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Abstract of thesis entitled:

Statistical Machine Learning for Data Mining and Collaborative Mul-

timedia Retrieval

Submitted by HOI, Chu Hong (Steven)

for the degree of Doctor of Philosophy

at The Chinese University of Hong Kong in September 2006

Statistical machine learning techniques have been widely applied

in data mining and multimedia information retrieval. While tradi-

tional methods, such as supervised learning, unsupervised learning,

and active learning, have been extensively studied separately, there

are few comprehensive schemes to investigate these techniques in a

unified approach. This thesis proposes a unified learning paradigm

(ULP) framework that integrates several machine learning techniques

including supervised learning, unsupervised learning, semi-supervised

learning, active learning and metric learning in a synergistic way to

maximize the effectiveness of a learning task.

Based on this unified learning framework, a novel scheme is sug-

gested for learning Unified Kernel Machines (UKM). The UKM scheme

combines supervised kernel machine learning, unsupervised kernel de-

sign, semi-supervised kernel learning, and active learning in an effec-

tive fashion. A key component in the UKM scheme is to learn kernels

from both labeled and unlabeled data. To this purpose, a new Spectral

Kernel Learning (SKL) algorithm is proposed, which is related to a

quadratic program. Empirical results show that the UKM technique is

promising for classification tasks.
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Within the unified learning framework, this thesis further explores

two important challenging tasks. One is Batch Mode Active Learning

(BMAL). In contrast to traditional approaches, the BMAL method

searches a batch of informative examples for labeling. To develop an

effective algorithm, the BMAL task is formulated into a convex op-

timization problem and a novel bound optimization algorithm is pro-

posed to efficiently solve it with global optima. Extensive evaluations

on text categorization tasks show that the BMAL algorithm is superior

to traditional methods.

Another issue studied in the framework is Distance Metric Learning

(DML). Learning distance metrics is critical to many machine learning

tasks, especially when contextual information is available. To learn

effective metrics from pairwise contextual constraints, two novel meth-

ods, Discriminative Component Analysis (DCA) and Kernel DCA, are

proposed to learn both linear and nonlinear distance metrics. Empirical

results on data clustering validate the advantages of the algorithms.

In addition to the above methodologies, this thesis also addresses

some practical issues in applying machine learning techniques to real-

world applications. For example, in a time-dependent data mining

application, in order to design a domain-specific kernel, marginalized

kernel techniques are suggested to formulate an effective kernel aimed

at web data mining tasks.

Last, the thesis investigates statistical machine learning techniques

with applications to multimedia retrieval and addresses some practical

issues, such as robustness to noise and scalability. To bridge semantic

gap issues of multimedia retrieval, a Collaborative Multimedia Retrieval

(CMR) scheme is proposed to exploit historical log data of users’ rel-

evance feedback for improving retrieval tasks. Two types of learning

tasks in the CMR scheme are identified and two innovative algorithms

are proposed to effectively solve the problems respectively.
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統計機器學習在數據挖掘和協作多媒體檢索的研究  

 
許 主 洪 

 
統計機器學習近年來已經廣泛應用于數據挖掘和多媒體信息檢索。儘管傳統的學習方

法論，比如監督學習、無監督學習和主動學習等，已經分別深入探討。在研究領域，

迄今尚未有一個比較完善的方案可以將這些方法論有機地結合在一起。本論文提出一

個統一的學習模型(ULP)來解決這個難題。該模型可以整合多種學習方法，包括監督

學習、無監督學習和主動學習等，在一個有機的學習框架裏，以最有效的完成學習任

務。 

 

基於統一學習模型的思想框架，本論文提出一個新穎的方案應用于學習統一的核機器

(UKM)。統一核機器結合監督核機器學習、無監督核設計、半監督核學習和主動學習

在一個有機的整體。統一核機器的一個關鍵的部件是同時從標定數據和無標定數據中

學習一個有效的核函數或核矩陣。本論文提出一種新的算法名為核譜學習算法

(SKL)。它等價于一個二次規劃的優化問題，可以很有效地實現。從數据分類的實驗

結果可以看出，本論文提出的方案和算法比傳統方法更加有效。 
 
在統一學習的框架，本論文特別針對兩個重要難題作深入探討。一個是主動學習問

題。傳統的方法通常在每個學習過程只考慮選擇一個樣本作標定，我們提出批量主動

學習的方法(BMAL)，可以搜索一批最有信息量的樣本讓用戶標定，使得大規模的分

類任務更加有效地完成。爲了設計一個有效的算法，本論文把批量主動學習形式化為

凸優化問題，然後提出一個逼近算法有效找出最優解。通過在文本分類實驗的詳細評

估，我們發現批量主動學習算法在大多數情況下要比傳統算法更加有效。 
 
另外一個重要的難題是距離尺度學習的問題(DML)。學習有效距離尺度是很多機器學

習算法的本質問題。本論文探討如何從上下文的兩兩約束數據裏學習出有效的距離尺

度。本論文提出判別分量分析(DCA)和它的核擴展算法，也就是核判別分量分析

(KDCA)，來解決綫性和非綫性的尺度學習。相比其它複雜的方法，我們提出的算法

相當簡單，而且從數據聚類的實驗上觀察，效果相當理想。 
 
除了以上的方法論研究，本論文也研究如何應用統計學習方法論解決現實世界的一些

問題。一個應用是使用核方法解決網絡搜索引擎的查詢日誌挖掘問題。我們提出用邊

際核技術來設計尺度測量的算法，使得更有效地從查詢日誌裏找出與時間相關的查詢

模式。另外一個重用的應用是協作多媒體檢索(CMR)問題。跟傳統多媒體檢索方法不

一樣，我們提出利用用戶的相關反饋日誌來協作當前的檢索任務。從長期的學習考

慮，這是一種有效的方案來解決多媒體檢索的語意差距難題。爲了更魯棒地處理協作

多媒體檢索，提出提出幾個可靠和可擴展的機器學習算法，有效地解決多媒體檢索的

一些重用難題。 
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Chapter 1

Introduction

1.1 Statistical Machine Learning

1.1.1 Overview

Statistical machine learning was introduced in the late 1960’s. Until the

1990’s it was still almost a purely theoretical analysis of the problem

of function estimation from a given collection of data. However, in the

middle of the 1990’s some breakthroughs were achieved. At that time,

a new type of algorithms, e.g. support vector machines, achieved quite

exciting successes in a variety of applications [141]. These successes of

the emerging new type of algorithms based on statistical learning the-

ory showed that statistical machine learning not only can be a tool for

theoretical analysis but also can be used to develop effective algorithms

for solving real-world problems. In the past decade, there has been a

surge of interest in studying statistical machine learning techniques for

a variety of real-world applications, particularly in data mining and

information retrieval.

In general, statistical machine learning studies a variety of differ-

ent classes of problems. In terms of different settings and ways of

studying the methodology, they can typically be categorized as un-

supervised learning, supervised learning, semi-supervised learning, and

1
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active learning, as well as others. Each of them has been separately

studied in the past few years. Let us briefly introduce each of them as

follows.

1.1.2 Unsupervised Learning

Unsupervised learning considers the problem of learning from a collec-

tion of data instances without training labels. It intends to discover the

cluster patterns among the given collection of data. One of the most

popular areas of study in unsupervised learning is data clustering tech-

niques, which have been widely used for data mining applications [64].

Despite the fact that this problem has been studied for many years

and many algorithms have been proposed, many challenging problems

in unsupervised learning are still actively being studied in current re-

search communities.

1.1.3 Supervised Learning

Supervised learning considers the problems of estimating certain func-

tions from examples with label information. Each input data instance

is associated with some corresponding training label, which is assumed

to be the response from a supervisor. A broad family of statistical

learning theories has been studied to achieve the risk minimization

and generalization maximization in the learning tasks. These theo-

ries have guided the creation of many new types of supervised learning

algorithms for applications. Among them, supervised kernel-machine

learning is the state-of-the-art methodology in real-world applications.

Many algorithms, such as Support Vector Machines (SVM) and Ker-

nel Logistic Regression (KLR), have shown excellent performance in a

range of applications, especially in classification and regression tasks.
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1.1.4 Active Learning

For a supervised learning task, the training examples can be expensive

to obtain. In order to look for the most informative example for la-

beling, active learning has been introduced as an important technique

to minimize the human efforts in finding the most informative exam-

ples for manual labeling. Active learning has already been employed

as an important tool for reducing the human effort in a number of

classification tasks [29].

1.1.5 Semi-Supervised Learning

One issue for supervised learning is the problem of learning when there

are insufficient training examples. To take advantage of both labeled

and unlabeled data, semi-supervised learning has recently been pro-

posed to address the challenge of learning from small number of training

samples. It has been demonstrated to be a promising approach, afford-

ing improved performance compared with traditional supervised learn-

ing approaches when only limited training examples are offered [26].

1.1.6 Distance Metric Learning

Statistical machine-learning techniques, such as K-Means and K-Nearest

Neighbor, usually define some distance metrics or kernel functions to

measure the similarity of data instances. For example, Euclidean dis-

tance is often used as a distance measure in many applications. Typi-

cally, selection of a good quality distance metric can enhance the perfor-

mance of the learning algorithm significantly. Therefore, determining

how to learn an appropriate distance metric for various learning algo-

rithms has been an open issue in recent research [9]. Distance metric

learning techniques can be applied for a wide range of applications in

data mining and multimedia retrieval, such as clustering, classification,

and content-based image and video retrieval [53].



CHAPTER 1. INTRODUCTION 4

1.2 Unified Learning Paradigm

1.2.1 Motivation

Human beings learn by being taught (supervised learning), by self-

study (unsupervised learning), by asking questions (active learning),

and by being examined for the ability to generalize (metric learning

or reinforcement learning), among many ways of acquiring knowledge.

An integrated process of supervised learning, unsupervised learning,

active learning, metric learning and reinforcement learning provides a

foundation for acquiring the known and discovering the unknown.

It is natural to extend the human learning process to statistical ma-

chine learning tasks. To this purpose, this thesis proposes a framework

of unified learning paradigm (ULP), which combines several machine-

learning techniques in a synergistic way to maximize the effectiveness

of a learning task. Three characteristics distinguish ULP from a tradi-

tional hybrid approach. First, ULP aims to minimize the human effort

required for the collection of quality labeled data. Second, ULP uses the

cluster information of unlabeled data, together with semi-supervised

learning, to ensure sufficiency of both labeled and unlabeled data, thus

guaranteeing the generalization ability of the learned results. Third,

ULP uses active learning and metric learning (or reinforcement learn-

ing and some other techniques) to access and speedup the convergence

of the learning process.

1.2.2 The Unified Learning Framework

Figure 1.1 illustrates the architecture of the Unified Learning Paradigm.

Basically, the ULP scheme comprises several main components includ-

ing a kernel initialization module, an unsupervised learning module,

a semi-supervised kernel learning module, an active learning module,

and a distance metric learning module. The unsupervised learning
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module learns the clustering information among the unlabeled data.

If contextual information is also available, the unsupervised learning

module can use the metric learned from the context via distance met-

ric learning techniques. After the unsupervised learning module has

finished, the clustering results are transmitted to the semi-supervised

kernel learning module. This collects the information from both la-

beled data and unlabeled data, as well as contextual data, to learn an

effective kernel function or matrix. Once the kernel is achieved, a su-

pervised kernel machine learning technique is adopted to train a unified

kernel machine based on the established kernels. Given that the trained

kernel machine may not be good enough for the final application, the

active learning module is used to choose a set of the most informative

unlabeled examples for labeling by users. Finally, convergence will be

tested on the unified kernel machines. If the resulting kernel machine

passes the test, then the ULP algorithm ends; otherwise it repeats the

above procedures for another iteration.

1.2.3 Open Issues

The above architecture shows a general ULP framework in terms of

kernel machine formulation. Several challenging issues that will be

explored in this thesis include:

(1) Semi-Supervised Kernel Learning.

The goal of the semi-supervised kernel learning module is to learn

effective kernel metrics from a collection of data. For a data

classification task, given labeled and unlabeled data, this can be

regarded as a problem of learning semi-supervised kernels from

the data. This is an important issue addressed in the present

work.

(2) Batch Mode Active Learning.

Active learning is critical to speeding up a learning task effectively.
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Figure 1.1: The unified learning paradigm framework

However, it is not yet clear how to develop an effective active

learning algorithm. This thesis proposes a Batch Mode Active

Learning (BMAL) method, which searches a batch of the most

informative examples for labeling. This may be more effective

than traditional methods.

(3) Distance Metric Learning.

When users’ contextual information is available, the distance met-

ric learning module has to learn effective distance metrics from

contexts. The metric can be either a linear Mahalanobis met-

ric or a kernel metric. Learning a quality metric is essential to

accomplishing the learning task.

These three components play the key roles in the ULP framework.

This thesis mainly focus on these issues. There are some other open
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issues that need to be explored in the future, such as theories of con-

vergence and generalization performances.

1.3 Applications

In addition to the studies of statistical machine learning methodol-

ogy, this thesis also investigates these techniques and algorithms with

applications to real-world problems. Two main applications are stud-

ied. One is data mining and web search application. The other is

collaborative multimedia retrieval. Let us briefly introduce the main

applications and related problems which will be explored in this thesis.

1.3.1 Data Mining and Web Applications

Two classical data mining problems considered here are data clustering

and classification tasks. This thesis investigates these problems with

extensions to web based applications including text categorization and

web query log mining.

Text Categorization. The goal of text categorization is to au-

tomatically assign text documents to predefined categories. With the

rapid growth of Web pages on the World Wide Web (WWW), text cat-

egorization has become more and more important, both in the world

of research and for user applications. Usually, text categorization is

regarded as a supervised learning problem. In order to build a reliable

model for text categorization, we need to first of all manually label a

number of documents using the predefined categories. Then, a statisti-

cal machine learning algorithm is engaged to learn a text classification

model from the labeled documents. One important challenge for large-

scale text categorization is how to reduce the number of labeled docu-

ments that are required for building reliable text classification models.

This is particularly important for text categorization of WWW docu-
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ments given the huge number of documents available on the Web. To

reduce the number of labeled documents, a novel batch mode active

learning scheme is proposed, which is able to select a batch of the most

informative unlabeled examples in each learning round.

Web Query Log Mining. One real dilemma for most of the

existing Web search engines is that users expect accurate search re-

sults while they only provide queries of limited length, which is usually

less than two words on average, according to the study in [147]. Re-

cently, a lot of work has been done in the Web search community to

expand the query terms with similar keywords for refining the search

results [10, 32, 147, 155, 156]. The basic idea is to use the click-through

data, which records the interactions between users and a search engine,

as the feedback to learn the similarity between query keywords. In this

thesis, a time-dependent framework is suggested to measure the seman-

tic similarity between Web search queries by mining the click-through

data. More specifically, a novel time-dependent query term semantic

similarity model is proposed and formulated by aMarginalized Kernel

technique that can exploit the click-through data more effectively than

traditional approaches.

1.3.2 Collaborative Multimedia Retrieval

The second main application considered in this thesis is multimedia

information retrieval. I restrict the attention to content-based image

retrieval (CBIR). CBIR has been an active research topic in the last

decade [43, 88, 124]. Although substantial research has been conducted,

CBIR is still an open research topic, mainly due to the difficulty in

bridging the gap between low-level feature representation and high-

level semantic interpretation. Several approaches have been proposed

to reduce the semantic gap and to improve the retrieval accuracy of

CBIR systems.
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One promising approach is to use online relevance feedback [5, 30,

48, 49, 50, 52, 55, 57, 56, 61, 102, 109, 110, 136]. This method first

solicits users’ relevance judgments on the initial retrieval results for

a given query image. It then refines the representation of the initial

query according to the acquired user judgments, and re-runs the CBIR

algorithm again with the refined representation. Given the difficulty in

learning users’ information needs from their relevance feedback, multi-

ple rounds of relevance feedback are usually required before satisfactory

results are achieved, which can significantly limit the application of this

approach to real-world problems.

An alternative approach to bypass the semantic gap is to index

image databases with text descriptions and allow users to pose tex-

tual queries against image databases. To avoid the excessive amount

of labor involved in manual annotation, automatic image annotation

techniques have been developed [17, 36, 66, 81]. However, text descrip-

tions generated by automatic annotation techniques are often inaccu-

rate and limited to a small vocabulary, and are therefore insufficient to

accommodate the diverse information needs of users.

Another important way to bridge the semantic gap is to exploit

users’ relevance feedback logs, an approach which has received only

a little attention in the community. From a long-term learning per-

spective, users’ feedback log data is an important resource to aid the

retrieval task in CBIR. To this end, a framework of “Collaborative Mul-

timedia Retrieval (CMR)” is proposed, which exploits users’ relevance

feedback log data for improving retrieval tasks. In order to develop

effective solutions for different retrieval stages, a two-stage learning

scheme is suggested for CMR. One is “Online Collaborative Multime-

dia Retrieval”, which learns online relevance feedback with users’ feed-

back logs based on a unified log-based relevance feedback scheme. The

other is “Offline Collaborative Multimedia Retrieval”, which learns a
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distance metric offline from users’ relevance feedback logs. These two

schemes can collaborate in a unified solution in order to accomplish the

retrieval tasks effectively.

1.4 Contributions

This thesis aims to develop a unified solution that can combine several

statistical machine learning techniques in an effective learning way. To

this purpose, a novel framework of unified learning paradigm (ULP)

is presented, which integrates several learning techniques including su-

pervised learning, unsupervised learning and active learning in a syn-

ergistic way to maximize the effectiveness with which a learning task

is carried out. Based on this global framework, some challenging prob-

lems are addressed and novel algorithms are proposed to solve them

effectively. The main contributions of this thesis can be further de-

scribed as follows:

(1) Learning Unified Kernel Machines.

A novel classification scheme of learning unified kernel machines

is proposed, which combines supervised kernel-machine learning,

unsupervised kernel design and active learning in a unified solu-

tion. In this scheme, a new Spectral Kernel Leaning (SKL) algo-

rithm is developed, which learns more effective semi-supervised

kernels from labeled and unlabeled data than traditional semi-

supervised kernel learning methods.

(2) Batch Mode Active Learning.

A novel framework of Batch Mode Active Learning (BMAL) is

proposed and formulated into a convex optimization problem. To

solve the problem efficiently, an efficient BMAL algorithm is de-

veloped that can solve large-scale problems effectively. Exten-

sive evaluations are conducted on text categorization tasks and
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promising results are found.

(3) Distance Metric Learning.

To learn effective distance metrics from context, two new algo-

rithms, Discriminative Component Analysis (DCA) and Kernel

Discriminative Component Analysis (KDCA), are proposed to

learn both linear and nonlinear distance metrics from pairwise

contextual constraints. The proposed methods enjoy the merits

of simplicity and state-of-the-art performance in data clustering

applications.

(4) Marginalized Kernels for Web Query Mining.

To tackle the challenge of mining web query logs to improve web

searches, a novel time-dependent framework is proposed for min-

ing semantic related queries from web query log data. To de-

velop an effective algorithm, Marginalized kernel techniques are

suggested to design kernels that can measure the similarities be-

tween queries effectively. The suggested method has been shown

effective from extensive evaluations on query log data collected

from a real-world search engine.

(5) Online Collaborative Multimedia Retrieval.

To attack the challenging semantic gap problem, an “Online Col-

laborative Multimedia Retrieval” scheme is studied, which learns

online relevance feedback with users’ feedback logs based on a

novel Log-based Relevance Feedback (LRF) solution. To develop

an effective LRF algorithm, a modified SVM technique, called

Soft Label Support Vector Machine (SLSVM), is proposed, which

can solve the LRF task more effectively and robustly.

(6) Offline Collaborative Multimedia Retrieval.

In a long-term consideration, to bridge the semantic gap and re-

duce the online learning cost, an “Offline Collaborative Multi-
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media Retrieval is investigated, which learns a reliable distance

metric offline by using a novel Regularized Distance Metric Learn-

ing (RDML) algorithm. Compared with traditional methods, the

RDML algorithm is able to learn more robust metrics, particu-

larly in the presence of noisy log data.

1.5 Scope and Organization

This thesis reviews some main methodology in statistical machine learn-

ing, and presents a framework of unified learning paradigm that inte-

grates several machine learning techniques in a unified solution. Based

on the framework, several important issues including distance metric

learning and batch mode active learning, are extensively explored. This

thesis also extends some novel statistical machine learning techniques

to address some real-world problems in web data mining and multime-

dia retrieval applications and demonstrate promising results. The rest

of this thesis is organized as follows:

• Chapter 2

This chapter reviews some background knowledge and work re-

lated to the main methodology and problems that will be dis-

cussed in this thesis.

• Chapter 3

I present a scheme for learning unified kernel machines (UKM)

for classification tasks based on the ULP solution. A new spec-

tral kernel learning algorithm is proposed to learn semi-supervised

kernels from both labeled and unlabeled data. Then the UKM

scheme is formulated and applied to learn a paradigm of Uni-

fied Kernel Logistic Regression for classification tasks. Empirical

results on benchmark datasets will be discussed.
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• Chapter 4

This chapter investigates the problem of active learning to search

a batch of informative examples for labeling. To do active learning

effectively for large-scale applications, a scheme of batch mode

active learning (BMAL) is proposed and formulated into a convex

optimization problem that can be efficiently solved. Extensive

evaluations on text categorization will be discussed.

• Chapter 5

This chapter studies the problem of distance metric learning. To

learn effective metrics from pairwise contextual constraints, two

novel algorithms, Discriminative Component Analysis (DCA) and

Kernel DCA, are proposed to learn both linear and nonlinear

distance metrics. Empirical evaluations on data clustering will be

discussed.

• Chapter 6

This chapter applies kernel techniques to solve a real-world web

data mining problem. A new time-dependent framework is sug-

gested for mining semantic related queries from users’ query log

data, which is formulated using marginalized kernel techniques.

Extensive evaluations on real-world web query logs will be dis-

cussed.

• Chapter 7

This chapter studies the problem of online collaborative multi-

media retrieval by applying supervised kernel machine learning

techniques. The problem is tackled by means of a log-based rele-

vance feedback scheme formulated using a novel soft label support

vector machine algorithm, which is more robust for noisy data.

Extensive evaluations on real-world log data will be studied.
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• Chapter 8

This chapter studies the problem of offline collaborative multi-

media retrieval by applying distance metric learning techniques.

The problem is solved by a Regularized Distance Metric Learning

(RDML) algorithm, which is formulated as a semi-definite pro-

gramming problem that can be solved with global optima. Com-

pared with traditional methods, the RDML algorithm is more

reliable at learning a robust metric. Extensive evaluations on

real-world log data will be studied.

• Chapter 9

The last chapter summarizes the achievements of this thesis and

addresses some directions to be explored in future work.

Each chapter of the thesis is intended to be self-contained. Thus,

in some chapters, some definitions, formulas, or illustrative figures that

have already appeared in previous chapters, may be briefly reiterated.

� End of chapter.



Chapter 2

Background Review

2.1 Supervised Learning

Supervised learning considers the problem of learning the function that

best estimates the responses of a supervisor given a collection of train-

ing examples. There is a rich basis of statistical learning theory for the

supervised learning setting. Let us first take a short review of statistical

learning theory in terms of regularization theory.

2.1.1 Overview of Statistical Learning Theory

In a general setting of supervised learning, assume that we are given a

training set of l independent and identically distributed observations

(x1, y1), (x2, y2), . . . , (xl, yl)

where xi are vectors produced by a generator and yi are the associ-

ated responses by a supervisor. A learning machine estimates a set of

approximated functions f to approach the supervisor’s responses. It

is an ill-posed problem to approximate a function from sparse data.

This is typically solved by the regularization theory [38]. The classical

regularization theory formulates the learning problem as a variational

problem of finding the function f which tends to minimize the following

15
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functional:

f = arg min
f∈HK

1

l

l∑
i=1

L(xi, yi, f) + λ‖f‖2K, (2.1)

where L(·, ·, ·) is a loss function, ‖f‖2K is a norm in a Reproducing Ker-

nel Hilbert Space (RKHS) H defined over the positive definite function

K, λ is the regularization parameter, and the whole penalty norm

λ‖f‖2K imposes smoothness conditions on the solution space.

Many supervised kernel-machine techniques can be formulated into

the above regularization learning framework. Here, let us show three

different choices of loss functions which correspond to three state-of-

the-art algorithms:

• Regularized Least Squares Networks (RLS):

V (xi, yi, f) = (yi − f(xi))
2 , (2.2)

• Support Vector Machine Regression (SVMR):

V (xi, yi, f) = (yi − f(xi))ε , (2.3)

• Support Vector Machine Classification (SVMC):

V (xi, yi, f) = (1− yif(xi))+ , (2.4)

where (·)ε is the Vapnik’s epsilon-insensitive norm [141], (·)+ is the

hinge loss in which (a)+ = a if a is positive and zero otherwise, and

yi is a real number for both RLS and SVMR, and takes +1 or -1 for

SVMC. Two popular algorithms, Support Vector Machines and Kernel

Logistic Regressions, will be further discussed in the following sections.

2.1.2 Support Vector Machines

Support Vector Machines (SVMs) enjoy solid theoretical foundations

and have demonstrated outstanding performance in many empirical
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applications [21]. In theory, SVM can be interpreted from the statistical

regularization learning framework [38]. More specifically, SVM can be

formulated as a similar regularized learning problem:

f = arg min
f∈HK

1

l

l∑
i=1

(1− yif(xi))+ + λ‖f‖2K , (2.5)

where (·)+ is the hinge loss in which (a)+ = a if a is positive and zero

otherwise, and yi is the class label.

However, practical SVM users may be more familiar with another

formula:

min
w,ξ,b

1

2
‖w‖2 + C

l∑
i=1

ξi (2.6)

subject to yi(w · Φ(xi)− b) ≥ 1− ξi ,

ξi ≥ 0 , i = 1, 2, · · · , l ,

where C is a penalty parameter of the error term ξi, which is equivalent

to the regularization parameter 1
2λl

where λ is the parameter in the

above regularization framework, Φ(·) is a kernel mapping function, and

the labels yi are either +1 or −1 for a regular binary classification

problem.

The solution to the above convex optimization problem can be found

by introducing the Lagrange functional technique [141, 19]. It then can

be formulated into a dual form as a QP problem as follows:

max
α

l∑
i=1

αi − 1

2

l∑
i,j=1

αiαjyiyjΦ(xi) · Φ(xj) (2.7)

subject to

l∑
i=1

αiyi = 0

0 ≤ αi ≤ C , i = 1, 2, . . . , l .

This is a typical QP problem that can be solved effectively by a stan-

dard QP technique or by some other available method, such as Sequen-

tial Minimal Optimization (SMO) techniques [101].
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2.1.3 Kernel Logistic Regressions

Similarly, Kernel Logistic Regression (KLR) can also be formulated

into the regularization learning framework:

min
f∈HK

1

l

l∑
i=1

ln(1 + e−yif(xi)) +
λ

2
||f ||2HK

, (2.8)

where λ is a regularization parameter. To solve the above optimization,

let us first definite the following notations:

pi =
1

1 + e−yif(xi)
, i = 1, . . . , l (2.9)

α = (α1, . . . , αl)
� (2.10)

p = (p1, . . . , pl)
� (2.11)

y = (y1, . . . , yl)
� (2.12)

K1 = (K(xi,x
′
i))

l
i,i′=1 (2.13)

K2 = K2 (2.14)

W = diag(p1(1− p1), . . . , pl(1− pl)). (2.15)

Using the above notations and the representer theorem [141], the ob-

jective function can be rewritten as follows:

1

l
1� ln(1 + e−y·(K1α)) +

λ

2
α�K2α, (2.16)

where “·” denotes an element-wise multiplication. To find the solution

α, one can use a Newton-Raphson method to solve it iteratively by the

following steps:

α(k) = (
1

l
K�

1 WK1 + λK2)
−1K�

1 Wz, (2.17)

where α(k) is the value of α in the k-th step, and z is computed as

follows:

z =
1

l
(K1α

(k−1) + W−1(y · p)) . (2.18)
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2.2 Unsupervised Learning

In many real-world applications, it may be expensive to assign labels

to data. In these situations, unsupervised learning techniques are often

used to discover unknown knowledge from a large amount of unlabeled

data. A well-known methodology among various unsupervised learning

techniques is data clustering. Let us briefly review several representa-

tive clustering algorithms.

2.2.1 K-Means Clustering

In general, in an unsupervised learning task, assume that we are given

a collection of data examples {xi}ni=1. The goal of clustering is to divide

the data examples into k disjoint groups such that examples in a same

group share the similar characteristics.

The K-Means clustering algorithm is one of the most popular clus-

tering techniques. The main idea of K-Means is to divide data examples

so that the within-group scatter is minimized. Typically, it proceeds

via the following steps:

(1) Initialize a random partition: {Ci}ki=1.

(2) Update assignments until convergence:

For each xj , assign xj → Cp
where p = arg mini‖xj − µi‖M and µi = 1

|Ci|
∑

x∈Ci
x

where M is a distance metric among a family of Mahalanobis Metrics.

The Euclidean distance metric is typically used by default for K-Means

clustering.

2.2.2 Kernel K-Means Clustering

Regular K-Means using a linear metric cannot separate data with com-

plex nonlinear relationships, such as non-convex shapes. Kernel K-

Means clustering using kernel trick maps the original data to a feature
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space by a nonlinear transformation φ : x→ f , and then runs K-Means

in the feature space. Typically, Kernel K-Means clustering proceeds via

the following steps:

(1) Initialize a random partition: {Ci}ki=1.

(2) Update assignments until convergence:

For each xj , assign xj → Cp
where p = arg maxi

(
2|Ci|

∑
x∈Ci

K(xj ,x)−∑x,x′∈Ci
K(x,x′)

)
where K is a predefined kernel, such that K(x,x′) = 〈φ(x), φ(x′)〉.

2.3 Semi-Supervised Learning

Semi-supervised learning considers the problem of learning from both

a set of labeled data pairs {(x1, y1), . . . , (xl, yl)} and a set of unlabeled

data {xl+1, . . . ,xn}, in which the number of unlabeled examples n-l

is typically much larger than the labeled ones l. In recent research

studies, many methods have been proposed for solving semi-supervised

learning problems, such as EM with generative mixture models [100],

co-training [18], self-training [107], Transductive Support Vector Ma-

chines [69], and graph-based methods [12, 14, 127, 173, 172], among

others. A comprehensive survey can be found in [170].

2.4 Active Learning

Active learning, or so-called pool-based active learning, has been exten-

sively studied in machine learning for many years and has already been

employed for text categorization [84, 85, 93, 108]. Most active learn-

ing algorithms are conducted in an iterative fashion. In each iteration,

the example with the highest classification uncertainty is chosen for

labeling manually. Then, the classification model is retrained with the

additional labeled example. The step of training a classification model
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and the step of soliciting a labeled example are iterated alternately until

most of the examples can be classified with reasonably high confidence.

One of the key issues in active learning is how to measure the classifi-

cation uncertainty of unlabeled examples. In [39, 40, 44, 76, 93, 119], a

number of distinct classification models are first generated. Then, the

classification uncertainty of a test example is measured by the amount

of disagreement among the ensemble of classification models in pre-

dicting the labels for the test example. Another group of approaches

measures the classification uncertainty of a test example according to

how far the example is away from the classification boundary (i.e., the

classification margin) [22, 116, 137]. One of the most well-known ap-

proaches within this group is support vector machine active learning,

developed by Tong and Koller [137]. Due to its popularity and success

in previous studies, it is used as the baseline approach in our study.

2.5 Distance Metric Learning

The problems for learning distance metrics and data transformation

have become more and more popular in recent research due to their

broad application. One kind of approach is to use the class labels

of data instances to learn distance metrics in supervised classification

settings. Let us briefly introduce several traditional methods. Hastie

et al. [47] and Jaakkola et al. [63] used the labeled data instances

to learn distance metrics to address classification tasks. Tishby et

al. [135] considered the joint distribution of two random variables X

and Y to be known, and then learned a compact representation of X

that enjoys high relevance to Y . Most recently, Goldberger et al. [42]

proposed the Neighborhood Component Analysis approach to learn

a distance measure for kNN classification by directly maximizing a

stochastic variant of the leave-one-out kNN score on the training set.

Zhou et al. proposed a kernel partial alignment scheme to learn kernel
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metrics for interactive image retrieval [168]. Most of these studies need

to explicitly use the class labels as the side-information for learning the

representations and distance metrics.

Recently, some work has addressed the problems of learning with

contextual information in terms of pairwise constraints. Wagstaff et

al. [145] suggested the K-means clustering algorithms by introducing

the pairwise relations. Xing et al. [153] studied the problem of find-

ing an optimal Mahalanobis metric from contextual constraints with a

constrained K-means algorithm. Bar-Hillel et al. [9] proposed a much

simpler approach called Relevant Component Analysis (RCA), which

enjoys comparable performance with Xing’s method. Other related

methods studied recently can also be found in [77, 150]. Due to the

popularity of RCA and Xing’s methods, let us review these two impor-

tant techniques as follows.

The problem of distance metric learning is to find the optimal Ma-

halanobis metric that is used to measure the distance between two data

instances as dM(xi,xj) =
√

(xi − xj)�M(xi − xj), where M must be

positive semi-definite to satisfy the properties of a metric, i.e., non-

negativity and triangle inequality. The matrix M can be decomposed

as M = A�A, where A is a transformation matrix. The goal of RCA

learning is to find an optimal Mahalanobis matrix M and the optimal

data transformation matrix A using the contextual information.

Given the pairwise contextual constraints S and D, Xing et al. [153]

formulated the problem of distance metric learning into the following

convex programming problem:

min
M

∑
(xi,xj)∈S

‖xi − xj‖2M

s. t.
∑

(xi,xj)∈D
‖xi − xj‖2M ≥ 1

M � 0 (2.19)

In the equations above, the optimal metric M is found by minimizing
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the sum of the squared distances between pairs of similar data examples

S, and meanwhile satisfying the constraint that the sum of the squared

distances between dissimilar data examples D is larger than 1. In other

words, this algorithm tries to minimize the distance between similar

data and maximize the distance between dissimilar data at the same

time.

RCA uses a much simpler approach for distance metric learning.

The basic idea of RCA learning is to identify and scale down global

unwanted variability within the data. RCA changes the feature space

used for data representation via a global linear transformation in which

relevant dimensions are assigned with large weights [9]. The relevant

dimensions are estimated by chunklets [9], each of which is defined

as a group of data instances linked together with positive constraints.

More specifically, given a data set X = {xi}Ni=1 and n chunklets Cj =

{xji}nj

i=1, RCA computes the following matrix:

Ĉ =
1

N

n∑
j=1

nj∑
i=1

(xji −mj)(xji −mj)
� (2.20)

where mj denotes the mean of the j-th chunklet, xji denotes the i-th

data instance in the j-th chunklet and N is the number of data in-

stances. The optimal linear transformation by RCA is then computed

as A = Ĉ− 1
2 and the Mahalanobis matrix is equal to the inverse of the

matrix C, i.e., M = Ĉ−1. RCA enjoys the merits of simple implemen-

tation and good computational efficiency.

2.6 Web Data Mining

2.6.1 Text Categorization

The goal of text categorization is to automatically assign text docu-

ments to the predefined categories. With the rapid growth of Web

pages on the World Wide Web (WWW), text categorization has be-
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come more and more important, both the world of research and in

practical applications. Usually, text categorization is regarded as a su-

pervised learning problem. In order to build a reliable model for text

categorization, we need first of all to manually label a number of doc-

uments using the predefined categories. Then, a statistical machine

learning algorithm is engaged to learn a text classification model from

the labeled documents. One important challenge for large-scale text

categorization is how to reduce the number of labeled documents that

are required for building reliable text classification models. This is par-

ticularly important for text categorization of WWW documents, given

the huge number of documents available on the Web.

Text categorization is a long-term research topic which has been

actively studied in the communities of Web data mining, information

retrieval and statistical learning [79, 158]. Essentially, the text catego-

rization techniques have been the key toward automated categorization

of large-scale Web pages and Web sites [87, 122], which is further ap-

plied to improve Web searching engines in finding relevant documents

and to help users browsing Web pages or Web sites.

In the past decade, a number of statistical learning techniques have

been applied to text categorization [157], including the K Nearest

Neighbor approaches [92], decision trees [4], Bayesian classifiers [139],

inductive rule learning [28], neural networks [112], and support vec-

tor machines (SVM) [67]. Empirical studies in recent years [67] have

shown that SVM is the state-of-the-art technique among all the meth-

ods mentioned above.

Recently, logistic regression, a traditional statistical tool, has at-

tracted considerable attention for text categorization and high-dimension

data mining [74]. Several recent studies have shown that the logis-

tic regression model can achieve comparable classification accuracy to

SVMs in text categorization. Compared to SVMs, the logistic regres-
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sion model has the advantage in that it is usually more efficient in

model training, especially when the number of training documents is

large [75, 160]. This motivates us to choose logistic regression as the

basis classifier for large-scale text categorization.

2.6.2 Web Query Log Mining

In this part, I review some related work in web query log mining, mainly

with respect to the following two aspects: query expansion with click-

through data, and temporal analysis of click-through data.

Query expansion with click-through data is motivated by the well-

known relevance feedback techniques, which modify the queries based

on users’ relevance judgments of the retrieved documents [6, 34, 71].

Typically, expansion terms are extracted based on the frequencies or

co-occurrences of the terms from the relevant documents. However, it

is difficult to obtain sufficient feedback, since users are usually reluc-

tant to provide such feedback information. Even though the pseudo-

relevance feedback approach can partially alleviate the lack of feed-

backs, it still suffers from the failure of the assumption that a frequent

term from the top-ranked relevant documents will tend to co-occur

with all query terms, which may not always hold [8, 155].

The click-through data has been studied for query expansion in the

past [10, 32, 147, 156]. The existing work can be categorized into two

groups. The first group examines the approach of expanding queries

with similar queries based on the assumption that similarity between

queries may be deduced from the common documents the users visited

after issuing those queries [10, 147, 156]. The second group expands

queries with similar terms in the corresponding documents being visited

in the history [32]. In addition to query expansion, click-through data

has also been used to learn the rank function [70, 105].

More recently, several investigators have begun to analyze the tem-
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poral and dynamic nature of the click-through data [11, 27, 121, 144].

In [11], Beitzel et al. proposed the first approach to show the changes

of popularities on an hourly basis. By using the categorization infor-

mation of the Web queries, the results show that query traffic from

particular topical categories differs from both the query stream as a

whole and queries in other categories. Moreover, Shen et al. [121] pro-

posed investigating the transitions among the topics of pages visited by

a sample of Web search users. They constructed a model to predict the

transitions in the topics for individual users and groups of users. Vla-

chos et al. [144] suggested identifying similar queries based on historical

demand patterns, which are represented as time series using the best

Fourier coefficients and the energy of the omitted components. Simi-

larly, Chien and Immorlica [27] proposed finding semantically similar

queries using the temporal correlation.

2.7 Collaborative Multimedia Retrieval

2.7.1 Image Retrieval

With the rapid growth of digital devices for capturing and storing mul-

timedia data, multimedia information retrieval has become one of the

most important research topics in recent years, among which image

retrieval has been one of the key challenging problems. In the image

retrieval field, content-based image retrieval (CBIR) is one of the most

important topics, which has attracted a broad range of research inter-

ests in many computer science communities in the past decade [124].

Although extensive studies have been conducted, finding desired im-

ages from multimedia databases is still a challenging and open issue.

The main challenge is due to the semantic gap between the low-level

visual features extracted by computers and high-level human percep-

tion and interpretation [124]. Many early studies on CBIR focused
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primarily on low-level feature analysis [65, 126].

However, because of the complexity of visual image interpretation

and the challenge of the semantic gap, it is impossible to discriminate

all images by employing some rigid simple similarity measure on the

low-level features. Although it is feasible to bridge the semantic gap

by building an image index with textual descriptions, manual indexing

on image databases is typically time-consuming, costly and subjective,

and hence difficult to deploy fully in practical applications. Despite the

promising results recently reported in image annotations [17, 66, 81],

fully automatic image annotation is still a long way off. Relevance feed-

back, as an alternative and more feasible technique to mitigate the se-

mantic gap issue, has been intensively investigated in recent years [111].

2.7.2 Relevance Feedback

Relevance feedback, originated from text-based information retrieval,

is a powerful technique to improve retrieval performance [115]. In order

to approach the query targets of an user, relevance feedback is viewed

as the process of automatically altering an existing query by incor-

porating the relevance judgments that the user provided for previous

retrieval tasks. In image retrieval, relevance feedback will first solicit

the user’s relevance judgments on the retrieved images returned by

CBIR systems. Then, it refines retrieval results by learning the query

targets from the relevance information provided. Although relevance

feedback originated from text information retrieval, it is remarkable

to see that later on it attracted much more attention in the field of

image retrieval. In the past decade, various relevance feedback tech-

niques have been proposed, ranging from heuristic methods to many

sophisticated learning techniques [?, 61, 143].

The early relevance feedback for image retrieval was typically in-

spired by traditional relevance feedback in text retrieval. For example,
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Rui et al. [111] proposed learning according to the ranks of the positive

and negative images along the feature axis in the feature space, which

is similar to the idea of learning on “term frequency” and “inverse term

frequency” in the text retrieval domain [106]. Later on, more system-

atic and comprehensive schemes were suggested to formulate the rel-

evance feedback problem into an optimization problem. For example,

MindReader formulated the feedback task as an optimization problem

in which parameters are learned by minimizing the sum of overall dis-

tances from the query centroid to all relevant samples [62]. Rui et

al. proposed a more rigorous approach called “Optimizing Learning”,

which systematically formulates the relevance feedback as an optimiz-

ing problem and suggested a hierarchical learning approach rather than

a flat model like the one in MindReader.

Recently, in parallel with the rapid developments in machine learn-

ing, a variety of machine learning techniques have been applied to

the relevance feedback problem in image retrieval, including Bayesian

learning [142], decision tree [89], boosting techniques [134], discrimi-

nant analysis [61, 169], dimension reduction [132, 169], ensemble learn-

ing [55, 133], etc. Moreover, some unsupervised learning techniques,

like SOM [78] and EM algorithms [152], have also been evaluated in the

literature. Recently, Support Vector Machines (SVMs) [141] have been

widely explored in machine learning since they enjoy superior perfor-

mance in real-world applications of pattern classification and recogni-

tion. Numerous investigations have applied SVMs to relevance feed-

back in CBIR [54, 60, 136, 162]. Previous studies have shown that SVM

is one of the most promising and successful approaches for attacking

the relevance feedback problem.
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2.8 Convex Optimization

2.8.1 Overview of Convex Problems

Many machine learning problems studied in this thesis can be formu-

lated as constrained optimization problems. These problems, with

proper mathematical manipulations, can sometimes be expressed in

convex form. These kinds of convex problems can be optimally solved

very efficiently in practice. Specifically, interior-point methods are of-

ten used to solve these problems to a specified accuracy within a poly-

nomial operations of the problem dimensions. More details about con-

vex optimization theory can be found in reference [19].

Let us first look at some basic definitions of convex problems.

Definition 1 Convex Sets: A set S is convex if the line segment

between any two points in S lies in S, i.e., if for any x1, x2 ∈ S and

any θ with 0 ≤ θ ≤ 1, we have

θx1 + (1− θ)x2 ∈ S . (2.21)

�

Definition 2 Convex Functions: A function f : R
n → R is convex

if domf is a convex set and if for all x,y ∈ domf , and any θ with

0 ≤ θ ≤ 1, the following inequality holds:

f(θx + (1− θ)y) ≤ θf(x) + (1− θ)f(y) . (2.22)

�

Definition 3 Convex Problems: A convex optimization problem

(convex program) is defined as one being in the following form [19]:

min
x

f0(x) (2.23)

s.t. fi(x) ≤ 0 1 ≤ i ≤ m, (2.24)

hi(x) = 0 1l ≤ i ≤ k, (2.25)
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where x ∈ R
n is the optimization variable, f0, . . . , fm are convex func-

tions, and h0, . . . , hk are linear functions (affine functions). �

In the above definition, the function f0 is usually called the objective

function or cost function. The inequalities are called inequality con-

straints and the equations are called equality constraints. If there is no

constraint, the problem is an unconstrained problem. The subsequent

parts review several types of convex optimization problems.

2.8.2 Linear Program

Definition 4 Linear Program (LP): A convex optimization prob-

lem is called a linear program (LP) when the objective and constraint

functions are all affine. The LP has the following general form:

min
x

c�x + d (2.26)

s.t. Gx 
 h, (2.27)

Ax = b, (2.28)

where G ∈ R
m×n and A ∈ R

p×n. �

2.8.3 Quadratic Program

Definition 5 Quadratic Program (QP): A convex optimization prob-

lem is called a quadratic program (QP) if the objective function is (con-

vex) quadratic, and the constraint functions are affine. The QP is gen-

erally expressed as:

min
x

1
2
x�Px + q�x + r (2.29)

s.t. Gx 
 h, (2.30)

Ax = b, (2.31)

where P ∈ S
n
+, G ∈ R

m×n and A ∈ R
p×n. �

From the above definitions, one can see that quadratic programs include

linear programs as a special case when P = 0.
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2.8.4 Quadratically Constrained Quadratic Program

Definition 6 Quadratically Constrained Quadratic Program

(QCQP): A convex optimization problem is called a quadratically con-

strained quadratic program (QCQP) if the objective function and the

constraint functions are all (convex) quadratic. The QCQP is gener-

ally expressed as:

min
x

1
2
x�P0x + q�0 x + r0 (2.32)

s.t. 1
2
x�Pix + q�i x + ri, i = 1, . . . , m (2.33)

Ax = b, (2.34)

where Pi ∈ S
n
+, i = 0, . . . , m. �

It is evident that quadratically constrained quadratic programs include

quadratic programs and linear programs as special cases.

2.8.5 Cone Program

In addition to convex optimization problems of standard forms, another

type of very useful generalizations are convex optimization problems

with generalized inequality constraints. One of the simplest case is the

Cone Program (CP), which is defined as follows:

Definition 7 Cone Program (CP): A convex optimization problem

with generalized inequalities is called a Cone Program (CP) if the ob-

jective function is linear and the inequality constraint functions are

affine:

min
x

c�x (2.35)

s.t. Fx + g 
K 0 (2.36)

Ax = b, (2.37)

where K ⊆ R
k is a proper cone. �
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2.8.6 Semi-definite Program

Definition 8 Semi-definite Program (SDP): A convex optimiza-

tion problem with generalized inequalities is called a semi-definite pro-

gram (SDP) if the objective function is linear and the inequality con-

straint functions are affine with the cone of positive semi-definite k×k

matrices, i.e., K is S
k
+. The SDP has the standard form as:

min
x

c�x (2.38)

s.t. x1F1 + . . . + xnFn + G 
 0 (2.39)

Ax = b, (2.40)

where G, F1, . . . , Fn ∈ S
k and A ∈ R

p×n. �

Similarly, SDP problems include LP, QP and QCQP as special cases.

As a comparison of computational complexity, all of them can be solved

efficiently in polynomial time. Among these four types of problems, in

general, SDP is the hardest problem, QCQP is easier than SDP, QP is

easier than QCQP, and LP is the easiest one.

� End of chapter.



Chapter 3

Learning Unified Kernel

Machines

3.1 Motivation

Classification is a core data mining technique and has been actively

studied in the past decades. In general, the goal of classification is to

assign unlabeled testing examples with a set of predefined categories.

Traditional classification methods are usually conducted in a supervised

learning way, in which only labeled data are used to train a predefined

classification model. In the literature, a variety of statistical mod-

els have been proposed on classification in the machine learning and

data mining communities. Amongst of the most popular and successful

methodologies are the kernel-machine techniques, such as Support Vec-

tor Machines [141] and Kernel Logistic Regressions [171]. Like other

early work for classification, traditional kernel-machine methods are

usually performed in the supervised learning manner, which considers

only the labeled data in the training phase.

Ideally, a good classification model should take advantage of not

only the labeled data, but also the unlabeled data when they are avail-

able. Learning on both labeled and unlabeled data has become an

33
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important research topic in recent years. One way to exploit the un-

labeled data is to use active learning [29]. The goal of active learning

is to choose the most informative example from the unlabeled data for

manual labeling. In recent years, active learning has been applied to

many classification tasks [85].

Another popular emerging technique for exploiting unlabeled data

is semi-supervised learning [26], which has attracted a surge of research

attention recently [170]. A variety of machine-learning techniques have

been proposed for semi-supervised learning, of which the most well-

known approaches are based on the graph Laplacians methodology [166,

174, 26]. While promising results have been generally reported in this

research area, there are so far few comprehensive semi-supervised learn-

ing schemes applicable to large-scale classification problems.

Although supervised learning, semi-supervised learning and active

learning have been studied separately, so far there are few comprehen-

sive schemes to combine these techniques together effectively for classi-

fication tasks. To this end, we propose a general framework of learning

the Unified Kernel Machines (UKM) [24, 25] by unifying supervised

kernel-machine learning, semi-supervised learning, unsupervised kernel

design and active learning together for large-scale classification prob-

lems.

The rest of this chapter is organized as follows. Section 3.2 presents

our framework for learning the unified kernel machines. Section 3.3

proposes a new Spectral Kernel Learning (SKL) algorithm for learning

semi-supervised kernels. Section 3.4 presents a specific UKM paradigm

for classification, namely the Unified Kernel Logistic Regression (UKLR).

Section 3.5 evaluates the empirical performance of our proposed algo-

rithm and the UKLR classification scheme. Section 3.6 analyzes the

complexity and scalability of our proposed method. Section 3.7 sum-

marizes this chapter.
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3.2 Unified Kernel Machines Framework

In this section, we present the framework for learning the unified kernel

machines by combining supervised kernel machines, semi-supervised

kernel learning and active learning techniques into a unified solution.

Figure 3.1 gives an overview of our proposed scheme. For simplicity,

we restrict our discussions to classification problems.

Let M(K, α) denote a kernel machine that has some underlying

probabilistic model, such as a kernel logistic regressions (or a support

vector machine). In general, a kernel machine contains two compo-

nents, i.e., the kernel K (either a kernel function or simply a kernel

matrix), and the model parameters α. In traditional supervised kernel-

machine learning, the kernel K is usually a known parametric kernel

function and the goal of the learning task is usually to determine the

model parameter α. This often limits the performance of the kernel

machine if the specified kernel is not appropriate.

To this end, we propose a unified scheme to learn the unified kernel

machines by learning on both the kernel K and the model parameters α

together. In order to exploit the unlabeled data, we suggest combining

semi-supervised kernel learning and active learning techniques together

for learning the unified kernel machines effectively from the labeled and

unlabeled data. More specifically, we outline a general framework of

learning the unified kernel machine as follows.

Let L denote the labeled data and U denote the unlabeled data. The

goal of the unified kernel machine learning task is to learn the kernel

machine M(K∗, α∗) that can classify the data effectively. Specifically,

it includes the following five steps:

• Step 1. Kernel Initialization

The first step is to initialize the kernel component K0 of the kernel

machine M(K0, α0). Typically, users can specify the initial ker-
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Figure 3.1: Learning the unified kernel machines

nel K0 (function or matrix) with a standard kernel. When some

domain knowledge is available, users can also design a kernel with

domain knowledge (or some data-dependent kernels).

• Step 2. Semi-Supervised Kernel Learning

The initial kernel may not be good enough to classify the data

correctly. Hence, we propose employing the semi-supervised ker-

nel learning technique to learn a new kernel K by engaging both

the labeled L and unlabeled data U available.

• Step 3. Model Parameter Estimation

When the kernel K is known, to estimate the parameters of the

kernel machines based on some model assumption, such as Kernel

Logistic Regression or Support Vector Machines, one can simply

employ the standard supervised kernel-machine learning approach

to solve the model parameters α.
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• Step 4. Active Learning

In many classification tasks, labeling is expensive. Active learning

is an important way of reducing human effort involved in labeling.

Typically, we can choose a batch of the most informative examples

S that can most effectively update the current kernel machine

M(K, α).

• Step 5. Convergence Evaluation

The last step is the convergence evaluation, in which we check

whether the kernel machine is good enough for the classification

task. If it is not, we will repeat the above steps until a satisfactory

kernel machine is obtained.

This is a general framework for learning unified kernel machines. In

this chapter, we focus our main attention on a semi-supervised kernel

learning technique, which is a core component of learning the unified

kernel machines.

3.3 Spectral Kernel Learning

We propose a new semi-supervised kernel learning method, which is

a fast and robust algorithm for learning semi-supervised kernels from

labeled and unlabeled data. In the following parts, we first introduce

the theoretical foundation and then present our spectral kernel learning

algorithm. Finally, we show the connections of our method to exist-

ing work and justify the effectiveness of our solution from empirical

observations.

3.3.1 Theoretical Foundation

Let us first consider a standard supervised kernel learning problem.

Assume that the data (X, Y ) are drawn from an unknown distribution
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D. The goal of supervised learning is to find a prediction function p(X)

that minimizes the following expected true loss:

E(X,Y )∼DL(p(X), Y ),

where E(X,Y )∼D denotes the expectation over the true underlying dis-

tribution D. In order to achieve a stable estimation, we usually need

to restrict the size of hypothesis function family. Given l training ex-

amples (x1,y1),. . .,(xl,yl), we typically train a prediction function p̂ in

a reproducing Hilbert space H by minimizing the empirical loss [141].

Since the reproducing Hilbert space can be large, to avoid overfitting

problems, we often consider a regularized method as follows:

p̂ = arg inf
p∈H

(
1

l

l∑
i=1

L(p(xi), yi) + λ||p||2H
)

, (3.1)

where λ is a chosen positive regularization parameter. It can be shown

that the solution of (3.1) can be represented as the following kernel

method:

p̂(x) =
l∑

i=1

α̂ik(xi,x)

α = arg inf
α∈Rl

(
1

l

l∑
i=1

L (p(xi), yi) + λ

l∑
i,j=1

αiαjk(xi,xj)

)
,

where α is a parameter vector to be estimated from the data and

k is a kernel, which is known as kernel function. Typically a kernel

returns the inner product between the mapping images of two given

data examples, such that k(xi,xj) = 〈Φ(xi), Φ(xj)〉 for xi,xj ∈ X .

Let us now consider a semi-supervised learning setting. Given

labeled data {(xi, yi)}li=1 and unlabeled data {xj}nj=l+1, we consider

learning the real-valued vectors f ∈ R
n by the following semi-supervised

learning method:

f̂ = arg inf
f∈Rn

(
1

n

n∑
i=1

L(fi, yi) + λf�K−1f

)
, (3.2)
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where K is an m × m kernel matrix with Ki,j = k(xi,xj). Zhang et

al. [163] proved that the solution of the above semi-supervised learning

is equivelent to the solution of standard supervised learning in (3.1),

such that

f̂j = p̂(xj) j = 1, . . . , m. (3.3)

The theorem offers a principle of unsupervised kernel design: one can

design a new kernel k̄(·, ·) based on the unlabeled data and then replace

the original kernel k by k̄ in the standard supervised kernel learning.

More specifically, the framework of spectral kernel design suggests that

the new kernel matrix K̄ can be designed by means of a function g as

follows:

K̄ =
n∑

i=1

g(λi)viv
�
i , (3.4)

where (λi,vi) are the eigen-pairs of the original kernel matrix K, and

the function g(·) can be regarded as a filter function or a transformation

function that modifies the spectra of the kernel. The authors in [163]

showed a theoretical justification that designing a kernel matrix with

faster spectral decay rates should result in better generalization per-

formance, which offers an important principle for learning an effective

kernel matrix.

On the other hand, there are some recent papers that have studied

theoretical principles for learning effective kernel functions or matrices

from labeled and unlabeled data. One important work is the kernel

target alignment, which can be used not only to assess the relation-

ship between the feature spaces of two kernels, but also to measure

the similarity between the feature space of a kernel and the feature

space induced by labels [31]. Specifically, given two kernel matrices K1

and K2, their relationship is defined in terms of the following score of

alignment :

Definition 9 Kernel Alignment: The empirical alignment of two
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given kernels K1 and K2 with respect to the sample set S is the quantity:

Â(K1, K2) =
〈K1, K2〉F√〈K1, K1〉F 〈K2, K2〉F

(3.5)

where Ki is the kernel matrix induced by the kernel ki and 〈·, ·〉 is the

Frobenius product between two matrices, i.e.,

〈K1, K2〉F =
∑n

i,j=1 k1(xi,xj)k2(xi,xj). �

The above definition of kernel alignment offers a means of learning

the kernel matrix by assessing the relationship between a given kernel

and a target kernel induced by the given labels. Let y = {yi}li=1 denote

a vector of labels in which yi ∈ {+1,−1} for binary classification. Then

the target kernel can be defined as T = yy�. Let K be the kernel

matrix with the following structure

K =

⎛
⎝ Ktr Ktrt

K�
trt Kt

⎞
⎠ (3.6)

where Kij = 〈Φ(xi), Φ(xj)〉, Ktr denotes the matrix part of the “training-

data block” and Kt denotes the matrix part of the “test-data block.”

The theory in [31] provides the principle of learning the kernel ma-

trix, i.e., looking for a kernel matrix K with good generalization perfor-

mance is equivalent to finding the matrix that maximizes the following

empirical kernel alignment score:

Â(Ktr, T ) =
〈Ktr, T 〉F√〈Ktr, Ktr〉F 〈T, T 〉F

(3.7)

This principle has been used to learn kernel matrices with multiple

kernel combinations [80] and also semi-supervised kernels from graph

Laplacians [175]. Motivated by the related theoretical work, we propose

a new spectral kernel learning (SKL) algorithm, which learns spectra of

the kernel matrix by obeying both the principle of unsupervised kernel

design and the principle of kernel target alignment.
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3.3.2 Algorithm

Assume that we are given a set of labeled data L = {xi, yi}li=1, a set

of unlabeled data U = {xi}ni=l+1, and an initial kernel matrix K. We

first conduct the eigen-decomposition of the kernel matrix:

K =

n∑
i=1

λiviv
�
i , (3.8)

where (λi,vi) are eigen pairs of K and are assumed to be in decreasing

order, i.e., λ1 ≥ λ2 ≥ . . . ≥ λn. For efficiency considerations, we select

the top d eigen pairs, such that

Kd =
d∑

i=1

λiviv
�
i ≈ K , (3.9)

where the parameter d  n is a dimension cutoff factor that can be

determined by some criterion, such as the cumulative eigen energy.

Based on the principle of unsupervised kernel design, we proceed to

learn the kernel matrix as follows:

K̄ =

d∑
i=1

µiviv
�
i , (3.10)

where µi ≥ 0 are spectral coefficients of the new kernel matrix. The

goal of the Spectral Kernel Learning (SKL) algorithm is to find the

optimal spectral coefficients µi for the following optimization:

max
K̄,µ

Â(K̄tr, T ) (3.11)

subject to K̄ =
∑d

i=1 µiviv
�
i

trace(K̄) = 1

µi ≥ 0,

µi ≥ Cµi+1, i = 1 . . . d− 1 ,

where C is a decay factor that satisfies C ≥ 1, vi are the top d eigen vec-

tors of the original kernel matrix K, K̄tr is the kernel matrix restricted
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to the (labeled) training data and T is the target kernel induced by

the labels. Note that C is introduced as an important parameter to

control the decay rate of spectral coefficients; this will influence the

overall performance of the kernel machine.
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Figure 3.2: Illustration of cumulative eigen energy and the spectral coeffi-

cients of different decay factors on the Ionosphere dataset. The initial kernel

is a linear kernel and the number of labeled data is 20.

The above optimization problem is a convex optimization and is

often regarded as a general cone program [80], which may not be com-

putationally efficient. In the following, we turn it into a QP problem

that can be solved more efficiently.

Because the objective function (3.7) is invariant to scales, we can

remove the constant term 〈T, T 〉F from the objective function, which

results in the following form:

〈K̄tr, T 〉F√
〈K̄tr, K̄tr〉F

. (3.12)

In order to remove the trace constraint in (3.11), we consider the follow-

ing alternative approach. Instead of maximizing the objective function

(3.12) directly, we can set the numerator to 1 and then minimize the
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Figure 3.3: Classification performance of semi-supervised kernels with dif-

ferent decay factors on the Ionosphere dataset. The initial kernel is a linear

kernel and the number of labeled data is 20.

denominator. Therefore, we can turn the optimization problem into:

min
µ

√
〈K̄tr, K̄tr〉F (3.13)

subject to K̄ =
∑d

i=1 µiviv
�
i

〈K̄tr, T 〉F = 1

µi ≥ 0,

µi ≥ Cµi+1, i = 1 . . . d− 1 .

This minimization problem without the trace constraint is equivalent

to the original maximization problem with the trace constraint.

Let vec(A) denote the column vectorization of a matrix A and let

D = [vec(V1,tr) . . . vec(Vd,tr)] be a constant matrix of size l2 × d, in

which the d matrices of Vi = viv
�
i are with size of l × l. It is not

difficult to show that the above problem is equivalent to the following
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optimization:

min
µ

||Dµ|| (3.14)

subject to vec(T )�Dµ = 1

µi ≥ 0

µi ≥ Cµi+1, i = 1 . . . d− 1 .

Minimizing the norm is then equivalent to minimizing the squared

norm. Hence, we can obtain the final optimization problem as:

min
µ

µ�D�Dµ

subject to vec(T )�Dµ = 1

µi ≥ 0

µi ≥ Cµi+1, i = 1 . . . d− 1 .

This is a standard QP problem that can be solved efficiently.
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Figure 3.4: Classification performance of spectral kernel learning methods

with different decay factors on the Ionosphere dataset. The initial kernel is

an RBF kernel and the number of labeled data is 20.
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Figure 3.5: Classification performance of semi-supervised kernels with dif-

ferent decay factors on the Heart dataset. The initial kernel is a linear kernel

and the number of labeled data is 20.

3.3.3 Connections and Justifications

The essence of our semi-supervised kernel learning method is based on

the theories of unsupervised kernel design and kernel target alignment.

More specifically, we consider a dimension-reduction effective method

to learn the semi-supervised kernel that maximizes the kernel alignment

score. By examining previous work on unsupervised kernel design, the

following two situations can be summarized as special cases of the SKL

framework:

• Cluster Kernel

This method adopts a “[1. . . ,1,0,. . . ,0]” kernel that has been used

in spectral clustering [98]. It sets the largest spectral coefficients

to 1 and the rest to 0, i.e.,

µi =

⎧⎨
⎩ 1 for i ≤ d

0 for i > d
. (3.15)
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For comparison, we refer to this method as “Cluster kernel” de-

noted by KCluster.

• Truncated Kernel

Another method is called the truncated kernel, which keeps only

the top d largest spectral coefficients:

µi =

⎧⎨
⎩ λi for i ≤ d

0 for i > d
, (3.16)

where λi are the top eigen values of an initial kernel. We can see

that this is exactly equivalent to the method of kernel principal

component analysis [117] that keeps only the d most significant

principal components of a given kernel. For a comparison, we

denote this method as KTrunc.

In our case, in comparison with semi-supervised kernel learning

methods by graph Laplacians, our work is similar to the approach

in [175], which learns the spectral transformation of graph Laplacians

by kernel target alignment with order constraints. However, we should

emphasize two important differences that will explain why our method

can work more effectively.

First, the work in [175] represents traditional graph based semi-

supervised learning methods, which assume the kernel matrix is derived

from the spectral decomposition of graph Laplacians. Instead, our

spectral kernel learning method learns on any initial kernel and assumes

the kernel matrix is derived from the spectral decomposition of the

normalized kernel.

Second, compared to the kernel learning method in [80], the authors

in [175] proposed the addition of order constraints into the optimization

of the kernel target alignment [31] to enforce the constraints of graph

smoothness. In our case, we suggest a decay factor C to constrain the

relationship of spectral coefficients in the optimization in order to make
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the spectral coefficients decay faster. In fact, if we ignore the difference

of graph Laplacians and assume that the initial kernel in our method is

given as K ≈ L−1, we can see that the method in [175] can be regarded

as a special case of our method when the decay factor C is set to 1 and

the dimension cut-off parameter d is set to n.

3.3.4 Empirical Observations

Setting C = 1 in the spectral kernel learning algorithm may not be a

good choice for learning an effective kernel. To support this statement,

let us give some empirical examples to justify the design of the spectral

kernel learning algorithm. One goal of the spectral kernel learning

methodology is to attain a fast decay rate of the spectral coefficients

of the kernel matrix. Figure 3.2 illustrates an example of the change

in the resulting spectral coefficients using different decay factors in our

spectral kernel learning algorithms. From the figure, we can see that

the curves with larger decay factors (C = 2, 3) have faster decay rates

than the original kernel and the one using C = 1. Meanwhile, we can

see that the cumulative eigen energy score quickly converges to 100%

when the number of dimensions is increased. This shows that we may

use much smaller numbers of eigen-pairs in our semi-supervised kernel

learning algorithm for large-scale problems.

To examine the impact of different decay factors in more details,

we evaluate the classification performance of spectral kernel learning

methods with different decay factors in Figure 3.3. We can see that two

unsupervised kernels, KTrunc and KCluster, tend to perform better than

the original kernel when the dimension is small. But their performances

are not very stable when the number of dimensions is increased. For

comparison, the spectral kernel learning method achieves very stable

and good performance when the decay factor C is larger than 1. When

the decay factor is equal to 1, the performance becomes unstable due to
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the slow decay rates observed from our previous results in Figure 3.3.

This observation matches the theoretical justification [163] that a kernel

with good performance usually favors a faster decay rate of spectral

coefficients.

Figure 3.4 and Figure 3.5 illustrate more empirical examples based

on different initial kernels, in which similar results can be observed.

Note that our suggested kernel learning method can learn on any valid

kernel, and different initial kernels will impact the performance of the

resulting spectral kernels. It is usually helpful if the initial kernel is

provided with domain knowledge.

3.4 Unified Kernel Logistic Regression

In this section, we present a specific paradigm based on the proposed

framework of learning unified kernel machines. We assume the under-

lying probabilistic model of the kernel machine is Kernel Logistic Re-

gression (KLR). Based on the UKM framework, we develop the Unified

Kernel Logistic Regression (UKLR) paradigm to tackle classification

tasks. Note that our framework is not restricted to the KLR model, but

also can be widely extended for many other kernel machines, such as

Support Vector Machine (SVM) and Regularized Least-Square (RLS)

classifiers.

Similar to other kernel machines, such as SVM, a KLR problem can

be formulated in terms of a standard regularized form of loss+penalty

in the reproducing kernel Hilbert space (RKHS):

min
f∈HK

1

l

l∑
i=1

ln(1 + e−yif(xi)) +
λ

2
||f ||2HK

, (3.17)

where HK is the RKHS by a kernel K and λ is a regularization param-

eter. By the representer theorem, the optimal f(x) has the form:

f(x) =
l∑

i=1

αiK(x,xi) , (3.18)
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where αi are model parameters. Note that we omit the constant term

in f(x) for simplified notations. To solve the KLR model parameters,

there are a number of available techniques for effective solutions [171].

Algorithm: Unified Kernel Logistic Regresssion
Input

• K0: Initial normalized kernel

• L: Set of labeled data

• U : Set of unlabeled data

Repeat

• Spectral Kernel Learning

K ← Spectral Kernel(K0, L, U);

• KLR Parameter Estimation

α ← KLR Solver(L, K);

• Convergence Test

If (converged), Exit Loop;

• Active Learning

x∗ ← maxx∈U H(x;α,K)
L ← L ∪ {x∗}, U ← U − {x∗}

Until converged.

Output

• UKLR =M(K,α).

Figure 3.6: The unified kernel logistic regression algorithm.

When the kernel K and the model parameters α are available, we

use the following solution for active learning, which is simple and effi-

cient for large-scale problems. More specifically, we measure the infor-

mation entropy of each unlabeled data example as follows

H(x; α, K) = −
NC∑
i=1

p(Ci|x)log(p(Ci|x)) , (3.19)

where NC is the number of classes and Ci denotes the ith class and
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p(Ci|x) is the probability of the data example x belonging to the

ith class which can be naturally obtained by the current KLR model

(α, K). The unlabeled data examples with maximum values of entropy

will be considered as the most informative data for labeling.

By unifying the spectral kernel learning method proposed in Sec-

tion 3, we summarize the proposed algorithm of Unified Kernel Logistic

Regression (UKLR) in Figure 3.6. In the algorithm, note that we can

usually initialize a kernel by a standard kernel with appropriate pa-

rameters determined by cross validation or by a proper design of the

initial kernel with domain knowledge.

3.5 Experimental Results

We discuss our empirical evaluation of the proposed framework and

algorithms for classification. We first evaluate the effectiveness of

our suggested spectral kernel learning algorithm for learning semi-

supervised kernels and then compare the performance of our unified

kernel logistic regression paradigm with traditional classification schemes.

3.5.1 Experimental Testbed and Settings

We use the datasets from UCI machine learning repository1. Four

datasets are employed in our experiments. Table 3.1 shows the details

of four UCI datasets in our experiments.

For experimental settings, to examine the influences of different

training sizes, we test the compared algorithms on four different train-

ing set sizes for each of the four UCI datasets. For each given training

set size, we conduct 100 random trials in which a labeled set is ran-

domly sampled from the whole dataset and all classes must be present

in the sampled labeled set. The rest data examples of the dataset are

1www.ics.uci.edu/ mlearn/MLRepository.html
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Table 3.1: List of UCI machine learning datasets.

Dataset #Instances #Features #Classes

Heart 270 13 2
Ionosphere 351 34 2
Sonar 208 60 2
Wine 178 13 3

then used as the testing (unlabeled) data. To train a classifier, we em-

ploy the standard KLR model for classification. We choose the bounds

on the regularization parameters via cross validation for all compared

kernels to avoid an unfair comparison. For multi-class classification,

we perform one-against-all binary training and testing and then pick

the class with the maximum class probability.

3.5.2 Semi-Supervised Kernel Learning

In this part, we evaluate the performance of our spectral kernel learn-

ing algorithm for learning semi-supervised kernels. We implemented

our algorithm by a standard Matlab Quadratic Programming solver

(quadprog). The dimension-cut parameter d in our algorithm is fixed

to 20 without further optimizing. Note that one can easily determine

an appropriate value of d by examining the range of the cumulative

eigen energy score in order to reduce the computational cost for large-

scale problems. The decay factor C is important for our spectral kernel

learning algorithm. As we have shown examples before, C must be a

positive real value greater than 1. Typically we favor a larger decay fac-

tor to achieve better performance. But it must not be set too large since

the too large decay factor may result in the overly stringent constraints

in the optimization which gives no solutions. In our experiments, C is

fixed to constant values (greater than 1) for the engaged datasets.

For a comparison, we compare our SKL algorithms with the state-of-
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the-art semi-supervised kernel learning method by graph Laplacians [175],

which is related to a QCQP problem. More specifically, we have imple-

mented two graph Laplacians based semi-supervised kernels by order

constraints [175]. One is the order-constrained graph kernel (denoted

as “Order”) and the other is the improved order-constrained graph

kernel (denoted as “Imp-Order”), which removes the constraints from

constant eigenvectors. To carry a fair comparison, we use the top 20

smallest eigenvalues and eigenvectors from the graph Laplacian which

is constructed with 10-NN unweighted graphs. We also include three

standard kernels for comparisons.

Table 3.2 shows the experimental results of the compared kernels

(3 standard and 5 semi-supervised kernels) based on KLR classifiers

on four UCI datasets with different sizes of labeled data. The mean

accuracies and standard errors are shown in the table. Each cell in

the table has two rows: the upper row shows the average testing set

accuracies with standard errors; and the lower row gives the average

run time in seconds for learning the semi-supervised kernels on a 3GHz

desktop computer (“Order” and “Imp-Order” kernels are solved by

SeDuMi/YALMIP package; “SKL” kernels are solved directly by the

Matlab quadprog function. We conducted a paired t-test at significance

level of 0.05 to assess the statistical significance of the test set accuracy

results. From the experimental results, we found that the two order-

constrained based graph kernels perform well in the Ionosphere and

Wine datasets, but they do not achieve important improvements on the

Heart and Sonar datasets. Among all the compared kernels, the semi-

supervised kernels by our spectral kernel learning algorithms achieve

the best performances. The semi-supervised kernel initialized with an

RBF kernel outperforms other kernels in most cases. For example, in

Ionosphere dataset, an RBF kernel with 10 initial training examples

only achieves 73.56% test set accuracy, and the SKL algorithm can
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boost the accuracy significantly to 83.36%. Finally, looking into the

time performance, the average run time of our algorithm is less than

10% of the previous QCQP algorithms.

3.5.3 Unified Kernel Logistic Regression

In this part, we evaluate the performance of our proposed paradigm

of unified kernel logistic regression (UKLR). As a comparison, we im-

plement two traditional classification schemes: one is traditional KLR

classification scheme that is trained on randomly sampled labeled data,

denoted as “KLR+Rand.” The other is the active KLR classification

scheme that actively selects the most informative examples for labeling,

denoted as “KLR+Active.” The active learning strategy is based on a

simple maximum entropy criteria given in the pervious section. The

UKLR scheme is implemented based on the algorithm in Figure 3.6.

For active learning evaluation, we choose a batch of 10 most infor-

mative unlabeled examples for labeling in each trial of evaluations. Ta-

ble 3.3 summarizes the experimental results of average test set accuracy

performances on four UCI datasets. From the experimental results,

we can observe that the active learning classification schemes outper-

form the randomly sampled classification schemes in most cases. This

shows the suggested simple active learning strategy is effectiveness.

Further, among all compared schemes, the suggested UKLR solution

significantly outperforms other classification approaches in most cases.

These results show that the unified scheme is effective and promising

to integrate traditional learning methods together in a unified solution.

3.6 Computational Complexity and Scalability

In this section, let us analyze the time complexity of our proposed

algorithms in the framework of learning unified kernel machines. Since
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we formulate the SKL algorithm into a QP problem, we typically can

solve it in quadratic time with respect to the cut-off dimension d, i.e.,

with a time complexity of O(d2). For large problems, d usually is

a small number compared with the size of dataset n. If we make a

reasonable assumption that d ≤ √n, then the SKL algorithm can be

run in O(n), i.e., a linear time complexity. In practice, the algorithm

could be conducted more efficiently than the linear time complexity

with small d and fast implementation of quadratic program.

However, before the SKL algorithm, we need to get the top eigen-

vectors of the kernel matrix. In general, the time complexity of eigen-

decomposition is O(n3). Since we only consider top d eigenvectors,

we can reduce the time complexity of the eigen-decomposition step

to O(n2) by adopting some fast decomposition algorithms. Further-

more, if we explore the sparsity of kernel matrix and study some ap-

proximation algorithms, such as lower-rank approximation [1], kernel

factorization methods [151, 149], sampling-based methods [82, 35], or

block-quantized kernel matrix decomposition [161], we can reduce the

time complexity to O(m2×n) or O(m×n), where m n. This makes

our solution scalable to large-scale problems.

3.7 Summary

This chapter presented a novel general framework of learning the Uni-

fied Kernel Machines (UKM) for classification. Different from tradi-

tional classification schemes, our UKM framework integrates super-

vised learning, semi-supervised learning, unsupervised kernel design

and active learning in a unified solution, making it more effective for

classification tasks. For the proposed framework, we focus our at-

tention on tackling a core problem of learning semi-supervised kernels

from labeled and unlabled data. We proposed a Spectral Kernel Learn-

ing (SKL) algorithm, which is more effective and efficient for learning
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kernels from labeled and unlabeled data. Under the framework, we de-

veloped a paradigm of unified kernel machine based on Kernel Logistic

Regression, i.e., Unified Kernel Logistic Regression (UKLR). Empirical

results demonstrated that our proposed solution is more effective than

the traditional classification approaches.

� End of chapter.



Chapter 4

Batch Mode Active Learning

4.1 Problem and Motivation

The problem of text categorization is to automatically assign text doc-

uments to the predefined categories. One critical issue for large-scale

text document categorization is how to reduce the number of labeled

documents that are required for building reliable text classification

models. Given the limited amount of labeled documents, the key is to

exploit the unlabeled documents. One solution is the semi-supervised

learning, which tries to learn a classification model from the mixture

of labeled and unlabeled examples [131]. A comprehensive study of

semi-supervised learning techniques can be found in [118, 170]. An-

other solution is active learning [90, 119] that tries to choose the most

informative unlabeled examples for labeling manually. Although previ-

ous studies have shown the promising performance of semi-supervised

learning for text categorization [69], the high computation cost has lim-

ited its application [170]. In this chapter we focus on active learning

for exploiting the unlabeled data for categorization tasks.

In the past, there have been a number of studies on applying active

learning to text categorization. The main idea is to only select the

most informative documents for labeling manually. Most active learn-

58
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ing algorithms are conducted in the iterative fashion. In each iteration,

the example with the largest classification uncertainty is chosen for la-

beling manually. Then, the classification model is retrained with the

additional labeled example. The step of training a classification model

and the step of soliciting a labeled example are iterated alternatively

until most of the examples can be classified with reasonably high con-

fidence.

One of the main problems with most existing active learning algo-

rithm is that only a single example is selected for labeling. As a result,

the classification model has to be retrained after each labeled example

is solicited. In the paper, we propose a novel active learning scheme

that is able to select a batch of unlabeled examples in each iteration. A

simple strategy toward the batch mode active learning is to select the

top k most informative examples. The problem with such an approach

is that some of the selected examples could be similar, or even iden-

tical, and therefore do not provide additional information for model

updating.

In general, the key of the batch mode active learning is to ensure the

small redundancy among the selected examples such that each example

provides unique information for model updating. To this end, we use

the Fisher information matrix, which represents the overall uncertainty

of a classification model. We choose the set of examples such that the

Fisher information of a classification model can be effectively maxi-

mized. Fisher information matrix has been used widely in statistics for

measuring model uncertainty [123]. For example, in the Cramer-Rao

bound, Fisher information matrix provides the low bound for the vari-

ance of a statistical model. In this study, we choose the set of examples

that can well represent the structure of the Fisher information matrix.

The rest of this chapter is organized as follows. Section 4.2 briefly

introduces the concept of logistic regression, which is used as the classi-
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fication model in our study for text categorization. Section 4.3 presents

the batch mode active learning algorithm and an efficient learning algo-

rithm based on the bound optimization algorithm. Section 4.4 presents

the results of our empirical study. Section 5.7 summarizes this chapter.

4.2 Logistic Regression

In this section, we give a brief review of logistic regression, which has

been a well-known and mature statistical model suitable for probabilis-

tic binary classification. Recently, logistic regression has been actively

studied in statistical machine learning community due to its close re-

lation to SVMs and Adaboost [141, 160].Compared with many other

statistical learning models, such as SVMs, the logistic regression model

has the following advantages:

• It is a high performance classifier that can be efficiently trained

with a large number of labeled examples. Previous studies have

shown that the logistic regression model is able to achieve the

similar performance of text categorization as SVMs [75, 160].

These studies also showed that the logistic regression model can

be trained significantly more efficiently than SVMs, particularly

when the number of labeled documents is large.

• It is a robust classifier that does not have any configuration pa-

rameters to tune. In contrast, some state-of-the-art classifiers,

such as support vector machines and AdaBoost, are sensitive to

the setup of the configuration parameters. Although this problem

can be partially solved by the cross validation method, it usually

introduces a significant amount of overhead in computation.

Logistic regression can be applied to both real and binary data.

It outputs the posterior probabilities for test examples that can be

conveniently processed and engaged in other systems. In theory, given
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a test example x, logistic regression models the conditional probability

of assigning a class label y to the example by

p(y|x) =
1

1 + exp(−yαTx)
(4.1)

where y ∈ {+1,−1}, and α is the model parameter. Here a bias con-

stant is omitted for simplified notation. In general, logistic regression is

a linear classifier that has been shown effective in classifying text doc-

uments that are usually in the high-dimensional data space. For the

implementation of logistic regressions, a number of efficient algorithms

have been developed in the recent literature [75].

4.3 Batch Mode Active Learning

In this section, we present a batch mode active learning algorithm for

large-scale text categorization. In our proposed scheme, logistic re-

gression is used as the base classifier for binary classification. In the

following, we first introduce the theoretical foundation of our active

learning algorithm. Based on the theoretical framework, we then for-

mulate the active learning problem into a semi-definite programming

(SDP) problem [19]. Finally, we present an efficient learning algorithm

for the related optimization problem based on the eigen space simpli-

fication and a bound optimization strategy.

4.3.1 Theoretical Foundation

Our active learning methodology is motivated by the work in [164], in

which the author presented a theoretical framework of active learning

based on the Fisher information matrix. Given the Fisher information

matrix represents the overall uncertainty of a classification model, our

goal is to search for a set of examples that can most efficiently maximize

the Fisher information. As showed in [164], this goal can be formulated

into the following optimization problem:
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Let p(x) be the distribution of all unlabeled examples, and q(x)

be the distribution of unlabeled examples that are chosen for labeling

manually. Let α denote the parameters of the classification model. Let

Ip(α) and Iq(α) denote the Fisher information matrix of the classifi-

cation model for the distribution p(x) and q(x), respectively. Then,

the set of examples that can most efficiently reduce the uncertainty of

classification model is found by minimizing the ratio of the two Fisher

information matrix Ip(α) and Iq(α), i.e.,

q∗ = arg min
q

tr(Iq(α)−1Ip(α)) (4.2)

For the logistic regression model, the Fisher information Iq(α) is

attained as:

Iq(α)

= −
∫

q(x)
∑
y=±1

p(y|x)
∂2

∂α2
log p(y|x)dx

=

∫
1

1 + exp(αTx)

1

1 + exp(−αTx)
xxT q(x)dx

(4.3)

In order to estimate the optimal distribution q(x), we replace the inte-

gration in the above equation with the summation over the unlabeled

data, and the model parameter α with the empirically estimated α̂.

Let D = (x1, . . . ,xn) be the unlabeled data. We can now rewrite the

above expression for Fisher information matrix as:

Iq(α̂) =

n∑
i=1

πi(1− πi)xix
T
i qi + δId (4.4)

where

πi = p(−|xi) =
1

1 + exp(α̂Txi)
(4.5)

In the above, qi stands for the probability of selecting the i-th example

and is subjected to
∑n

i=1 qi = 1, Id is the identity matrix of d dimen-

sion, and δ is the smoothing parameter. The δId term is added to the
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estimation of Iq(α̂) to prevent it from being a singular matrix. Sim-

ilarly, for Ip(α̂), the Fisher information matrix for all the unlabeled

examples, we have it expressed as follows:

Ip(α̂) =
1

n

n∑
i=1

πi(1− πi)xix
T
i + δId (4.6)

4.3.2 Why Using Fisher Information Matrix?

In this section, we will qualitatively justify the theory of minimizing

the Fisher information for batch mode active learning. In particular,

we consider two cases, the case of selecting a single unlabeled exam-

ple and the case of selecting two unlabeled examples simultaneously.

To simplify our discussion, let’s assume ‖xi‖22 = 1 for all unlabeled

examples.

Selecting a single unlabeled example. The Fisher information

matrix Iq is simplified into the following form when the i-th example

is selected:

Iq(α̂;xi) = πi(1− πi)xix
T
i + δId

Then, the objective function tr(Iq(α̂)−1Ip(α̂)) becomes:

tr(Iq(α̂)−1Ip(α̂)) ≈
1

nπi(1− πi)

n∑
j=1

πj(1− πj)(x
T
i xj)

2

+
1

nδ

n∑
j=1

πj(1− πj)(1− (xT
i xj)

2)

To minimize the above expression, we need to maximize the term

πi(1 − πi), which reaches its maximum value at πi = 0.5. Since

πi = p(−|xi), the value of πi(1 − πi) can be regarded as the mea-

surement of classification uncertainty for the i-th unlabeled example.

Thus, the optimal example chosen by minimizing the Fisher informa-

tion matrix in the above expression tends to be the one with a high

classification uncertainty.
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Selecting two unlabeled examples simultaneously. To sim-

plify our discussion, we assume that the three examples, x1, x2, and x3,

have the largest classification uncertainty. Let’s further assume that

x1 ≈ x2, and meanwhile x3 is far away from x1 and x2. Then, if we

follow the simple greedy approach, the two example x1 and x2 will be

selected given their largest classification uncertainty. Apparently, this

is not an optimal strategy given both examples provide almost identi-

cal information for updating the classification model. Now, if we follow

the criterion of minimizing Fisher information, this mistake could be

prevented because

Iq(α̂;x1,x2) =
1

2
(x1x

T
1 + x2x

T
2 ) + δId

≈ x1x
T
1 + δId = Iq(α̂;x1)

As indicated in the above equation, by including the second example x2,

we did not change the expression of Iq, the Fisher information matrix

for the selected examples. As a result, there will be no reduction in

the objective function tr(Iq(α̂)−1Ip(α̂)) when including the example x2.

Instead, we may want to choose x3 that is more likely to decrease the

objective function even though its classification uncertainty is smaller

than that of x2.

4.3.3 Optimization Formulation

The idea of our batch mode active learning approach is to search a dis-

tribution q(x) that minimizes tr(I−1
q Ip). The samples with maximum

values of q(x) will then be chosen for queries. However, it is usually not

easy to find an appropriate distribution q(x) that minimizes tr(I−1
q Ip).

In the following, we present an SDP approach for optimizing tr(I−1
q Ip).

Given the optimization problem in (5.4), we can rewrite the objec-

tive function tr(I−1
q Ip) as tr(I

1/2
p I−1

q I
1/2
p ). We then introduce a slack

matrix M ∈ Rn×n such that M � I
1/2
p I−1

q I
1/2
p . Then original optimiza-
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tion problem can be rewritten as follows:

min
q,M

tr(M)

s. t. M � I1/2
p I−1

q I1/2
p

n∑
i=1

qi = 1, qi ≥ 0, i = 1, . . . , n

(4.7)

In the above, we use the property tr(A) ≥ tr(B) if A � B. Further-

more, we use the Schur complementary, i.e.,

D � AB−1AT ⇔
⎛
⎝ B AT

A D

⎞
⎠ � 0 (4.8)

if B � 0. This will lead to the following formulation of the problem in

(4.7)

min
q,M

tr(M)

s. t.

⎛
⎝ Iq I

1/2
p

I
1/2
p M

⎞
⎠ � 0

n∑
i=1

qi = 1, qi ≥ 0, i = 1, . . . , n

(4.9)

or more specifically

min
q,M

tr(M)

s. t.

⎛
⎝ ∑n

i=1 qiπi(1− πi)xix
T
i I

1/2
p

I
1/2
p M

⎞
⎠ � 0

n∑
i=1

qi = 1, qi ≥ 0, i = 1, . . . , n

(4.10)

The above problem belongs to the family of Semi-definite programming

and can be solved by the standard convex optimization packages such

as SeDuMi [128].
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4.3.4 Eigen Space Simplification

Although the formulation in (4.10) is mathematically sound, directly

solving the optimization problem could be computationally expensive

due to the large size of matrix M , i.e., d × d, where d is the dimen-

sion of data. In order to reduce the computational complexity, we

assume that M is only expanded in the eigen space of matrix Ip. Let

{(λ1,v1), . . . , (λs,vs)} be the top s eigen vectors of matrix Ip where

λ1 ≥ λ2 ≥ . . . ≥ λs. We assume matrix M has the following form:

M =

s∑
k=1

γkvkv
T
k (4.11)

where the combination parameters γk ≥ 0, k = 1, . . . , s. We rewrite

the inequality for M � I
1/2
p I−1

q I
1/2
p as Iq � I

1/2
p M−1I

1/2
p . Using the

expression for M in (4.11), we have

I1/2
p M−1I1/2

p =
s∑

k=1

γ−1
k λkvkv

T
k (4.12)

Given that the necessary condition for Iq � I
1/2
p M−1I

1/2
p is

vT Iqv ≥ vT I1/2
p M−1I1/2

p v, ∀v ∈ Rd ,

we have vT
k Iqvk ≥ γ−1

k λk for k = 1, . . . , s. This necessary condition

leads to following constraints for γk:

γk ≥ λk∑n
i=1 qiπi(1− πi)(xT

i vk)2
, k = 1, . . . , s (4.13)

Meanwhile, the objective function in (4.10) can be expressed as

tr(M) =

s∑
k=1

γk (4.14)

By putting the above two expressions together, we transform the SDP

problem in (4.10) into the following optimization problem:

min
q∈Rn

s∑
k=1

λk∑n
i=1 qiπi(1− πi)(xT

i vk)2

s.t.
n∑

i=1

qi = 1, qi ≥ 0, i = 1, . . . , n

(4.15)
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Note that the above optimization problem is a convex optimization

problem since f(x) = 1/x is convex when x ≥ 0. In the next subsection,

we present a bound optimization algorithm for solving the optimization

problem in (4.15).

4.3.5 Bound Optimization Algorithm

The main idea of bound optimization algorithm is to update the solu-

tion iteratively. In each iteration, we will first calculate the difference

between the objective function of the current iteration and the objec-

tive function of the previous iteration. Then, by minimizing the upper

bound of the difference, we find the solution of the current iteration.

Let q′ and q denote the solutions obtained in two consecutive iter-

ations, and let L(q) be the objective function in (4.15). Based on the

proof given in Appendix A.2, we have the following expression:

L(q) =

s∑
k=1

λk∑n
i=1 qiπi(1− πi)(x

T
i vk)2

≤
n∑

i=1

(q′i)
2

qi
πi(1− πi)

s∑
k=1

(xT
i vk)

2λk(∑n
j=1 q′jπj(1− πj)(xT

j vk)2
)2

(4.16)

Now, instead of optimizing the original objective function L(q), we can

optimize its upper bound, which leads to the following simple updating

equation:

qi ←−q2
i πi(1− πi)

s∑
k=1

(xT
i vk)

2λk(∑n
j=1 qjπj(1− πj)(x

T
j vk)2

)2

qi ←− qi∑n
j=1 qj

(4.17)

Similar to all bound optimization algorithms [19], this algorithm will

guarantee to converge to a local maximum. Since the original opti-

mization problem in (4.15) is a convex optimization problem, the above

updating procedure will guarantee to converge to a global optimal.
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Remark: It is interesting to examine the property of the solution

obtained by the updating equation in (4.17). First, according to (4.17),

the example with a large classification uncertainty will be assigned with

a large probability. This is because qi is proportional to πi(1 − πi),

the classification uncertainty of the i-the unlabeled example. Second,

according to (4.17), the example that is similar to many unlabeled

examples is more likely to be selected. This is because probability qi

is proportional to the term (xT
i v)2, the similarity of the i-th example

to the principle eigenvectors. This is consistent with our intuition that

we should select the most informative and representative examples for

active learning.

4.4 Experimental Results

4.4.1 Experimental Testbeds

Category # of total samples

earn 3964

acq 2369

money-fx 717

grain 582

crude 578
trade 485

interest 478

wheat 283

ship 286

corn 237

Table 4.1: A list of 10 major categories of the Reuters-21578 dataset in our
experiments.

In this section we discuss the experimental evaluation of our active

learning algorithm in comparison to the state-of-the-art approaches.

For a consistent evaluation, we conduct our empirical comparisons on
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Category # of total samples

course 930

department 182
faculty 1124

project 504

staff 137

student 1641

Table 4.2: A list of 6 categories of the WebKB dataset in our experiments.

Category # of total samples

0 1000

1 1000

2 1000

3 1000
4 1000

5 1000

6 999

7 1000

8 1000
9 1000

10 997

Table 4.3: A list of 11 categories of the Newsgroup dataset in our experi-
ments.

three standard datasets for text document categorization. For all three

datasets, the same pre-processing procedure is applied: the stopwords

and the numbers are removed from the documents, and all the words

are converted into the low cases without stemmming.

The first dataset is the Reuters-21578 Corpus dataset, which has

been widely used as a testbed for evaluating algorithms for text cate-

gorization. In our experiments, the ModApte split of the Reuters-21578

is used. There are a total of 10788 text documents in this collection.

Table 4.1 shows a list of the 10 most frequent categories contained in

the dataset. Since each document in the dataset can be assigned to



CHAPTER 4. BATCH MODE ACTIVE LEARNING 70

multiple categories, we treat the text categorization problem as a set

of binary classification problems, i.e., a different binary classification

problem for each category. In total, 26, 299 word features are extracted

and used to represent the text documents.

The other two datasets are Web-related: the WebKB data collection

and the Newsgroup data collection. The WebKB dataset comprises

of the WWW-pages collected from computer science departments of

various universities in January 1997 by the World Wide Knowledge

Base (Web->Kb) project of the CMU text learning group. All the

Web pages are classified into seven categories: student, faculty, staff,

department, course, project, and other. In this study, we ignore the

category of others due to its unclear definition. In total, there are 4518

data samples in the selected dataset, and 19, 686 word features are

extracted to represent the text documents. Table 4.2 shows the details

of this dataset. The newsgroup dataset includes 20, 000 messages from

20 different newsgroups. Each newsgroup contains roughly about 1000

messages. In this study, we randomly select 11 out of 20 newsgroups

for evaluation. In total, there are 10, 996 data samples in the selected

dataset, and 47, 410 word features are extracted to represent the text

documents. Table 4.3 shows the details of the engaged dataset.

Compared to the Reuter-21578 dataset, the two Web-related data

collections are different in that more unique words are found in the

Web-related datasets. For example, for both the Reuter-21578 dataset

and the Newsgroup dataset, they both contain roughly 10, 000 docu-

ments. But, the number of unique words for the Newgroups dataset is

close to 50, 000, which is about twice as the number of unique words

found in the Reuter-21578. It is this feature that makes the text catego-

rization of WWW documents more challenging than the categorization

of normal text documents because considerably more feature weights

need to be decided for the WWW documents than the normal docu-
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ments. It is also this feature that makes the active learning algorithms

more valuable for text categorization of WWW documents than the

normal documents since by selecting the informative documents for la-

beling manually, we are able to decide the appropriate weights for more

words than by a randomly chosen document.

4.4.2 Experimental Settings

In order to remove the uninformative word features, feature selection

is conducted using the Information Gain [158] criterion. In particular,

500 of the most informative features are selected for each category in

each of the three datasets above.

For performance measurement, the F1 metric is adopted as our eval-

uation metric, which has been shown to be more reliable metric than

other metrics such as the classification accuracy [158]. More specifi-

cally, the F1 is defined as

F1 =
2 ∗ p ∗ r

p + r
(4.18)

where p and r are precision and recall. Note that the F1 metric takes

into account both the precision and the recall, thus is a more compre-

hensive metric than either the precision or the recall when separately

considered.

To examine the effectiveness of the proposed active learning algo-

rithm, two reference models are used in our experiment. The first

reference model is the logistic regression active learning algorithm that

measures the classification uncertainty based on the entropy of the

distribution p(y|x). In particular, for a given test example x and a

logistic regression model with the weight vector w and the bias term

b, the entropy of the distribution p(y|x) is calculated as:

H(p) = −p(−|x) log p(−|x)− p(+|x) log p(+|x)
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The larger the entropy of x is, the more uncertain we are about the

class labels of x. We refer to this baseline model as the logistic regres-

sion active learning, or LogReg-AL for short. The second reference

model is based on support vector machine [137]. In this method, the

classification uncertainty of an example x is determined by its distance

to the decision boundary wTx + b = 0, i.e.,

d(x;w, b) =
|wTx + b|
‖w‖2

The smaller the distance d(x;w, b) is, the more the classification un-

certainty will be. We refer to this approach as support vector machine

active learning, or SVM-AL for short. Finally, both the logistic re-

gression model and the support vector machine that are trained only

over the labeled examples are used in our experiments as the baseline

models. By comparing with these two baseline models, we are able to

determine the amount of benefits that are brought by different active

learning algorithms.

To evaluate the performance of the proposed active learning algo-

rithms, we first pick 100 training samples, which include 50 positive ex-

amples and 50 negative examples, randomly from the dataset for each

category. Both the logistic regression model and the SVM classifier

are trained on the labeled data. For the active learning methods, 100

unlabeled data samples are chosen for labeling and their performances

are evaluated after rebuilding the classifiers respectively. Each experi-

ment is carried out 40 times and the averaged F1 with its variance is

calculated and used for final evaluation.

To deploy efficient implementations of our scheme toward large-scale

text categorization tasks, all the algorithms used in this study are pro-

grammed in the C language. The testing hardware environment is on

a Linux workstation with 3.2GHz CPU and 2GB physical memory. To

implement the logistic regression algorithm for our text categorization

tasks, we employ the implementation of the logistic regression tool
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developed by Komarek and Moore recently [75]. To implement our

active learning algorithm based on the bound optimization approach,

we employ a standard math package, i.e., LAPACK [2], to solve the

eigen decomposition in our algorithm efficiently. The SVMlight pack-

age [68] is used in our experiments for the implementation of SVM,

which has been considered as the state-of-the-art tool for text catego-

rization. Since SVM is not parameter-free and can be very sensitive to

the capacity parameter, a separate validation set is used to determine

the optimal parameters for configuration.

4.4.3 Empirical Evaluation

In this subsection, we will first describe the results for the Reuter-21578

dataset since this dataset has been most extensively studied for text

categorization. We will then provide the empirical results for the two

Web-related datasets.

Experimental Results with Reuter-21578

Category SVM LogReg SVM-AL LogReg-AL LogReg-BMAL

earn 92.12 ± 0.22 92.47 ± 0.13 93.30 ± 0.28 93.40 ± 0.14 94.00 ± 0.09

acq 83.56 ± 0.26 83.35 ± 0.26 85.96 ± 0.34 86.57 ± 0.32 88.07 ± 0.17

money-fx 64.06 ± 0.60 63.71 ± 0.63 73.32 ± 0.38 71.21 ± 0.61 75.54 ± 0.26

grain 60.87 ± 1.04 58.97 ± 0.91 74.95 ± 0.42 74.82 ± 0.53 77.77 ± 0.27

crude 67.78 ± 0.39 67.32 ± 0.48 75.72 ± 0.24 74.97 ± 0.44 78.04 ± 0.14

trade 52.64 ± 0.46 48.93 ± 0.55 66.41 ± 0.33 66.31 ± 0.33 69.29 ± 0.34

interest 56.80 ± 0.60 53.59 ± 0.60 67.20 ± 0.39 66.15 ± 0.49 68.71 ± 0.37

wheat 62.71 ± 0.72 57.38 ± 0.79 86.01 ± 1.04 86.49 ± 0.27 88.15 ± 0.21

ship 67.11 ± 1.59 64.91 ± 1.75 75.86 ± 0.53 72.82 ± 0.46 76.82 ± 0.34

corn 44.39 ± 0.84 41.15 ± 0.69 71.27 ± 0.62 71.61 ± 0.60 74.35 ± 0.47

Table 4.4: Experimental results of F1 performance on the Reuters-21578

dataset with 100 training samples (%).
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Figure 4.1: Experimental results of F1 performance on the “earn” and “acq”

categories

Table 4.4 shows the experimental results of F1 performance aver-

aging over 40 executions on 10 major categories in the dataset.

First, as listed in the first and the second columns of Table 4.4, we

observe that the performance of the two classifiers, logistic regression

and SVM, are comparable when only the 100 initially labeled examples

are used for training. For categories, such as “trade” and ”interest”,

SVM achieves noticeably better performance than the logistic regres-

sion model. Second, we compare the performance of the two classifiers

for active learning, i.e., LogReg-AL and SVM-AL, which are the greedy

algorithms and select the most informative examples for labeling man-

ually. The results are listed in the third and the fourth columns of

Table 4.4. We find that the performance of these two active learning

methods becomes closer than the case when no actively labeled exam-

ples are used for training. For example, for category “trade”, SVM

performs substantially better than the logistic regression model when

only 100 labeled examples are used. The difference in F1 measurement

between LogReg-AL and SVM-AL almost diminishes when both clas-

sifiers use the 100 actively labeled examples for training. Finally, we
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(a) “money-fx”
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Figure 4.2: Experimental results of F1 performance on the “money-fx” and

“grain” categories

compare the performance of the proposed active learning algorithm,

i.e., LogReg-BMAL, to the margin-based active learning approaches

LogReg-AL and SVM-AL. It is evident that the proposed batch mode

active learning algorithm outperforms the margin-based active learning

algorithms. For categories, such as “corn” and “wheat”, where the two

margin-based active learning algorithms achieve similar performance,

the proposed algorithm LogReg-BMAL is able to achieve substantially

better F1 scores. Even for the categories where the SVM performs

substantially better than the logistic regression model, the proposed

algorithm is able to outperform the SVM-based active learning algo-

rithm noticeably. For example, for category “ship” where SVM per-

forms noticeably better than the logistic regression, the proposed active

learning method is able to achieve even better performance than the

margin-based active learning based on the SVM classifier.

In order to evaluate the performance in more detail, we conduct the

evaluation on each category by varying the number of initially labeled

instances for each classifier. Fig. 4.2, Fig. 4.3 and Fig. 4.4 show the ex-

perimental results of the mean F1 measurement on 9 major categories.
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Figure 4.3: Experimental results of F1 performance on the “crude” and

“trade” categories

From the experimental results, we can see that our active learning al-

gorithm outperforms the other two active learning algorithms in most

of the cases while the SVM-AL method is generally better than the

LogReg-AL method. We also found that the improvement of our ac-

tive learning method is more evident comparing with the other two

approaches when the number of labeled instances is smaller. This is

because the smaller the number of initially labeled examples used for

training, the larger the improvement we would expect. When more

labeled examples are used for training, the gap for future improvement

begins to decrease. As a result, the three methods start to behavior

similarly. This result also indicates that the proposed active learning

algorithm is robust even when the number of labeled examples is small

while the other two active learning approaches may suffer critically

when the margin criterion is not very accurate for the small sample

case.
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(a) “interest”
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Figure 4.4: Experimental results of F1 performance on the “interest” and

“wheat” categories

Category SVM LogReg SVM-AL LogReg-AL LogReg-BMAL

course 87.11 ± 0.51 89.16 ± 0.45 88.55 ± 0.48 89.37 ± 0.65 90.99 ± 0.39

department 67.45 ± 1.36 68.92 ± 1.39 82.02 ± 0.47 79.22 ± 1.14 81.52 ± 0.46

faculty 70.84 ± 0.76 71.50 ± 0.59 75.59 ± 0.65 73.66 ± 1.23 76.81 ± 0.51

project 54.06 ± 0.82 56.74 ± 0.57 57.67 ± 0.98 56.90 ± 1.01 59.71 ± 0.82

staff 12.73 ± 0.44 12.73 ± 0.28 19.48 ± 1.07 24.84 ± 0.58 21.08 ± 0.73

student 74.05 ± 0.51 76.04 ± 0.49 77.03 ± 0.95 80.40 ± 1.16 81.50 ± 0.44

Table 4.5: Experimental results of F1 performance on the WebKB dataset

with 40 training samples (%).

Experimental Results with Web-Related Datasets

The classification results of the WebKB dataset and the Newsgroup

dataset are listed in Table 4.4.3 and Table 4.6, respectively.

First, notice that for the two Web-related datasets, there are a few

categories whose F1 measurements are extremely low. For example, for

the category “staff” of the WebKB dataset, the F1 measurement is only

about 12% for all methods. This fact indicates that the text categoriza-

tion of WWW documents can be more difficult than the categorization

of normal documents. Second, we observe that the difference in the



CHAPTER 4. BATCH MODE ACTIVE LEARNING 78

Category SVM LogReg SVM-AL LogReg-AL LogReg-BMAL

0 96.44 ± 0.35 95.02 ± 0.45 97.37 ± 0.52 95.66 ± 1.01 98.73 ± 0.11

1 83.38 ± 1.01 83.12 ± 0.96 91.61 ± 0.57 85.07 ± 1.51 91.12 ± 0.36

2 61.03 ± 1.51 59.01 ± 1.39 61.15 ± 2.08 64.91 ± 2.52 66.13 ± 1.32

3 72.36 ± 1.90 71.96 ± 1.67 73.15 ± 2.71 75.88 ± 3.13 78.47 ± 1.95

4 55.61 ± 1.06 56.09 ±1.21 56.05 ±2.18 61.87 ±2.25 61.91 ± 1.03

5 70.58 ± 0.51 72.47 ±0.40 71.69 ±1.11 72.99 ±1.46 76.54 ± 0.43

6 85.25 ± 0.45 86.30 ±0.45 89.54 ±1.09 89.14 ±0.89 92.07 ± 0.26

7 39.07 ± 0.90 40.22 ±0.90 42.19 ±1.13 46.72 ±1.61 47.58 ± 0.76

8 58.67 ± 1.21 59.14 ±1.25 63.77 ±2.05 66.57 ±1.24 67.07 ± 1.34

9 69.35 ± 0.82 70.82 ±0.92 74.34 ±1.79 77.17 ±1.06 77.48 ± 1.20

10 99.76 ± 0.10 99.40 ±0.21 99.95 ± 0.02 99.85 ±0.06 99.90 ± 0.06

Table 4.6: Experimental results of F1 performance on the Newsgroup dataset

with 40 training samples (%).

F1 measurement between the logistic regression model and the SVM

is smaller for both the WebKB dataset and the Newsgroup dataset

than for the Reuters-21578 dataset. In fact, there are a few categories

in WebKB and Newsgroup that the logistic regression model performs

slightly better than the SVM. Third, by comparing the two margin-

based approaches for active learning, namely, LogReg-AL and SVM-

AL, we observe that, for a number of categories, LogReg-AL achieves

substantially better performance than SVM-AL. The most noticeable

case is the category 4 of the Newsgroup dataset where the SVM-AL al-

gorithm is unable to improve the F1 measurement than the SVM even

with the additional labeled examples. In contrast, the LogReg-AL algo-

rithm is able to improve the F1 measurement from 56.09% to 61.87%.

Finally, comparing the LogReg-BMAL algorithm with the LogReg-AL

algorithm, we observe that the proposed algorithm is able to improve

the F1 measurement substantially over the margin-based approach.

For example, for the category 1 of the Newsgroup dataset, the active

learning algorithm LogReg-AL only make a slight improvement in the
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F1 measurement with the additional 100 labeled examples. The im-

provement for the same category by the proposed batch active learning

algorithm is much more significant, increasing from 83.12% to 91.12%.

Comparing all the learning algorithms, the proposed learning algorithm

achieves the best or close to the best performance for almost all cat-

egories. This observation indicates that the proposed active learning

algorithm is effective and robust for large-scale text categorization of

WWW documents.

4.5 Computational Complexity

We have formulated the framework of batch mode active learning into

convex optimization problems. It is interested and important to an-

alyze the algorithms we studied in this work. The first formulation

we given in Eqn. 4.10 is an SDP problem. According to convex op-

timization theory, this problem can be solved in a polynomial time.

However, when the dimension of slack matrix M is large, the problem

can still be computationally expensive. If we look into the improved

solution of the bound optimization algorithm, we can find it can be

solved much efficient. When we examine the bound optimization algo-

rithm, we can see that the complexity of the optimization procedure

itself is O(t× s× n), where t is the number of iteration steps, s is the

number of top eigenvectors, and n is the size of data. Typically, t and

s are very small numbers which can be regarded as constants. There-

fore, the bound optimization algorithm itself can be done in a linear

time complexity. However, before running the bound optimization al-

gorithm, we need to do eigen-decomposition on the Fisher information

matrix Ip. In general, the complexity of eigen-decomposition is O(n3).

But, in our problem, we only need to consider the top eigenvectors.

By using fast implementations, we can reduce its complexity to O(n2).

If we further consider some speedup solution, such as domain decom-
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position techniques through parallel computing [125], it is possible to

further reduce the complexity to O(nlogn).

4.6 Related Work and Discussions

Active learning has been extensively studied in machine learning [84,

85, 93, 108, 95]. It has been applied to a lot of applications includ-

ing text classification [85, 137] and content-based image retrieval [136].

Traditional active learning algorithms are often conducted in an it-

erative fashion. In each iteration, only one example is selected for

labeling. Then, the classification model is retrained with the addi-

tional labeled example. The active learning theories are typically based

on selecting one example with the highest classification uncertainty in

each learning iteration. Several different theories have been studied for

measuring the classification uncertainties of unlabeled examples. For

example, in [95, 39, 40, 44, 76, 93, 119], a number of different classifica-

tion models are first generated and then the classification uncertainty

of a test example is measured by the amount of disagreement among

the ensemble of classification models in predicting the test example.

Another kind of approaches measure the classification uncertainty of

a test example by how far the example is away from the classification

boundary [22, 116, 137], such as support vector machine active learning

developed by Tong and Koller [137].

The limitation of traditional work in active learning is the lack of

theories and effective algorithms for selecting a batch of most infor-

mative examples. This is particularly important when studying active

learning for large-scale applications. Recently, T. Zhang proposed a

theoretical framework of addressing the active learning problem based

on Fisher information theory [164]. Our work follows the idea of Fisher

information theory and proposed an effective solution for active learn-

ing to address how to select a batch of most informative examples for
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classification tasks. There are also some other existing work to ad-

dress the sampling strategies of selecting a batch of examples for active

learning. For example, K. Brinker proposed to select a batch of ex-

amples close to classification boundary and maintain the diversity by

measuring the angles between examples [20]. Chang et al. also studied

the similar approaches to image retrieval applications [37]. While they

considered the sampling problem of selecting a batch of examples, these

approaches are usually a bit ad-hoc and lack a theory of how is optimal

for a batch selecting solution. Our algorithm is based on the theoreti-

cal framework of Fisher information, which is proved to be optimal in

a probabilistic framework, though certain reasonable approximation is

involved in our fast algorithm.

4.7 Summary

This chapter presented a novel active learning algorithm that is able

to select a batch of informative and diverse examples for labeling man-

ually. This is different from traditional active learning algorithms that

focus on selecting the most informative examples for manually labeling.

We use the Fisher information matrix for the measurement of model un-

certainty and choose the set of examples that will effectively maximize

the Fisher information matrix. We conducted extensive experimental

evaluations on three standard data collections for text categorization.

The promising results demonstrate that our method is more effective

than the margin-based active learning approaches, which have been

the dominating method for active learning. We believe our scheme

is essential to performing large-scale categorization of text documents

especially for the rapid growth of Web documents on World Wide Web.

� End of chapter.



Chapter 5

Distance Metric Learning

5.1 Problem Definition

In general, the problem of finding a good distance metric for various

machine-learning algorithms can be regarded as an equivalent approach

of looking for a good data transformation function f : X �−→ Y , which

transforms the data X into another representation of Y [9]. These

two problems can be solved together in a unified framework. Hence,

the goal is to find a good distance metric which not only can be used

for similarity measure of data, but also can transform the data into

another better representation of the original data.

Let us introduce some basic concepts for distance metric learning.

Mathematically, a linear distance metric learning can be considered as

a problem to learn the Mahalanobis metric M , in which the distance

between two data instances can be defined as:

dM(xi,xj) =
√

(xi − xj)�M(xi − xj) (5.1)

where M must be positive semi-definite to satisfy the properties of

metric, i.e., non-negativity and triangle inequality. The matrix M can

be decomposed as M = A�A, where A is a transformation matrix.

The goal of distance metric learning is to find an optimal Mahalanobis

82
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matrix M and the optimal data transformation matrix A based on the

contextual information.

For nonlinear distance metric learning, one can map the data into

high dimensional space via kernel tricks and learn the corresponding

metric in the kernel space. Mathematically, a nonlinear distance metric

learning can be mathematically formulated as

dM(φ(xi), φ(xj)) =
√

(φ(xi)− φ(xj))�M(φ(xi)− φ(xj)) (5.2)

where φ is a basis function that maps the data from the original data

space to a higher-dimensional feature space and M the metric defined

in the mapping feature space.

5.2 Motivation of Methodology

To learn effective metrics, traditional techniques normally need to ac-

quire explicit class labels. However, in many real-world applications,

explicit class labels might be expensive to be obtained. For example,

in image retrieval, obtaining the exact class label of images is usually

quite expensive due to the difficulty of image annotation. However, it is

much easier to know the relevance relationship between images, which

can be obtained from the logs of users’ relevance feedback [57, 59].

Therefore, it is more attractive to learn the distance metrics or trans-

formation directly from the pairwise constraints without using explicit

class labels.

Let us give some example to show that why a flexible distance met-

ric is important for the applications given different kinds of contextual

information. Figure 5.1 shows an example of grouping the data in-

stances on different contextual conditions. Figure 5.1 (a) is the given

data. Figure 5.1 (b)-(d) show three different grouping results under dif-

ferent context environments, e.g., (b) groups by proximity, (c) groups

by shape, (d) groups by size. This example shows that it is impor-
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tant for the clustering algorithms to choose a right distance metric for

achieving the correct grouping results under different contextual infor-

mation.

(a) Original Data (b) By Proximity

(c) By Shape (d) By Size

Figure 5.1: Clustering data with different contextual information.

To tackle the problem of learning distance metrics from contextual

constraints (also called side-information [153]) among data instances,

this thesis first proposes a Discriminative Component Analysis (DCA)

method that learn the most discriminative transformation to achieve

an optimal linear distance metric. Further, we address the limitation of

traditional linear distance metric learning, which may not be effective

to capture the nonlinear relationship between data instances in real-

world applications. To attack this challenge, a Kernel Discriminative

Component Analysis (KDCA) algorithm is then proposed by applying

kernel techniques to solve the nonlinear distance metric learning. Note

that these methods are different from RCA in which RCA does not con-

sider negative constraints which may provide important discriminative

clues in learning metrics. The other difference is that RCA learns only

the linear metric while the Kernel DCA method can learn nonlinear

distance metrics.

Summary of Contributions. This chapter studies the problem
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of learning optimal transformations for distance metric learning with

contextual constraints in clustering application. Two novel algorithms,

namely the DCA and Kernel DCA, are proposed to learn both lin-

ear and nonlinear distance metrics. These algorithms need no explicit

class labels, which can be applicable to many general applications. The

rest of this chapter is organized as follows. Section 5.3 formulates the

Discriminative Component Analysis and presents the algorithm. Sec-

tion 5.4 suggests kernel transformations to extend DCA for learning

nonlinear distance metrics. Section 5.5 discusses experimental evalua-

tions on data clustering. Section 5.7 summarizes this chapter.

5.3 Discriminative Component Analysis

5.3.1 Overview

Let us first give an overview of the concept of Discriminative Compo-

nent Analysis (DCA). In the settings of DCA learning, we assume the

data instances are given with contextual constraints which indicate the

relevance relationship (positive or negative) between data instances.

According to the given constraints, one can group the data instances

into chunklets by linking the data instances together with positive con-

straints. The basic idea of DCA is to learn an optimal data transfor-

mation that leads to the optimal distance metric by both maximizing

the total variance between the discriminative data chunklets and min-

imizing the total variance of data instances in the same chunklets. In

the following part, we formalize the approach of DCA and present the

algorithm to solve the DCA problem.

5.3.2 Formulation

Assume we are given a set of data instances X = {xi}Ni=1 and a set of

contextual constraints. Assume that n chunklets can be formed by the
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positive constraints among the given constraints. For each chunklet,

a discriminative set is formed by the negative constraints to represent

the discriminative information. For example, for the j-th chunklet,

each element in the discriminative set Dj indicates one of n chunklets

that can be discriminated from the j-th chunklet. Here, a chunklet is

defined to be discriminated from another chunklet if there is at least one

negative constraint between them. Note that RCA can be considered

as a special case of DCA in which all discriminative sets are empty sets

that ignore all negative constraints.

To perform Discriminative Component Analysis, two covariance

matrices Ĉb and Ĉw are defined to calculate the total variance be-

tween data of the discriminative chunklets and the total variance of

data among the same chunklets respectively. These two matrices Ĉb

and Ĉw are computed as follows:

Ĉb =
1

nb

n∑
j=1

∑
i∈Dj

(mj −mi)(mj −mi)
�

Ĉw =
1

n

n∑
j=1

1

nj

nj∑
i=1

(xji −mj)(xji −mj)
�

(5.3)

where nb =
∑n

j=1 |Dj|, | · | denotes the cardinality of a set, mj is the

mean vector of the j-th chunklet, i.e., mj = 1
nj

∑nj

i=1 xji, xji is the i-th

data instance in the j-th chunklet, and Dj is the discriminative set in

which each element is one of n chunklets that has at least one negative

constraint to the j-th chunklet.

The idea of Discriminative Component Analysis is to look for a lin-

ear transformation that leads to an optimal distance metric by both

maximizing the total variance of data between the discriminative chun-

klets and minimizing the total variance of data among the same chun-

klets. The DCA learning task leads to solve the optimization as follows:

J(A) = arg max
A

|A�ĈbA|
|A�ĈwA| , (5.4)
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where A denotes the optimal transformation matrix to be learned.

When the optimal transformation A is solved, it leads to obtain the

optimal Mahalanobis matrix M = A�A.

5.3.3 Algorithm

According to the Fisher theory [94, 96], the optimal solution in Equa-

tion (5.4) is corresponding to the transformation matrix that diago-

nalizes both the covariance matrices Ĉb and Ĉw simultaneously [86].

To obtain the solution effectively, we propose an algorithm to find the

optimal transformation matrix, which was used to solve LDA in the

previous study [159]. The details of our algorithm are shown in Algo-

rithm 1.

In our algorithm, a matrix U is first found to diagonalize the co-

variance matrix Ĉb of between-chunklets. After discarding the column

vectors with zero eigenvalues, we can obtain a k∗k principal sub-matrix

Db of the original diagonal matrix. This procedure leads to obtain a

set of projected subspaces, i.e., Z = RD
−1/2
b , that can best discrimi-

nate the chunklets. Further, we form a matrix Cz = Z�ĈwZ and find

a matrix V to diagonalize the matrix Cz. If dimension reduction is

required, such that r is the desired dimensionality, then we extract the

first r column vectors of V with the smallest eigenvalues to form a

lower rank matrix V̂ . This leads to obtain the reduced diagonal matrix

Dw = V̂ �CzV̂ . Finally, the optimal transformation matrix and the op-

timal Mahalanobis Matrix are given as A = ZV̂ D
−1/2
w and M = A�A,

respectively.
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Algorithm 1: Discriminative Component Analysis

Input

- a set of N data instances: X = {xi}Ni=1

- n chunklets Cj and discriminative sets Dj , j=1,. . .,n

Output

- optimal transformation matrix A

- optimal Mahalanobis matrix M

Procedure

1. Compute Ĉb and Ĉw by Equation (5.3) ;

2. Diagonalize Ĉb by eigenanalysis

2.1. Find U to satisfy U�ĈbU = Λb and U�U = I, here

Λb is a diagonal matrix sorted in increasing order ;

2.2. Form a matrix Û by the last k column vectors of U

with nonzero eigenvalues ;

2.3. Let Db = Û�ĈbÛ be the k ∗ k submatrix of Λb ;

2.4. Let Z = ÛD
−1/2
b and Cz = Z�ĈwZ ;

3. Diagonalize Cz by eigenanalysis

3.1. Find V to satisfy V �CzV = Λw and V �V = I, here

Λw is a diagonal matrix sorted in decreasing order ;

3.2. If dimension reduction is needed, assume the desired

dimension is r, then form V̂ by the first r column

vectors of V with the smallest eigenvalues and let

Dw = V̂ �CzV̂ ; otherwise, let V̂ = V and Dw = Λw ;

4. Final Outputs

A = ZV̂ D
−1/2
w and M = A�A .

End of Algorithm

Figure 5.2: The Discriminative Component Analysis Algorithm.
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5.4 Kernel Discriminative Component Analysis

5.4.1 Overview

Similar to the RCA learning [9], DCA is so far also a linear technique

that is insufficient to discover nonlinear relationships among real-world

data. In the machine learning area, the kernel trick is a powerful tool to

learn the complex nonlinear structures from the input data [141, 120].

In the literature, the kernel trick has been successfully applied on many

linear analysis techniques, such as Kernel Principal Component Analy-

sis (PCA) [148], Kernel Fisher Discriminant Analysis [86, 96], Support

Vector Machines [141], Kernel Independent Component Analysis [7],

etc. Similar to these approaches, we can also apply the kernel trick on

DCA toward more powerful analysis performance in real-world appli-

cations.

Although DCA is more advantageous than RCA by incorporating

the discriminative information from negative constraints, it is still a

linear technique which is inadequate to discover the nonlinear rela-

tions among real-world objects. In machine learning, the kernel trick

is a powerful tool to represent complicated nonlinear relations of input

data. Recently, the kernel-based nonlinear analysis techniques have

been successfully applied in a lot of applications, such as Support Vec-

tor Machines [13], Kernel Principal Component Analysis (PCA) [14],

Kernel FDA [15, 16], Kernel ICA [17], etc.

In general, the kernel technique first maps input data into a high

dimensional feature space. A linear technique applied on the data in

the feature space is able to achieve the goal of nonlinear analysis. For

example, in Kernel PCA, input data are first projected into an implicit

feature space via the kernel trick, then the linear PCA is applied on

the projected feature space to extract the principal components in the

feature space. This enables the Kernel PCA to extract the nonlinear
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principal components in the input data space using the kernel trick.

Similar to the kernel techniques, we propose the Kernel Discrimi-

native Component Analysis (KDCA) to overcome the disadvantage of

RCA and DCA by applying the kernel trick. We first project input

data into an implicit feature space via the kernel trick. Then the linear

DCA is applied on the projected feature space to find the optimal lin-

ear transformation in the feature space. Consequently, we are able to

find the nonlinear structures of the given data using the Kernel DCA

technique.

To illustrate the capability of capturing nonlinear relations via the

kernel trick, we provide a toy example to show different spaces of the

given data by using the kernel trick in Figure 5.3. Figure 5.3 (a) shows

the original input space of the given data; Figure 5.3 (b) shows the

projected space via the kernel trick; Figure 5.3 (c) shows the embed-

ded low-dimensional space via Kernel DCA which be learned by linear

DCA. This example demonstrates that the Kernel DCA is more effec-

tive to describe the nonlinear relations of the given data.
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Figure 5.3: Illustration of Different Data Spaces. (a) is the original data

space; (b) is the projected space via kernel tricks; (c) is the embedding

space by Kernel DCA learning.
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5.4.2 Formulation

Let us now formulate Kernel Discriminative Component Analysis for-

mally. Typically, a kernel-based analysis technique usually implicitly

maps original data in input space I to a high-dimensional feature space

F via some basis function φ : x → φ(x) ∈ F . The similarity measure

of data in the projected feature space is achieved by the kernel func-

tion which is defined as an inner product between two vectors in the

projected space F as follows:

K(xi,xj) = (φ(xi), φ(xj)). (5.5)

Assume that a set of N data instances X = {xi}Ni=1 is given in an

original input space I. To do kernel DCA learning, we first choose

a basis function φ to map the data in the original input space I to

a high-dimensional feature space F . For any two data instances, we

compute their distance via the kernel function defined in the projected

feature space as follows:

dφ(xi,xj) =
√

(φ(xi)− φ(xj))�M(φ(xi)− φ(xj)) (5.6)

where M is a full rank matrix that must be positive semi-definite to

satisfy the metric property and is often formed by a transformation

matrix W . The linear transformation matrix W can be represented as

W = [w1, . . . ,wm]� in which each of the m column vectors is a span

of all l training samples in the feature space, such that

wi =

l∑
j=1

αijφj , (5.7)

where αij are the coefficients to be learned in the feature space. There-

fore, for a given data instance x, its projection onto the i-th direction

wi in the feature space can be computed as follows:

(wi · φ(x)) =
l∑

j=1

αijK(xj ,x) . (5.8)
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Hence, Equation (5.6) can be represented as

dφ(xi,xj) =
√

(
τi − 
τj)�M(
τi − 
τj) , (5.9)

where 
τi = [K(x1,xi), . . . , K(x1,xl)]
�, and A is the linear transforma-

tion matrix formed by A = [
α1, . . . , 
αm] in which 
αi = [αi1, . . . , αil]
�.

Hence, we can similarly compute the two covariance matrices in the

projected feature space as follows:

Kb =
1

nb

n∑
j=1

∑
i∈Dj

(
uj − 
ui)(
uj − 
ui)
�

Kw =
1

n

n∑
j=1

1

nj

nj∑
i=1

(
τj − 
ui)(
τj − 
ui)
�

(5.10)

where 
uj = [ 1
nj

∑nj

i=1 K(x1,xi), . . . ,
1
nj

∑nj

i=1 K(xl,xi)]
� denotes the mean

vector. Consequently, the Kernel DCA task leads to solve the optimiza-

tion problem as follows:

J(A) = arg max
A

|A�KbA|
|A�KwA| . (5.11)

Solving the above optimization problem gives the optimal linear trans-

formation A in the projected space. It also leads to the optimal Ma-

halanobis matrix in the projected space.

5.4.3 Algorithm

The method to solve the optimization of Kernel DCA is similar to that

for the linear DCA, i.e., to find the linear transformation matrix A that

can diagonalize both Kb and Kw. For limited space, please kindly refer

to Algorithm 2 for the details of Kernel DCA algorithm.

5.5 Experimental Results

To evaluate the performance of our algorithms, we conduct empirical

evaluation of learning distance metrics for data clustering in compar-
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Algorithm 2: Kernel Discriminative Component Analysis

Input

- a set of N data instances: X = {xi}Ni=1

- n chunklets Cj and discriminative sets Dj , j=1,. . .,n

Output

- optimal transformation matrix A

- optimal Mahalanobis matrix M

Procedure

1. Compute Kb and Kw by Equation (5.10) ;

2. Diagonalize Kb by eigenanalysis

2.1. Find U to satisfy U�KbU = Λb and U�U = I, here

Λb is a diagonal matrix sorted in increasing order ;

2.2. Form a matrix Û by the last k column vectors of U

with nonzero eigenvalues ;

2.3. Let Db = Û�KbÛ be the k ∗ k submatrix of Λb ;

2.4. Let Z = ÛD
−1/2
b and Kz = Z�KwZ ;

3. Diagonalize Kz by eigenanalysis

3.1. Find V to satisfy V �KwV = Λw and V KzV = I, here

Λb is a diagonal matrix sorted in decreasing order ;

3.2. If dimension reduction is needed, assume the desired

dimension is r, then form V̂ by the first r column

vectors of V with the smallest eigenvalues and let

Dw = V̂ �KzV̂ ; otherwise, let V̂ = V and Dw = Λw ;

4. Final Outputs

A = ZV̂ D
−1/2
w and M = A�A .

End of Algorithm

Figure 5.4: The Kernel Discriminative Component Analysis Algorithm.
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Table 5.1: The six datasets used in our experiments. The first three sets
are artificial data and the others are datasets from UCI machine learning
repository.

Dataset #Classes #Instances #Features

Norm 2 100 2
Chessboard 2 100 2
Double-Spiral 2 100 3
Iris 3 150 4
Sonar 2 208 60
Wine 3 178 12

isons with traditional methods of distance metric learning [153, 9]. We

describe the details of our empirical evaluation below.

5.5.1 Experimental Testbed

To do the performance evaluation for clustering, we use three artificial

datasets and three standard benchmark datasets from UCI machine-

learning repository. Table 5.1 shows the details of the datasets em-

ployed in our experiment. The Norm artificial dataset was generated

by Gaussian distributions. The first feature of the first class was gener-

ated by using the Gaussian distribution N(3, 1), and the first feature of

the second class by N(−3, 1); the other ten features were generated by

N(0, 25). Each feature was generated independently. The other two ar-

tificial datasets Chessboard and Double-Spiral are sampled respectively

from the data shown in Fig. 5.5.

5.5.2 Performance Evaluation on Clustering

In this experiment, we evaluate the performance of proposed DCA

and Kernel DCA in learning distance metrics with contextual con-

straints for data clustering. Three different techniques are evaluated,
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Figure 5.5: Two artificial datasets used in the experiments. 100 data in-

stances are randomly sampled from each to form our datasets respectively.

i.e., RCA [9], Xing’s metric learning method [153], DCA, and KDCA.

In the experiment, seven different clustering methods are developed for

comparison:

(1) K-means-EU: the baseline method, i.e., typical k-means clustering

based on the original Euclidean distance;

(2) CK-means-EU: the constrained k-means clustering method based

on the original Euclidean distance [145];

(3) CKmeans-RCA: the constrained k-means clustering method based

on the distance metrics learned by RCA [9];

(4) CKmeans-Xing: the constrained k-means clustering method based

on the distance metrics learned by Xing et al. [153];

(5) CKmeans-DCA: the constrained k-means clustering method based

on the distance metrics learned by our DCA algorithm;

(6) CKmeans-RBF: the constrained k-means clustering method based

on the RBF kernel metrics;
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Figure 5.6: The clustering results on six datasets of several different clus-

tering schemes with different metrics.
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(7) CKmeans-KDCA: the constrained k-means clustering method based

on the distance metric learned by our Kernel DCA algorithm. The

kernel function used in our experiment is a standard RBF func-

tion.

In the experiments, we evaluate the performance of the above differ-

ent clustering schemes given the pairwise contextual constraints. The

contextual information is generated automatically based on the ground

truth. For any two given data instances in a dataset, if they belong to

the same cluster according to the ground truth, this pair is considered

as a positive constraint; otherwise, it is a negative constraint. In our ex-

periments, we study two sets of experimental evaluations. One is given

with ”little” side-information with 5% randomly sampled pairwise con-

straints (half for similar constraints and half for dissimilar constraints).

The other is given with ”much” side-information with 10% constraints.

We adopt similar experimental settings for clustering evaluations

studied in the previous work [153]. To measure the quality of the

clustering results, we adopt the clustering accuracy similar to previous

study [9]. The clustering accuracy is defined as follows:

Accuracy =
∑
i>j

1{1{ci = cj} = 1{ĉi = ĉj}}
0.5n(n− 1)

(5.12)

where 1{·} is the indicator function (1{true} = 1 and 1{true} = 0),

{ci}ni=1 denotes the true cluster of the data instances in the ground

truth, {ĉi}ni=1 denotes the cluster predicted by some clustering algo-

rithm, and n is the number of instances in the dataset.

In our experiment, we run 20 times of clustering for each dataset

and test their average clustering accuracy performance of the cluster-

ing results. Fig. 5.6 shows the experimental results on six datasets

using several clustering schemes of different metrics. In each subfig-

ure, the six bars on the left side correspond to an experiment with

“little” constraints with 5% pairwise constraints (half for similar pairs
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and half dissimilar pairs); the bars on the right correspond to “much”

constraints with 10% pairwise constraints (half for similar pairs and

half for dissimilar pairs). From left to right, the seven bars are respec-

tively K-means+EU, Constrained K-means+EU, Constrained K-means

+ RCA metric, Constrained K-means + Xing’s metric, Constrained K-

means + DCA metric, Constrained K-means + RBF kernel metric,

Constrained K-means + Kernel DCA kernel metric. Standard error

bars are also shown in the figures.

We conduct the performance analysis on the experimental results.

By comparing the linear distance metrics, we can see that CK-means-

DCA algorithm perform similar to other two methods, i.e., RCA and

Xing’s methods. In some datasets, DCA outperforms the other two

methods quite importantly, such as Sonar and Wine datasets. This

shows that incorporating the negative constraints by DCA can improve

the performance of regular RCA method and the high cost metric learn-

ing method by Xing et al. By comparing with the linear and nonlinear

distance metric learning using Kernel DCA, we can found that in the

Norm dataset where the data relationship is linear, there is not a big

difference between linear and nonlinear distance metrics. However, on

the Chessboard and Double− Spiral datasets, where the relationship

of data instances is nonlinear, the Kernel DCA algorithm significantly

outperforms the traditional methods. This shows that Kernel DCA can

be more effective and promising in learning nonlinear metric. By exam-

ining on the other three benchmark datasets, Kernel DCA algorithms

outperform other methods in most cases. This shows that Kernel DCA

is more promising in learning metrics compared with traditional metric

learning methods.
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5.6 Discussions and Future Work

We presented two algorithms, i.e., DCA and Kernel DCA, to overcome

the disadvantages of the RCA method. DCA and Kernel DCA also

enjoy the merits of simple implementation and efficient computation

cost similar to RCA [9]. From the experimental sections, we have

empirically demonstrated our methods are promising to learn effective

distance functions for the data clustering applications. In addition to

learn distance functions, our techniques are also a promising solution

for dealing with dimension reduction problems in the appearance of

contextual information. We will evaluate the performance of our algo-

rithms on dimension reduction issues in our future work.

Moreover, several problems are also worth studying in our future

work. The first problem is the active selection of contextual infor-

mation. In the setting of our problems, we assume the contextual

information could be available for our learning tasks. In some real-

world problem, the contextual information may not be adequate. In

this case, we can use active learning to solicit users for informative

contextual constraints. This is an interesting active learning problem

for learning distance functions. One simple and intuitive solution for

this problem is to select the constraint between two nearest chunklets

in which they have no negative constraints. We can study the problem

in more details in our future work.

5.7 Summary

This chapter studied the problem of learning distance metrics and

data transformation using the contextual information for data clus-

tering. Two important limitations of traditional RCA approach were

addressed. One is the lack of exploiting negative constraints. Another

is the limitation of learning the linear distance metrics which are not
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adequate for describing the complex nonlinear relations of real-world

objects. To address the first problem, the Discriminative Component

Analysis (DCA) is proposed, which can exploit both positive and nega-

tive constraints in an efficient learning scheme. For solving the second

problem, the Kernel DCA is proposed by applying the kernel trick on

the linear DCA. Empirical evaluations are conducted to evaluate the

performance of the algorithms on data clustering. The promising re-

sults show that the proposed algorithms are simple but quite effective

in learning good quality metrics for data clustering. The methodology

studied in this chapter can also be applied to solve other applications,

such as web search and multimedia retrieval.

� End of chapter.



Chapter 6

Marginalized Kernels for

Web Mining

6.1 Motivation

Although click-through data has received considerable attention on

measuring similarity between query terms in the Web research commu-

nity, most of existing work ignored an important fact, i.e., the similar-

ity between query terms often evolves over time. Here the similarities

between query terms are usually obtained by the similarity propaga-

tion between queries, pages, and their co-occurrences [156]. The dy-

namic nature of query terms similarity over time can be attributed to

many factors, such as seasons, holidays, and special events, etc. This

dynamic nature of query terms similarity is usually embedded in the

click-through data implicitly. Traditional methods without temporal

consideration have limitations to measure such underlying semantic

similarity of query terms accurately.

Therefore, it becomes a challenging and important task to develop

an effective model for similarity measure from the click-through data

that can take advantage of the dynamic nature of queries and pages

over time. In particular, two challenging issues are needed to be solved

101
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as follows:

• How to exploit the click-through data for semantic similarity mea-

sure of queries in terms of temporal consideration?

• How to develop an effective model that can reflect both explicit

content similarity and implicit semantics between queries?

To address the challenging issues, let us first illustrate an example

to compare two different approaches of measuring similarity between

two queries over time in Figure 6.1. In the figure, the dotted line repre-

sents the first method that measures the similarity value at each time

point based on all the click-through data available at that time. We

refer to this method as the incremented approach. Different from the

incremented approach, the other approach, as shown in the solid line,

measures the similarity only by the click-through data given at that

time interval. We refer to this method as the interval-based approach.

From the comparison, we see that the interval-based approach can

better reflect the temporal factor than the incremented approach. For

instance, in the interval-based approach, the similarity values of the

second and third month are as high as 0.8, while the similarity values

in the fourth and fifth month are as low as 0.2. But in the incre-

mented approach, the similarity values from the second month to the

fifth month are respectively 0.6, 0.68, 0.55, and 0.48. This shows that

the similarity values in the incremented approach are relatively fixed,

which usually cannot evidently reflect the dynamic nature of similari-

ties between the query terms.

Hence, it is important to develop a similarity model that exploits

the click-through data effectively in a time-dependent way. To this

end, we propose a novel time-dependent framework to exploit the click-

through data for semantic similarity measure between queries [165]. An

overview of our proposed framework is given in the following.
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Figure 6.1: Incremented and interval-based methods for similarity measure

6.2 Overview

In this chapter we suggest a time-dependent framework to measure the

semantic similarity between Web search queries from the click-through

data. More specifically, we propose a novel time-dependent query term

semantic similarity model, which can exploit the click-through data

more effectively than traditional approaches such as the incremented

approach shown in Figure 6.1. Our time-dependent model monitors the

terms’ similarity over the temporal dimension and attempts to discover

the evolution pattern with the click-through data. Note that in this

chapter, the term evolution pattern of the query terms’ similarity refers

to how the similarity values vary over time.

The basic idea of our solution is to construct a model from the click-

through data by partitioning the click-through data into sequences of

sub-groups with respect to certain predefined calendar schema and

calendar patterns. For example, to monitor query similarity that may

change on a daily basis, the click-through data is partitioned into se-

quences of subgroups, where each sequence consists of click-through

data of an individual day. Then, using proposed semantic similar-

ity measure methodology based on the marginalized kernel function,

a daily based temporal similarity model can be constructed. As a re-
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sult, the time-dependent model can accurately reflect the daily based

patterns such as large or small values of query similarities during the

specific days.

Our proposed model can be used for more accurate and efficient

query expansion for Web search engines. Our empirical results with

the real-world click-through data collected from a commercial search

engine show that our proposed model can model the evolution of query

terms similarity accurately. In summary, the contributions of our work

in this chapter can be summarized as follows:

• To the best of our knowledge, we proposed the first time-dependent

model to calculate the query terms similarity by exploiting the

dynamic nature of click-through data.

• A probabilistic framework for constructing the time-dependent

query term similarity model is proposed with the marginalized

kernel, which measures both explicit content similarity and im-

plicit semantics from the click-through data.

• Extensive experiments have been done to evaluate the proposed

similarity model using a large collection of click-through data col-

lected from a commercial search engine.

The rest of the paper is organized as follows. In Section 2, we review

related work of calculating the query terms similarity from the click-

through data and temporal analysis of the click-through data. Section

3 presents our time-dependent framework for semantic similarity mea-

sure of query terms in the context of query expansion, in which the

time-dependent model is formulated by a marginalized kernel. Section

4 provides our empirical evaluation, in which some empirical exam-

ples are shown from real-world click-through data and extensive ex-

periments are conducted to evaluate the performance of our model.
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Figure 6.2: A framework of time-dependent semantic similarity measure

model between queries

Section 5 discusses limitations and future work. Section 6 concludes

this work.

6.3 The Time-Dependent Framework

In this section, we propose a probabilistic framework to construct

the time-dependent query similarity model. By exploiting the click-

through data over time, a semantic similarity measure model is pro-

posed based on the marginalized kernel technique [138]. Figure 6.2

illustrates the framework of our proposed semantic similarity model.

The details of our framework will be discussed as the following. First,

some preliminary definitions are given to describe click-through data

and calendar pattern formally. Following these definitions, a prob-

abilistic approach is proposed to measure content similarity between

query terms. Then, we study an efficient clustering technique on the

click-through data to acquire the implicit cluster semantics of the data.

Lastly, the time-dependent semantic similarity model is formulated by
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IP address Query Page Time

xxx.xxx.xxx BMW http://www.bmw.com 14:02 02112005

xxx.xxx.xxx SVM http://svm.first.gmd.de 15:31 03252005

xxx.xxx.xxx MSN http://www.MSN.com 21:14 02142005

Table 6.1: Transaction representation of click-through data.

the marginalized kernel function, which measures both explicit con-

tent similarity and implicit cluster semantics effectively from the click-

through data.

6.3.1 Click-Through Data & Calendar Pattern

Click-through data, representing query log of Web search engines, keep

the records of interactions between Web users and the searching en-

gines. Similar to the transaction data in the supermarket, the click-

through data consist of a sequence of users sessions in some format

like <IP address, query, clicked page, time>. In the literature, there

are two different ways to represent the click-through data. One way

is to represent the click-through data as session databases where each

session represents a pair of a query and a page that the user issued and

clicked (hereafter, we call such pairs as query-page pairs) as shown in

Table 6.1 [32, 147]. Note that the IP addresses are not shown in the

table due to the privacy issue. Recently, some variants of this represen-

tation have been proposed by taking into account the rank of the page

and the ID of the corresponding users [70, 130]. The other representa-

tion method is to use a bipartite graph, like the example in Figure 6.3,

where the queries and pages are represented as two sets of nodes and

the query-page pair co-occurrence relationships are represented as the

edges between the corresponding nodes [10, 156].

We use the session database approach to represent the click-through

data. Each session is represented as a triple < 
q, p,
t >, where 
q repre-

sents the query being issued, p represents the pages being clicked, and
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t represents the timestamp. Note that we use the vector representation

for both the queries and timestamps. The reason is that, in this chap-

ter, the queries will be represented as a vector of related web pages

that are led to by the queries. For the timestamps, with a fix calendar

schema, they are represented as vectors as well. The key distinguishing

feature of our query similarity measure is that rather than only using

the query-page pairs, the corresponding timestamps are used as well.

From the real query log data obtained from a commercial Web search

engine, we observe that the granularity of the timestamps can be in

mini-second. However, to analyze the temporal patterns of queries,

the time granularity can be application dependent and query depen-

dent. To make our framework flexible, we allow users to specify any

types of calendar-based patterns they are interested in depending on

their domain knowledge and application requirements. Formally, the

calendar schema and calendar-based pattern are defined as follows:

Definition 10 Calendar Schema: A calendar schema, S = (R, C),

is a relational schema R with a constraint C, where R = (fn : Dn, fn−1 :

Dn−1, · · · , f1 : D1), C is a Boolean valid constraint on Dn × Dn−1 ×
· · ·×D1 that specifies which combinations of the values in Dn×Dn−1×
· · · ×D1 are valid. �

Here each attribute fi in the relation schema is a calendar unit name

such as year, month, week, day, hour, etc. Each domain Di is a finite

subset of positive integers. C is a Boolean function specifying which
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combinations of the values in Dn×Dn−1×· · ·×D1 are valid. For exam-

ple, we may have calendar schema (year: {2000, 2001, 2002}, month:

{1, 2, 3, · · · ,12}, day: {1, 2, 3, · · · , 31}) with the constraint that

evaluate < y, m, d > to be “true” only if the combination gives a valid

date. For instance, < 2000, 2, 15 > is valid while < 2000, 2, 30 >

is invalid. The reason to use the calendar schema here is to exclude

invalid time interval due to the combinations of calendar units. More-

over, by modifying the constraint, users can further narrow down valid

time intervals for application and query dependent reasons. Hereafter,

we use ∗ to represent any integer value that is valid based on the con-

straint. For instance, if we use ∗ to represent months in with the above

mentioned calendar schema, then ∗ refers to any integer value from 1

to 12.

Definition 11 Calendar Pattern: Given a calendar

schema S = (R, C), a calendar pattern, denoted as CAP , is a tuple on

R of the form < dn, dn−1, · · · , d1 > where di ∈ Di ∪ {∗}. �

For example, assume we are given the calendar schema < year, month, day >,

then the calendar pattern < ∗, 1, 1 > refers to the time intervals “the

first day of the first month of every year”. Similarly, < 2002, ∗, 1 > rep-

resents the time intervals “the first day of every month in year 2002.”

6.3.2 Probabilistic Similarity Measure

Different from the previous query expansion approaches that use the

query log and the actual Web pages to extract similarity between terms

in the query space and terms in the document space [32, 121], we only

employ the query log. We propose a dual approach of the existing in-

formation retrieval model by representing each query term as a vector

of documents, namely 
q =< w1, w2, · · · , wn > in which wi represents

the projection weight on the ith page. In our paper, this weight is cal-
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culated from the Page Frequency (PF) and Inverted Query Frequency

(IQF), which are formally defined as follows:

Definition 12 PF.IQF: Given a query 
q and a Web page pi that has

been clicked by users who issued 
q via the search engine. Then, the Page

Frequency (PF) and the Inverted Query Frequency (IQF) are defined

as:

PF (
q, pi) =
f(
q, pi)∑
j f(
q, pj)

, IQF (pi) = log
|
q|

| < 
q, pi > |
�

Here f(
q, pi) is the number of times that page pi has been clicked by

users who issued the query 
q.
∑

j f(
q, pj) refers to the total number of

times that the pages have been clicked by users who issued the query 
q.

|
q| refers to the total number of times that the query 
q has been issued

and | < 
q, pi > | refers to the times that the page pi has been clicked

by users who issued 
q. As a result, the weight of page pi is calculated

as wi = PF (
q, pi)× IQF (pi).

Based on the document weight vector representation, the similar-

ity between two queries in content can be defined by a cosine kernel

function as follows.

Definition 13 Content Similarity Measure: Given two queries 
q1

and 
q2, their probabilistic similarity in content, denoted as Kcos(
q1, 
q2),

is defined as:

Kcos(
q1, 
q2) =

qT
1 
q2

||
q1|| · ||
q2||
�

Note that in the above similarity measure, all occurrences of queries

and Web pages are considered to be equally important and the times-

tamps are not used.
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6.3.3 Time-Dependent Model via Marginalized Kernels

Based on the content similarity measure and the calendar patterns

proposed in the previous section, we now present the framework of the

time-dependent query semantic similarity model. Before going into the

details of our framework, let us first define the relationship between the

timestamp and the calendar pattern to facilitate our following discus-

sions as follows:

Definition 14 Contained: Given a calendar pattern

< dn, dn−1, · · · , d1 > denoted as CAPi with the corresponding calendar

schema S = (R, C). A timestamp 
t is represented as < d′
n, d′

n−1, · · · ,
d′

1 > according to R. 
t is contained in CAPi, denoted as 
t ≺ CAPi,

if and only if ∀ 1 ≤ l ≤ n, d′
l ∈ dl. �

For example, given a calendar pattern < ∗, 2, 12 > with the calendar

schema < week, day of the week, hour >, then the timestamp 2005-

09-30 12:28 is not contained in this calendar pattern as it is not the

second day of the week, while the timestamp 2005-09-26 12:08 is.

Definition 15 Click-Through Subgroup (CTS):

Given a calendar schema S and a set of calendar patterns {CAP1,

CAP2, · · · , CAPm}, the click-through data can be segmented into a se-

quence of click-through subgroups (CTSs) < CTS1, CTS2, · · · , CTSm

>, where all query-page pairs < 
q, pi, 
ti > ∈ CTSl, 
ti ≺ CAPl,

1 ≤ l ≤ m. �

With the above definitions, in general, given a collection of click-

through data, we can first partition the data into sequences of CTSs

based on the user-defined calendar pattern and the corresponding times-

tamps. For example, given a weekly based calendar schema < week, day >

and a list of calendar patterns < ∗, 1 >, < ∗, 2 >, · · · , < ∗, 7 >,

the click-through data will be partitioned into sequences of 7 CTSs
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< CTS1, CTS2, · · · , CTS7 > , where CTSi represents the group of

click-through data whose timestamps are contained in the ith day of

the week.

After that, the query similarities are computed within each sub-

group and are aligned into a sequence to show the patterns of histor-

ical change. At the same time, a model is generated, with which we

can obtain the query similarities by inputting queries and timestamps.

Given the above example, we can obtain the query similarity on each

day of the week. Moreover, we can monitor how the query similarity

changes over time within each week in a daily basis. Also, given two

queries and the day of a week, the query similarity can be returned.

Then, the process iterates for presenting the results and collecting the

click-through data with users interactions. Hereafter, we focus on how

to construct the time-dependent query similarity model based on se-

quences of click-through subgroups.

In order to learn the implicit semantics embedded in the click-

through data, we first apply clustering techniques on the data to find

the cluster information in each click-through subgroup. When the clus-

ter results are obtained, we then formulate our semantic similarity

model by the marginalized kernel technique that can unify both the

explicit content similarity and the implicit cluster semantics very effec-

tively. Before the discussion of our semantic similarity model, we first

discuss how to cluster the click-through data efficiently. Let us first

give a preliminary definition.

Definition 16 Clusters of Click-Through Pages:

Given a click-through subgroup, we can obtain clusters of click-through

pages Ω={c1, c2, · · · , ck} by grouping the pages that are similar in

semantics, where k is determined by some clustering algorithm. �

In the literature, some clustering methods have been proposed to

cluster Web pages in the click-through data using the query-page rela-
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tion and propagation of similarities between queries and pages [10, 156].

In [10], an agglomerative clustering method is proposed. The basic idea

is to merge the most similar Web pages and queries iteratively. Orig-

inally, the similarity is defined based on the overlaps of neighbors in

the bipartite graph representation of the click-through data as shown

in Figure 6.3.

For the efficiency reason, we adopt the agglomerative clustering

method in [10]. In our clustering approach, neighbors in the bipar-

tite graph are assigned with different weights instead of being taken

as equal. The intuition is that the strength of the correlation between

two query-page pairs may be quite different. For example, the strength

of a query-page pair that co-occurs once should not be as equal as a

query-page pair that co-occurs thousands of times. Hence, we represent

the weights of the neighbors based on the number of times the corre-

sponding query-page pairs co-occur. That is, the weight of a page for a

given query is the number of times that page was accessed against the

total number of times the corresponding query was issued. Similarly,

the weight of a query for a given page is the number of times the query

was issued against the total number of times the corresponding page

was visited. Then each query is represented as a vector of weighted

pages, and each page is represented as a vector of weighted queries. As

a result, similarities between pages or queries are calculated based on

the cosine similarity measure.

More details about the clustering algorithm can be found in [10].

Note that the clustering algorithm is applied on each of the click-

through subgroups. Based on the clustering results, we now intro-

duce the marginalized kernel technique, which can effectively explore

the hidden information for similarity measure in a probabilistic frame-

work [73, 138].
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Definition 17 Marginalized Kernel: Assume that a visible variable

x is described as x ∈ X, where the domain X is a finite set. Suppose

a hidden variable h is described as h ∈ H, where H is a finite set.

A joint kernel KZ(z, z′) is defined between the two combined variables

z = (x, h) and z′ = (x′, h′). The marginalized kernel in X is defined

by taking the expectation with respect to the hidden variables as follows:

K(x, x′) =
∑
h∈H

∑
h′∈H

p(h|x)p(h′|x′)KZ(z, z′)

�

In the above definition, the terms p(h|x) and p(h′|x′) are employed to

describe the uncertainty of the hidden variables h and h′ related to

the visible variables x and x′, respectively. The marginalized kernel

models the probability of similarity between two objects by exploiting

the information with the hidden representations. Given the above def-

inition of the marginalized kernel function, we employ it to formulate

our time-dependent kernel function for semantic similarity measure of

queries as follows.

Definition 18 Time-Dependent Query Semantic

Similarity Measure: Given two queries 
q and 
q′, together with a

specific timestamp 
t, the time-dependent semantic similarity between

the two queries is measured by a time-dependent marginalized kernel

function KT (
q, 
q′|
t) as follows:

KT (
q, 
q′|
t)
=
∑
∀c

∑
∀c′

KQ

(
Qc|t, Q′

c′|t
)

p(c|q, t)p(c′|q′, t)

= Kcos (q, q′|t)
(∑

∀c

∑
∀c′

ϕ(c, c′|t)p(c|q, t)p(c′|q′, t)
)

= Kcos (q, q′|t)
( ∑

c∈Ω(t)

p(c|q, t)p(c|q′, t)
)

=
qt•q′t

||qt||×||q′t||

( ∑
c∈Ω(t)

p(c|q, t)p(c|q′, t)
)
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where c and c′ are the guessed clusters given the queries, Qc|t = (q, c|t)
and Q′

c′|t = (q′, c′|t). KQ is a joint kernel, ϕ(c, c′|t) is a function whose

value is equivalent to 1 if c and c′ are the same and 0 otherwise, and

qt and q′t are time-dependent query vectors. �

In the above formulation, the joint kernel KQ

(
Qc|t, Q′

c′|t
)

is defined

on the two combined query variables as follows:

KQ

(
Qc|t, Q′

c′|t
)

= ϕ(c, c′|t)Kcos(q, q
′|t),

where ϕ(c, c′|t) is a function to indicate whether c and c′ are the same

cluster of click-through data, and Kcos(q, q
′|t) is a time-dependent joint

cosine kernel on the two time-dependent query vectors Kcos(q, q
′|t) =

qt•q′t
||qt||×||q′t|| . Note that the query vectors are only computed on the sub-

group CTSi, to which the given timestamp 
t belongs.

From the definition of time-dependent marginalized kernel, we can

observe that the semantic similarity between two queries given the

timestamp 
t is determined by two factors. One is the time-dependent

content similarity measure between queries using the cosine kernel func-

tion; another is the likelihood for two queries to be grouped in a same

cluster from the click-through data given the timestamp.

6.4 Empirical Evaluation

In this section we conduct a set of empirical studies to extensively eval-

uate the performance of our time-dependent query semantic similarity

model. In the rest of this section, we first describe the dataset used in

our evaluation and the experimental setup in our experiments. Then,

we show several empirical examples to illustrate the real-world results

using our time-dependent framework. After that, we discuss the quality

measure metric used in our performance evaluation. Finally, the qual-

ity of the time-dependent query similarity model is evaluated under

different scenarios.
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6.4.1 Dataset

A real click-through dataset collected from Microsoft MSN search en-

gine is used in our experiments. The click-through data contains 15

million records of query-page pairs over 32 days from June 16, 2005 to

July 17, 2005. The size of the raw data is more than 22 GB. Note that

the timestamps for each transaction is converted to the local time using

the information about the IP address. In the following experiments,

the entire click-through data is partitioned into subgroups based on

the user-defined calendar schema and calendar patterns. For instance,

given the calendar schema < hour, day, month > with the calendar

pattern < 1, ∗, ∗ >, < 2, ∗, ∗ >, · · · , < 24, ∗, ∗ >, the click-through

data is partitioned into a sequence of 24 subgroups, where each group

consists of the query-page pairs occurred during a specific hour of ev-

eryday. Then, the average number of query-page pairs in each group

is around 59,400,000.

6.4.2 Empirical Examples

In this subsection, we present a set of examples of query term similarity

evolution over time extracted from the real click-through data collected

from MSN search engine. As there are many different types of evolution

patterns, here we present some of the representatives.

Figure 6.4 shows the similarities for two query pairs (“kid”, “toy”)

and (“map”, “route”) on a daily basis in the 32 days. We observe that

the similarities changed periodically in a weekly basis. That is, the sim-

ilarities changed repeatedly: starting low in the first few days of the

week and ending high in the weekend. To reflect such time-dependent

pattern, we apply our time-dependent query similarity model to the

two query pairs. Here the calendar schema and calendar patterns used

are < day, week > and < 1, ∗ >, < 2, ∗ >, · · · , < 7, ∗ >. Figure 6.5

shows the time-dependent query similarity measurement for the two
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Figure 6.4: Daily-based query similarity evolution

query pairs in Figure 6.4. We can see that the time-dependent query

similarity model can efficiently summarize the dynamics of the simi-

larity over time on a weekly basis. However, as shown in Figure 6.6,

the incremented approach cannot accurately reflect the highs and lows

of the similarity values. Note that the calendar schema and calendar

patterns used in the model are use-defined with related domain knowl-

edge. With inappropriate calendar schema and calendar patterns, we

may not be able to construct accurate time-dependent query similar-

ity models. For instance, for the same query pairs, if we use < hour,

day > and < 1, ∗ >, < 2, ∗ >, · · · , < 24, ∗ > as calendar schema and

calendar patterns (shown in Figure 6.7). We can see that there are no

predictable change patterns, hence there is no hour of the day based

time-dependent model that can accurately model the similarity.

Figure 6.8 shows the similarity measurement for two query pairs

(“weather”, “forecast”) and (“fox”, “news”) over one and a half day

on hourly basis. We can see that box query pairs have two peak values

in every day and this pattern repeatedly occur in the dataset. Based

on this observation, we propose to model their similarity using the

time-dependent query similarity model with a hourly based calendar

patterns. That is, the calendar schema and calendar patterns used
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Figure 6.5: Weekly-based time dependent query similarity model
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Figure 6.6: Query similarity with incremented approach

are < hour, day > with < 1, ∗ >, < 2, ∗ >, · · · , < 24, ∗ >. Fig-

ure 6.9 shows the time-dependent query similarity model. Similarly,

Figure 6.10 shows the similarity values calculated using the incremented

approach, which is clearly not accurate compare to the time-dependent

similarity model.

Figure 6.11 shows the similarity measurement of two query pairs

(“father”, “gift”) and (“firework”, “show”) on a daily basis. The cor-

responding similarity values extracted using the incremented approach

are shown in Figure 6.12. We can see that the time-dependent model

cannot be constructed for the two sets of query pairs from the data
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Figure 6.7: Hourly-based query similarity evolution
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Figure 6.8: Hourly-based query similarity evolution

available in our collection. The reason is that to track event-based

query pairs’ similarity, e.g., the “father’s day” based query pairs’ sim-

ilarity, we need at least years’ of click-through data since such events

happen only once every year. Note that the previous examples, which

can be modeled using the time-dependent model, are within a time

interval of 32 days such as weekly based and hour of the day based

(our click-through dataset only contains data for 32 days).
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Figure 6.9: Hourly-based time dependent query similarity model
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Figure 6.10: Query similarity with incremented approach

6.4.3 Quality Measure

To evaluate the quality of the time-dependent query similarity model,

the dataset is partitioned into two parts. The first part consists of a

collection of click-through data in the first few days, while the second

part consists of the click-through data in the rest of 32 days. Note that

the timestamps of click-through data in the first part must be earlier

than the timestamps of the click-through data in the second part. The

reason is that we will use the first part as training data to construct

the time-dependent query similarity model, while the second part is

used to evaluate the model. Moreover, partitioning of the click-through
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Figure 6.11: Daily-based query similarity evolution
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Figure 6.12: Query similarity with incremented approach

dataset also depends on the user-defined calendar schema and calendar

patterns. For example, to build a weekly based model, the training data

should at least cover a time duration of one week; a yearly based time-

dependent model cannot be constructed using click-through data of a

few days.

Once the time-dependent query similarity model is constructed,

given a query pair, the similarity can be obtained by matching the

corresponding calendar patterns in the model. For example, with the

weekly based query similarity model as shown in Figure 6.5, the query

similarity between “kid” and “toy” can be derived based on the day of
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the week. We call the similarity derived from the model as predicted

similarity.

Then, the predicted similarity value is compared with the exact sim-

ilarity value calculated using the actual dataset. For example, with a

weekly based similarity model constructed using the dataset in the first

two weeks, the query similarity on the third Monday can be predicted,

denoted as S ′. Then, the exact similarity is calculated with the dataset

in the third Monday. Given the predicted similarity value S ′ and the

exact similarity value S, the accuracy of the model is defined as |S−S′|
S

,

where |S − S ′| is the absolute difference between the two values. Simi-

larly, for the incremented approach, the same definition of accuracy is

used so that we can compare the two approaches.

In the following experiments, a set of 1000 representative query

pairs is selected from the query page pairs that have similarities larger

than 0.3 in the entire click-through data. Some of them are the top

queries in the week or month, some are randomly selected, while others

are selected manually based on the related real world events such as

“father’s day” and “hurricane”. Note that the accuracy values shown

below are the average accuracy values of all the testing query pairs.

6.4.4 Performance Evaluation

To evaluate the accuracy of the time-dependant query similarity model,

three sets of experiments have been done. Firstly, the sizes of the

data collections that are used to construct and test the time-dependant

query term similarity model are varied. For example, we use the first

twenty days as training data and use the eleven days left as testing data

or we use the first thirty days as training data and use the last day left

as testing data, etc. Note that as the size of the testing data increases,

the distance between the training data and test data increases as well.

Secondly, only the size of the data collection that is used to construct-
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ing the time-dependent model is varied. Whereas the testing data is

always the other day followed the dataset being used. For example, we

use the first twenty days as training data and use data in the 21st day

as testing data. Thirdly, the distance between the training data and

testing data is varied while the sizes of the training data and testing

data are fixed. Note that the distance between the two data collections

is the distance between the latest query-page pairs in the two collec-

tions. For instance, we can use the first twenty days as training data

and use data in the 21st day as testing data for the case where distance

is 1. If the distance is 2, then data in the 22nd is used for testing. Note

that all possible combinations of training and testing data that satisfy

the distance constraint are used and the average accuracy values are

presented. In the following experiments, if not specified, the calen-

dar schema < hour, day, month > is used with the calendar pattern

< 1, ∗, ∗ >, < 1, ∗, ∗ >, · · · , < 24, ∗, ∗ >.

Table 6.2 shows the quality of the time-dependent query similarity

model by varying the sizes of data that are used for constructing the

model and testing the model. We can see that when the size of the

training data increases and size of the testing data decreases, the accu-

racy of the time-dependent model increases as well. When the sizes of

the training and testing data are similar, the accuracy can be as high

as 87.3%. Note that here all the click-through data in the 32 days are

used. We use the first part of the data as training data and the rest as

testing data. The reason behind may be that when the training is not

large enough to cover all the possible patterns, then the time-dependent

model may not be able to produce accurate results.

Figure 6.13 shows the quality of the time-dependent query similarity

model by varying the size of data that is used for construction the

model and fixing the size of data that is used for testing to 1. Three

different calendar schemas and calendar patterns are used as well. We
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|Trainingdata| |Testingdata| Accuracy

10 22 0.784

15 17 0.873

20 12 0.892

25 7 0.921

30 2 0.968

Table 6.2: Quality of the time-dependent model (1)
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Figure 6.13: Quality of the time-dependent model (2)

can see that when the size of the training data increases, the accuracy

of the time-dependent model increases as well. This fact is just as we

expected: as the size of the training data increases, performance of the

model is expected to increase.

Figure 6.14 shows how the quality of the time-dependent query sim-

ilarity model changes by varying the time distance between the data

collection that is used for testing and the data collection used for con-

structing the model. For example, when the distance is 1 and the

training data size is 10, we summarize all the accuracy values that use

the i to 10+i days as training and use the 10+1+i as testing. We

can see that when the distance increases, the accuracy of the time-

dependent model decreases. At the same time, when the size of the

training data increases, with the same distance, the accuracy value
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Figure 6.14: Quality of the time-dependent model (3)

may increase. The reason behind this set of data shows that the time-

dependent model is more accurate if the most recent data is incorpo-

rated as the time-dependent model may be modified.

Moreover, we implemented an incremented query similarity model

and compare the prediction accuracy with the time-dependant ap-

proach. Note that for the two approaches both the data that are used

for building the model and the data that are used for testing are the

same (The first part of the data is used for training and the rest is used

for testing). In the following experiments, three calendar schema and

calendar pattern pairs are used. The calendar schema and calendar

patterns are < hour, day, month > with < 1, ∗, ∗ >, < 2, ∗, ∗ >, · · · ,
< 24, ∗, ∗ >; < hour, day, month > with < ∗, 1, ∗ >, < ∗, 2, ∗ >, · · · ,
< ∗, 31, ∗ >; and < day, week > with < 1, ∗ >, < 2, ∗ >, · · · , < 7, ∗ >.

We use the 1000 sampled query pairs for performance evaluation.

Figure 6.15 shows the comparison of quality about the similarity val-

ues obtained using the incremented approach and the time-dependent

model. Note that the size of the training data is varied from 1/4 of the

dataset to 7/8 of the dataset as well, while the rest is used for testing.

We can see that when the intervals in the calendar schema become

larger, the quality of the time-dependant model decreases. This is be-

cause we only use a click-through data of 32 days, which can produce
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Figure 6.15: Quality of the time-dependent model (4)

satisfactory results with the hourly and daily based calendar patterns.

Yet, the quality of the time-dependent model is generally better than

the incremented approach. Moreover, we observe that for some calen-

dar schema based time-dependent query similarity model, the accuracy

of the model decreases dramatically when the size of the training data

decreases, especially for the daily based calendar schema. The reason

is that the size of our data collection is not large enough, thus when

the size of the training data decreases it cannot cover every possible

day in one month (requires at least 31 days of training data).

6.5 Discussions and Future Work

The experiments show that for most query pairs, the similarities are

time-dependent and the time-dependent model can produce more accu-

rate similarity values compared to the incremented approach. Besides

the time dimension that affects the similarities between queries, there

are other factors such as user groups, locations, and topic context, etc.

In this chapter, we have focused on incorporating the time dimension.

In the future work, we will incorporate other factors mentioned above

into the query similarity model. Two extended models are presented

as follows.
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Personalized time-dependent query similarity model: Beside the

time dimension, user groups play an important role in determining

the similarities between queries. This is based on the observation that

different users have different search habits and have different query

vocabularies [51]. For example, some users search about news and

business information in the morning and entertainment information in

the night, while others may have the reverse habits. Also, to describe

the same object or event, people come from different background usu-

ally use different query terms. The personalized time-dependent query

similarity model is to combine the user information together with the

temporal information to build an accurate query similarity model that

can be used for improving the personalized search experience.

Spatial-temporal-dependent query similarity model: Similar to the

user groups, the spatial location [146] of the queries and Web pages

may affect the similarities between queries. For example, for the same

object, users in the United States may have different information need

compared to users in Asia. Also, contents of Web pages that are cre-

ated by people in the United States may use different vocabularies

compared to those created by people from Asia. By combining the

spatial and temporal information, a spatial-temporal-dependent query

similarity model can be constructed. There are different types of loca-

tions such as provider location, content location, serving location, and

user location. With such information, we believe, the spatial-temporal-

dependent query similarity model can be used to improve the search

experience.

6.6 Summary

With the availability of massive amount of click-through data in cur-

rent commercial search engines, it becomes more and more important

to exploit the click-through data for improving the performance of the
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search engines. We attempt to extract the semantic similarity informa-

tion between queries by exploring the historical click-through data col-

lected from the search engine. We realize that the correlation between

query terms evolves from time to time in the click-through data, which

is ignored in the existing approaches. Different from the previous work,

we proposed a time-dependent semantic similarity model by studying

the temporal information associated with the query terms in the click-

through data. We formulated the time-dependent semantic similarity

model into the format of kernel functions using the marginalized kernel

technique, which can discover the explicit and implicit semantic simi-

larities effectively. We conducted the experiments on the click-through

data from a real-world commercial search engine in which promising

results show that term similarity does evolve from time to time and

our semantic similarity model is effective in modelling the similarity

information between queries. Finally, we observed an interesting find-

ing that the evolution of query similarity from time to time may reflect

the evolution patterns and events happening in different time periods.

� End of chapter.



Chapter 7

Online Collaborative

Multimedia Retrieval

7.1 Problem and Motivation

Given the difficulty in learning the users’ information needs from their

feedback, multiple rounds of relevance feedback are usually required

before satisfactory results are achieved. As a result, the relevance feed-

back phase can be extremely time-consuming. Moreover, the procedure

of specifying the relevance of images in relevance feedback is usually

viewed as a tedious and boring step by most users. Hence, it is required

for a CBIR system with relevance feedback to achieve satisfactory re-

sults within as few feedback steps as possible, preferably in only one

step. Despite previous efforts to accelerate relevance feedback using

active learning techniques [136], traditional relevance feedback tech-

niques are ineffective when the relevant samples are scarce in the ini-

tial retrieval results. From a long-term learning perspective, log data

of accumulated users’ relevance feedback could be used as an impor-

tant resource to aid the relevance feedback task in CBIR. Although

there have been a few studies carried out on the exploitation of users’

log data in document retrieval [3, 33], little research effort has been

128
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dedicated to the relevance feedback problem in CBIR [57]. To our best

knowledge, there has been no comprehensive work on integrating log

of users’ feedback into the learning process of relevance feedback in

CBIR. Several recent studies related to our work are either too heuris-

tic or lacking empirical evaluations from real-world users [50, 49, 167].

For example, the work in [49] suggested learning a semantic space by

mining the relevance feedback log in CBIR. However, only the positive

feedback was considered; the negative feedback examples, which can

also be informative to users’ information needs, were ignored.

In this chapter we present a novel log-based relevance feedback

framework for integrating the log data of users’ relevance feedback with

regular relevance feedback for image retrieval. We refer to the multi-

media retrieval approach based on users’ log data as “Collaborative

Multimedia Retrieval” (CMR) and the log-based relevance feedback

retrieval scheme as the “Online Collaborative Multimedia Retrieval”

scheme. In our online CMR framework, we compute the relevance in-

formation between query images and images in the database using both

the log data and the low-level features of images, and combine them

to produce a more accurate estimation of relevance score. In order to

make the learning algorithm more robust to erroneous log data in real-

world applications, we propose a novel support vector machine (SVM)

algorithm, named Soft Label SVM, to tackle the noisy data problem.

The rest of this chapter is organized as follows. Section 7.2 pro-

vides an overview of our framework for the log-based relevance feed-

back problem, followed by a formal definition and a unified solution for

the problem. Section 7.3 gives a background review of SVMs from the

regularization perspective and presents the Soft Label SVM that will

be used to solve the log-based relevance feedback problem. Section 7.4

presents a log-based relevance feedback algorithm based on the Soft

Label SVM technique. Section 7.5 discusses our experimental testbed
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and the methodology for performance evaluation of the log-based rel-

evance feedback algorithm. Section 7.6 describes our empirical results

for the log-based relevance feedback algorithm. Section 8.6 addresses

the limitation of our scheme and the challenging problems for our algo-

rithm, as well as the possible solutions in our future work. Section 8.7

concludes this work.

7.2 A Log-based Relevance Feedback Framework

7.2.1 Overview of Our Framework

We first give an overview of our proposed framework for log-based

relevance feedback that systematically integrates the log data of users’

relevance judgments with regular relevance feedback for image retrieval.

Fig. 7.1 shows the architecture of the proposed system. First, a user

launches a query in a CBIR system for searching desired images in

databases. Then, the CBIR system computes the similarity between

the user query and the image samples in database using the low-level

image features. Images with high similarity measure are returned to

the user. Next, the user judges the relevance of the initially returned

results and submits his or her judgements to the CBIR system. A

relevance feedback algorithm refines the initial retrieval results based on

the user’s relevance judgments, and returns an improved set of results

to the user. Typically, a number of rounds of users’ relevance feedback

are needed to achieve satisfactory results.

Unlike traditional relevance feedback, we propose a unified frame-

work that combines the feedback log with the regular relevance feed-

back. In Fig. 7.1, we see that the online relevance feedback from users

is collected and stored in a log database. When feedback log data is un-

available, the log-based relevance feedback algorithm behaves exactly

like a regular relevance feedback algorithm, which learns the correla-
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Figure 7.1: The architecture of our proposed system

tion between low-level features and users’ information needs through

the feedback image examples. When feedback log data is available,

the algorithm will learn such a correlation using both the feedback log

data and the online feedback from users. Thus, the log-based relevance

feedback scheme is able to accomplish the retrieval goal in only a few

iterations with the assistance from the log data of users’ feedback.

7.2.2 Formulation and Definition

Before formally describing the problem of log-based relevance feedback,

we need to systematically organize the log data of users’ feedback. As-

sume a user labels N images in each round of regular relevance feed-

back, which is called a log session in this chapter. Thus, each log ses-

sion contains N evaluated images that are marked as either “relevant”

or “irrelevant”. For the convenience of representation, we construct a

relevance matrix (R) that includes the relevance judgements from all

log sessions. Fig. 7.2 shows an example of such a matrix. In this fig-
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ure, we see that each column of a relevance matrix represents an image

example in the image database, and each row represents a log session

from the log database. When an image is judged as “relevant” in a log

session, the corresponding cell in matrix R is assigned to the value +1.

Similarly, −1 is assigned when an image is judged as “irrelevant”. For

images that are not judged in a log session, the corresponding cells in

R are assigned to zero values.

Figure 7.2: The relevance matrix for representing the log information of user

feedback. Each column of the matrix represents an image example in the

image database and each row of the matrix corresponds to a log session in

the log database.

Based on the above formulation, we now define the log-based rele-

vance feedback problem. Let us first introduce the following notation:

• q: a user query

• Nl: the number of labeled images for every log session

• Nimg: the number of image samples in the image database

• Nlog: the number of log sessions in the log database

To retrieve the desired images, a user must first present a query

q, either by providing a query image or by drawing a sketch picture.

Let Z = {z1, z2, · · · , zNimg
} denote the identity of images in the image

database. Let X = (x1,x2, · · · ,xNimg
) denote the image database,
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where each xi is a vector that contains the low-level features of the

image zi. Let R = (r1, r2, · · · , rNlog
)T denote the log data in the log

database, where each ri contains relevance judgements in the i-th log

session. Let L = {(z1, y1), (z2, y2), . . . , (zNl
, yNl

)} be the collection of

labeled images acquired through the online feedback for a user. Then,

the definition of a log-based relevance feedback problem can be given

as follows:

Definition 19 (Log-based Relevance Feedback) A log-based rel-

evance feedback problem for image retrieval is to look for a relevance

function fq that maps each image sample zi to a real value of relevance

degree within 0 and 1,

fq : Z �−→ [0, 1],

based on the feature representation of images X, the log data of users’

feedback R, and the labeled images L acquired from online feedback.

According to the above definition, both the low-level features of

the image content, i.e., X, and the log data of users’ feedback, i.e, R,

should be included to determine the relevance function fq. Meanwhile,

to reduce the number of iterations of online relevance feedback, a good

learning algorithm should require only a small number of labeled image

examples from the online relevance feedback, i.e., |L|.

7.2.3 Solution to the Problem

Given that the relevance function depends on both R and X, a simple

strategy is to first learn a relevance function for each of these two types

of information, and then combine them through a unified scheme. Let

fR(zi) denote a relevance function based on the log data of users’ feed-

back, and fX(zi) denote a relevance function based on the low-level

features of the image content. Both of them are normalized to [0, 1] re-

spectively. Then, the overall relevance function can be the combination
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of these two functions as follows:

fq(zi) =
1

2
(fR(zi) + fX(zi)), (7.1)

In the following, we will describe how to acquire the relevance functions

fR(zi) and fX(zi) separately.

Let us first consider the log data of users’ feedback. When two

images have similar content, we would expect different users to express

similar relevance judgements for these two images. On the other hand,

for two images with dramatically different content, there should be no

correlation in their relevance judgments in log data. Hence, to estimate

the similarity between two images zi and zj , we suggest a modified

correlation function to measure their relevance judgments in the log

data, i.e.,

ci,j =
∑

k

δk,i,j · rk,i · rk,j (7.2)

where δk,i,j is defined as follows:

δk,i,j =

⎧⎨
⎩ 1 if rk,i + rk,j ≥ 0 ,

0 if rk,i + rk,j < 0 .
(7.3)

Note that δk,i,j is engaged to remove (−1,−1) pairs among (rk,i, rk,j)

in the computation of similarity. This is because it is difficult to judge

similarity of two images when they both are marked as “irrelevant” to

users’ information needs. Evidently, image zi and image zj are relevant

when cij is positive, irrelevant when cij is negative. When cij is around

zero, it is usually hard to judge if one image is relevant to the other.

Based on the above similarity function, we can develop the rele-

vance function based on the log data. Let L+ denote the set of positive

(or relevant) images in L, and L− denote the set of negative (or irrel-

evant) samples. For an image in the database, we compute its overall

similarities to both positive and negative images, and the difference
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between these two similarities will indicate the relevance of the image

to the user’s query. More specifically, the overall relevance function

can be formulated as follows:

fR(zi) = max
k∈L+

{
ck,i

maxj ck,j

}
− max

k∈L−

{
ck,i

maxj ck,j

}
(7.4)

Despite its simple form, our empirical studies have shown that the

above relevance function is effective in practice [57].

Remark: So far we assume the above relevance function is calcu-

lated on the fixed log data. Toward a long-term learning purpose, it

is important to develop an incremental method to deal with the new

added log session. For the method proposed above, it is natural to

provide an incremental solution. For example, we can create a corre-

lation matrix CM = [ci,j]Nimg×Nimg
which marks down the correlation

values between images based on the history log data. When a new log

session is added to the log database, we can update the element in the

correlation matrix as follows:

ci,j = ci,j + δk′,i,j · rk′,i · rk′,j (7.5)

where rk′ is the new log session, δk′,i,j is defined in (7.3). Note that

only the element ci,j satisfying rk′,i �= 0 and rk′,j �= 0 will be updated.

After obtaining the relevance function on the log data, we can use

it in learning the relevance function on the low-level image features.

Learning the relevance function on the image features is a standard

relevance feedback problem in content-based image retrieval. Dozens

of suitable algorithms have been proposed in the literature [61]. Among

them, support vector machine (SVM) is one of the most effective tech-

niques in practice. As a state-of-the-art classification technique, SVM

enjoys excellent generalization capability which has shown superior per-

formance in many applications. Although it is able to function with

small numbers of training samples, the performance of SVM will usu-

ally deteriorate significantly when the number of training samples is
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too small. This is a general issue with any discriminative classifier as

pointed out in [99]. Given that the number of labeled samples in L
is small, applying SVM directly to L may not achieve the desirable

performance. One possible solution is to boost the performance using

unlabeled samples by the Transductive SVM [69]. However, difficulties

such as high training cost [69] and unstable performance prevent its

application to the relevance feedback problem.

Hence, we propose enriching training samples by employing the rele-

vance function based on the log data in (7.4). One simple approach is to

calculate the relevance scores of image samples to the query target us-

ing (7.4), and augment training examples with the image samples that

have large relevance scores. Although this approach can be straight-

forwardly handled by the standard SVM algorithm, it may suffer from

performance degradation, providing that image samples with high rel-

evance scores may not be relevant to the targeted query. To deal with

this noisy data problem, we propose a novel learning algorithm, named

Soft Label Support Vector Machine. Unlike the standard SVMs in

which all the training examples are labeled as either “+1” or “-1”, our

algorithm does not require absolute confidence about the labels of the

selected training samples. In fact, the relevance scores of images reflect

the uncertainties in determining their labels. Thus, instead of using

hard binary labels, we introduce the “soft label” for the training sam-

ples that use the relevance scores computed from (7.4). By combining

the soft-labeled samples with the labeled samples acquired from the on-

line user feedback, we can train a Soft Label SVM classifier. The final

relevance function on the low-level image features will be constructed

based on the decision function of the trained classifier. In the following

section, we first introduce the background of SVM and then formulate

the Soft Label SVM technique in detail.
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7.3 Soft Label Support Vector Machines

7.3.1 Overview of Regularization Learning Theory

To provide a rigorous justification of Soft Label Support Vector Ma-

chine, we here provide a brief overview of regularization framework and

Support Vector Machines.

In a general setting of learning from examples, we are given a train-

ing set of l independent and identically distributed observations

(x1, y1), (x2, y2), . . . , (xl, yl)

where xi are vectors produced by a generator and yi are the associ-

ated responses by a supervisor. A learning machine estimates a set of

approximated functions f to approach the supervisor’s responses.

The classical regularization theory has been justified by the signif-

icant work of Vapnik’s theory [141]. Based on the framework of Vap-

nik’s theory, a general regularization framework is suggested to find

the function f via the functionals

f = arg min
f∈HK

1

l

l∑
i=1

V (xi, yi, f) + λ‖f‖2K, (7.6)

where V (·, ·, ·) is a loss function, and the penalty norm λ‖f‖2K imposes

smoothness conditions on the solution space.

To avoid confusions, we limit our further discussion on classification

and retrieval problems. The loss function in (2.4) is also named as the

soft margin loss function for SVM classification.

7.3.2 Soft Label Support Vector Machines

According to the regularization framework in (7.6), it is critical to

define an appropriate loss function that fits in with the nature of the

application. In standard SVMs for classification applications, the given
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training samples are normally assumed noise-free. When this assump-

tion is not satisfied, the original loss function may not be the best

choice. This motivates us to study the Soft Label Support Vector

Machines for the cases of noisy labels. To facilitate the following dis-

cussion, we denote the regular support vector machine for noise-free

cases as “Hard Label Support Vector Machine” (SVM), and the noise-

appearing cases as “Soft Label Support Vector Machine” (SLSVM).

Suppose we are given the training data as follows:

(x1, s1), (x2, s2), . . . , (xm, sm)

where the label si is a real number and 0 < |si| < 1 1. In the above

setting, the sign of each label si, i.e., sgn(si), indicates the binary class

label of the corresponding sample. The magnitude of label si, i.e., |si|,
represents the confidence of the assigned label. We call these labels

“soft labels” to distinguish them from the binary labels. Our goal is

to learn a reliable SVM classification model from the data points that

are “softly” labeled.

A straightforward approach is to convert a Soft Label learning prob-

lem into the one with hard labels. However, this will discard the con-

fidence information related to the soft labels, which may significantly

degrade the performance of the classifier. In order to develop a more

robust scheme for exploiting the information of soft labels, we propose

to modify the loss function of SVMs in (2.4). Our first formal definition

of the Soft Label loss function is given as follows:

V (xi, si, yi, f) = |si| · (1− yif(xi))+. (7.7)

Different from (2.4), the loss term is weighted by |si|, i.e., the confi-

dence of the assigned label. The larger the confidence |si| is, the more

important the loss term of the sample will be. We further expand the

1If a training sample is given with si = 0, it will be treated as an unlabeled data

instance which is excluded from our learning machine.
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loss function defined in (7.7) by including the hard-labeled data, i.e.,

V (xi, si, yi, f)

=

⎧⎨
⎩ CH · (1− yif(xi))+ if |si| = 1,

CS · |si| · (1− yif(xi))+ if 0 < |si| < 1.
(7.8)

In the above definition, we assume the hard-labeled data points corre-

spond to the case when |si| = 1. Two weight parameters CH and CS

are introduced to balance the importance between hard-labeled data

and soft-labeled data. Usually, we set CH > CS > 0. This is based

on the intuition that the cost of misclassifying a hard-labeled example

should be significantly higher than the cost of misclassifying a softly

labeled example. By carefully choosing the value of CS and CH , our

SVM algorithm is able to, on the one hand fully take advantage of the

soft-labeled examples to narrow down the best location for the decision

boundary, and on the other hand, avoid being misled by the potentially

erroneous labels in the soft-labeled data.

Now, assume f(x) = w ·Φ(x)− b. By substituting the definition of

loss function in (7.8) into the general framework in (7.6), we have

min
w,b

1

2
||w||2 + CH

l∑
i=1

(1− yi(w · Φ(xi)− b))+

+ CS

l+m∑
i=l+1

|si|(1− yi(w · Φ(xi)− b))+

(7.9)

To simplify the above problem, we introduce a slack variable ξi =

(1−yi(w ·Φ(xi)−b))+ for every labeled example (including both hard-

labeled instances and soft-labeled instances), which leads to the follow-

ing optimization problem:
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Definition 20 Soft Label Support Vector Machine (SLSVM):

min
w,b,ξ

1

2
‖w‖2 + CH

l∑
i=1

ξi + CS

l+m∑
i=l+1

|si|ξi (7.10)

subject to yi(w · Φ(xi)− b) ≥ 1− ξi,

ξi ≥ 0 , i = 1, . . . , l + m ,

where l and m are respectively the number of hard-labeled training data

and the number of soft-label ones (with |si| < 1), CH and CS are weight

parameters for hard-labeled and soft-labeled training data respectively.

For softly labeled examples, yi = sgn(si). �

Note that when all |si| = 0, the above optimization problem is reduced

to a standard SVM.

The solution to the above optimization problems can be found by

introducing the Lagrange functional technique, similar to the method

of solving standard SVMs [141]. Here we simply state the final result:

max
α

l+m∑
i=1

αi − 1

2

l+m∑
i,j=1

αiαjyiyjΦ(xi) · Φ(xj) (7.11)

subject to
l+m∑
i=1

αiyi = 0

0 ≤ αi ≤ CH , i = 1, 2, . . . , l ,

0 ≤ αi ≤ |si|CS , i = l + 1, l + 2, . . . , l + m .

More details are referred to Appendix A.1. Notice that the upper

bounds of the weights αi for softly labeled examples are proportional

to the confidence of their class labels. As a result, the misclassification

cost is directly proportional to the confidence of labeling examples.

Apparently, this is consistent with our common intuition. Similar to

standard SVMs, the optimization problem in (7.11) is a typical QP

problem that can be solved effectively by available techniques [101].
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7.4 Log-based Relevance Feedback using Soft La-

bel SVM

In Section 7.2 we provide a unified framework to developing a log-based

relevance feedback algorithm in general. The key idea is to first identify

a relevance function based on the log data of users’ feedback, i.e., fR(x).

Then, the log-based relevance function is used to aid the learning task

of the relevance function based on the low-level image features, i.e.,

fX(x). Finally, these two relevance functions are combined together to

rank all the images. Given the erroneous log data, applying traditional

techniques to the log-based relevance feedback may be problematic on

account of the noise in the data.

To develop an effective log-based relevance feedback algorithm, a

modified SVM technique, i.e., the Soft Label SVM, was proposed in the

preceding section to attack the noise problem. In contrast to standard

SVMs, the Soft Label SVMs incorporates the label confidence into the

learning task. In this section, we develop a practical algorithm for log-

based relevance feedback using Soft Label SVM, which we refer to as

LRF-SLSVM. It can be summarized in four steps as follows:

(1). Calculate relevance scores fR(z) for all image samples. The rele-

vance scores are computed using (7.4) to evaluate the initial rele-

vances of images in the database based on the log data. Despite

its simple form, (7.4) is empirically effective.

(2). Choose training samples with Soft Labels based on their relevance

scores. Image samples with large relevance scores obtained in step

(1) will be chosen as pseudo training samples and their relevance

scores are normalized to serve as the “soft label” for Soft Label

SVM.

(3). Train a Soft Label SVM classifier on the selected training sam-

ples with Soft Labels, i.e., fSLSV M(z). Given the labeled samples
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acquired from online feedback and the softly labeled examples ac-

quired in step (2), a Soft Label SVM classifier is trained according

to the definition in (A.1).

(4). Rank images based on the combination of the two relevance func-

tions fR(z) and fSLSV M(z). The two relevance functions fR(z)

and fSLSV M(z) will first be normalized and then combined to-

gether to form the overall relevance function, i.e., fq(z) = fR(z)+

fSLSV M(z).

Fig. 7.3 provides the pseudo-code of the algorithm of log-based rel-

evance feedback by Soft Label SVM, in which the relevance function

fR(z) is represented by (Rp(z) − Rn(z)). Implementation details of

the proposed algorithm will be discussed in the following experimental

section.

Table 7.1: Time costs of the proposed schemes (seconds)

Datasets
RF-SVM LRF-SLSVM

TSVM TSLSVM Tlog Ttotal

20-Category 5.53 8.09 4.87 12.96

50-Category 13.14 16.85 16.10 32.94

7.5 Experimental Methodology

7.5.1 Overview of Experimental Testbeds

The experimental testbeds and settings are critical to evaluating the

performance of log-based relevance feedback algorithms. So far, there

is no a benchmark dataset available for log-based relevance feedback

problem. Thus, we must design a set of objective and practical experi-

mental testbeds which not only accurately evaluate our algorithms but

also adequately facilitate real-word applications.
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Algorithm: LRF-SLSVM
Input:

q /* a query sample by a user */
L /* set of labeled training samples */

Variables:
S /* set of “Soft Label” training samples */
CH , CS /* regularization parameters in SLSVM */
c /* correlations or relationships between images */
Rp, Rn, fR /* log-based relevance degrees to the query */
∆ /* selection threshold for “Soft Label” samples */
fSLSVM /* a Soft Label SVM classifier */
fq /* the overall relevance function */

Output:
Rtop /* set of most relevant samples */

BEGIN
/* Step. (1) compute log-based relevance functions */

for each positive z ∈ L{
for each zi ∈ Z{

c(i) ← CompRelationship(z, zi); } /* by Equation (7.2) */
c ← Normalize(c); /* normalize to [0, 1]*/
Rp(i) ← max(Rp(i), c(i)); } /* Init: Rp(i) ← −∞ */

for each negative z ∈ L{
for each zi ∈ Z{

c(i) ← CompRelationship(z, zi); } /* by Equation (7.2) */
Normalize(c); /* normalize to [0, 1]*/
Rn(i) ← max(Rn(i), c(i)); } /* Init: Rn(i) ← −∞ */

/* Step. (2) select “Soft Label” training samples */
for each zi ∈ Z{

if Rp(i)−Rn(i) ≥ ∆, then S ← S ⋃ {zi}; }
/* Step. (3) train a Soft Label SVM classifier */

fSLSVM ← Train Soft Label SVM(L, S, CH , CS)
fSLSVM ← Normalize(fSLSVM);

/* Step. (4) rank images based on fSLSVM and (Rp −Rn) */
fR ← Normalize(Rp −Rn);
fq ← fSLSVM + fR;
Rtop ← Sort In Decend Order(fq);
return Rtop;

END

Figure 7.3: The LRF algorithm by Soft Label SVM
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As we known, empirical evaluation of a CBIR system by humans

may be somewhat subjective. Hence, it is necessary to develop an

automatic mechanism to evaluate the retrieval performance of CBIR.

However, several previous studies on log-based relevance feedback sim-

ply generate user data through simulations, which may not reflect the

true challenges of real-world applications. To address this problem, in

our experiment, a testbed is carefully built to allow for the objective

evaluation of content-based image retrieval, while maintaining close

analogy to real-world applications. In particular, our testbeds include

three components: image datasets, low-level image representation, and

the collection of users’ log data.

7.5.2 Image Datasets

To perform empirical evaluation of our proposed algorithm, we choose

the real-world images from the COREL image CDs. There are two

sets of data used in our experiments: 20-Category (20-Cat) that con-

tains images from 20 different categories, and 50-Category (50-Cat)

that includes images from 50 categories. Each category in the datasets

consists of exactly 100 images that are randomly selected from rele-

vant examples in the COREL image CDs. Every category represents

a different semantic topic, such as antique, antelope, aviation, balloon,

botany, butterfly, car, cat, dog, firework, horse and lizard, etc.

The motivation for selecting images in semantic categories is twofold.

First, it allows us to evaluate whether the proposed approach is able to

retrieve the images that are not only visually relevant but also semanti-

cally similar. Second, it allows us to evaluate the retrieval performance

automatically, which will significantly reduce the subjective errors rel-

ative to manual evaluations.
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7.5.3 Low-Level Image Representation

Image representation is an important step in the evaluation of relevance

feedback algorithms in CBIR. Three different sets of features are chosen

in our experiments to represent the images: color, edge and texture.

Color features are widely adopted in CBIR for their simplicity. The

color feature extracted in our experiments is the color moment. It is

close to natural human perception, whose effectiveness in CBIR has

been shown in many previous research studies. Three different color

moments are used: color mean, color variance and color skewness in

each color channel (H, S, and V), respectively. Thus, a 9-dimensional

color moment is adopted as the color feature.

Edge features can be very effective in CBIR when the contour lines

of images are evident. The edge feature used in our experiments is the

edge direction histogram [65]. To acquire the edge direction histogram,

an image is first translated to a gray image, and a Canny edge detector

is applied to obtain its edge image. Based on the edge images, the

edge direction histogram can then be computed. Each edge direction

histogram is quantized into 18 bins of 20 degrees each. Hence an 18-

dimensional edge direction histogram is employed to represent the edge

feature.

Texture features are proven to be an important cue for image re-

trieval. In our experiments, we employ the wavelet-based texture tech-

nique [91, 126]. A color image is first transformed to a gray image.

Then the Discrete Wavelet Transformation (DWT) is performed on

the gray image using a Daubechies-4 wavelet filter [126]. Each wavelet

decomposition on a gray 2D-image results in four subimages with a

0.5 ∗ 0.5 scaled-down image of the input image and the wavelets in

three orientations: horizontal, vertical and diagonal. The scaled-down

image is then fed into the DWT to produce the next four subimages.

In total, we perform a 3-level decomposition and obtain 10 subimages
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in different scales and orientations. One of the 10 subimages is a sub-

sampled average image of the original image, and thus is discarded.

For the other 9 subimages, we compute the entropy of each subimage

separately. Hence, a wavelet-based texture feature of 9-dimensions in

total is computed to describe the texture information of each image.

In sum, a 36-dimensional feature vector is used to represent an

image, including 9-dimensional color histogram, 18-dimensional edge

direction histogram, and 9-dimensional wavelet-based texture.

7.5.4 Log Data Collection of User Feedback

Collecting the log data of users’ feedback is an important step for a log-

based relevance feedback scheme. In our experiment we have developed

a CBIR system with a relevance feedback mechanism to collect the

relevance feedback from real-world users. Fig. 7.4 shows the Graphical

User Interface (GUI) of our CBIR system for collecting feedback data.

Through the GUI, a user can provide his or her relevance judgements

by simply ticking relevant images from the retrieval pool. We describe

the details on the collection of the feedback log data and the definition

on the format of the log data as follows.

For a retrieval task in CBIR, a user begins a query session by pre-

senting a query example. In our experiment, a user will first randomly

select a query image from the image database as the query goal. Then,

the user submits the query example to the CBIR system and obtains

a set of initial retrieval results from the CBIR system after a query-

by-example execution. Based on the retrieval results, the user can tick

the relevant images in the retrieval pool. After the relevant samples

are ticked in a relevance feedback session, the user can submit his or

her judgement results to the CBIR system, in which the feedback re-

sults will be stored in the log database. To quantitatively analyze the

retrieval performance, we define a log session as the basic unit of the
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Figure 7.4: The GUI of our CBIR system with relevance feedback. A user

can simply TICK the relevant images from the retrieval pool to provide

his/her feedback. The ticked images are logged as positive samples; others

are regarded as negative samples.

log data. Each log session corresponds to a regular relevance feedback

session, in which 20 images are judged by the user. Thus, each log

session contains 20 labeled images that are marked as either “relevant

(positive)” or “irrelevant (negative).”

One important issue with the log data is its noise problem, which is

caused by the subjective judgments from the human subjects involved

in our study. Given the fact that different users are likely to have

different opinions on judging the same image, the noise problem in log-

based relevance feedback is inevitable in real-world applications. In

order to evaluate the robustness of our algorithm, we collect log data

with different amount of noise. The noise of log data is measured by
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its percentage of incorrect relevance judgments Pnoise, i.e.,

Pnoise =
Total number of wrong judgements

Nl ×Nlog
× 100% (7.12)

where Nl and Nlog stand for the number of labeled examples acquired

for each log session and the number of log sessions, respectively.

Table 7.2: The log data collected from users on both datasets

Datasets
Small Noise Log Data Large Noise Log Data

# Log Sessions Pnoise # Log Sessions Pnoise

20-Category 100 7.8% 100 16.2%

50-Category 150 7.7% 150 17.1%

In our experiment, 10 users help us collect the log data using our

CBIR system. Two sets of log data with different amount of noise

are collected on both datasets in the experiment: log data with low

noise that contains fewer than 10% of incorrect relevance judgments,

and log data with high noise that contains more than 15% of incorrect

relevance judgments. Table 7.2 shows the two sets of collected log data

for both datasets with different amounts of noise from real-world users.

In total, 100 log sessions are collected for the 20-Category dataset and

150 log sessions for the 50-Category dataset. Based on these log data

with different configurations, we are able to evaluate the effectiveness,

the robustness, and the scalability of our proposed algorithm.

7.6 Experimental Results

7.6.1 Overview of Performance Evaluation

The experiments are designed to answer the following questions:

(1) Are log-based relevance feedback schemes more effective than tra-

ditional relevance feedback methods? To this end, we compare the per-
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formance of log-based relevance feedback algorithms with that of tra-

ditional relevance feedback algorithms. Two relevance feedback algo-

rithms are used as our baseline, namely the query expansion approach

and the classification approach based on support vector machines.

(2) Is the proposed algorithm for log-based relevance feedback more

effective than other alternatives? To address this question, we will

compare the Soft Label SVM based approach for log-based relevance

feedback to other approaches that also utilize the log data to improve

the performance of image retrieval. The two methods included in this

study are the query expansion based approach and the SVM based

approach.

(3) Is the Soft Label SVM based approach more resilient to noisy

log data than the standard SVM based approach? The noise problem

is inevitable in log data. To examine the robustness of the proposed

algorithm, we evaluate the performance of the Soft Label SVM based

approach against log data with different levels of noise, and compare

it with the log-based relevance feedback approach that engages the

standard SVM. Since the choice of two weight parameters CS and CH

can have significant impact on the final retrieval results, we also con-

duct experiments with different CS and CH to see how they affect the

robustness of the proposed Soft Label SVM.

7.6.2 The Compared Schemes

In our compared schemes, a simple Euclidean distance measure ap-

proach (RF-EU) serves as the baseline method. Two traditional rele-

vance feedback schemes are engaged in our comparisons, i.e., relevance

feedback by query expansion (RF-QEX) [103] and relevance feedback

by support vector machine (RF-SVM) [136, 162]. In addition to the

Soft Label SVM based approach, we also develop two methods for log-

based relevance feedback based on our suggested framework by using
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the traditional query expansion technique (LRF-QEX) and standard

SVMs. The details of the compared schemes are given as follows:

Euclidean

This is recorded as a reference of performance comparison. In our

approach, Euclidean distances between query images and images in

the database are first measured, and images with small distances are

then returned to the users. Despite the fact that there have been many

other more sophisticated distance measures investigated in CBIR [16],

the Euclidean distance scheme is employed in our experiment because

of its simplicity and its robustness.

RF-QEX

Query expansion for relevance feedback originates from traditional in-

formation retrieval [154, 114]. A lot of different approaches have been

proposed to formulate relevance feedback algorithms based on the idea

of query expansion [104, 61]. Query expansion can be viewed as a

multiple-instance sampling technique [62], in which the returned sam-

ples in the next round are selected from the neighborhood of the pos-

itive samples of the previous feedback round. Many previous studies

have shown that query expansion is effective in relevance feedback for

image retrieval [104]. In our experiment, we implement the similar

relevance feedback approach in [104] for image retrieval. Specifically,

given Nl samples labeled by a user in a relevance feedback round, the

images with the smallest Euclidean distances to the Nl positive samples

are retrieved to the results. Meanwhile, the negative labeled samples

are excluded from the retrieval list if they fall in the selected nearest

neighbor of any positive samples.
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RF-SVM

Relevance feedback by support vector machine is one of the most pop-

ular and promising schemes used in image retrieval [54, 55, 136, 162].

In our experiment, we implement the SVM-based relevance feedback

scheme using the Gaussian kernel.

LRF-QEX

Query expansion has shown to be effective in exploiting user query

log data in traditional document information retrieval [32]. In our

experiment, we extend it to log-based relevance feedback for image

retrieval. More specifically, log-based relevance feedback with query

expansion can be described as follows:

We first compute the relevance score fR,L(zi) for each image zi us-

ing (7.4). Then, for each image in the database, and for every image

z+
j that is positively labeled by the user, we measure their Euclidean

distance fEU(zi, z
+
j ) based on the low-level image features. The final rel-

evance score fq(zi) for each image zi is determined by the combination

of fEU(zi, z
+
j ) and fR,L(zi), i.e., fq(zi) = fR,L(zi) − minj fEU(zi, z

+
j ).

Images with the largest relevance scores will be returned to the users.

As with the query expansion approach for standard relevance feedback,

images that are already labeled as negative will be excluded from the

retrieval list.

LRF-SLSVM

The algorithm of the log-based relevance feedback by Soft Label SVM

is given in Fig. 7.3. To train the Soft Label SVM classifier, similar to

standard SVMs, we apply the sequential minimum optimization (SMO)

approach [23].
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LRF-SVM

To examine the effectiveness and robustness of the Soft Label SVM,

we also implement a method for log-based relevance feedback using

standard SVMs, which is similar to the algorithm in Fig. 7.3.

7.6.3 Experimental Implementation

The implementation of SVMs in our experiments is based on the public

LIBSVM library available at [23]. To implement the Soft Label SVM

algorithm, we modify the library based on the optimization in (7.11).

It is a well-known fact that kernels and their parameters play an impor-

tant role in the performance of SVMs. In our experiment, the Radial

Basis Function (RBF) kernel is used in both the Soft Label SVM and

standard SVMs, which is given as K(x,x′) = exp(−γ‖x−x′‖2), where

γ is a positive constant. The reason for choosing the RBF kernel is that

it has been shown to be very effective in multimedia retrieval problems

in many previous studies [136, 54]. Besides the kernel selection, the

choice of regularization parameters in the standard SVM and the Soft

Label SVM is also critical to the retrieval performance. In our exper-

imental implementation, the parameter C in the standard SVM and

the two parameters CH and CS are chosen empirically using a separate

validation dataset.

For a retrieval task, it is important to define a suitable metric for

performance evaluation. Two metrics are employed in our experiments

as follows:

1. Average Precision, which is defined as the percentage of rele-

vant images among all the images that have been retrieved; and

2. Average Recall, which is defined as the percentage of rele-

vant images of retrieved images among all relevant images in the

dataset.
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In our experiment, all compared schemes are evaluated on 200

queries randomly selected from the dataset. The reported results of

Average Precision and Average Recall are obtained by taking an aver-

age over the 200 queries. For each query, the number of labeled samples

acquired from the online user feedback is 10, and the top 100 samples

are returned to be evaluated for all compared schemes. To observe

the overall performance, Mean Average Precision (MAP) is measured

on top ranked images, ranging from the top 20 images to the top 100

images. Finally, all the compared schemes are evaluated on both the

20-Category and the 50-category datasets.

The experimental platform is on Windows and all algorithms are

implemented in MS Visual C++ for the purpose of efficiency. The

hardware environment of all experiments is a PC machine with a 2.0G

Pentium-4 CPU and 512MB memory.
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Figure 7.5: Performance evaluation on the 20-Category dataset with small

noise log data
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Figure 7.6: Performance evaluation on the 50-Category dataset with small

noise log data

7.6.4 Effectiveness of Log-based Relevance Feedback

In order to verify the effectiveness of our log-based relevance feed-

back scheme, we evaluate two log-based relevance feedback algorithms

and two traditional relevance feedback algorithms. The algorithms

for traditional relevance feedback are the query expansion approach

(RF-QEX) and the SVM approach (RF-SVM). The two algorithms for

log-based relevance feedback include log-based relevance feedback by

query expansion (LRF-QEX) and log-based relevance feedback by Soft

Label SVM (LRF-SLSVM). These algorithms are evaluated on the log

data with low noise, i.e., 7.8% noise for the 20-Category dataset and

7.7% noise for the 50-Category dataset.

Fig. 7.5 and Fig. 7.6 show the experimental results of the compared

algorithms using this log data. The horizontal axis is the number of top

ranked images used in evaluation, and the vertical axis is the Average

Precision and Average Recall measured on the top ranked images. As

these figures show, it is evident that the two log-based relevance feed-

back algorithms (LRF-QEX and LRF-SLSVM) substantially outper-
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form the two algorithms with traditional relevance feedback (RF-QEX

and RF-SVM). For example, on the 20-Category dataset, the average

precision of LRF-QEX algorithm achieves an 18.0% improvement over

the regular RF-QEX algorithm on the top 20 images. By contrast, the

absolute improvement of the LRF-SLSVM algorithm over the regular

RF-SVM algorithm is 20.8% on the top 20 images. With reference to

the MAP on average, the LRF-QEX algorithm has an 11.7% improve-

ment over the RF-QEX algorithm, and the LRF-SVM algorithm has a

12.6% improvement over the RF-SVM algorithm.

The results on the 50-Category dataset are similar, but the improve-

ment is slightly smaller than the 20-Category one. This is because the

content of the 50-Category is more diverse than the 20-Category one,

since the former contains more semantic categories than the latter. As

a result, the relevance function based on the log data of users’ relevance

feedback will less accurately reflect similarity between two images, lead-

ing to the degradation in retrieval performance. Nevertheless, we still

observe significant improvements with the 50-Category dataset. The

average improvement in MAP measure is 8.2% for the LRF-QEX al-

gorithm over the RF-QEX algorithm, and 10.5% for the LRF-SVM

algorithm over the RF-SVM algorithm.

Based on the above observations, we conclude that the algorithms

for log-based relevance feedback can be expected to outperform the

regular relevance feedback schemes.

7.6.5 Performance Evaluation on Small Log Data

In a real-world CBIR application, it may be difficult to collect a large

amount of log data, particularly early in the life of a CBIR system.

Hence, it is important to evaluate the performance of a log-based rel-

evance feedback algorithm with a small amount of log data. To this

end, we evaluate the compared schemes by varying the amount of log
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data. In particular, for each dataset, only half of its log data is used for

log-based relevance feedback. This amounts to 50 log sessions for the

20-Category dataset, and 75 log sessions for the 50-Category dataset.

The empirical results for the reduced log data are shown in Table 7.3

and 7.4.

According to the two tables, we observe that the log-based rele-

vance feedback algorithm by Soft Label SVM (LRF-SLSVM) achieves

a promising improvement even with a limited amount of log data. Most

impressively, the mean average precision (MAP) of Soft Label SVM us-

ing only half of the log sessions is better than the LRF-QEX approach

that uses all the log sessions. For the 20-Category dataset, with only 50

log sessions, the LRF-SLSVM algorithm outperforms the baseline al-

gorithm (RF-QEX) by 25.8% and also enjoys a 6.9% improvement over

the regular RF-SVM algorithm. The improvement on the 50-Category

dataset is again less than the 20-Category one. But the LRF-SLSVM

algorithm still outperforms the RF-QEX algorithm by 15.5% and has

a 5.5% improvement over the RF-SVM algorithm with only 75 log ses-

sions.

7.6.6 Performance Evaluation on Noisy Log Data

The presence of noise in the log data is unavoidable when the data is

collected from a real-world CBIR application. It is therefore important

to evaluate whether a good log-based relevance feedback algorithm is

resilient to the noise present in the log data.

In this subsection, we conduct experiments to evaluate the robust-

ness of algorithms on the log data with different levels of noise, mean-

while we compare the performance of SLSVM using different regular-

ization strategies. Two sets of log data on both datasets, with different

noise percentages, are employed to evaluate the algorithms. For each of

the two datasets, two sets of log data are provided. The noise levels for
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the 20-Category dataset are 7.8% and 16.2% respectively, and 7.7% and

17.1% respectively for the 50-Category dataset. In addition to varying

the amount of noise in the log data, we also conduct experiments for the

proposed algorithm LRF-SLSVM with different setup of the two weight

parameters CS and CH . Two configurations of CS and CH are used in

this experiment: CS = CH , which we refer to as (LRF-SLSVMSR), and

CH > CS, which we refer to as (LRF-SLSVMDR).

Tables 7.5 and 7.6 show the comparison results on the datasets with

different noise percentages. As expected, performance of the algorithms

degrades when a large amount of noise is present in the log data. Com-

pared with other approaches, the Soft Label schemes are more tolerant

to the noisy log data. Both the two Soft Label algorithms, i.e., LRF-

SLSVMSR and LRF-SLSVMDR, achieve better performance than the

standard SVM algorithm. More impressively, we observe that the per-

formance of the LRF-SLSVMDR scheme with highly noisy log data is

comparable to or better than that of the standard SVM using log data

of low noise. Specifically, on the 20-Category dataset, the standard

SVM method (LRF-SVMDR) enjoys a 25.9% improvement in MAP over

the baseline algorithm under the low noisy log data, while the LRF-

SLSVMDR method achieves a 27.5% improvement even with the highly

noisy log data. Similar results can also be observed on the 50-Category

dataset. Based on the above observation, we conclude empirically that

the Soft Label SVM scheme is more tolerant to the noise than the

standard SVM. Finally, comparing the two different configurations of

LRF-SLSVM, we observe that LRF-SLSVMDRperforms slightly better

than LRF-SLSVMSR for both datasets. This is consistent with our hy-

pothesis, i.e., it is more important to correctly classify the hard-labeled

examples than the ones with soft labels.
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7.6.7 Computational Complexity and Time Efficiency

Although we have observed significant improvement of our log-based

relevance feedback scheme from the above experimental results, it is

evident that our scheme requires extra computational cost compared

with a regular relevance feedback scheme. Hence, it is necessary to ana-

lyze the computational complexity of the log-based relevance feedback

scheme and empirically evaluate the time efficiency of our proposed

scheme. In our log-based relevance feedback framework, there are two

main components that contribute the most to the computational costs.

One is the computation of the relevance function on the feedback log

data, and the other is the learning of the relevance function on the low-

level image features by the Soft Label SVM. It is straightforward to cal-

culate the computational complexity for the former component, which

is O(Nl × Nimg × Nlog). Since Nl, i.e., the number of labeled images

acquired from online user feedback, is regarded as a small constant, the

time complexity in computing the log information is O(Nimg × Nlog).

The major cost for the latter component is in training the SVM; this is

determined by the implementation of the optimization problem in the

SVM algorithms. In our experiments, the implementations of the SVM

algorithms are based on the public libsvm library, for which more de-

tailed analysis of computational cost can be found in [23]. Given that

the computational cost for training SVM is highly dependent on the

characteristics of the training examples, in the following, we will eval-

uate the efficiency of the proposed algorithm empirically.

To evaluate the time efficiency, we run 200 executions of relevance

feedback with random queries, and record the time costs for both the

RF-SVM algorithm and the LRF-SLSVM algorithm. Table 7.1 shows

the experimental results of the time costs. The results indicate that

extra time costs must be paid for running the LRF-SLSVM compared

with the regular RF-SVM scheme. However, the results also suggest
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that the time costs of the LRF-SLSVM algorithm are still acceptable.

For example, for the 50-Category dataset with 150 log sessions, only

32.94 seconds are required for 200 relevance feedback executions, which

amounts to only 0.165 seconds for each execution of feedback.

7.7 Limitation and Future Work

Based on the promising results achieved from the extensive evalua-

tions, we can empirically conclude that our log-based relevance feed-

back scheme is an effective way to improve the traditional relevance

feedback techniques by integrating log data of users’ relevance feed-

back. Moreover, the Soft Label SVM algorithm has been demonstrated

to be more resilient to the noise problem when solving the log-based

relevance feedback problem. However, we must address the limitations

of and the challenging issues with our scheme, as well as provide feasible

directions for solving these problems in our future work.

The first limitation of our scheme may be the computational com-

plexity problem. Two main computational costs are inherited. One is

the relevance computing of log data; and the other is the training cost

of Soft Label SVM. For the formal one, the computational cost can be

critical when the number of log sessions are huge. Fortunately, our pro-

posed incremental method in (7.5) can partially solve the problem. For

the latter one, we can study more efficient decomposition techniques

to solve our optimization problem, e.g., the parallel SVMs [45].

Second, it may be possible to learn the relevance function more

effectively. In the current scheme, we only consider the classification

model in the space of image features. It would be possible to apply the

method in the reverse direction by first computing the soft labels from

the image features, and then building a classification model in the space

of the users’ relevance judgement. Furthermore, these two approaches

can be integrated together through a co-training algorithm [18].
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Third, we realize that the selection of parameter CH and CS in

the Soft Label SVM algorithm has a major impact on the final re-

trieval results when deploying the algorithm in the log-based relevance

feedback problem. Although our empirical approach for choosing CH

and CS has resulted in satisfactory performance, we plan to investigate

other approaches in principle for tuning these two parameters effec-

tively, e.g., the entire regularization path approach for studying the

parameters [46].

Finally, the noise problem could be handled in other ways. For

example, to alleviate the negative effect from noisy log data, we can

modify the Soft Label SVM by enforcing an upper bound on the error

terms in the optimization of the Soft Label SVM.

7.8 Summary

In this chapter we proposed an online collaborative multimedia re-

trieval framework for bridging the semantic gap with users’ context in

multimedia information retrieval. Based on the online learning frame-

work, we developed a unified log-based relevance feedback scheme for

integrating log data of user feedback with regular relevance feedback

for image retrieval. Our solution first computes the relevance func-

tion on the log data of user feedback and then combines the relevance

information with regular relevance feedback for the retrieval task. In

order to address the noisy log data problem in real-world applications,

we propose a novel learning algorithm to solve the log-based relevance

feedback problem. The proposed algorithm, named Soft Label Support

Vector Machine, is based on the solid regularization theory. We have

conducted an extensive set of experiments on a sophisticated testbed

for evaluating the performance of a number of algorithms on our log-

based relevance feedback scheme. The promising experimental results

have confirmed that our proposed algorithms are effective in improving
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the performance of traditional relevance feedback in image retrieval.

The important contributions to the field in this work can be sum-

marized as follows. First, we present a unified framework for studying

the log-based relevance feedback problem. To the best of our knowl-

edge, this work is amongst one of only a few pioneering investigations

on incorporating both log data of users’ feedback and online relevance

feedback to improve multimedia retrieval performance. Second, we

propose a modified SVM algorithm, i.e., Soft Label SVM, to deal with

the problem of noisy log data. Although we employ the Soft Label

SVM only in the log-based relevance feedback problem, it can also be

applied to other application areas, such as information filtering. Third,

we have presented a comprehensive set of experimental procedures for

evaluating image retrieval, and for examining various aspects of re-

trieval algorithms, including effectiveness, efficiency, robustness and

scalability.

� End of chapter.



Chapter 8

Offline Collaborative

Multimedia Retrieval

8.1 Overview of Our Framework

Recently, there have been several studies on exploring the log data of

users’ relevance feedback to improve image retrieval [97, 57, 58, 167, 49].

In these studies, the CBIR system collects relevance judgments from

a number of users, which is also called “log data” in this chapter. In

addition to the low-level features, each image is also represented by the

users’ relevance judgments in log data. Most of these studies hypothe-

sized that when two images are similar in their semantic content, they

tend to be either favored or disliked simultaneously by many users. As

a result, similar images tend to share similar representation in users’

relevance judgments. In [97], several weighting schemes are proposed

for the low-level image features that are based on log data. In [50, 48], a

manifold learning algorithm is applied to learn a low-dimensional man-

ifold from log data that better reflects the semantic relation among

different images. In [57, 58], the log data of users’ relevance judgments

are used to improve relevance feedback techniques for image retrieval.

We refer to the multimedia retrieval approaches based on the metric

166
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learned offline from users’ log data as “Offline Collaborative Mul-

timedia Retrieval”.

In this work, we explore the log data of users’ relevance judgments in

a way that is different from the previous work. Unlike [97] where manu-

ally designed weighting schemes based on log data are used to measure

similarity of images, in this work, we propose to automatically learn

the distance metric for the low-level features from the users’ relevance

judgements in log data. We hypothesize that, in each user feedback

session, when two images are judged as relevant, they tend to be more

similar in content than the case when one image is judged as relevant

and the other is judged as irrelevant. Thus, our goal is to search for

an appropriate distance metric for the low-level features such that the

distance in low-level features is consistent with the users’ relevance

judgments in log data. To this end, we propose the “Min/Max” prin-

ciple, which tries to minimize the distance between similar images and

meanwhile maximize the distance between the feature vectors of dis-

similar images. Based on this principle, we propose a new algorithm for

metric learning, named “regularized distance metric learning”, in

which a regularization mechanism is introduced to improve the robust-

ness of the learning algorithm. The new algorithm can be formulated

into an SDP problem [140], and therefore can be solved efficiently by

the existing package for SDP, such as SeDuMi [129], and is scalable to

the size of log data.

Our work distinguishes from the previous work on exploiting log

data for image retrieval in that it deals with the real-world users whereas

much of the previous research used the synthesized log data in its study.

In particular, we try to address the following challenging issues with

the real log data:

• Image retrieval with modest-sized log data. Most previous studies

assume that large amount of log data are available, and do not
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consider the scenarios when the size of log data is limited. Devel-

oping retrieval techniques for modest-sized log data is important,

particularly when a CBIR system is in its early development and

has not accumulated large numbers of relevance judgments from

users. It is also important when the target images are not popu-

lar and are only equipped with a small number of users’ relevance

judgments.

• Image retrieval with noisy log data. Most previous studies assume

that log data are clean and contain no noise. This is an unrealistic

assumption given that users’ relevance judgments are subjective

and real-world users could make mistakes in their judgments. In

our experiments with real-world users, we usually observed a num-

ber of erroneous relevance judgments, ranging from 5% to 15% of

all judgments. As will be shown later in the empirical study, the

noise in users’ relevance judgments can significantly degrade the

retrieval accuracy of a CBIR system.

• Efficiency and scalability. Most previous studies emphasize the

effectiveness of their algorithms on improving CBIR. Few of them

examine the efficiency and scalability of their algorithms. The

issue of efficiency and scalability is extremely important for this

technique to be practical, particularly when we have to deal with

large-sized log data.

The rest of this paper is arranged as follows: the next section dis-

cusses the related research. Section 3 describes the proposed regular-

ized metric learning algorithm. Section 4 explains our experimental

methodology. Section 5 presents the experimental results. Section

6 discusses the limitation and future work. Section 7 concludes this

work.
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8.2 Motivation

This work is related to previous studies on utilizing users’ log data to

enhance content-based image retrieval. It is also related to the research

on distance metric learning. We will review the previous work on using

log data first, followed by the review of metric learning algorithms.

Users’ log data have been utilized in the previous work [57] to im-

prove online relevance feedback for CBIR. In [57], the users’ relevance

judgments in log data is used to infer the similarities among images.

For online retrieval, a set of relevant and irrelevant images are first

obtained through the solicitation of users’ relevance judgments. Then,

based on the log data, images that are most similar to the judged ones

are added to the pool of labeled examples, including both relevant and

irrelevant images. A discriminative learning model, such as support

vector machines (SVM) [21], is trained with the expanded pool of la-

beled images to improve the retrieval accuracy. This work differs from

ours in that it requires online feedback from users, while our algo-

rithm focuses on improving the accuracy of the initial around of image

retrieval. Another recent research related to our work is to apply man-

ifold learning to image retrieval [50, 48]. Their work has considered

using log data for both CBIR with online feedback and CBIR without

online feedback. Using the Laplacian Eigenmap [13], they constructed

a low-dimensional semantic space for the low-level image features using

log data. Given the complicated distributions of image features, con-

structing a robust manifold for image features usually requires a large

number of training data. In fact, according to our experiments, their

algorithm works well when large numbers of users’ relevance judgments

are available. Its advantage appears to fade away when the size of log

data is small. Finally, there are studies on designing weighting schemes

for low-level image features based on log data [97]. In [97], weighting

schemes, similar to the TF.IDF methods in text retrieval [113], have
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been proposed and computed based on the log data of users’ relevance

judgments.

Another group of related work is the learning of distance metric

[83, 153]. One of the well-known research on this subject is [153],

which learns a distance metric under pairwise constraints. As it serves

as the baseline in this study, we briefly describe it here.

Let C = {x1,x2, ...,xn} be the data collection where n is the number

of data points in the collection. Each xi ∈ R
m is a feature vector where

m is the number of features. Let S be the set that contains pairs of

similar data points, and D be the set that contains pairs of dissimilar

data points. More precisely, we have

S = {(xi,xj) | xi and xj are likely to belong to the same class}
D = {(xi,xj) | xi and xj are unlikely to be in the same class}

(8.1)

Let A ∈ Sm×m be the distance metric to be learned, which is a sym-

metric matrix of size m ×m. Then, for any two vectors x, y ∈ R
m,

their distance is expressed as:

dA(x,y) =
√

(x− y)TA(x− y) = tr(A · (x− y)(x− y)T ) (8.2)

where product “·” is a point wise matrix multiplication, and “tr” stands

for the trace operator that computes the sum of diagonal elements of

a matrix.

A is a valid metric as long as the distance between any two data

points is non-negative and satisfies the triangle inequality. This require-

ment is formalized as the positive semi-definite constraint for matrix A,

i.e., A � 0 [140]. Furthermore, matrix A should be symmetric, namely

A = A′. Note when A is an identity matrix Im×m, the distance in Eqn.

(8.2) becomes

dA(x,y) =
√

(x− y)T I(x− y) =
√

(x− y)T (x− y)
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Thus, we go back to the Euclidean distance.

Given the pair wise constraints in (8.1), [153] formulated the prob-

lem of metric learning into the following convex programming problem:

min
A

∑
(xi,xj)∈S

‖xi − xj‖2A

s. t.
∑

(xi,xj)∈D
‖xi − xj‖2A ≥ 1

A � 0 (8.3)

In above, optimal metric A is found by minimizing the sum of

squared distance between pairs of similar data points, and meanwhile

satisfying the constraint that the sum of squared distance between dis-

similar data points is larger than 1. In other words, this algorithm

tries to minimize the distance between similar data points and maxi-

mize the distance between dissimilar data points at the same time. This

is consistent with our Min/Max principle discussed in the introduction

section.

The algorithm in (8.3) has been shown to be successful on several

machine learning testbeds [153]. But one potential problem with this

method is that it does not address the issue of robustness, which is

important when training data are noisy or the amount of training data

is limited. Our algorithm is able to improve the robustness of metric

learning by introducing a regularizer into the objective function, which

is similar to the strategy used in large margin classifiers [21]. Further-

more, the optimization problem in (8.3) may not be solved efficiently

since it does not fall into any special class of convex programming, such

as quadratic programming [41] and semi-definite programming [140]. In

contrast, the proposed algorithm belongs to the family of semi-definite

programming, which can be solved much more efficiently.
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8.3 Regularized Metric Learning and Its Applica-

tion

As it is discussed in the introduction section, the basic idea of this

work is to learn a desired distance metric in the space of low-level

image features that effectively bridges the semantic gap. It is learned

from the log data of users’ relevance feedback based on the Min/Max

principle, i.e., minimize/maximize the distance between the feature

vectors of similar/dissimilar images. Log data, in this study, consist of

a number of log sessions and each session corresponds to a different user

query. In each log session, a user submits a query image to the CBIR

system. After the initial results are retrieved by the CBIR system, the

user provides relevance judgments for the top ranked images (i.e., 20

images in our experiment). To exploit the metric learning algorithm in

(8.3) for log data, we convert binary relevance judgments into pair-wise

constraints as in (8.1). In particular, within each log session, images

judged as relevant are regarded as similar to each other, and each

dissimilar pair will consist of one relevant image and one irrelevant

image. Thus, for each user query q, we have a set Sq for pairs of

similar images and a set Dq for pairs of dissimilar images. Based on

this treatment, we can now apply the framework in (8.3) to learn a

distance metric A for low-level image features, i.e.,

min
A

Q∑
q=1

∑
(xi,xj)∈Sq

‖xi − xj‖2A

s. t.

Q∑
q=1

∑
(xi,xj)∈Dq

‖xi − xj‖2A ≥ 1

A � 0 (8.4)

where Q stands for the number of sessions in log data.

Remark. One natural question regarding to the above treatment

is that, although two images are judged as relevant by a user, they
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may still differ in many aspects. There are images that are judged

differently by multiple users due to their different information needs.

For example, two images could be judged both to be relevant by one

user, and but only one being relevant by another user. Hence, it is

questionable to treat relevant images as a similar pair. To answer this

question, we need to understand that similar pairs Sq and dissimilar

pairs Dq play different roles in (8.4). The pairs in dissimilar set Dq

are used to form the constraint and the pairs in the similar set Sq are

used to form the objective. Thus, a solution A to (8.4) must satisfy

the constraint first before it minimizes the objective function. As a

result, (8.4) only ensures the image pairs in Dq to be well separated in

the feature space, but it does not guarantee that all the image pairs in

Sq are close to each other. In other words, what is implied under the

formulism in (8.4) is:

• When two images are judged as relevant in the same log session,

they could be similar to each other,

• When one image is judged as relevant and another is judged as

irrelevant in the same log session, thy must be dissimilar to each

other.

Clearly, the above assumption is closer to reality than the original one.

One problem with the formulism in (8.4) is that its solution may

not be robust when the amount of log data is modest or the relevance

judgments in log data are noisy. To enhance the robustness of metric

learning, we form a new objective function for distance metric learning

that takes into account both the discriminative issue and the robustness

issue, formally as:

min
A
‖A‖F + cS

Q∑
q=1

∑
(xi,xj)∈Sq

‖xi − xj‖2A − cD

Q∑
q=1

∑
(xi,xj)∈Dq

‖xi − xj‖2A

s. t. A � 0 (8.5)
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where ‖A‖F stands for the Frobenius norm. If A = [ai,j]m×m, its

Frobenius norm is define as:

‖A‖F =

√√√√ m∑
i,j=1

a2
i,j (8.6)

There are three items in (8.5). This item ‖A‖F serves as the reg-

ularization term for matrix A, which prevents any elements within A

from being too large. In particular, it prefers a sparse distance metric,

in which many elements of A are zeros or close to zeros. A similar idea

has been used in support vector machines [21], in which the L2 norm

of hyper-plane weights is used for regularization. The second and third

items in (8.5) represent the sum of squared distance between similar

images and dissimilar images in log data. A discriminative distance

metric A is learned such that similar images are close to each other in

the space of image features and meanwhile dissimilar images are sep-

arated far away. Parameters cS and cD balance the tradeoff between

the goal of minimizing distance among similar images and the goal of

maximizing distance among dissimilar images. By adjusting these two

parameters, we are also able to make a balanced trade-off between the

robustness of the learned distance metric and the discriminative power

of the metric. Note that, compared to (8.4), the new formulism in (8.5)

moves the image pairs in the dissimilar set to the objective function.

As a result, we relax the requirement on the image pairs in Dq: instead

of assuming that all image pairs in Dq must be dissimilar to each other,

we only assume that they could be dissimilar to each other. Through

this relaxation, we are able to improve the robustness of metric learn-

ing, particularly when there are a number of errors in the log data of

users’ relevance judgments.

Using the distance expression in (8.2), both the second and the third

items of objective function in (8.5) can be expanded into the following
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forms:

cS

Q∑
q=1

∑
(xi,xj)∈Sq

‖xi − xj‖2A = cS tr

⎛
⎝A ·

Q∑
q=1

∑
(xi,xj)∈Sq

(xi − xj)(xi − xj)T

⎞
⎠

= cS

m∑
i,j=1

ai,jsi,j (8.7)

and

cD

Q∑
q=1

∑
(xi,xj)∈Dq

‖xi − xj‖2A = cD tr

⎛
⎝A ·

Q∑
q=1

∑
(xi,xj)∈Dq

(xi − xj)(xi − xj)T

⎞
⎠

= cD

m∑
i,j=1

ai,jdi,j (8.8)

where

S = [si,j]m×m =

Q∑
q=1

∑
(xi,xj)∈Sq

(xi − xj)(xi − xj)
T

D = [di,j]m×m =

Q∑
q=1

∑
(xi,xj)∈Dq

(xi − xj)(xi − xj)
T

As indicated in (8.7) and (8.8), both terms are linear in matrix A.

Putting Eqn. (8.6), (8.7), (8.8) together, we have the final for-

mulism for the regularized metric learning:

min
A

(
m∑

i,j=1

a2
i,j

)1/2

+ cS

m∑
i,j=1

ai,jsi,j − cD

m∑
i,j=1

ai,jdi,j

s. t. A � 0 (8.9)

To convert the above problem into the standard form, we introduce a

slack variable t that upper bounds the Frobenius norm of matrix A,

which leads to an equivalent form of (8.9), i.e.,

min
A,t

t + cS

m∑
i,j=1

ai,jsi,j − cD

m∑
i,j=1

ai,jdi,j (8.10)

s. t.

(
m∑

i,j=1

a2
i,j

)1/2

≤ t

A � 0 (8.11)
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In the above optimization problem, the objective function is linear in

both t and A. It has two constraints: the first constraint is called a

second order cone constraint [140], and the second constraint is a pos-

itive semi-definite constraint. Both these two types of constraints are

special forms of convex constraints. They have been well studied in the

optimization theory [140], and there exist very efficient solutions that

guarantee to solve this problem in a polynomial time (i.e., polynomial

in m2, the square of the number of low-level image features). Note that,

in the formulism in 8.11, we allow matrix A to be in any form as long as

it is symmetric and positive definitive. In this work, an interior-point

optimization method implemented in the SeDuMi [129] optimization

toolbox is used to solve the optimization problem in (8.11).

8.4 Experiment Methodology

8.4.1 Testbed

The collection of COREL image CDs contains a large number of real

world images with semantic annotations. It has been widely used in

previous CBIR research. In this work, two testbeds with images from

20 categories and 50 categories were created. Each category contains

100 images and is associated with specific semantic meaning such as an-

tique, cat, dog and lizard, etc. Given a query image from the testbed, a

retrieved image is considered to be relevant when it belongs to the same

category of the query image. The average precision of top retrieved im-

ages is used to measure the quality of retrieved results. Despite that

such a definition of relevance judgments may not accurately reflect the

characteristics of relevance judgments by real-world users, it is able to

avoid the subjectiveness in manual relevance judgments. Furthermore,

it automates the process of evaluation and allows different approaches

to be compared based on the same ground truth. In practice, this
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evaluation methodology has been adopted by many studies of image

retrieval, such as [55, 56, 49, 136, 48, 50, 57].

8.4.2 Low-level Image Feature Representation

Low-level image feature representation is one of the key components for

CBIR systems. Three types of visual features were used in this work,

including color, edge and texture. The same set of image features have

been used in the previous research on image retrieval [57].

• Color Three types of color moments were used: color mean, color

variance and color skewness in three different color channels (i.e.,

H, S and V). Thus, totally nine different features were used to

represent color information.

• Edge Edge features have been shown to be effective in CBIR

since it provides information about shapes of different objects.

The histogram for edge direction was first obtained by applying

the Canny edge detector [65] to images. Then, the edge direction

histogram was quantized into 18 bins of every 20 degrees, which

resulted in totally 18 different edge features.

• Texture Texture is another type of popular features used in CBIR

. In this work, we used texture features based on wavelet transfor-

mation. The Discrete Wavelet Transformation (DWT) was first

applied to images with a Daubechies-4 wavelet filter [126]. 3-

levels of wavelet decomposition were used to obtain ten subim-

ages in different scales and orientations. One of the subimages is

a subsampled average image of the original one and was discarded

as it contains less useful information. The entropies of the other

nine subimages were used to represent the texture information of

images.
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Therefore, altogether 36 features were used in this work to represent

images.

8.4.3 Log Data of Users’ Relevance Feedback

The log data of users’ relevance feedback were collected from real world

users of a CBIR system that is developed in the Chinese University of

Hong Kong. 10 researchers participated in this experiment. In our

experiment, for each log session, a sample query image was randomly

generated. Given the query image, the CBIR system did retrieval by

computing the Euclidean distance between the query image and images

in database. The top 20 most similar images were returned to users.

Users provided relevance judgement for each returned image by judging

if it is relevant to the query image. Each user was asked to provide 10 or

15 log sessions on both the 20-category and the 50-category testbeds,

respectively. All the feedback data from different log sessions were

collected to build the users’ log data.

An important issue for log data in real-world CBIR systems is that

potentially users can make mistakes in judging the relevance of re-

trieved images. Thus, in reality there will be some amount of noise

inside the log data of users’ relevance feedback. Erroneous judgements

can be caused by a variety of reasons, such as users’ inconsistent and

subjective judgments, and users’ action mistakes. In order to evalu-

ate the robustness of our algorithm, we collect log data with different

amount of noises. The noise of log data is measured by its percentage

of incorrect relevance judgments, i.e.,

Pnoise =
Total number of wrong judgements

Nl ×Nlog

× 100%

where Nl and Nlog stand for the number of labeled examples acquired

for each log session and the number of log sessions, respectively. To

acquire log data with different amount of noise, we conduct experi-

ments under two different setups. In the first setup, users’ relevance



CHAPTER 8. OFFLINE COLLABORATIVE MULTIMEDIA RETRIEVAL179

Table 8.1: The characteristics of log data collected from the real-world users

Datasets
Normal Log Data Noisy Log Data

# Log Sessions Noise (Pnoise) # Log Sessions Noise (Pnoise)

20-Category 100 7.8% 100 16.2%
50-Category 150 7.7% 150 17.1%

judgments are collected under normal behaviors of users, which leads

to relatively small numbers of mistakes. In the second setup, users

are requested to provide feedback within a very short period of time,

which leads to relatively higher mistakes. The reason for such a study

is twofold: first, through this study, we are able to estimate the amount

of noise will be engaged in normal behaviors of real-world users; Sec-

ond, the second noisy log data is valuable to evaluate the robustness

of our algorithms. Table 8.1 shows the two sets of collected log data

for both datasets with different amounts of noise from real-world users.

In total, 100 log sessions are collected for the 20-Category and 150 log

sessions for the 50-Category dataset. Based on these log data with dif-

ferent configurations, we will be able to evaluate the effectiveness, the

robustness, and the scalability of our algorithm for metric learning.

We would like to emphasize that the log data used in this work is

created by collecting judgments from real world users. This is differ-

ent from the log data of simulated users in [50], which are generated by

conducting automatic retrieval for sample query images and acquiring

relevance judgments based on images’ category information. The log

data of simulated users in [50] did not consider the data noise problem,

which makes it less representative for real world applications than the

data used in this work.
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8.5 Experimental Results

An extensive set of experiment results are presented in this section

to illustrate the effectiveness, robustness, and scalability of our new

regularized metric learning algorithm. Particularly, empirical studies

were conducted to address the following three questions:

1. How effective is our new algorithm in boosting the retrieval ac-

curacy of a CBIR system by using the log data? Experiments

were conducted to compare the effectiveness of the distance met-

ric learned by our new algorithm to the default Euclidean distance

metric. We also compare the proposed metric learning algorithm

to the algorithm in [153] for image retrieval, and to the manifold

learning algorithm for CBIR that also uses log data [50].

2. How does our new algorithm behave when the amount of users’

relevance feedback is modest? Experiments were conducted to

study the effectiveness of our new algorithm by varying the size

of the log data.

3. How does our new algorithm behave when large amount of noise

is present in the log data? Experiments were conducted to study

the effectiveness of our new algorithm with respect to different

amount of noise.

8.5.1 Experiment I: Effectiveness

Four algorithms are compared in this section for their accuracy of image

retrieval:

1. A baseline CBIR system that uses the Euclidean distance metric

and does not utilize users’ log data. We refer to this algorithm as

“Euclidean”.
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2. A CBIR system that uses the semantic representation learned

from the manifold learning algorithm in [50]. We refer to this

algorithm as “IML”.

3. A CBIR system that uses the distance metric learned by the al-

gorithm in [153]. We refer to this algorithm as “DML”.

4. A CBIR system that uses the distance metric learned by the pro-

posed regularized metric learning algorithm. We refer to this

algorithm as “RDML”.

All the algorithms were implemented with MATLAB. Specifically, for

the implementation of the manifold learning algorithm for image re-

trieval (i.e., IML), we followed the procedure described in [50]. All the

parameters in the algorithm IML were carefully tuned to achieve good

retrieval accuracy. For the algorithm based on metric learning in [153]

(i.e., DML), we download the code from the web site of the author1,

and slightly modified the downloaded code to fit it in the CBIR task.

Finally, the proposed algorithm based on regularized metric learning

(i.e. RDML) was implemented within MATLAB using the SeDuMi

optimization toolbox [129] to solve the optimization problem in (8.11).

Parameter cS in (8.11) was set to 0.15 and 0.1 for the 20-Catgory and

the 50-Category testbeds, respectively. Another parameter cD was set

to be one third of Cs.

The experiment in this section was conducted for the log data with

small noise, i.e., 7.8% noise for the 20-Category testbed, and 7.7%

noise for the 50-Category testbed. All the users’ log data were used in

this experiment, i.e. 100 and 150 log sessions for 20-Category and 50-

Category testbeds, respectively. Every image in the database was used

as a query image. The results of mean average precision for the top-

ranked images are reported in Tables 8.2 and 8.3. Several observations

1http://www-2.cs.cmu.edu/ẽpxing/publication.html
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Table 8.2: Average precision (%) of top-ranked images on the 20-Category
testbed over 2,000 queries. The relative improvement of algorithm IML,
DML, and RDML over the baseline Euclidean is included in the parenthesis
following the average accuracy.

Top Images 20 40 60 80 100

Euclidean 39.91 32.72 28.83 26.47 24.47

IML 42.66(6.9%) 34.32(4.9%) 30.00(4.1%) 26.47(0.3%) 23.80(-2.7%)

DML 41.45(3.9%) 34.89(6.6%) 31.21(8.2%) 28.63(8.5%) 26.44(8.0%)

RDML 44.55(11.6%) 37.39(14.3%) 33.11(14.8%) 30.13(14.1%) 27.82(13.7%)

Table 8.3: Average precision (%) of top-ranked images on the 50-Category
testbed over 5,000 queries. The relative improvement of algorithm IML,
DML, and RDML over the baseline Euclidean is included in the parenthesis
following the average accuracy.

Top Images 20 40 60 80 100

Euclidean 36.39 28.96 24.96 22.21 20.18

IML 35.64(-2.1%) 29.16(0.7%) 24.75(-0.8%) 21.68(-2.4%) 19.32(-4.3%)

DML 33.52(-7.9%) 27.15(-6.3%) 23.77(-4.8%) 21.48(-3.3%) 19.74(-2.2%)

RDML 40.36(10.9%) 32.62(12.6%) 28.24(13.1%) 25.17(13.4%) 22.86(13.3%)

can be drawn from Tables 8.2 and 8.3:

• Compared to the baseline model, the manifold learning method

(IML) gains a small improvement for the 20-Category testbed,

but it fails to improve the retrieval accuracy of CBIR for the

50-Category testbed. One possible explanation is that the IML

method does not explicitly explore the Min/Max principle when

it is using the log data. In particular, it is only able to exploit the

images that have been judged as relevant and is unable to utilize

the images judged as irrelevant. Note that the empirical results

for the IML algorithm reported in this work is not consistent with

the results reported in [50], where the IML method achieves a

significant improvement over the Euclidean distance metric. After

consulting the authors for IML, we believe that the inconsistency

could be attributed to different characteristics of log data used in
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these two studies. Not only was a much larger amount of users’

log data used in [50] than in this work, but also their log data

did not include any noise. To further confirm the correctness of

this explanation, we followed the same procedure described in [50]

and constructed similar log data of simulated users. We tested

our implementation of the IML algorithm using the simulated log

data and observed a similar amount of improvement as reported

in [50]. Based on these results, we are confirmed that the IML

algorithm works well when a large amount of log data is available.

It may fail to improve the performance of CBIR when the size of

log data is small.

• The distance metric learning (DML) algorithm does achieve cer-

tain amount of improvement over the baseline algorithm on the

20-Category testbed. But it performs consistently worse than the

Euclidean distance on the 50-Category testbed. These results in-

dicate that distance metric learned by the DML algorithm may

not be robust and can suffer from the overfitting problem. This

is because images from the 50-Category testbed are much more

diverse than images from the 20-Category testbed. In contrast,

the size of log data for the 50-Category testbed is only slightly

larger than that for the 20-Category testbed. Thus, log data may

not be sufficient for representing the diversity of the 50-Category

testbed, which leads the DML algorithm to over-fit log data and

therefore degrades the retrieval accuracy.

• Compared to the baseline method, the proposed algorithm for reg-

ularized distance metric learning (RDML) is able to consistently

achieve more than 10% improvement in mean average precision

for the top-ranked images. These results indicate that the RDML

algorithm is more robust than the other two algorithms in boost-

ing the retrieval accuracy of CBIR with log data. We attribute
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the success of the RDML algorithm to the combination of the dis-

criminative training, which is based on the Min/Max principle,

and the regularization procedure, which results in more robust

distance metric.

To further illustrate the behavior of the RDML algorithm, we list

the retrieval results of a sample query image in Figure 8.1. The first row

of Figure 8.1 shows the top-5 returned images from the CBIR system

using Euclidean distance metric, while the second row represents the

results by the CBIR system using the distance metric learned by the

RDML algorithm. The first image of each row is the sample query

image. It can be seen that the CBIR system using Euclidean metric

only acquired 2 relevant images (including the query image) out of top

5 returned images, while the CBIR system using the RDML algorithm

did a better work by retrieving two more relevant images (the fourth

one and the fifth image on the second row).

Query Image
Rank 2 Rank 3  Rank 4  Rank 5Rank 1

Euclidean

RDML

Figure 8.1: The retrieval results of top-5 returned images of a sample query

image (the first one in the next two rows) for CBIR systems with either

the Euclidean distance metric (first row) or the distance metric learned by

RDML (second row).
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Table 8.4: The training time cost (CPU seconds) of three algorithms on
20-Category (100 log sessions) and 50-Category (150 log sessions) testbeds.

Algorithm IML DML RDML

20-Category 82.5 3,227 19.2
50-Category 2,864 12,341 20.5

8.5.2 Experiment II: Efficiency and Scalability

In addition to being more effective than the IML and the DML algo-

rithm, the RDML algorithm can also be computed substantially more

efficiently than the other two algorithms and is scalable to the size of

log data. To manifest the efficiency and scalability of the proposed al-

gorithm, we conducted a set of experiments to show the training time

of these three algorithms. All the algorithms were run on a Windows

XP operation system that is powered by a 2.0 GHz PC with 1GB phys-

ical memory. The training times of these three algorithms are shown

in Table 8.4. As indicated in Table 8.4, the RDML algorithm can be

trained much more efficiently than the other two algorithms for both

testbeds. Particularly, two observations can be drawn from Table 8.4:

• The RDML algorithm is significantly more efficient than the DML

algorithm. For both datasets, the training cost of the DML algo-

rithm is at least two orders larger than that of the RDML algo-

rithm. Note that both algorithms try to learn the distance metric

A from the same log data and therefore have the same problem

size. The RDML algorithm is more efficient than the DML al-

gorithm because its related optimization problem can be solved

efficiently by the SDP technique, while the DML algorithm has

to solve a general convex programming problem that is usually

much more time-consuming.

• The RDML algorithm is significantly more scalable to the size of

log data than the IML algorithm. For the 20-Category testbed,
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Table 8.5: Average precision (%) of top-ranked images on the 20-Category
testbed for IML, DML, and RDML algorithm using small amounts of log
data. The relative improvement over the baseline Euclidean is included in
the parenthesis.

Top Images 20 40 60 80 100

Euclidean 39.91 32.72 28.83 26.47 24.47

IML (#Log 67) 39.01 (-2.3%) 31.49 (-3.8%) 27.64 (-4.1%) 24.75 (-6.5%) 22.43 (-8.3%)

DML (#Log 67) 41.03(2.8%) 34.73 (6.1%) 31.26 (8.4%) 28.67 (8.3%) 26.47 (8.2%)

RDML (#Log 67) 43.80(9.7%) 36.15(10.5%) 32.00(11.0%) 29.20(10.6%) 26.89(9.9%)

IML (#Log 33) 36.64(-8.2%) 29.72 (-9.2%) 25.99(-9.9%) 23.41(-11.6%) 21.53(-12.0%)

DML (#Log 33) 38.13 (-4.5%) 31.99(-2.2%) 28.69(-0.5%) 26.34 (-0.5%) 24.50 (-0.1%)

RDML (#Log 33) 42.56(6.6%) 35.12(7.3%) 31.01(7.5%) 28.17(6.7%) 26.11(6.7%)

both the IML algorithm and the RDML algorithm have similar

training cost. However, for the 50-Category testbed, the training

cost for the IML algorithm shoots up to about 3,000 Sec. Whereas

the RDML algorithm is able to maintain its training cost almost

unchanged between the 20-Category and the 50-Category. This is

because the IML algorithm needs to solve a generalized eigenvalue

decomposition problem [50], in which the problem size is not only

dependent on the number of image features, but also dependent

on the number of images in log data. Given the computational

complexity of principle eigenvectors is on the order of n3 where n

is the number of variables, the IML algorithm cannot scale up to

the size of log data. In contrast, the problem size for the RDML

algorithm, only depends on the number of image features, thus is

the same for both testbeds. As a result, regardless of the size of

log data, the problem sizes of the RDML algorithm are the same,

which leads to unchanged training cost.

8.5.3 Experiment III: Different Size of Log Data

In real world CBIR applications, it may be difficult to acquire large

amount of users’ log data. This issue is especially important in the

early stage of system development. It is also important when the tar-
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Table 8.6: Average precision (%) of top-ranked images on the 50-Category
testbed for IML, DML, and RDML using small amounts of log data. The
relative improvement over the baseline Euclidean is included in the paren-
thesis.

Top Images 20 40 60 80 100

Euclidean 36.39 28.96 24.96 22.21 20.18

IML (#Log 100) 34.25(-5.8%) 27.65(-4.5%) 23.34(-6.5%) 20.69(-6.8%) 18.49(-8.4%)

DML (#Log 100) 33.53(-7.9%) 26.84 (-7.3%) 23.28(-6.7%) 20.93(-5.8%) 19.21 (-4.8%)

RDML (#Log 100) 39.10(7.4%) 31.62(9.2%) 27.28(9.3%) 24.30(9.4%) 22.02(9.2%)

IML (#Log 50) 32.95(-9.5%) 26.87 (-7.2%) 22.92(-8.2%) 20.35 (-8.4%) 18.25 (-9.6%)

DML (#Log 50) 29.78(-18.2%) 23.26 (-19.7%) 19.86(-20.4%) 17.70(-20.3%) 16.13(-20.1%)

RDML (#Log 50) 38.96(7.1%) 31.44(8.6%) 27.08(8.5%) 24.09(8.5%) 21.76(7.9%)

get images are not popular and are only equipped with a few relevance

judgments. In this case, the CBIR system has to provide retrieval

service with limited amount of log data. A set of experiments was

designed in this section to show the behavior of the RDML algorithm

together with the IML and the DML algorithm in response to differ-

ent size of log data. Different from the experiments presented in the

previous sections, where all users’ log data are used, in this section,

all the algorithms were trained with only part of users’ log data. In

particular, it was trained with one-third and two-third users’ log data

for both testbeds. The empirical results are shown in Tables 8.5 and

8.6.

It can be seen from these two tables that the advantage of the

RDML algorithm over the baseline algorithm using Euclidean distance

metric decreases with less training data. However, even with very lim-

ited amount of training data, i.e. 33 log sessions for 20-Category and

50 log sessions for 50-Category, the RDML algorithm is still capable

to gain notable improvement over the baseline model, which is about

7% for 20-Category and about 8% for 50-Category. Compared to the

RDML algorithm, the IML algorithm and the DML algorithm suffer

from substantially more degradation in the retrieval accuracy. In fact,

for most cases when a small amount of log data is present, both the

IML algorithm and the DML algorithm perform even worse than the



CHAPTER 8. OFFLINE COLLABORATIVE MULTIMEDIA RETRIEVAL188

Table 8.7: Average precision (%) of top-ranked images on the 20-Category
testbed for IML, DML, and RDML using noisy log data. The relative im-
provement over the baseline Euclidean is included in the parenthesis follow-
ing the average accuracy.

Top Images 20 40 60 80 100

Euclidean 39.91 32.72 28.83 26.47 24.47

IML (Large Noise) 37.94(-4.9%) 30.14(-7.9%) 25.93(-10.1%) 23.56 (-11.0%) 21.97(-10.2%)

DML (Large Noise) 38.62(-3.2%) 32.32(-1.2%) 28.95(0.4%) 26.61 (0.8%) 24.62(0.6%)

RDML (Large Noise) 41.19(3.2%) 34.15(4.4%) 30.40(5.4%) 27.92(5.8%) 25.89(5.8%)

Table 8.8: Average precision (%) of top-ranked images on the 50-Category
testbed for IML, DML, and RDML using noisy log data. The relative im-
provement over the baseline Euclidean is included in the parenthesis follow-
ing the average accuracy.

Top Images 20 40 60 80 100

Euclidean 36.39 28.96 24.96 22.21 20.18

IML (Large Noise) 33.80(-7.1%) 27.30(-5.8%) 23.56(-5.0%) 20.65(-6.7%) 18.36 (-8.1%)

DML (Large Noise) 32.85(-9.7%) 26.95 (-7.0%) 23.55(-5.7%) 21.22(-4.5%) 19.49(-3.4%)

RDML (Large Noise) 37.45(2.9%) 29.97(3.5%) 25.84(3.5%) 22.99(3.5%) 20.87(3.4%)

straightforward Euclidean distance. In sum, this set of experiments

demonstrates the robustness of the RDML algorithm in improving

content-based image retrieval with the limited amount of users’ log

data, which can be important for real world CBIR systems.

8.5.4 Experiment IV: Noisy Log Data

Another practical problem with real-world CBIR applications is that

the log data of user feedback are inevitable to contain certain amount of

noise. The experiment results in previous sections have demonstrated

that the RDML algorithm is able to boost the retrieval results of a

CBIR system when log data have only a small amount of noise. It is

interesting to investigate the behavior of the RDML algorithm when

more noise is present in the log data of users’ relevance feedback.

Experiments were conducted on both the 20-Category and the 50-

Category testbeds using the log data that contain a large amount of

noise. The details of users’ log data with large noise have been de-



CHAPTER 8. OFFLINE COLLABORATIVE MULTIMEDIA RETRIEVAL189

scribed in Section 8.4.3. The experiment results for two testbeds using

the RDML algorithm are shown in Tables 8.7 and 8.8, respectively. It

can be seen from the experiment results that the noise in users’ log data

does have a significant impact on the retrieval accuracy, which is consis-

tent with our expectation. However, even when the noisy log data that

contain over 15% incorrect relevance judgments, the RDML algorithm

still shows a consistent improvement over the baseline method using

the Euclidean distance metric, although the improvement is small. In

contrast, both the IML algorithm and the DML algorithm fail to im-

prove the performance over the Euclidean distance when the log data

is noisy. These results indicate the robustness of our new algorithm,

which again is important for real-world CBIR applications.

8.6 Limitation and Future Work

Based on the promising results achieved from the above extensive em-

pirical evaluations, we conclude that the regularized metric learning

algorithm is effective for improving the performance of CBIR systems

by integrating the log data of users’ relevance feedback. Through the

regularization mechanism, the learned distance metric is more robust.

By formulating the learning problem into an SDP problem, it can be

solved efficiently and is scalable to the size of log data. However, it

is necessary to address the limitation and the challenging issues with

the proposed algorithm as well as feasible directions for solving these

problems in our future work.

First, we realize that the selection of parameter cS and cD in the pro-

posed algorithm is important to its retrieval performance. Although

our empirical approach for choosing cS and cD has resulted in good

performance, we plan to investigate other principled approaches for ef-

fectively tuning these two parameters. One potential approach is to

automatically determine these two parameters using the cross valida-
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tion method. It divides the log data into 20%/80% partitions where

80% of the data is used for training and 20% for validation. The opti-

mal values of cS and cD are found by maximizing the retrieval accuracy

of the validation set.

Second, although our algorithm is robust to the noise present in the

log data, the degradation in the retrieval accuracy caused by erroneous

judgments is still quite significant. Hence, in the future, we plan to con-

sider more sophisticated regularization approaches for metric learning,

such as manifold regularization [15].

Third, in the proposed algorithm, a single distance metric is learned

to describe the similarity between any two images. Given a heteroge-

neous collection that consists of multiple different types of images, a

single distance metric may not be sufficient to account for diverse types

of similarity functions. In the future, some interesting extensions can be

naturally derived from our work. One possible way is to learn multiple

query-dependent distance metrics with respect to different query types,

which is similar to the idea of query classification based retrieval [72] in

document information retrieval. Moreover, we may also learn multiple

user-dependent distance metrics if users’ preferences are available.

8.7 Summary

This chapter investigated a novel algorithm for distance metric learn-

ing, which boosts the retrieval accuracy of CBIR by taking advantage

of the log data of users’ relevance judgments. A regularization mech-

anism is used in the proposed algorithm to improve the robustness of

solutions, when the log data is small and noisy. Meanwhile, it is formu-

lated as an SDP problem, which can be solved efficiently and therefore

is scalable to the size of log data.

Experiment results have shown that the proposed algorithm for reg-

ularized distance metric learning substantially improves the retrieval
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accuracy of the baseline CBIR system that uses the Euclidean distance

metric. It is also more effective and more efficient than two alternative

algorithms that also utilize the log data to enhance image retrieval.

More empirical studies indicate that the new algorithm gains notable

improvement even with limited amount of users’ log data. Further-

more, the new algorithm is rather robust to work in the environment

where the log data is noisy and contains a number of erroneous judg-

ments. All these advantages make the new algorithm proposed in this

chapter a good candidate for combining the log data and the low-level

image features to improve the retrieval performance of CBIR systems.

� End of chapter.



Chapter 9

Conclusion

9.1 Summary of Achievements

This thesis aimed to develop an unified scheme that is able to com-

bine several statistical machine learning techniques for solving a vari-

ety of learning tasks in real-world applications effectively. To this pur-

pose, we presented a novel general framework termed a unified learning

paradigm (ULP), which integrates several learning methods in a syn-

ergistic way. Based on the idea of this unified learning framework, this

thesis developed a novel scheme for learning Unified Kernel Machines

(UKM) for classification tasks. In contrast to traditional classifica-

tion approaches, UKM combines supervised kernel machine learning,

unsupervised kernel design, semi-supervised kernel learning and active

learning in a unified solution.

A key part of the UKM scheme is the development of an effec-

tive semi-supervised kernel learning method. To tackle this problem,

we suggested a new algorithm called Spectral Kernel Learning (SKL),

which is formulated into a QP problem that can be efficiently solved.

Empirical evaluations on benchmark datasets have shown that our SKL

algorithm is promising for learning effective kernels in both computa-

tional efficiency and classification performance.

192
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Another important part of the ULP framework is the effective exe-

cution of active learning. Traditional active learning methods usually

select a single example for labeling in each learning iteration, which

usually require large re-training cost. To overcome this challenge, this

thesis proposes a framework of Batch Mode Active Learning (BMAL)

that is able to select a batch of the most informative examples for label-

ing. The BMAL task is formulated into a convex optimization problem

and is solved by an efficient bound optimization algorithm. Extensive

trials on text categorization have shown that our algorithm is more

promising than traditional approaches.

Since the unified learning framework is a long-term research chal-

lenge, some important open issues were specifically investigated in this

thesis. One of these is the issue of how to learn distance metrics from

contextual information. We proposed new algorithms called Discrimi-

native Component Analysis (DCA) and Kernel DCA to learn both lin-

ear and nonlinear distance metrics; these algorithms enjoy the merits of

simplicity and effectiveness. Empirical evaluations on data clustering

have demonstrated the effectiveness of our algorithms.

In addition to the methodology studies, we also investigated ma-

chine learning techniques in some real-world applications in data min-

ing and multimedia information retrieval. The first application is the

problem of mining users’ historical query logs and click-through data

in web search engines. We suggested marginalized kernel techniques

to tackle similarity measure problems by kernel design methods. This

application can be considered to be the kernel initialization step in our

unified learning framework, in which we showed how to exploit domain

knowledge to initialize an effective kernel.

Another application is Collaborative Multimedia Retrieval (CMR).

We have investigated supervised kernel machine learning techniques

and distance metric learning techniques to tackle two CMR learning
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tasks, i.e., online Log-based Relevance Feedback (LRF) and offline dis-

tance metric learning, in content-based image retrieval. Specifically, we

proposed Soft Label Support Vector Machines (SLSVM) to solve the

LRF problem and suggested the Regularized Distance Metric Learn-

ing (RDML) algorithm to develop a robust and scalable metric learning

scheme for CMR. All of the above empirical demonstrations have shown

that the unified learning framework and its extended algorithms are sig-

nificant and important tools for addressing the challenging problems in

real-world applications.

9.2 Future Work

Although a substantial number of promising achievements have been

reported based on our novel framework, there are still numerous open

issues that need to be further explored in future work. An important

issue is to develop methodology for assessing the convergence problems

of our unified learning framework. This challenge may be solved in a

variety of ways, depending on the application. For example, given a

classification task, it may be possible to evaluate error bounds or gen-

eralization performance of the unified kernel machines for convergence

assessments.

The second challenge is the computational efficiency issue. Al-

though we have developed efficient algorithms for each components in

our unified learning framework, there are still some preprocessing steps

those are computationally expensive. For example, in semi-supervised

kernel learning, we need to conduct eigen-decompositions of an ini-

tial kernel matrix before the spectral kernel learning procedure; in

batch mode active learning, we also need to do eigen-decompositions of

the Fisher information matrix. For large-scale applications, the eigen-

decomposition operation can be rather expensive. We can attack these

challenges by exploring the sparsity property or studying more efficient
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eigen-decomposition algorithms.

Moreover, more study is needed of the scalability and generalization

issue in the UKM framework. In our current solution, we assume the

scheme is conducted in a transductive learning setting. Approaches

for generalizing the scheme to unseen data and making it scalable for

large-scale applications should be further studied. One solution is to

search for an efficient method to learn the kernel matrix incrementally.

Some approximation algorithms could probably be devised for solving

the problem efficiently.

Last, but not least, we may extend our unified learning framework

by exploring other existing machine learning techniques, such as rein-

forcement learning. Also we will apply our methodologies and algo-

rithms to solve a variety of real-world applications in data mining and

information retrieval, such as time-series regression, personalized web

search, and biomedical data mining.

� End of chapter.



Appendix A

Equation Derivation

A.1 Derivation of the Dual in SLSVM

The goal is to prove the derivation of the following optimization:

Definition 21 Soft Label Support Vector Machine (SLSVM):

min
w,b,ξ

1

2
‖w‖2 + CH

l∑
i=1

ξi + CS

l+m∑
i=l+1

|si|ξi (A.1)

subject to yi(w · Φ(xi)− b) ≥ 1− ξi,

ξi ≥ 0 , i = 1, . . . , l + m ,

where l and m are respectively the number of hard-labeled training data

and the number of soft-label ones (with |si| < 1), CH and CS are weight

parameters for hard-labeled and soft-labeled training data respectively.

�

Let us introduce the positive Lagrange multipliers αi, i = 1, 2, . . . , l+

m, one for each of the inequality constraints in the above optimization

problem, and µi for enforcing positivity of ξi. Then the Lagrangian

196



APPENDIX A. EQUATION DERIVATION 197

functional can be formulated as follows:

L(w, ξ, b, α, µ) =
1

2
‖w‖2 + CH

l∑
i=1

ξi + CS

l+m∑
i=l+1

yisiξi

−
l∑

i=1

αi(yi(Φ(xi) ·w − b)− 1 + ξi)

−
l+m∑

i=l+1

αi(yi(Φ(xi) ·w − b)− 1 + ξi)−
l+m∑
i=1

µiξi .

(A.2)

By taking the partial derivative of L with respect to w, ξi, b and ρ,

we can obtain the following equations respectively:

∂L

∂w
= w −

l+m∑
i=1

αiyiΦ(xi) = 0⇒ w =

l+m∑
i=1

αiyiΦ(xi) ;

∀i = 1, . . . , l

∂L

∂ξi
= CH − αi − µi = 0⇒ 0 ≤ αi ≤ CH ,

∀i = l + 1, . . . , l + m

∂L

∂ξi
= yisiCS − αi − µi = 0⇒ 0 ≤ αi ≤ yisiCS ,

∂L

∂b
=

l+m∑
i=1

αiyi = 0⇒
l+m∑
i=1

αiyi = 0 .

By substituting the above equations into (A.2), one can derive the

dual of the original optimization problem as follows:

max
α

l+m∑
i=1

αi − 1

2

l+m∑
i,j=1

αiαjyiyjΦ(xi) · Φ(xj)

subject to
l+m∑
i=1

αiyi = 0

0 ≤ αi ≤ CH , i = 1, 2, . . . , l ,

0 ≤ αi ≤ yisiCS , i = l + 1, l + 2, . . . , l + m .

This finishes proving the derivation of the dual for the given optimiza-

tion of OPT 2. �
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A.2 Derivation of Inequation in BMAL

Let L(q) be the objective function in (4.15). We then have

L(q) =

s∑
k=1

λk∑n
i=1 qiπi(1− πi)(x

T
i vk)2

=

s∑
k=1

λk∑n
i=1 qiπi(1− πi)(xT

i vk)2
×
∑n

i=1 q′iπi(1− πi)(x
T
i vk)

2∑n
i=1 q′iπi(1− πi)(xT

i vk)2 qi

q′i

Using the convexity property of reciprocal function, namely

1∑n
i=1 pix

≤
n∑

i=1

pi

x
(A.3)

for x ≥ 0 and p.d.f. {pi}ni=1, we can arrive at the following deduction:∑n
i=1 q′iπi(1− πi)(x

T
i vk)

2∑n
i=1 q′iπi(1− πi)(xT

i vk)2 qi

q′i

≤
n∑

i=1

q′iπi(1− πi)(x
T
i vk)

2∑n
j=1 q′jπj(1− πj)(xT

j vk)2

1
qi

q′i

=

n∑
i=1

(q′i)
2πi(1− πi)(x

T
i vk)

2

qi

∑n
j=1 q′jπj(1− πj)(xT

j vk)2

Substituting the above inequation back into (A.3), we can achieve the

following inequality:

L(q) ≤
s∑

k=1

λk∑n
i=1 q′iπi(1− πi)(xT

i vk)2

×
(

n∑
i=1

(q′i)
2πi(1− πi)(x

T
i vk)

2

qi

∑n
j=1 q′jπj(1− πj)(xT

j vk)2

)

=
s∑

k=1

λk(∑n
j=1 q′jπj(1− πj)(xT

j vk)2
)2 ×

n∑
i=1

(q′i)
2(xT

i vk)
2πi(1− πi)

qi

=
n∑

i=1

(q′2i )

qi

πi(1− πi)
s∑

k=1

(xivk)
2λk

(
∑n

j=1 q′jπj(1− πj)(xT
j vk)2)2

.

This finishes the proof of the inequality mentioned above. �

� End of chapter.
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son between different similarity models for cbir with relevance



BIBLIOGRAPHY 209

feedback. In Proceedings of International Conference on Im-

age and Video Retrieval (CIVR’03), LNCS 2728, pages 456–466.

Springer-Verlag, 2003.

[53] T. Hertz, N. Shental, A. Bar-Hillel, and D. Weinshall. Enhancing

image and video retrieval: Learning via equivalence constraints.

In Proc. IEEE CVPR, pages 668–674, 2003.

[54] C. H. Hoi and M. R. Lyu. Biased support vector machine for

relevance feedback in image retrieval. In Proceedings Interna-

tional Joint Conference on Neural Networks (IJCNN’04), pages

3189–3194, Budapest, Hungary, 2004.

[55] C. H. Hoi and M. R. Lyu. Group-based relevance feeedback with

support vector machine ensembles. In Proceedings 17th Inter-

national Conference on Pattern Recognition (ICPR’04), pages

874–877, Cambridge, UK, 2004.

[56] C. H. Hoi and M. R. Lyu. Web image learning for searching

semantic concepts in image databases. In Poster Proc. 13th In-

ternational World Wide Web Conference (WWW’2004), pages

406–407, New York, USA, 2004.

[57] C. H. Hoi and M. R. Lyu. A novel log-based relevance feedback

technique in content-based image retrieval. In Proceedings ACM

Multimedia Conference (MM 2004), pages 10–16, New York, Oc-

tober 2004.

[58] C. H. Hoi, M. R. Lyu, and R. Jin. Integrating user feedback log

into relevance feedback by coupled svm for content-based image

retrieval. In Proceedings of the 1st IEEE International Work-

shop on Managing Data for Emerging Multimedia Applications

(EMMA 2005), 2005.



BIBLIOGRAPHY 210

[59] S. C. Hoi, M. R. Lyu, and R. Jin. A unified log-based relevance

feedback scheme for image retrieval. IEEE Trans. on Knowledge

and Data Engineering, 18(4):509–524, 2006.

[60] P. Hong, Q. Tian, and T. S. Huang. Incorporate support vec-

tor machines to content-based image retrieval with relevant feed-

back. In Proc. IEEE International Conference on Image Process-

ing (ICIP’00), Vancouver, BC, Canada, 2000.

[61] T. S. Huang and X. S. Zhou. Image retrieval by relevance feed-

back: from heuristic weight adjustment to optimal learning meth-

ods. In Proceedings of IEEE International Conference on Image

Processing (ICIP’01), Thessaloniki, Greece, Oct. 2001.

[62] Y. Ishikawa, R. Subramanya, and C. Faloutsos. MindReader:

Querying databases through multiple examples. In Proc. 24th

Int. Conf. Very Large Data Bases (VLDB’98), pages 218–227,

1998.

[63] T. Jaakkola and D. Haussler. Exploiting generative models in

discriminative classifiers. In Proc. NIPS, 1998.

[64] A. K. Jain and M. N. Murty. Data clustering: A review. ACM

Computing Surveys, 32(3):264–323, 1999.

[65] A. K. Jain and A. Vailaya. Shape-based retrieval: a case study

with trademark image database. Pattern Recognition, (9):1369–

1390, 1998.

[66] J. Jeon, V. Lavrenko, and R. Manmatha. Automatic image anno-

tation and retrieval using cross-media relevance models. In Pro-

ceedings of the 26th Intl. ACM SIGIR Conference (SIGIR’03),

pages 119–126, 2003.

[67] T. Joachims. Text categorization with support vector machines:

learning with many relevant features. In Proc. 10th European



BIBLIOGRAPHY 211

Conference on Machine Learning (ECML), number 1398, pages

137–142, 1998.

[68] T. Joachims. Making large-scale svm learning practical. In Ad-

vances in Kernel Methods - Support Vector Learning, MIT Press,

1999.

[69] T. Joachims. Transductive inference for text classification using

support vector machines. In Proc. 16th International Conference

on Machine Learning (ICML), pages 200–209, San Francisco, CA,

USA, 1999.

[70] T. Joachims. Optimizing search engines using clickthrough data.

In Proceedings of the eighth ACM SIGKDD international confer-

ence on Knowledge discovery and data mining, pages 133–142,

2002.

[71] T. Joachims, L. Granka, B. Pan, H. Hembrooke, and G. Gay. Ac-

curately interpreting clickthrough data as implicit feedback. In

Proceedings of the 28th annual international ACM SIGIR confer-

ence on Research and development in information retrieval, pages

154–161, 2005.

[72] I.-H. Kang and G. Kim. Query type classification for web doc-

ument retrieval. In Proc. of the 26th ACM SIGIR Conference,

pages 64–71, 2003.

[73] H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels

between labeled graphs. In 20th International conference on Ma-

chine Learning (ICML), pages 321–328, 2003.

[74] P. Komarek and A. Moore. Fast robust logistic regression for large

sparse datasets with binary outputs. In Artificial Intelligence and

Statistics (AISTAT), 2003.



BIBLIOGRAPHY 212

[75] P. Komarek and A. Moore. Making logistic regression a core

data mining tool: A practical investigation of accuracy, speed,

and simplicity. In Technical Report TR-05-27 at the Robotics

Institute, Carnegie Mellon University, May 2005.

[76] A. Krogh and J. Vedelsby. Neural network ensembles, cross val-

idation, and active learning. In Advances in Neural Information

Processing Systems, volume 7, pages 231–238. The MIT Press,

1995.

[77] J. Kwok and I. Tsang. Learning with idealized kernels. In Pro-

ceedings of the 20th International Conference on Machine Learn-

ing, pages 400–407, 2003.

[78] J. Laaksonen, M. Koskela, and E. Oja. Picsom: Self-organizing

maps for content-based image retrieval. In Proc. International

Joint Conference on Neural Networks (IJCNN’99), Washington,

DC, USA, 1999.

[79] M. Lan, C. L. Tan, H.-B. Low, and S. Y. Sung. A comprehensive

comparative study on term weighting schemes for text catego-

rization with support vector machines. In Posters Proc. 14th In-

ternational World Wide Web Conference, pages 1032–1033, 2005.

[80] G. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and

M. Jordan. Learning the kernel matrix with semi-definite pro-

gramming. JMLR, 5:27–72, 2004.

[81] V. Lavrenko, R. Manmatha, and J. Jeon. A model for learning

the semantics of pictures. In Advances in Neural Information

Processing Systems (NIPS’03), 2003.

[82] N. Lawrence, M. Seeger, and R. Herbrich. Fast sparse gaussian

process methods: The informative vector machine. In Advances



BIBLIOGRAPHY 213

in Neural Information Processing Systems (NIPS), pages 625–

632, 2003.

[83] G. Lebanon. Learning riemannian metrics. In Proceedings of the

19th Conference on Uncertainty in Articial Intelligence, 2003.

[84] D. D. Lewis and W. A. Gale. A sequential algorithm for training

text classifiers. In Proc.17th ACM International SIGIR Confer-

ence, pages 3–12, 1994.

[85] R. Liere and P. Tadepalli. Active learning with committees for

text categorization. In Proceedings 14th Conference of the Amer-

ican Association for Artificial Intelligence (AAAI), pages 591–

596, MIT Press, 1997.

[86] Q. Liu, H. Lu, and S. Ma. Improving kernel fisher discriminant

analysis for face recognition. IEEE Trans. on Circuits and Sys-

tems for Video Technology, 14(1):42–49, 2004.

[87] T.-Y. Liu, Y. Yang, H. Wan, Q. Zhou, B. Gao, H. Zeng, Z. Chen, ,

and W.-Y. Ma. An experimental study on large-scale web catego-

rization. In Posters Proceedings of the 14th International World

Wide Web Conference, pages 1106–1107, 2005.

[88] Y. Lu, C. Hu, X. Zhu, H. J. Zhang, and Q. Yang. A unified

framework for semantics and feature based relevance feedback

in image retrieval systems. In Proceedings of the eighth ACM

International Conference on Multimedia, pages 31–37, New York,

NY, USA, 2000. ACM Press.

[89] S. MacArthur, C. Brodley, and C. Shyu. Relevance feedback

decision trees in content-based image retrieval. In Proc. IEEE

Workshop on Content-based Access of lmage and Video Libraries,

pages 68–72, 2000.



BIBLIOGRAPHY 214

[90] D. MacKay. Information-based objective functions for active data

selection. Neural Computation, 4(4):590–604, 1992.

[91] B. Manjunath, P. Wu, S. Newsam, and H. Shin. A texture de-

scriptor for browsing and similarity retrieval. Signal Processing

Image Communication, 2001.

[92] B. Masand, G. Lino, and D. Waltz. Classifying news stories using

memory based reasoning. In 15th ACM SIGIR Conference, pages

59–65, 1992.

[93] A. K. McCallum and K. Nigam. Employing EM and pool-based

active learning for text classification. In Proc.15th International

Conference on Machine Learning, pages 350–358. San Francisco,

CA, 1998.

[94] G. McLachlan. Discriminant Analysis and Statistical Pattern

Recognition. John Wiley, 1992.

[95] P. Melville and R. J. Mooney. Diverse ensembles for active learn-

ing. In Proceedings of the twenty-first international conference

on Machine learning (ICML’04), page 74, New York, NY, USA,

2004. ACM Press.

[96] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K. Muller.

Fisher discriminant analysis with kernels. In Proc. IEEE NN for

Signal Processing Workshop, pages 41–48, 1999.

[97] H. Muller, T. Pun, and D. Squire. Learning from user behavior

in image retrieval: Application of market basket analysis. Int. J.

Comput. Vision, 56(1-2):65–77, 2004.

[98] A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Anal-

ysis and an algorithm. In In Advances in Neural Information

Processing Systems 14, 2001.



BIBLIOGRAPHY 215

[99] A. Y. Ng and M. I. Jordan. On discriminative vs. generative

classifiers: A comparison of logistic regression and naive bayes.

In Advances in Neural Information Processing Systems 14, pages

841–848, 2001.

[100] K. Nigam, A. K. McCallum, S. Thrun, and T. Mitchell. Text

classification from labeled and unlabeled documents using em.

Machine Learning, 39:103–134, 2000.

[101] J. C. Platt. Fast training of support vector machines using se-

quential minimal optimization. In B. Schölkopf, C. Burges, and

A. Smola, editors, Advances in Kernel Methods - Support Vec-

tor Machines, pages 185–208. MIT Press, Cambridge, MA, USA,

1999.

[102] K. Porkaew, K. Chakrabarti, and S. Mehrotra. Query refinement

for multimedia retrieval and its evaluation techniques in mars.

In Proceedings of ACM International Conference on Multimedia,

Orlando, Florida, USA, 1999.

[103] K. Porkaew, K. Chakrabarti, and S. Mehrotra. Query refinement

for multimedia retrieval and its evaluation techniques in mars.

In Proceedings of ACM International Conference on Multimedia,

Orlando, Florida, USA, 1999.

[104] K. Porkaew, M. Ortega, and S. Mehrotra. Query reformulation

for content based multimedia retrieval in MARS. In Proceedings

of ICMCS, volume 2, pages 747–751, 1999.

[105] F. Radlinski and T. Joachims. Query chains: learning to rank

from implicit feedback. In Proceeding of the eleventh ACM

SIGKDD international conference on Knowledge discovery in

data mining, pages 239–248, 2005.



BIBLIOGRAPHY 216

[106] J. Rocchio. Relevance feedback in information retrieval. The

SMART Retrieval System: Experiments in Automatic Document

Processing, pages 313–323, 1971.

[107] C. Rosenberg, M. Hebert, and H. Schneiderman. Semi-supervised

selftraining of object detection models. In Seventh IEEE Work-

shop on Applications of Computer Vision., 2005.

[108] N. Roy and A. McCallum. Toward optimal active learning

through sampling estimation of error reduction. In 18th Interna-

tional Conference on Machine Learning (ICML), pages 441–448,

2001.

[109] Y. Rui and T. S. Huang. A novel relevance feedback technique in

image retrieval. In Proceedings of ACM International Conference

on Multimedia, pages 67–70, Orlando, Florida, USA, 1999.

[110] Y. Rui, T. S. Huang, M. Ortega, and S. Mehrotra. Relevance

feedback: A power tool in interactive content-based image re-

trieval. IEEE Transactions on Circuits and Systems for Video

Technology, 8(5):644–655, Sept. 1998.

[111] Y. Rui, T. S. Huang, M. Ortega, and S. Mehrotra. Relevance

feedback: A power tool in interactive content-based image re-

trieval. IEEE Transactions on Circuits and Systems for Video

Technology, 8(5):644–655, Sept. 1998.

[112] M. E. Ruiz and P. Srinivasan. Hierarchical text categorization

using neural networks. Information Retrieval, 5(1):87–118, 2002.

[113] G. Salton and C. Buckley. Term-weighting approaches in auto-

matic text retrieval. Information Processing and Management,

24(5):513–523, 1988.



BIBLIOGRAPHY 217

[114] G. Salton and C. Buckley. Improving retrieval performance by

relevance feedback. Journal of the American Society for Infor-

mation Science, 44(4):288–287, 1990.

[115] G. Salton and M. J. McGill. Introduction to Modern Information

Retrieval. McGraw-Hill Book Company, 1983.

[116] G. Schohn and D. Cohn. Less is more: Active learning with

support vector machines. In Proc. 17th International Conference

on Machine Learning, pages 839–846, 2000.

[117] B. Scholkopf, A. Smola, and K.-R. Muller. Nonlinear component

analysis as a kernel eigenvalue problem. Neural Computation,

10:1299–1319, 1998.

[118] M. Seeger. Learning with labeled and unlabeled data. Technical

report, University of Edinburgh, 2001.

[119] H. S. Seung, M. Opper, and H. Sompolinsky. Query by commit-

tee. In Computational Learning Theory, pages 287–294, 1992.

[120] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern

Analysis. Cambridge University Press, 2004.

[121] X. Shen, S. Dumais, and E. Horvitz. Analysis of topic dynamics

in web search. In 14th international conference on World Wide

Web (WWW2005), pages 1102–1103, 2005.

[122] L. K. Shih and D. R. Karger. Using urls and table layout for

web classification tasks. In Proc. International World Wide Web

Conference, pages 193–202, 2004.

[123] S. D. Silvey. Statistical Inference. 1974.

[124] A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and

R. Jain. Content-based image retrieval at the end of the early



BIBLIOGRAPHY 218

years. IEEE Transaction on Pattern Analysis and Machine In-

telligence, 22(12):1349–1380, 2000.

[125] B. Smith, P. Bjrstad, and W. Gropp. Domain decomposition:

parallel multilevel methods for elliptic partial differential equa-

tions. Cambridge University Press, 1996.

[126] J. Smith and S.-F. Chang. Automated image retrieval using color

and texture. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, Nov. 1996.

[127] A. Smola and R. Kondor. Kernels and regularization on graphs.

In Intl. Conf. on Learning Theory, 2003.

[128] J. Sturm. Using sedumi: a matlab toolbox for optimization

over symmetric cones. Optimization Methods and Software, 11–

12:625–653, 1999.

[129] J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for opti-

mization over symmetric cones. Optimization Methods and Soft-

ware, 11–12:625–653, 1999. Special issue on Interior Point Meth-

ods (CD supplement with software).

[130] J. Sun, H.-J. Zeng, H. Liu, Y.-C. Lu, and Z. Chen. Cubesvd:

A novel approach to personalized web search. In Proceedings

of international conference on World Wide Web (WWW2005),

2005.

[131] M. Szummer and T. Jaakkola. Partially labeled classification

with markov random walks. In Advances in Neural Information

Processing Systems, 2001.

[132] D. Tao and X. Tang. Nonparametric discriminant analysis in rel-

evance feedback for content-based image retrieval. In Proceedings

IEEE International Conference on Pattern Recognition (ICPR),

2004.



BIBLIOGRAPHY 219

[133] D. Tao and X. Tang. Random sampling based svm for relevance

feedback image retrieval. In Proceedings IEEE International Con-

ference on Computer Vision and Pattern Recognition (CVPR),

2004.

[134] K. Tieu and P. Viola. Boosting image retrieval. In IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR’00),

South Carolina, USA, 2000.

[135] N. Tishby, F. C. Pereira, and W. Bialek. The information bottle-

neck method. In Proc. Annual Allerton Conf. on Communication,

Control and Computing, pages 368–377, 1999.

[136] S. Tong and E. Chang. Support vector machine active learning

for image retrieval. In MULTIMEDIA ’01: Proceedings of the

ninth ACM international conference on Multimedia, pages 107–

118, New York, NY, USA, 2001. ACM Press.

[137] S. Tong and D. Koller. Support vector machine active learning

with applications to text classification. In Proc. 17th Interna-

tional Conference on Machine Learning (ICML), pages 999–1006,

Stanford, US, 2000.

[138] K. Tsuda, T. Kin, and K. Asai. Marginalized kernels for biological

sequences. Bioinformatics, 18(90001):268–275, 2002.

[139] K. Tzeras and S. Hartmann. Automatic indexing based on

Bayesian inference networks. In Proc. 16th ACM Int. SIGIR

Conference, pages 22–34, 1993.

[140] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM

Review, 38(1):49–95, 1996.

[141] V. N. Vapnik. Statistical Learning Theory. John Wiley, 1998.



BIBLIOGRAPHY 220

[142] N. Vasconcelos and A. Lippman. Learning from user feedback

in image retrieval systems. In Advances in Neural Information

Processing Systems, 1999.

[143] N. Vasconcelos and A. Lippman. Bayesian relevance feedback for

content-based image retrieval. In Proceedings of IEEE Work-

shop on Content-based Access of Image and Video Libraries

(CVPR’00), South Carolina, USA, 2000.

[144] M. Vlachos, C. Meek, Z. Vagena, and D. Gunopulos. Identifying

similarities, periodicities and bursts for online search queries. In

Proceedings of the ACM SIGMOD international conference on

Management of data, pages 131–142, 2004.

[145] K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl. Constrained

k-means clustering with background knowledge. In Proc. 18th

ICML, pages 577–584, 2001.

[146] L. Wang, C. Wang, X. Xie, J. Forman, Y. Lu, W.-Y. Ma, and

Y. Li. Detecting dominant locations from search queries. In 20th

International conference on Machine Learning (ICML), pages

321–328, 2003.

[147] J.-R. Wen, J.-Y. Nie, and H.-J. Zhang. Clustering user queries

of a search engine. In Proceedings of the 10th international con-

ference on World Wide Web, pages 162–168, 2001.

[148] C. K. I. Williams. On a connection between kernel pca and met-

ric multidimensional scaling. Machine Learning, 46(1–3):11–19,

2002.

[149] G. Wu, E. Y. Chang, Y.-K. Chen, and C. Hughes. Incremental

approximate matrix factorization for speeding up support vector

machines. In Proceedings of the eighth ACM SIGKDD interna-

tional conference on Knowledge discovery and data mining, 2006.



BIBLIOGRAPHY 221

[150] G. Wu, N. Panda, and E. Y. Chang. Formulating context-

dependent similarity functions. In ACM International Confer-

ence on Multimedia (MM), pages 725–734, 2005.

[151] G. Wu, Z. Zhang, and E. Y. Chang. Kronecker factorization for

speeding up kernel machines. In SIAM International Conference

on Data Mining (SDM), Newport Beach, 2005.

[152] Y. Wu, Q. Tian, and T. S. Huang. Discriminant-em algorithm

with application to image retrieval. In IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR’00), South Car-

olina, USA, 2000.

[153] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell. Distance met-

ric learning with application to clustering with side-information.

In S. T. S. Becker and K. Obermayer, editors, Advances in Neural

Information Processing Systems 15, pages 505–512, Cambridge,

MA, 2003. MIT Press.

[154] J. Xu and W. B. Croft. Query expansion using local and global

document analysis. In Proceedings of The 19th Annual Interna-

tional ACM SIGIR Conference (SIGIR’96), pages 4–11, 1996.

[155] J. Xu and W. B. Croft. Improving the effectiveness of informa-

tion retrieval with local context analysis. ACM Trans. Inf. Syst.,

18(1):79–112, 2000.

[156] G.-R. Xue, H.-J. Zeng, Z. Chen, Y. Yu, W.-Y. Ma, W. Xi, and

W. Fan. Optimizing web search using web click-through data.

In Proceedings of the thirteenth ACM conference on Information

and knowledge management, pages 118–126, 2004.

[157] Y. Yang. An evaluation of statistical approaches to text catego-

rization. Journal of Information Retrieval, 1(1/2):67–88, 1999.



BIBLIOGRAPHY 222

[158] Y. Yang and J. O. Pedersen. A comparative study on feature

selection in text categorization. In Proceedings 14th Interna-

tional Conference on Machine Learning (ICML), pages 412–420,

Nashville, US, 1997.

[159] H. Yu and J. Yang. A direct lda algorithm for high-dimensional

data with application to face recognition. Pattern Recognition,

34:2067–2070, 2001.

[160] J. Zhang, R. Jin, Y. Yang, and A. Hauptmann. Modified logis-

tic regression: An approximation to svm and its applications in

large-scale text categorization. In Proc. 20th International Con-

ference on Machine Learning (ICML), Washington, DC, USA,

2003.

[161] K. Zhang and J. T. Kwok. Block-quantized kernel matrix for fast

spectral embedding. In Proceedings of International Conference

on Machine learning (ICML’06), 2006.

[162] L. Zhang, F. Lin, and B. Zhang. Support vector machine learning

for image retrieval. In Proceedings International Conference on

Image Processing (ICIP2001), volume 2, pages 721–724, 2001.

[163] T. Zhang and R. K. Ando. Analysis of spectral kernel design

based semi-supervised learning. In NIPS, 2005.

[164] T. Zhang and F. J. Oles. A probability analysis on the value of

unlabeled data for classification problems. In 17th International

Conference on Machine Learning (ICML), 2000.

[165] Q. Zhao, S. C. H. Hoi, T.-Y. Liu, S. S. Bhowmick, M. R. Lyu,

and W.-Y. Ma. Time-dependent semantic similarity measure of

queries using historical click-through data. In Proceedings of the

15th International World Wide Web conference (WWW2006),

Edinburgh, England, UK, May 23–26 2006.



BIBLIOGRAPHY 223

[166] D. Zhou, O. Bousquet, T. Lal, J. Weston, and B. Schlkopf. Learn-

ing with local and global consistency. In NIPS’16, 2005.

[167] X.-D. Zhou, L. Zhang, L. Liu, Q. Zhang, and B.-L. Shi. A rele-

vance feedback method in image retrieval by analyzing feedback

log file. In Proc. International Conference on Machine Learning

and Cybernetics, volume 3, pages 1641–1646, Beijing, 2002.

[168] X. S. Zhou, A. Garg, and T. S. Huang. A discussion of nonlinear

variants of biased discriminants for interactive image retrieval. In

CIVR 2004 (LNCS 3115), pages 353–364, 2004.

[169] X. S. Zhou and T. S. Huang. Small sample learning during mul-

timedia retrieval using biasmap. In Proc. IEEE CVPR, 2001.

[170] J. Zhu. Semi-supervised learning literature survey. Technical

report, Carnegie Mellon University, 2005.

[171] J. Zhu and T. Hastie. Kernel logistic regression and the import

vector machine. In NIPS 14, pages 1081–1088, 2001.

[172] J. Zhu and J. Lafferty. Harmonic mixtures: combining mixture

models and graph-based methods for inductive and scalable semi-

supervised learning. In Proc. 22nd ICML, 2005.

[173] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning

using gaussian fields and harmonic functions. In Proceedings In-

ternational Conference on Machine Learning (ICML2003), 2003.

[174] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learn-

ing using gaussian fields and harmonic functions. In Proc.

ICML’2003, 2003.

[175] X. Zhu, J. Kandola, Z. Ghahramani, and J. Lafferty. Nonpara-

metric transforms of graph kernels for semi-supervised learning.

In NIPS2005, 2005.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




