13, 2018, pages 1–6.

IEEE, 2018.

[4] Alibaba. Chaosblade: An easy to use and powerful chaos

engineering experiment toolkit, 2022.

[5] M. Allamanis, E. T. Barr, P. T. Devanbu, and C. A. Sut-

ton. A survey of machine learning for big code and natu-

ralness. ACM Computing Survey, pages 81:1–81:37, 2018.

[6] P. Alvaro, J. Rosen, and J. M. Hellerstein. Lineage-

driven fault injection. In T. K. Sellis, S. B. Davidson, and

Z. G. Ives, editors, Proceedings of the 2015 ACM SIG-

MOD International Conference on Management of Data,

140

BIBLIOGRAPHY 141

Melbourne, Victoria, Australia, May 31 - June 4, 2015,

pages 331–346. ACM, 2015.

[7] Amazon. What are microservices?, 2022.

[8] P. Ammann and J. Offutt. Introduction to software testing.

Cambridge University Press, 2016.

[9] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H.

Katz, A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin,

I. Stoica, and M. Zaharia. Above the clouds: A berkeley

view of cloud computing. Technical Report UCB/EECS-

2009-28, EECS Department, University of California,

Berkeley, Feb 2009.

[10] AspectJ. Eclipse aspectj, 2020.

[11] A. Balalaie, A. Heydarnoori, and P. Jamshidi. Microser-

vices architecture enables devops: Migration to a cloud-

native architecture. IEEE Softw., 33(3):42–52, 2016.

[12] A. E. Bargagliotti and R. N. Greenwell. Combinatorics

and statistical issues related to the kruskal-wallis statistic.

Commun. Stat. Simul. Comput., 44(2):533–550, 2015.

[13] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan. Mag-

pie: Online modelling and performance-aware systems. In

9th Workshop on Hot Topics in Operating Systems (HotOS

IX). USENIX Association, May 2003.

[14] T. Barik, R. DeLine, S. Drucker, and D. Fisher. The

bones of the system: A case study of logging and teleme-

try at microsoft. In 2016 IEEE/ACM 38th International

Conference on Software Engineering Companion (ICSE-

C), pages 92–101. IEEE, 2016.

BIBLIOGRAPHY 142

[15] A. Basiri, N. Behnam, R. De Rooij, L. Hochstein,

L. Kosewski, J. Reynolds, and C. Rosenthal. Chaos en-

gineering. IEEE Software, 33(3):35–41, 2016.

[16] A. Basiri, N. Behnam, R. de Rooij, L. Hochstein,

L. Kosewski, J. Reynolds, and C. Rosenthal. Chaos en-

gineering. IEEE Softw., 33(3):35–41, 2016.

[17] G. E. A. P. A. Batista, E. J. Keogh, O. M. Tataw,

and V. M. A. de Souza. CID: an efficient complexity-

invariant distance for time series. Data Min. Knowl. Dis-

cov., 28(3):634–669, 2014.

[18] G. E. A. P. A. Batista, X. Wang, and E. J. Keogh. A

complexity-invariant distance measure for time series. In

Proceedings of the Eleventh SIAM International Confer-

ence on Data Mining, SDM 2011, April 28-30, 2011,

Mesa, Arizona, USA, pages 699–710. SIAM / Omnipress,

2011.

[19] P. Bermejo, L. de la Ossa, J. A. Gámez, and J. M. Puerta.

Fast wrapper feature subset selection in high-dimensional

datasets by means of filter re-ranking. Knowl. Based Syst.,

25(1):35–44, 2012.

[20] D. J. Berndt and J. Clifford. Using dynamic time warping

to find patterns in time series. In Knowledge Discovery in

Databases: Papers from the 1994 AAAI Workshop, Seat-

tle, Washington, USA, July 1994. Technical Report WS-

94-03, pages 359–370. AAAI Press, 1994.

[21] D. Blackmore, C. Tornbohm, D. Ackerman, C. Gra-

ham, S. Matson, T. Lo, T. Singh, A. Roy, C. Tenneson,

BIBLIOGRAPHY 143

M. Sawai, E. Kim, E. Anderson, S. Nag, N. Barton,

N. Sethi, R. Malik, B. Williams, C. Healey, R. Buest,

T. Wu, K. Madaan, S. Sahoo, H. Singh, and P. Sullivan.

Market share: It services, worldwide, 2020. Technical re-

port, 2021.

[22] A. Blohowiak, A. Basiri, L. Hochstein, and C. Rosen-

thal. A platform for automating chaos experiments. In

2016 IEEE International Symposium on Software Reliabil-

ity Engineering Workshops, ISSRE Workshops 2016, Ot-

tawa, ON, Canada, October 23-27, 2016, pages 5–8. IEEE

Computer Society, 2016.

[23] L. Breiman. Random forests. Mach. Learn., 45(1):5–32,

2001.

[24] H. D. Chadwick and L. Kurz. Rank permutation group

codes based on kendall’s correlation statistic. IEEE Trans.

Inf. Theory, 15(2):306–315, 1969.

[25] B. Chen and Z. M. J. Jiang. Characterizing and detect-

ing anti-patterns in the logging code. In Proceedings of

the 39th International Conference on Software Engineer-

ing (ICSE), pages 71–81, 2017.

[26] B. Chen and Z. M. J. Jiang. Characterizing logging prac-

tices in java-based open source software projects–a replica-

tion study in apache software foundation. Empirical Soft-

ware Engineering, 22(1):330–374, 2017.

[27] B. Chen and Z. M. J. Jiang. Extracting and studying

the logging-code-issue-introducing changes in java-based

large-scale open source software systems. Empirical Soft-

ware Engineering, 24(4):2285–2322, 2019.

BIBLIOGRAPHY 144

[28] B. Chen and Z. M. J. Jiang. Studying the use of java

logging utilities in the wild. In Proc. of the ACM/IEEE

42nd International Conference on Software Engineering

(ICSE), page 397–408, 2020.

[29] J. Chen, X. He, Q. Lin, Y. Xu, H. Zhang, D. Hao, F. Gao,

Z. Xu, Y. Dang, and D. Zhang. An empirical investi-

gation of incident triage for online service systems. In

Proceedings of the 41st International Conference on Soft-

ware Engineering: Software Engineering in Practice, ICSE

(SEIP) 2019, Montreal, QC, Canada, May 25-31, 2019,

pages 111–120. IEEE / ACM, 2019.

[30] P. Chen, Y. Qi, P. Zheng, and D. Hou. Causeinfer: Auto-

matic and distributed performance diagnosis with hierar-

chical causality graph in large distributed systems. In 2014

IEEE Conference on Computer Communications, INFO-

COM 2014, Toronto, Canada, April 27 - May 2, 2014,

pages 1887–1895. IEEE, 2014.

[31] Z. Chen, Y. Kang, L. Li, X. Zhang, H. Zhang, H. Xu,

Y. Zhou, L. Yang, J. Sun, Z. Xu, Y. Dang, F. Gao, P. Zhao,

B. Qiao, Q. Lin, D. Zhang, and M. R. Lyu. Towards in-

telligent incident management: why we need it and how

we make it. In ESEC/FSE ’20: 28th ACM Joint Euro-

pean Software Engineering Conference and Symposium on

the Foundations of Software Engineering, Virtual Event,

USA, November 8-13, 2020, pages 1487–1497. ACM, 2020.

[32] Z. Chen, J. Liu, Y. Su, H. Zhang, X. Wen, X. Ling,

Y. Yang, and M. R. Lyu. Graph-based incident aggre-

gation for large-scale online service systems. In ASE ’21:

BIBLIOGRAPHY 145

36th IEEE/ACM International Conference on Automated

Software Engineering, Virtual Event, Australia, November

15-19, 2021, pages 1–12. IEEE/ACM, 2021.

[33] M. Chow, D. Meisner, J. Flinn, D. Peek, and T. F.

Wenisch. The mystery machine: End-to-end performance

analysis of large-scale internet services. In 11th USENIX

Symposium on Operating Systems Design and Implemen-

tation (OSDI 14), pages 217–231. USENIX Association,

Oct. 2014.

[34] S. Chowdhury, S. Di Nardo, A. Hindle, and Z. M. J. Jiang.

An exploratory study on assessing the energy impact of

logging on android applications. Empirical Software Engi-

neering, 23(3):1422–1456, 2018.

[35] M. Cinque, D. Cotroneo, R. Natella, and A. Pecchia. As-

sessing and improving the effectiveness of logs for the anal-

ysis of software faults. In Proc. of the 2010 IEEE/IFIP

International Conference on Dependable Systems and Net-

works (DSN), pages 457–466, 2010.

[36] M. Cinque, D. Cotroneo, and A. Pecchia. Event logs for

the analysis of software failures: A rule-based approach.

IEEE Transactions on Software Engineering, 39(6):806–

821, 2012.

[37] C. Cortes and V. Vapnik. Support-vector networks. Mach.

Learn., 20(3):273–297, 1995.

[38] R. DeFauw, A. Chigani, and N. Harris. It resilience within

aws cloud, part ii: Architecture and patterns, 2021.

BIBLIOGRAPHY 146

[39] C. L. Dickson. A working theory-of-monitoring. Technical

report, Google, Inc., 2013.

[40] R. Dillon and Y. Y. Haimes. Risk of extreme events

via multiobjective decision trees: application to telecom-

munications. IEEE Trans. Syst. Man Cybern. Part A,

26(2):262–271, 1996.

[41] R. Ding, H. Zhou, J. Lou, H. Zhang, Q. Lin, Q. Fu,

D. Zhang, and T. Xie. Log2: A cost-aware logging mech-

anism for performance diagnosis. In Proc. of the 2015

USENIX Annual Technical Conference (ATC), pages 139–

150, 2015.

[42] N. Dragoni, S. Giallorenzo, A. Lluch-Lafuente, M. Maz-

zara, F. Montesi, R. Mustafin, and L. Safina. Microser-

vices: Yesterday, today, and tomorrow. In Present and

Ulterior Software Engineering, pages 195–216. Springer,

2017.

[43] K. EIDefrawy, T. Kim, and P. Sylla. Automated inference

of dependencies of network services and applications via

transfer entropy. In 2016 IEEE 40th Annual Computer

Software and Applications Conference (COMPSAC), vol-

ume 2, pages 32–37. IEEE, 2016.

[44] P. Esling and C. Agón. Time-series data mining. ACM

Comput. Surv., 45(1):12:1–12:34, 2012.

[45] A. Fakhrazari and H. Vakilzadian. A survey on time series

data mining. In IEEE International Conference on Electro

Information Technology, EIT 2017, Lincoln, NE, USA,

May 14-17, 2017, pages 476–481. IEEE, 2017.

BIBLIOGRAPHY 147

[46] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Sto-

ica. X-trace: A pervasive network tracing framework. In

4th Symposium on Networked Systems Design and Imple-

mentation (NSDI 2007), April 11-13, 2007, Cambridge,

Massachusetts, USA, Proceedings. USENIX, 2007.

[47] Q. Fu, J. Zhu, W. Hu, J. Lou, R. Ding, Q. Lin, D. Zhang,

and T. Xie. Where do developers log? an empirical study

on logging practices in industry. In Proc. of the 36th In-

ternational Conference on Software Engineering (ICSE),

pages 24–33, 2014.

[48] J. Gabrielson. Challenges with distributed systems, 2022.

[49] Y. Gan, M. Liang, S. Dev, D. Lo, and C. Delimitrou. Sage:

practical and scalable ml-driven performance debugging

in microservices. In ASPLOS ’21: 26th ACM Interna-

tional Conference on Architectural Support for Program-

ming Languages and Operating Systems, Virtual Event,

USA, April 19-23, 2021, pages 135–151. ACM, 2021.

[50] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi,

N. Katarki, A. Bruno, J. Hu, B. Ritchken, B. Jackson,

K. Hu, M. Pancholi, Y. He, B. Clancy, C. Colen, F. Wen,

C. Leung, S. Wang, L. Zaruvinsky, M. Espinosa, R. Lin,

Z. Liu, J. Padilla, and C. Delimitrou. An open-source

benchmark suite for microservices and their hardware-

software implications for cloud & edge systems. In Pro-

ceedings of the Twenty-Fourth International Conference

on Architectural Support for Programming Languages and

Operating Systems, ASPLOS 2019, Providence, RI, USA,

April 13-17, 2019, pages 3–18. ACM, 2019.

BIBLIOGRAPHY 148

[51] Y. Gan, Y. Zhang, K. Hu, D. Cheng, Y. He, M. Pancholi,

and C. Delimitrou. Seer: Leveraging big data to navi-

gate the complexity of performance debugging in cloud

microservices. In Proceedings of the Twenty-Fourth Inter-

national Conference on Architectural Support for Program-

ming Languages and Operating Systems, ASPLOS 2019,

Providence, RI, USA, April 13-17, 2019, pages 19–33.

ACM, 2019.

[52] C. Gao, J. Zeng, M. R. Lyu, and I. King. Online app

review analysis for identifying emerging issues. In Pro-

ceedings of the 40th International Conference on Software

Engineering, ICSE 2018, Gothenburg, Sweden, May 27 -

June 03, 2018, pages 48–58. ACM, 2018.

[53] P. Geurts, D. Ernst, and L. Wehenkel. Extremely random-

ized trees. Mach. Learn., 63(1):3–42, 2006.

[54] Google. cadvisor: Analyzes resource usage and perfor-

mance characteristics of running containers., 2022.

[55] GrubHub. Enabling continuous (food) delivery at grub-

hub, 2015.

[56] J. Gu, J. Wen, Z. Wang, P. Zhao, C. Luo, Y. Kang,

Y. Zhou, L. Yang, J. Sun, Z. Xu, B. Qiao, L. Li, Q. Lin,

and D. Zhang. Efficient customer incident triage via

linking with system incidents. In ESEC/FSE ’20: 28th

ACM Joint European Software Engineering Conference

and Symposium on the Foundations of Software Engineer-

ing, Virtual Event, USA, November 8-13, 2020, pages

1296–1307. ACM, 2020.

BIBLIOGRAPHY 149

[57] Q. Gu, Z. Li, and J. Han. Generalized fisher score for fea-

ture selection. In UAI 2011, Proceedings of the Twenty-

Seventh Conference on Uncertainty in Artificial Intelli-

gence, Barcelona, Spain, July 14-17, 2011, pages 266–273.

AUAI Press, 2011.

[58] H. S. Gunawi, M. Hao, R. O. Suminto, A. Laksono, A. D.

Satria, J. Adityatama, and K. J. Eliazar. Why does the

cloud stop computing? lessons from hundreds of service

outages. In Proceedings of the Seventh ACM Symposium

on Cloud Computing, Santa Clara, CA, USA, October 5-7,

2016, pages 1–16. ACM, 2016.

[59] X. Guo, X. Peng, H. Wang, W. Li, H. Jiang, D. Ding,

T. Xie, and L. Su. Graph-based trace analysis for microser-

vice architecture understanding and problem diagnosis. In

ESEC/FSE ’20: 28th ACM Joint European Software En-

gineering Conference and Symposium on the Foundations

of Software Engineering, Virtual Event, USA, November

8-13, 2020, pages 1387–1397. ACM, 2020.

[60] J. Han, J. Pei, and M. Kamber. Data mining: concepts

and techniques. Elsevier, 2011.

[61] M. Hassani, W. Shang, E. Shihab, and N. Tsantalis.

Studying and detecting log-related issues. Empirical Soft-

ware Engineering, pages 3248–3280, 2018.

[62] P. He, Z. Chen, S. He, and M. R. Lyu. Characterizing the

natural language descriptions in software logging state-

ments. In Proc. of the 33rd ACM/IEEE International

Conference on Automated Software Engineering (ASE),

pages 178–189, 2018.

BIBLIOGRAPHY 150

[63] S. He, P. He, Z. Chen, T. Yang, Y. Su, and M. R. Lyu. A

survey on automated log analysis for reliability engineer-

ing. ACM Comput. Surv., 54(6), July 2021.

[64] S. He, Q. Lin, J. Lou, H. Zhang, M. R. Lyu, and D. Zhang.

Identifying impactful service system problems via log anal-

ysis. In Proceedings of the 2018 ACM Joint Meeting on Eu-

ropean Software Engineering Conference and Symposium

on the Foundations of Software Engineering, ESEC/SIG-

SOFT FSE 2018, Lake Buena Vista, FL, USA, November

04-09, 2018, pages 60–70. ACM, 2018.

[65] V. Heorhiadi, S. Rajagopalan, H. Jamjoom, M. K. Re-

iter, and V. Sekar. Gremlin: Systematic resilience testing

of microservices. In 36th IEEE International Conference

on Distributed Computing Systems, ICDCS 2016, Nara,

Japan, June 27-30, 2016, pages 57–66. IEEE Computer

Society, 2016.

[66] T. K. Ho. The random subspace method for constructing

decision forests. IEEE Trans. Pattern Anal. Mach. Intell.,

20(8):832–844, 1998.

[67] P. Huang, C. Guo, J. R. Lorch, L. Zhou, and Y. Dang.

Capturing and enhancing in situ system observability for

failure detection. In 13th USENIX Symposium on Oper-

ating Systems Design and Implementation, OSDI 2018,

Carlsbad, CA, USA, October 8-10, 2018, pages 1–16.

USENIX Association, 2018.

[68] P. Huang, C. Guo, L. Zhou, J. R. Lorch, Y. Dang, M. Chin-

talapati, and R. Yao. Gray failure: The achilles’ heel of

BIBLIOGRAPHY 151

cloud-scale systems. In Proceedings of the 16th Work-

shop on Hot Topics in Operating Systems, HotOS 2017,

Whistler, BC, Canada, May 8-10, 2017, pages 150–155.

ACM, 2017.

[69] P. Huang, C. Guo, L. Zhou, J. R. Lorch, Y. Dang, M. Chin-

talapati, and R. Yao. Gray failure: The achilles’ heel of

cloud-scale systems. In Proceedings of the 16th Work-

shop on Hot Topics in Operating Systems, HotOS 2017,

Whistler, BC, Canada, May 8-10, 2017, pages 150–155.

ACM, 2017.

[70] L. J. Jagadeesan and V. B. Mendiratta. When failure is

(not) an option: Reliability models for microservices archi-

tectures. In 2020 IEEE International Symposium on Soft-

ware Reliability Engineering Workshops, ISSRE Work-

shops, Coimbra, Portugal, October 12-15, 2020, pages 19–

24. IEEE, 2020.

[71] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora.

Automatic identification of load testing problems. In Proc.

of the 24th IEEE International Conference on Software

Maintenance (ICSM), pages 307–316, 2008.

[72] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai,

A. Khandelwal, Q. Pu, V. Shankar, J. Carreira, K. Krauth,

N. Yadwadkar, et al. Cloud programming simplified: A

berkeley view on serverless computing. arXiv preprint

arXiv:1902.03383, 2019.

[73] S. Kabinna, C. Bezemer, W. Shang, and A. E. Hassan.

Logging library migrations: a case study for the apache

BIBLIOGRAPHY 152

software foundation projects. In Proc. of the 13th In-

ternational Conference on Mining Software Repositories

(MSR), pages 154–164, 2016.

[74] S. Kabinna, C. Bezemer, W. Shang, M. D. Syer, and A. E.

Hassan. Examining the stability of logging statements.

Empirical Software Engineering, pages 290–333, 2018.

[75] E. J. Keogh. Exact indexing of dynamic time warping.

In Proceedings of 28th International Conference on Very

Large Data Bases, VLDB 2002, Hong Kong, August 20-

23, 2002, pages 406–417. Morgan Kaufmann, 2002.

[76] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,

C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented

programming. In European conference on object-oriented

programming. Springer, 1997.

[77] Y. Kim and J. Kim. Gradient LASSO for feature selec-

tion. In Machine Learning, Proceedings of the Twenty-first

International Conference (ICML 2004), Banff, Alberta,

Canada, July 4-8, 2004, volume 69 of ACM International

Conference Proceeding Series. ACM, 2004.

[78] Kubernetes. Kubernetes documentation: Cluster architec-

ture, 2022.

[79] Kubernetes. Kubernetes documentation: Disruptions,

2022.

[80] V. T. Lam, M. Mitzenmacher, and G. Varghese. Carousel:

Scalable logging for intrusion prevention systems. In Pro-

ceedings of the 7th USENIX Symposium on Networked Sys-

tems Design and Implementation, NSDI 2010, April 28-

BIBLIOGRAPHY 153

30, 2010, San Jose, CA, USA, pages 361–376. USENIX

Association, 2010.

[81] V. Le and H. Zhang. Log-based anomaly detection with-

out log parsing. In ASE ’21: 36th IEEE/ACM Inter-

national Conference on Automated Software Engineering,

Virtual Event, Australia, November 15-19, 2021, pages 1–

12. IEEE/ACM, 2021.

[82] S. Levy, R. Yao, Y. Wu, Y. Dang, P. Huang, Z. Mu,

P. Zhao, T. Ramani, N. K. Govindaraju, X. Li, Q. Lin,

G. L. Shafriri, and M. Chintalapati. Predictive and adap-

tive failure mitigation to avert production cloud VM in-

terruptions. In 14th USENIX Symposium on Operating

Systems Design and Implementation, OSDI 2020, Virtual

Event, November 4-6, 2020, pages 1155–1170. USENIX

Association, 2020.

[83] S. Lewis. Software resilience testing, 2021.

[84] H. Li, T. P. Chen, W. Shang, and A. E. Hassan. Studying

software logging using topic models. Empir. Softw. Eng.,

pages 2655–2694, 2018.

[85] H. Li, W. Shang, and A. E. Hassan. Which log level should

developers choose for a new logging statement? Empirical

Software Engineering, pages 1684–1716, 2017.

[86] H. Li, W. Shang, Y. Zou, and A. E. Hassan. Towards just-

in-time suggestions for log changes. Empirical Software

Engineering, pages 1831–1865, 2017.

BIBLIOGRAPHY 154

[87] S. Li, X. Niu, Z. Jia, X. Liao, J. Wang, and T. Li. Guiding

log revisions by learning from software evolution history.

Empir. Softw. Eng., pages 2302–2340, 2020.

[88] Z. Li, T.-H. Chen, and W. Shang. Where shall we log?

studying and suggesting logging locations in code blocks.

In Proc. of the 35rd IEEE/ACM International Conference

on Automated Software Engineering (ASE), 2020.

[89] Z. Li, T. P. Chen, J. Yang, and W. Shang. Dlfinder: char-

acterizing and detecting duplicate logging code smells. In

Proc. of the 41st International Conference on Software En-

gineering (ICSE), pages 152–163, 2019.

[90] Z. Li, Q. Cheng, K. Hsieh, Y. Dang, P. Huang, P. Singh,

X. Yang, Q. Lin, Y. Wu, S. Levy, and M. Chintalapati.

Gandalf: An intelligent, end-to-end analytics service for

safe deployment in large-scale cloud infrastructure. In

17th USENIX Symposium on Networked Systems Design

and Implementation, NSDI 2020, Santa Clara, CA, USA,

February 25-27, 2020, pages 389–402. USENIX Associa-

tion, 2020.

[91] H. Liu, S. Lu, M. Musuvathi, and S. Nath. What bugs

cause production cloud incidents? In Proceedings of the

Workshop on Hot Topics in Operating Systems, HotOS

2019, Bertinoro, Italy, May 13-15, 2019, pages 155–162.

ACM, 2019.

[92] P. Liu, Y. Chen, X. Nie, J. Zhu, S. Zhang, K. Sui,

M. Zhang, and D. Pei. Fluxrank: A widely-deployable

framework to automatically localizing root cause machines

BIBLIOGRAPHY 155

for software service failure mitigation. In 30th IEEE In-

ternational Symposium on Software Reliability Engineer-

ing, ISSRE 2019, Berlin, Germany, October 28-31, 2019,

pages 35–46. IEEE, 2019.

[93] Z. Liu, X. Xia, D. Lo, Z. Xing, A. E. Hassan, and S. Li.

Which variables should i log? IEEE Transactions on Soft-

ware Engineering, pages 308–317, 2019.

[94] J. Lockerman, J. M. Faleiro, J. Kim, S. Sankaran, D. J.

Abadi, J. Aspnes, S. Sen, and M. Balakrishnan. The fuzzy-

log: a partially ordered shared log. In Proc. of the 13th

USENIX Symposium on Operating Systems Design and

Implementation (OSDI), pages 357–372, 2018.

[95] Log4j. Apache log4j, 2020.

[96] Z. Long, G. Wu, X. Chen, C. Cui, W. Chen, and J. Wei.

Fitness-guided resilience testing of microservice-based ap-

plications. In 2020 IEEE International Conference on

Web Services, ICWS 2020, Beijing, China, October 19-

23, 2020, pages 151–158. IEEE, 2020.

[97] J.-G. Lou, Q. Fu, Y. Wang, and J. Li. Mining dependency

in distributed systems through unstructured logs analy-

sis. ACM SIGOPS Operating Systems Review, 44(1):91–

96, 2010.

[98] L. Luo, S. Nath, L. R. Sivalingam, M. Musuvathi, and

L. Ceze. Troubleshooting transiently-recurring errors in

production systems with blame-proportional logging. In

Proc. of the 2018 USENIX Annual Technical Conference

(ATC), pages 321–334, 2018.

BIBLIOGRAPHY 156

[99] S.-P. Ma, C.-Y. Fan, Y. Chuang, W.-T. Lee, S.-J. Lee, and

N.-L. Hsueh. Using service dependency graph to analyze

and test microservices. In 2018 IEEE 42nd Annual Com-

puter Software and Applications Conference (COMPSAC),

volume 02, pages 81–86, 2018.

[100] J. Mace, R. Roelke, and R. Fonseca. Pivot tracing: Dy-

namic causal monitoring for distributed systems. In Pro-

ceedings of the 25th Symposium on Operating Systems

Principles, SOSP ’15, page 378–393, New York, NY, USA,

2015. Association for Computing Machinery.

[101] S. Maldonado and J. López. Dealing with high-

dimensional class-imbalanced datasets: Embedded fea-

ture selection for SVM classification. Appl. Soft Comput.,

67:94–105, 2018.

[102] R. Melo and D. Macedo. A cloud immune security

model based on alert correlation and software defined net-

work. In 28th IEEE International Conference on Enabling

Technologies: Infrastructure for Collaborative Enterprises,

WETICE 2019, Naples, Italy, June 12-14, 2019, pages 52–

57. IEEE, 2019.

[103] N. C. Mendonça, C. M. Aderaldo, J. Cámara, and D. Gar-

lan. Model-based analysis of microservice resiliency pat-

terns. In 2020 IEEE International Conference on Software

Architecture, ICSA 2020, Salvador, Brazil, March 16-20,

2020, pages 114–124. IEEE, 2020.

[104] W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu,

Y. Chen, R. Zhang, S. Tao, P. Sun, et al. Loganomaly: un-

supervised detection of sequential and quantitative anoma-

BIBLIOGRAPHY 157

lies in unstructured logs. In Proc. of the 2019 International

Joint Conferences on Artificial Intelligence (IJCAI), pages

4739–4745, 2019.

[105] Y. Meng, S. Zhang, Y. Sun, R. Zhang, Z. Hu, Y. Zhang,

C. Jia, Z. Wang, and D. Pei. Localizing failure root causes

in a microservice through causality inference. In 28th

IEEE/ACM International Symposium on Quality of Ser-

vice, IWQoS 2020, Hangzhou, China, June 15-17, 2020,

pages 1–10. IEEE, 2020.

[106] I. G. Methodology. Test software resiliency, 2022.

[107] Microsoft. Event logging, 2018.

[108] Microsoft. Microservices architecture style, 2019.

[109] T. Mizouchi, K. Shimari, T. Ishio, and K. Inoue. PADLA:

a dynamic log level adapter using online phase detection.

In Proc. of the 27th International Conference on Program

Comprehension (ICPC), pages 135–138, 2019.

[110] S. Morishita and J. Sese. Transversing itemset lattices with

statistical metric pruning. In Proceedings of the nineteenth

ACM SIGMOD-SIGACT-SIGART symposium on Princi-

ples of database systems, pages 226–236, 2000.

[111] M. Mormul, P. Hirmer, C. Stach, and B. Mitschang.

DEAR: distributed evaluation of alerting rules. In 13th

IEEE International Conference on Cloud Computing,

CLOUD 2020, Virtual Event, 18-24 October 2020, pages

158–165. IEEE, 2020.

BIBLIOGRAPHY 158

[112] W. Mostert, K. M. Malan, and A. P. Engelbrecht. Filter

versus wrapper feature selection based on problem land-

scape features. In Proceedings of the Genetic and Evo-

lutionary Computation Conference Companion, GECCO

2018, Kyoto, Japan, July 15-19, 2018, pages 1489–1496.

ACM, 2018.

[113] A. Mueen, H. Hamooni, and T. Estrada. Time series

join on subsequence correlation. In 2014 IEEE Interna-

tional Conference on Data Mining, ICDM 2014, Shenzhen,

China, December 14-17, 2014, pages 450–459. IEEE Com-

puter Society, 2014.

[114] K. Neshatian and M. Zhang. Pareto front feature selection:

using genetic programming to explore feature space. InGe-

netic and Evolutionary Computation Conference, GECCO

2009, Proceedings, Montreal, Québec, Canada, July 8-12,

2009, pages 1027–1034. ACM, 2009.

[115] S. Newman. Building microservices - designing fine-

grained systems, 1st Edition. O’Reilly, 2015.

[116] V. Niennattrakul and C. A. Ratanamahatana. On clus-

tering multimedia time series data using k-means and dy-

namic time warping. In 2007 International Conference on

Multimedia and Ubiquitous Engineering (MUE 2007), 26-

28 April 2007, Seoul, Korea, pages 733–738. IEEE Com-

puter Society, 2007.

[117] P. Novotny, B. J. Ko, and A. L. Wolf. On-demand

discovery of software service dependencies in manets.

IEEE Transactions on Network and Service Management,

12(2):278–292, 2015.

BIBLIOGRAPHY 159

[118] A. J. Oliner, A. Ganapathi, and W. Xu. Advances and

challenges in log analysis. ACM Communication, pages

55–61, 2012.

[119] OpenTracing. The opentracing semantic specification,

2021.

[120] OpenTracing. Opentracing spring cloud, 2021.

[121] D. L. Oppenheimer and D. A. Patterson. Architecture

and dependability of large-scale internet services. IEEE

Internet Comput., 6(5):41–49, 2002.

[122] R. Paccagnella, P. Datta, W. U. Hassan, A. Bates,

C. W. Fletcher, A. Miller, and D. Tian. Custos: Prac-

tical tamper-evident auditing of operating systems using

trusted execution. In 27th Annual Network and Distributed

System Security Symposium, NDSS 2020, San Diego, Cal-

ifornia, USA, February 23-26, 2020. The Internet Society,

2020.

[123] A. Pecchia, M. Cinque, G. Carrozza, and D. Cotroneo.

Industry practices and event logging: assessment of a crit-

ical software development process. In Proc. of the 37th

IEEE/ACM International Conference on Software Engi-

neering (ICSE), pages 169–178, 2015.

[124] C. A. Ratanamahatana, J. Lin, D. Gunopulos, E. J.

Keogh, M. Vlachos, and G. Das. Mining time series data.

In Data Mining and Knowledge Discovery Handbook, 2nd

ed, pages 1049–1077. Springer, 2010.

[125] M. S. Raza and U. Qamar. A hybrid feature selection ap-

proach based on heuristic and exhaustive algorithms using

BIBLIOGRAPHY 160

rough set theory. In Proceedings of the International Con-

ference on Internet of Things and Cloud Computing, Cam-

bridge, UK, March 22-23, 2016, pages 47:1–47:7. ACM,

2016.

[126] H. Sakoe and S. Chiba. Dynamic programming algorithm

optimization for spoken word recognition. IEEE transac-

tions on acoustics, speech, and signal processing, 26(1):43–

49, 1978.

[127] N. Samir and B. Kyle. Production software application

performance and resiliency testing, 2020.

[128] B. Schroeder and G. A. Gibson. A large-scale study of fail-

ures in high-performance computing systems. In Proc. of

the 2006 International Conference on Dependable Systems

and Networks (DSN), pages 249–258, 2006.

[129] A. W. Services. Aws cloud products, 2021.

[130] A. W. Services. Aws post-event summaries, 2022.

[131] S. Y. Shah, Z. Yuan, S. Lu, and P. Zerfos. Dependency

analysis of cloud applications for performance monitoring

using recurrent neural networks. In 2017 IEEE Interna-

tional Conference on Big Data (Big Data), pages 1534–

1543. IEEE, 2017.

[132] W. Shang. Bridging the divide between software develop-

ers and operators using logs. In Proc. of the 34th Interna-

tional Conference on Software Engineering (ICSE), pages

1583–1586, 2012.

[133] W. Shang, M. Nagappan, and A. E. Hassan. Studying the

relationship between logging characteristics and the code

BIBLIOGRAPHY 161

quality of platform software. Empirical Software Engineer-

ing, pages 1–27, 2015.

[134] W. Shang, M. Nagappan, A. E. Hassan, and Z. M. Jiang.

Understanding log lines using development knowledge. In

Proc. of the 30th International Conference on Software

Maintenance and Evolution (ICSME), 2014.

[135] M. Shetty, C. Bansal, S. Kumar, N. Rao, N. Nagappan,

and T. Zimmermann. Neural knowledge extraction from

cloud service incidents. In 43rd IEEE/ACM International

Conference on Software Engineering: Software Engineer-

ing in Practice, ICSE (SEIP) 2021, Madrid, Spain, May

25-28, 2021, pages 218–227. IEEE, 2021.

[136] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephen-

son, M. Plakal, D. Beaver, S. Jaspan, and C. Shanbhag.

Dapper, a large-scale distributed systems tracing infras-

tructure. Technical report, Google, Inc., 2010.

[137] SLF4J. Simple logging facade for java (slf4j), 2020.

[138] spdlog. Spdlog, 2020.

[139] M. E. Tipping and C. M. Bishop. Mixtures of proba-

bilistic principal component analysers. Neural Comput.,

11(2):443–482, 1999.

[140] M. Villamizar, O. Garcés, H. Castro, M. Verano, L. Sala-

manca, R. Casallas, and S. Gil. Evaluating the monolithic

and the microservice architecture pattern to deploy web

applications in the cloud. In 2015 10th Computing Colom-

bian Conference (10CCC), pages 583–590. IEEE, 2015.

BIBLIOGRAPHY 162

[141] H. Wang, C. Shah, P. Sathaye, A. Nahata, and S. Katariya.

Service application knowledge graph and dependency sys-

tem. In 2019 34th IEEE/ACM International Conference

on Automated Software Engineering Workshop (ASEW),

pages 134–136. IEEE, 2019.

[142] H. Wang, Z. Wu, H. Jiang, Y. Huang, J. Wang, S. Köprü,

and T. Xie. Groot: An event-graph-based approach for

root cause analysis in industrial settings. In ASE ’21:

36th IEEE/ACM International Conference on Automated

Software Engineering, Virtual Event, Australia, November

15-19, 2021, pages 1–12. IEEE/ACM, 2021.

[143] P. Wang, J. Xu, M. Ma, W. Lin, D. Pan, Y. Wang, and

P. Chen. Cloudranger: Root cause identification for cloud

native systems. In 18th IEEE/ACM International Sym-

posium on Cluster, Cloud and Grid Computing, CCGRID

2018, Washington, DC, USA, May 1-4, 2018, pages 492–

502. IEEE Computer Society, 2018.

[144] Y. Wang, G. Li, Z. Wang, Y. Kang, Y. Zhou, H. Zhang,

F. Gao, J. Sun, L. Yang, P. Lee, Z. Xu, P. Zhao, B. Qiao,

L. Li, X. Zhang, and Q. Lin. Fast outage analysis of large-

scale production clouds with service correlation mining.

In 43rd IEEE/ACM International Conference on Software

Engineering, ICSE 2021, Madrid, Spain, 22-30 May 2021,

pages 885–896. IEEE, 2021.

[145] Y. Wang, G. Li, Z. Wang, Y. Kang, Y. Zhou, H. Zhang,

F. Gao, J. Sun, L. Yang, P. Lee, Z. Xu, P. Zhao, B. Qiao,

L. Li, X. Zhang, and Q. Lin. Fast outage analysis of large-

scale production clouds with service correlation mining.

BIBLIOGRAPHY 163

In 43rd IEEE/ACM International Conference on Software

Engineering, ICSE 2021, Madrid, Spain, 22-30 May 2021,

pages 885–896. IEEE, 2021.

[146] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan.

Detecting large-scale system problems by mining console

logs. In Proc. of the 22nd ACM Symposium on Operating

Systems Principles (SOSP), 2009.

[147] S. Yang, S. J. Park, and J. K. Ousterhout. Nanolog: A

nanosecond scale logging system. In Proc. of the 2018

USENIX Annual Technical Conference (ATC), pages 335–

350, 2018.

[148] T. Yang, C. Gao, J. Zang, D. Lo, and M. R. Lyu. TOUR:

dynamic topic and sentiment analysis of user reviews for

assisting app release. In Companion of The Web Con-

ference 2021, Virtual Event / Ljubljana, Slovenia, April

19-23, 2021, pages 708–712. ACM / IW3C2, 2021.

[149] T. Yang, J. Shen, Y. Su, X. Ling, Y. Yang, and M. R. Lyu.

AID: efficient prediction of aggregated intensity of depen-

dency in large-scale cloud systems. In 36th IEEE/ACM In-

ternational Conference on Automated Software Engineer-

ing, ASE 2021, Melbourne, Australia, November 15-19,

2021, pages 653–665. IEEE, 2021.

[150] K. Yao, G. B. de Pádua, W. Shang, C. Sporea, A. Toma,

and S. Sajedi. Log4perf: suggesting and updating logging

locations for web-based systems’ performance monitoring.

Empir. Softw. Eng., 25(1):488–531, 2020.

[151] J. Yin, X. Zhao, Y. Tang, C. Zhi, Z. Chen, and Z. Wu.

Cloudscout: A non-intrusive approach to service depen-

BIBLIOGRAPHY 164

dency discovery. IEEE Transactions on Parallel and Dis-

tributed Systems, 28(5):1271–1284, 2016.

[152] K. Yin and Q. Du. On representing resilience requirements

of microservice architecture systems. Int. J. Softw. Eng.

Knowl. Eng., 31(6):863–888, 2021.

[153] D. Yuan, S. Park, P. Huang, Y. Liu, M. M. Lee, X. Tang,

Y. Zhou, and S. Savage. Be conservative: enhancing fail-

ure diagnosis with proactive logging. In Proc. of the 10th

USENIX Symposium on Operating Systems Design and

Implementation (OSDI), pages 293–306, 2012.

[154] D. Yuan, S. Park, and Y. Zhou. Characterizing logging

practices in open-source software. In Proc. of 34th In-

ternational Conference on Software Engineering (ICSE),

pages 102–112, 2012.

[155] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage. Im-

proving software diagnosability via log enhancement. In

Proc. of the 16th International Conference on Architec-

tural Support for Programming Languages and Operating

Systems (ASPLOS), pages 3–14, 2011.

[156] A. Zand, A. Houmansadr, G. Vigna, R. Kemmerer, and

C. Kruegel. Know your achilles’ heel: Automatic detec-

tion of network critical services. In Proceedings of the 31st

Annual Computer Security Applications Conference, pages

41–50, 2015.

[157] A. Zand, G. Vigna, R. Kemmerer, and C. Kruegel. Rip-

pler: Delay injection for service dependency detection.

In IEEE INFOCOM 2014-IEEE Conference on Computer

Communications, pages 2157–2165. IEEE, 2014.

BIBLIOGRAPHY 165

[158] Y. Zeng, J. Chen, W. Shang, and T. P. Chen. Studying the

characteristics of logging practices in mobile apps: a case

study on f-droid. Empirical Software Engineering, pages

3394–3434, 2019.

[159] E. Zhai, A. Chen, R. Piskac, M. Balakrishnan, B. Tian,

B. Song, and H. Zhang. Check before you change: Prevent-

ing correlated failures in service updates. In 17th USENIX

Symposium on Networked Systems Design and Implemen-

tation, NSDI 2020, Santa Clara, CA, USA, February 25-

27, 2020, pages 575–589. USENIX Association, 2020.

[160] X. Zhang, Q. Lin, Y. Xu, S. Qin, H. Zhang, B. Qiao,

Y. Dang, X. Yang, Q. Cheng, M. Chintalapati, Y. Wu,

K. Hsieh, K. Sui, X. Meng, Y. Xu, W. Zhang, F. Shen,

and D. Zhang. Cross-dataset time series anomaly detec-

tion for cloud systems. In 2019 USENIX Annual Technical

Conference, USENIX ATC 2019, Renton, WA, USA, July

10-12, 2019, pages 1063–1076. USENIX Association, 2019.

[161] X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang,

C. Xie, X. Yang, Q. Cheng, Z. Li, et al. Robust log-based

anomaly detection on unstable log data. In Proc. of the

27th ACM Joint European Software Engineering Confer-

ence and Symposium on the Foundations of Software En-

gineering (ESEC/FSE), 2019.

[162] X. Zhang, Y. Xu, S. Qin, S. He, B. Qiao, Z. Li, H. Zhang,

X. Li, Y. Dang, Q. Lin, M. Chintalapati, S. Rajmohan, and

D. Zhang. Onion: identifying incident-indicating logs for

cloud systems. In ESEC/FSE ’21: 29th ACM Joint Euro-

pean Software Engineering Conference and Symposium on

BIBLIOGRAPHY 166

the Foundations of Software Engineering, Athens, Greece,

August 23-28, 2021, pages 1253–1263. ACM, 2021.

[163] Y. Zhang, S. Makarov, X. Ren, D. Lion, and D. Yuan. Pen-

sieve: Non-intrusive failure reproduction for distributed

systems using the event chaining approach. In Proceedings

of the 26th Symposium on Operating Systems Principles,

pages 19–33, 2017.

[164] G. Zhao, S. Hassan, Y. Zou, D. Truong, and T. Corbin.

Predicting performance anomalies in software systems at

run-time. ACM Trans. Softw. Eng. Methodol., 30(3):33:1–

33:33, 2021.

[165] N. Zhao, J. Chen, X. Peng, H. Wang, X. Wu, Y. Zhang,

Z. Chen, X. Zheng, X. Nie, G. Wang, Y. Wu, F. Zhou,

W. Zhang, K. Sui, and D. Pei. Understanding and han-

dling alert storm for online service systems. In ICSE-SEIP

2020: 42nd International Conference on Software Engi-

neering, Software Engineering in Practice, Seoul, South

Korea, 27 June - 19 July, 2020, pages 162–171. ACM,

2020.

[166] N. Zhao, J. Chen, Z. Wang, X. Peng, G. Wang, Y. Wu,

F. Zhou, Z. Feng, X. Nie, W. Zhang, K. Sui, and D. Pei.

Real-time incident prediction for online service systems. In

ESEC/FSE ’20: 28th ACM Joint European Software En-

gineering Conference and Symposium on the Foundations

of Software Engineering, Virtual Event, USA, November

8-13, 2020, pages 315–326. ACM, 2020.

[167] N. Zhao, H. Wang, Z. Li, X. Peng, G. Wang, Z. Pan,

Y. Wu, Z. Feng, X. Wen, W. Zhang, K. Sui, and D. Pei.

BIBLIOGRAPHY 167

An empirical investigation of practical log anomaly de-

tection for online service systems. In ESEC/FSE ’21:

29th ACM Joint European Software Engineering Confer-

ence and Symposium on the Foundations of Software Engi-

neering, Athens, Greece, August 23-28, 2021, pages 1404–

1415. ACM, 2021.

[168] X. Zhao, K. Rodrigues, Y. Luo, M. Stumm, D. Yuan, and

Y. Zhou. The game of twenty questions: do you know

where to log? In Proc. of the 16th Workshop on Hot

Topics in Operating Systems (HotOS), 2017.

[169] X. Zhao, K. Rodrigues, Y. Luo, M. Stumm, D. Yuan, and

Y. Zhou. Log20: fully automated optimal placement of log

printing statements under specified overhead threshold. In

Proc. of the 26th Symposium on Operating Systems Prin-

ciples (SOSP), pages 565–581, 2017.

[170] X. Zhao, K. Rodrigues, Y. Luo, D. Yuan, and M. Stumm.

Non-intrusive performance profiling for entire software

stacks based on the flow reconstruction principle. In 12th

USENIX Symposium on Operating Systems Design and

Implementation (OSDI 16), pages 603–618. USENIX As-

sociation, Nov. 2016.

[171] X. Zhao, Y. Zhang, D. Lion, M. F. Ullah, Y. Luo, D. Yuan,

and M. Stumm. lprof: A non-intrusive request flow profiler

for distributed systems. In 11th USENIX Symposium on

Operating Systems Design and Implementation (OSDI 14),

pages 629–644. USENIX Association, Oct. 2014.

[172] W. Zhou, W. Xue, R. Baral, Q. Wang, C. Zeng, T. Li,

J. Xu, Z. Liu, L. Shwartz, and G. Y. Grabarnik. STAR:

BIBLIOGRAPHY 168

A system for ticket analysis and resolution. In Proceed-

ings of the 23rd ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, Halifax, NS,

Canada, August 13 - 17, 2017, pages 2181–2190. ACM,

2017.

[173] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, W. Li, and

D. Ding. Fault analysis and debugging of microservice

systems: Industrial survey, benchmark system, and em-

pirical study. IEEE Trans. Software Eng., 47(2):243–260,

2021.

[174] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, D. Liu, Q. Xiang,

and C. He. Latent error prediction and fault localization

for microservice applications by learning from system trace

logs. In Proceedings of the ACM Joint Meeting on Eu-

ropean Software Engineering Conference and Symposium

on the Foundations of Software Engineering, ESEC/SIG-

SOFT FSE 2019, Tallinn, Estonia, August 26-30, 2019,

pages 683–694. ACM, 2019.

[175] J. Zhu, P. He, Q. Fu, H. Zhang, M. R. Lyu, and D. Zhang.

Learning to log: helping developers make informed logging

decisions. In Proc. of the 37th IEEE/ACM International

Conference on Software Engineering (ICSE), pages 415–

425, 2015.

	Abstract
	Acknowledgement
	Introduction
	Overview
	Thesis Contributions
	Thesis Organization

	Research Foundations
	Research Background
	Microservice Systems
	Monitoring Microservice Systems

	Research Problems
	Intensity of Microservice Dependency
	Microservice Resilience Testing
	Anti-patterns of Alerts

	Predicting the Aggregated Intensity of Dependency
	Introduction
	Motivation
	A Survey of the Outages in AWS
	Drawbacks of Current Failure Diagnosis Methods
	Intensity of Service Dependency

	Problem Definition
	Methodology
	Overview
	Candidate Selection
	Service Status Generation
	Intensity Prediction

	Evaluation
	Experimental Setup
	RQ1: Effectiveness
	RQ2: Impact of Different Parameter Settings
	RQ3: Impact of Different Similarity Measures
	RQ4: Efficiency

	Use Cases
	Optimization of Dependencies
	Mitigation of Cascading Failures

	Discussion
	Practical Usage and Perceived Limitations
	Threat to Validity

	Related Work

	Self-adaptive Microservice Resilience Testing
	Introduction
	Motivation
	RQ1: Issues of Current Practice
	RQ2: Failures and Their Impact

	Methodology
	Design Objectives
	Overview
	Failure Execution
	Degradation-based Metric Lattice Search
	Resilience Indexing

	Evaluation
	Experiment Settings
	RQ3: Effectiveness
	RQ4: Ablation Study
	RQ5: Efficiency

	Discussion
	Threats to Validity

	Related Work

	Empirical Study on Alerting and Logging
	Introduction
	The Anti-patterns of Alerts
	RQ1: Anti-patterns in Alerts
	RQ2: Standard Alert Processing Procedure
	RQ3: Reactions to Anti-patterns
	RQ4: Avoidance of Anti-patterns

	The Practice of Logging
	RQ5: Logging Mechanism and Libraries
	RQ6: Challenges for Logging
	RQ7: Logging Approaches

	Discussion
	Detecting Anti-patterns of Alerts
	Best Practices for Logging

	Related Work

	Conclusion and Future Work
	Conclusion
	Future Directions
	Trace Compression based on Service Topology
	Analysis-Oriented Logging
	Automated Generation of Logging Statements

	Publications during Ph.D. Study
	Bibliography

