
Studies of Model Selection and Regularization for
Generalization in Neural Networks with

Applications

GUO, Ping

Supervisor: Professor Michael R. Lyu

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy

in Computer Science and Engineering

cThe Chinese University of Hong Kong

November 2001

The Chinese University of Hong Kong holds the copyright of this thesis. Any person(s)

intending to use a part or the whole of the materials in this thesis in a proposed publication

must seek copyright release from the Dean of the Graduate School.

Acknowledgement

To the many people who have helped me in my life and my research work, I must thank

them. In particular, my heartfelt thanks to:

First I would like to thank my supervisor Professor Michael R. Lyu for giving me

the opportunity to join his research group. He provided technical training, constructive

criticism, guidance, and inspiration. He also taught me to organize my thoughts and

communicate them in a coherent manner. I also thank Professor I. King, for giving me

some useful suggestion and special comments on parts of my research work.

I would like to thank all the members of the research group for being good friends,

thanks them for many useful discussions and lots of fun times.

I would also like to express my deep appreciation to Professor K. S. Leung, the Chair-

man of Department of Computer Science and Engineering, and Professor L. W. Chan, the

head of graduate division at Department of Computer Science and Engineering, for their

help and encouragement during my study toward to finishing this thesis.

Thanks are also due to the staff in the Department of Computer Science and Engineer-

ing for their assistance and advice, and my other friends and colleagues for their help and

understanding while I was completing this thesis.

Finally, I am grateful to my wife for her understanding, encouragement and support

during difficult times. I would like also to thank my parents and my daughter for their

love and lifelong support.

i

Abstract

This thesis investigates the generalization problem in artificial neural networks, attacking

it from two major approaches: regularization and model selection.

On the regularization side, under the framework of Kullback–Leibler divergence for

feedforward neural networks, we develop a new formula for the regularization parameter

in Gaussian density kernel estimation based on available training data sets. Experiments

show that the estimated regularization parameter is valid for most cases. With the derived

formula, all sample data sets can be used to estimate the smoothing parameter, which

is less computationally expensive than using the leave-one-out cross-validation method.

Furthermore, the new covariance matrix estimation formula is suitable for small sample

data with high dimension setting in the regularized Gaussian classifier case.

On the model selection side, both theory and extensive experiments are conducted

for investigating the Bayesian Ying-Yang (BYY) model selection criterion to determine

the cluster number in small sample-size cases. We derive new formula for estimat-

ing the smoothing parameters with proper approximations in the Smoothed Expectation-

Maximum (SEM) technique. Experimental results show that with improved mixture

model parameters, the BYY model selection criterion performance is enhanced.

From the model selection viewpoint, generalization can also be improved by combin-

ing several nets to form ensemble networks. The relationship between Mixture of Experts

(ME) and the ensemble networks is established in this thesis. In an approximation where

ME reduces to ensemble neural nets, the ensemble nets can be globally optimized in-

stead of being individual members. A new method is consequently proposed to average

ii

ensemble networks in the parameter space.

The stacked generalization method provides a way of combining trained networks

altogether. This approach uses partitioning of the data set to find an overall system which

improves generalization performance. In order to investigate this scheme effectively, we

develop a new learning algorithm called Pseudoinverse Learning algorithm (PIL). The

efficiency of the PIL algorithm is demonstrated through several experiments.

Two applications are investigated in detail for model selection. The first application

is in the image processing area. Automatic determination of the region number in im-

age segmentation is a step to high level understanding and interpretation of an image by

machine. A model selection criterion can be applied to determine the region number if

the number of segments to be yielded is equal to the number of clusters in the image

feature space. Experimental results show that with the model selection criterion, we can

determine a reasonable region number for automatic image segmentation withouta priori

knowledge.

Another application is in the software reliability modeling area. We investigate the

use of the mixture model analysis as a tool for early prediction of fault-prone program

modules. The EM algorithm is engaged to build the model. By employing only software

size and complexity metrics, this technique facilitates the development of an unsupervised

model for predicting software quality without the prior knowledge of the number of faults

in the modules. The technique is successful in classifying software into fault-prone and

non fault-prone modules with a relatively low error rate, thus providing a reliable indicator

for software quality prediction.

iii

SSÀÀGG��VVóó����33��;;îî11¼¼OhOh:�:�!!¨̈44pp��ÒÒ

--VV

 �«\wã�º3h�6�YMâÒp$!"â��MâÒp|Þ>
��VY�ª�ö`M�Ü�I|�«\ÚÁ[î>�7YéKº1"

â" 3h�6|ææ�ã1ÐF�ý�ÛØÒM=ÅîÕ�N_

��à|ýÕü��M§�6�M�|ÄÕë�Õc Tikhonov �I="�
I�M�ác�{�ÝYH¦�M|ÄÏcèÉM¯ý�Q*YAä[

�Ý"»,%qD�[ý��ª�ÝY�I�MÜö,�ª�ÝY�áÕ

M¤ïY"

ý Kullback-Leibler ¶D{¤Y��à|â�IY�Û3=ý�ä
ø���àææ}Ï[�Y)�Ã¾8�ÝAä"á�YQ*[ÕÞ�Y

H¦�M�ÝAä|»,QÓ�ýY¦�ýüïM��à�>ýY"vý

�l�YAä|=½ø�Äý��ÝH¦�M|áé©ý.Õy�ö,�

ªÝl�{Vä"

sÛ«a»,ßwã[äM¤ø���àý BYY ö`M��o3úM
ÃY$!"ýÕp>K¦�à|ææãÏ[�Y�ÝH¦�MYAä"»

,%q=ã|vý Bootstrap ë SEM U([�ÝÌÝö`�M|Äº�Y
BYYö`M�k�Yk�\"

%Ýïà3h�6 å�Ý�64Äº��MâÒp"�«\YÏ

[�Ý�6ÜÝ�ÌÝ(ME)Y±�"ýN_��à|H´�JüÒMÜ:

_¤ö±�|ME Õë��Ý3h�6"ýî�¦�à|â�Ý�6�=
�ÿëáâ�â�Ý�6�YÙà�6�=ÿë"â�Ý�6Yß¢H�

ÐM4Äý EM lª�l"9ë|Y¥Ï[Õ�H��MOh[�Ý�6
Y��ª"

ýXÛYM¯ÄèÉÕÐì�6|áÛ_Mâ �¥p[_îp�6%

ÝýÕLY�ª|îïÄ��IàÐFYMâÒp"�[Þ��wãî

�U(|ææQ*[Õ��YM§lª(PIL)"»,%q=ã PIL lªÞØ
Y�\"

¿ª�oVÛGë6Y�´MÃ�ïUØïúß4=Û¸Ü¸ ë

6K�YÕ:"Kææ�oVÛGl�´MÃ��ë6NVOhY3úM

Ã�|Äý¥pö`M�k�[�o�´MÃ"»,%q=ãýüïM�

�à|ýö`M�k�ÄM«ÝÛY�´MÃ|îTýgÞ�,º-�¿

ªÛGë6å�ÄÒ"

TýÌÝö`Ûeâ¾ôå�è�Ï�Yàdö�4�![wã"�

vý´Ë�ÍaÜ±ü{¤|HTýgÞ±�ö���LMÃY�,º-

Y��à|ý EM lª4ÄÏ ö`�å�´Ë¿¤"9ë|Akaike ¶D
k�Äý�M�ö`MÃ|îàö`MÃ�b��àdö���Û3Y3

úMÃ"z��výYU(åt�_´ËXÛåè�Ï�a3è�Ï�Y

ö�|áéXÛYÍâyÃØ#|î;ÏÕ�´Ë¿¤å�YØÄ5YÜ

î"

iv

Contents

1 Introduction 1

1.1 Generalization in Artificial Neural Network 1

1.2 Thesis Overview . 3

2 Regularization: Feedforward Neural Networks Case 8

2.1 Introduction . 8

2.2 System Probability Function . 9

2.3 Tikhonov Regularizer . 12

2.4 Estimation of Regularization Parameter 17

2.5 Experiments . 22

2.6 Discussion . 28

2.7 Summary . 31

3 Classification for Small Sample Set with High Dimension 32

3.1 Introduction . 32

3.2 Classifications . 33

3.2.1 Classification with Finite Gaussian Mixture Model 33

3.2.2 Covariance Matrix Estimation 35

3.3 Smoothing Parameter Selection . 40

3.3.1 Selectingh by Monte Carlo method. 40

3.3.2 Selectingh by Taylor expansion Approximation. 42

3.4 Approximations for Regularization Term 44

3.5 Comparison of KLIM with Other Discriminant Analysis Methods 47

v

CONTENTS

3.5.1 Review of previous work . 47

3.5.2 Comparison of KLIM with RDA and LOOC 49

3.6 Experiment Results . 53

3.6.1 Synthetic data . 53

3.6.2 Raman Spectra Data . 56

3.6.3 Discussions . 57

3.7 Summary . 58

4 Cluster Number Selection in Small Sample Set Case 60

4.1 Introduction . 60

4.2 Cluster Number Selection . 62

4.2.1 Finite Mixture Model . 62

4.2.2 BYY theory for finite mixture model and EM algorithm 62

4.2.3 Model Selection Criterion . 63

4.3 Parameter Estimation with Bootstrap Technique 64

4.3.1 Bootstrap Technique . 65

4.3.2 Parameter Estimation with Bootstrap 65

4.3.3 Summary for Bootstrap Technique 68

4.4 BYY Data Smoothing Theory . 69

4.5 Practical Implementation Consideration 69

4.5.1 Experiments for Data Smoothing 70

4.5.2 Smoothing Parameter Estimation 71

4.5.3 Experiments . 77

4.6 Summary . 80

5 Ensemble Neural Networks 82

5.1 Introduction . 82

5.2 Relationship between ME and Ensemble Neural Networks 83

5.2.1 Review of Mixture of Experts 83

vi

CONTENTS

5.2.2 Ensemble Networks . 85

5.2.3 Experiments for Averaging in the Functional Space 89

5.3 Averaging Connecting Weights . 91

5.3.1 Problems of Weights Average 92

5.3.2 Solutions for Weights Average 93

5.4 Experimental Illustration . 95

5.5 Summary . 98

6 Pseudoinverse Learning Algorithm 99

6.1 Introduction . 99

6.2 The Network Structure and Learning Algorithm 100

6.2.1 The network Structure . 100

6.2.2 Existence of the Solution . 103

6.2.3 Pseudoinverse Solution is the Best Approximation 103

6.2.4 The Pseudoinverse Learning Algorithm 104

6.3 Adding and Deleting Samples . 106

6.4 Numerical Examples . 108

6.4.1 Function Mapping Examples . 108

6.4.2 Generalization . 111

6.5 Stacked Generalization . 113

6.6 Discussions on PIL Features . 119

6.7 Summary . 124

7 Application: Automatic Image Segmentation 125

7.1 Introduction . 125

7.2 Background . 126

7.2.1 Clustering using Finite Mixture Model 127

7.2.2 Model Selection Criterion . 127

7.2.3 Bayesian Probabilistic Classification 127

vii

CONTENTS

7.3 Application to Image Segmentation . 128

7.3.1 Color Space . 131

7.4 Experiments for Color Space Selection 134

7.5 Summary . 136

8 Application: Software Quality Prediction 137

8.1 Introduction . 137

8.2 Modeling Methodology . 139

8.2.1 Finite Gaussian Mixture Model With EM Algorithm 139

8.2.2 Model Selection Criterion . 142

8.2.3 Bayesian Probabilistic Classification 143

8.3 Data Description and Analysis Procedure 144

8.4 Quality Prediction Results and Discussion 152

8.4.1 Misclassification errors . 152

8.4.2 Classification Probability . 153

8.4.3 Advantages of Mixture Model Analysis 155

8.5 Summary . 156

9 Conclusions 157

A Formula of Estimating Smoothing Parameter 160

B Publication List 162

viii

List of Figures

1.1 The thesis overview. 4

2.1 Comparison of regularization in function mapping problem. 23

2.2 Training epoch for the exponential function approximation problem. . . . 24

2.3 The training mean square error (MSE) on the training data set andJ1 on

the validation data set, plotted versus the smooth parameterhx: 24

2.4 Software reliability growth model approximation problem with data set

sys1. 25

2.5 Training epoch for the software reliability growth model data set sys1. . . 25

2.6 The MSE on the training data set andJ1 on the validation data set, plotted

versus thehx for sys1 data set. 26

2.7 The neural network output for software reliability growth model approxi-

mation with data set sys3. 26

3.1 h vs. generated sample numbern0. 41

3.2 TheJ(h) function with some approximation. 54

4.1 The 2-D synthetic data set with three clusters. 66

4.2 Bootstrap experiment for Iris data set . 68

4.3 The synthetic data set, 4 clusters . 71

4.4 The synthetic data set, 6 clusters . 72

4.5 The Iris data set, 3 clusters . 73

4.6 The quantized method for the synthetic data set with 3 clusters. 77

ix

LIST OF FIGURES

4.7 TheJ2 versusk plots for differenth values. 78

4.8 Gradient descent approximation ofh. 79

4.9 The results for the gradient descent approach that estimatesh and the

correspondingJ1(k) curves. 79

4.10 The results for the gradient descent approach that estimatesh and the

correspondingJ2(k) curves. 80

5.1 The scaled test errors vs. network numberK 91

5.2 Weight space with local minima. 94

5.3 The individual networks output and the ensemble network output with

averaged weight parameter. 95

5.4 The output layer weights distribution of 30 networks. 96

5.5 Experiment for exponential function mapping 97

6.1 The trained network output fory = sin(x) function mapping problem. . 108

6.2 The trained network output fory = sin(x)cos(x)+x=3 function mapping

problem. 109

6.3 The trained network output for function defined in Eq. (6.19). 109

6.4 The trained network output for function defined in Eq. (6.19). 110

6.5 The neural network model trained with software reliability Sys1 data set

(normalized). 115

6.6 The stacked generalization output for Sys1 data set (normalized). 116

6.7 The three-layer network trained with software reliability Sys1 data set

(normalized). 117

6.8 The stacked generalization output for Sys1 data set (normalized). 118

6.9 The network output for Sys3 data set (normalized). 120

6.10 The three layer network model trained with software reliability Sys3 data

set(normalized). 121

x

LIST OF FIGURES

6.11 The stacked generalization output for Sys3 data set (normalized). 122

7.1 “House” image. 129

7.2 “Sailboat” image. 131

7.3 Synthetic image with 8 classes . 132

8.1 The relationship of metric TC with other metrics. 147

8.2 Data distribution in vector space . 149

8.3 The log likelihood function as well as AIC vs.k. 150

8.4 The plot for two components of the joint density projected at principal axis.154

xi

List of Tables

2.1 Experimental results for regularization parameter estimation. 30

3.1 Mean classification accuracy for experiment 1 54

3.2 Mean classification accuracy for experiment 2 55

3.3 Mean classification accuracy for experiment 3 56

5.1 The ensemble network weighting parameter�i, �i and individual network

�2i . 89

5.2 The networks Errors . 97

6.1 Generalization ability test results. Given training error is10�7. 111

6.2 Generalization ability comparison of two examples. 111

6.3 Training error and generalization error for software reliability growth model

data set . 119

8.1 The eigenvalues for the MIS data set . 148

8.2 Mean vector component as well as maximum and minimum value for

each metric, and the diagonal values of covariance matrices obtained by

ML with EM algorithm. 151

8.3 The classification for MIS data set by mixture model analysis. 152

8.4 Misclassification rate for randomly drawing 30 samples out of 89 mod-

ules without replacement. The mean and standard deviation are computed

based on 50 times repeated experiments. 153

xii

Chapter 1

Introduction

1.1 Generalization in Artificial Neural Network

In recent years neural network computing has emerged as a practical technology, with suc-

cessful applications in many fields. It is widely acknowledged that successful applications

of neural computing require a systematic approach. The principle of neural learning re-

search has experienced an explosive period and many theoretical issues have been studied

and clarified [1, 2, 3, 4, 5].

In essence, almost all of the neural network applications can be summarized as fol-

lows: Given a set of randomly generated data, and a family of neural networks all sharing

a common “architecture”, construct a neural network from this family, that best approx-

imates the data with high probability [6]. Stated in this form, the problem can be con-

sidered as nonlinear curve-fitting or nonlinear regression. What distinguishes the use of

neural networks for this limited purpose, as opposed to many other standard techniques,

is the widespread belief that “neural networks can generalize”. In other words, it is be-

lieved that, after a neural network has been “trained” on a sufficiently large number of

input-output pairs in a supervised learning manner, it can then correctly predict all future

input-output pairs, even for those inputs that the network has not seen previously. It is

shown thatperfectgeneralization by a neural network is an impossibility. Rather, all that

one can aspire to is that, after a sufficient amount of training, the trained neural network

1

CHAPTER 1. INTRODUCTION

can predict the correct outputwith high probabilityon a randomly selected test input.

Neural Networks, like other flexible nonlinear estimation methods such as kernel

regression and smoothing splines, can suffer from either underfitting or overfitting [7].

Therefore, they exhibit poor generalization performance in these cases. A network that is

not sufficiently complex can fail to detect fully the signal in a complicated data set, lead-

ing to underfitting. On the other hand, a network that is too complex may fit the noise,

not just the signal, leading to overfitting. Overfitting is especially dangerous because it

can easily lead to predictions that are far beyond the range of the training data in many

common types of networks. Overfitting can also produce wild predictions in multilayer

perceptrons even with noise-free data. The degree to which overfitting may happen is

related to the number of training patterns and the number of parameters in the model. In

general, with a fixed number of training patterns overfitting can occur when the model has

too many parameters.

The best way to avoid overfitting is to use lots of training data. While in some real-

world cases, it is impossible to obtain large enough number of training data. Given a

fixed amount of training data, there are two main approaches to avoid underfitting and

overfitting, and hence getting good generalization: model selection and regularization.

Model selection is to select the model which “best explains” the given data from a set

of models; Regularization is the procedure of allowing parameters bias towards what are

considered to be more plausible values, which reduces the variance of the estimates at the

cost of introducing bias. In the article of Gemanet. al [8], a more rigorous approach on

the trade-off between bias and variance is discussed. The statistical bias is the difference

between the average value of an estimator and the correct value. Underfitting produces

excessive bias in the outputs, whereas overfitting produces excessive variance.

In the literature, there exists some research work related to model selection or regu-

larization, for examples, Moody [9] regarding weight decay and Weigend [10] regarding

early stopping. Weight decay [9] and early stopping [10, 11] are the most popular meth-

2

CHAPTER 1. INTRODUCTION

ods of regularization. Combining networks [12] can be categorized as a special case of

model selection, which selects all models to form ensemble networks. To estimate gener-

alization error, Bartlett [13] obtains learning-theory results in which generalization error

is related to theL1 norm of the weights instead of the Vapnik-Chervonenkis (VC) dimen-

sion [14, 15]. But some problems still need to be studied in details, for examples, model

selection criterion performance and regularization parameter estimation. The goal of this

thesis is to investigate the generalization problem in both unsupervised and supervised

learning cases. In addition to exploring the regularization in feedforward neural networks

model and in Gaussian mixture model under the framework of the Kullback-Leibler diver-

gence, this thesis investigate many other topics, including the Beyesian Ying-Yang (BYY)

model selection criterion performance in small number samples case, the generalization

with ensemble networks, and model selection in some practical applications for automatic

image segmentation as well as software reliability engineering.

Figure 1.1 shows the thesis overview. More details are described as the following.

1.2 Thesis Overview

Chapter 2: Under the framework of the Kullback-Leibler divergence, we prove that one

particular case of the system entropy with Gaussian probability density and kernel

density estimation reduces into the first order Tikhonov regularizer when conduct-

ing the maximum likelihood learning for the network parameters for feedforward

neural networks. The regularization parameter is the smooth parameter in kernel

density estimation, which can be estimated by a newly derived formula. The for-

mula is developed for online approximate estimation of the regularization parameter

using training data. Experiments show that the estimated regularization parameter

is the same order as that estimated by the validation method. The similarity and

difference of the obtained results with other’s work are also discussed.

3

CHAPTER 1. INTRODUCTION

Kullback-leibler
Divergence

Small
sample set

High-dimension
Small sample set

Small
sample set

Model selection
criteria (BYY, AIC)

Generalization in
Neural Networks

Model Selection Regularization

Experiments on
performance

Synthetic
Data Set

Image
Processing

Software module
classification

Ensemble
networks

Pseudoinverse
Learning
Algorithm

Synthetic
Data Set Software Reliability

Growth data

Synthetic
Data Set

Gaussian
Mixture Model

Multilayer
Neural Network

Regularization parameter
estimation formula

Covariance Matrix &
regularization parameter
estimation formula

Stacked
generalization

Synthetic
Data SetRaman

Spectra
Data Set

Figure 1.1: The thesis overview.

Chapter 3: For small sample with high dimension setting in Gaussian classification case,

if the dimensiond of variablex is comparable to the number of training samples

nj in classj; the problem becomes poorly-posed. Even worse, if the numbernj of

training samples is less than the dimensionality, the problem becomes ill-posed. In

this case, not all parameters can be properly estimated and classification accuracy

is degraded. To solve these problems, one of the method is regularization. Under

the framework of Kullback–Leibler information measure (divergence), the new co-

variance matrix estimation formula with regularized term is developed. An efficient

smoothing parameter approximation formula is derived too, and the approxima-

tion is found from experiments to be valid for most cases. With Kullback–Leibler

information measure, all samples can be used to estimate the smoothing parame-

4

CHAPTER 1. INTRODUCTION

ter without the need of partitioning data set into training and validation samples,

which is less computation-expensive than using the leave-one-out cross-validation

method.

Chapter 4: In this chapter, we describe the results of investigating the BYY data smooth-

ing theory in the finite Gaussian mixture model case. Both theory and intensive

experimental work are done for investigating BYY model selection for determining

the cluster number in small number samples case. Taylor expansion approximation

is used to approximate the integration in the cost functions. A new formula for

estimating smoothing parameterh is derived under a proper approximation. Ex-

perimental results show that with Bootstrap or Smoothed EM technique estimated

mixture model parameters, the BYY model selection criterion performance is im-

proved.

Chapter 5: Generalization can be improved by combining neural networks as well. The

relationship between the Mixture of Experts (ME) and the ensemble networks is

established in this chapter. As a special case that soft-max function is independent

of input variables, the ME reduces to ensemble neural networks. With this approx-

imation, it is a global optimization of the ensemble networks instead of individual

members. Simultaneously, the weighting average coefficient for the ensemble net-

works can be obtained through the EM-like algorithm. Experiments show that the

ME is more general and powerful model than the ensemble networks in param-

eter estimation with maximum likelihood learning. Besides, by using a learning

methodology to avoid networks falling into the different local minima, we make it

possible to overcome the difficulty of averaging the ensemble networks in the pa-

rameter space. Experimental results show that the adopted strategy is efficient to

improve network performance with finite training samples and the ensemble net-

work architecture is much simpler than that in the functional space.

5

CHAPTER 1. INTRODUCTION

Chapter 6: The method ofstacked generalizationprovides a way of combining trained

networks together, which uses partitioning of the data set to find an overall sys-

tem with improved generalization performance. However, this approach requires to

train a lot of networks for level-1 training samples, which is very computation-time

consuming when using back propagation algorithm to perform the required task.

In order to efficiently investigate the performance of the stacked generalization, we

develop a new learning algorithm called Pseudoinverse Learning Algorithm (PIL)

for feedforward neural networks. The algorithm is based on generalized linear al-

gebraic methods, and it adopts matrix inner products and pseudoinverse operations.

Incorporating with a network architecture of which the number of hidden layer

neurons is equal to the number of examples to be learned, the algorithm eliminates

learning error by adding hidden layers and gives an exact solution (Perfect Learn-

ing). Unlike gradient descent algorithms, the PIL is a feed-forward only, fully auto-

mated algorithm, including no critical user-dependent parameters such as learning

rate or momentum constant. The experimental results show the efficiency of the

PIL algorithm.

Chapter 7: The model selection can be applied to image segmentation applications. Au-

tomatically determining the region number in an image segmentation is a step to

higher level understanding and interpretation of an image by a machine. The BYY

model selection criterion can be applied to determine the region number when we

assume that the number of segments to be yield is equal to the number of clusters in

an image feature space. The influence of the color space selection on region number

determination is experimentally explored. Experimental results indicate that with

the BYY model selection criterion, in most cases we can select the reasonable re-

gion number as long as the proper color space is selected. This approach makes it

possible for automatically segmenting a given image withouta priori knowledge.

6

CHAPTER 1. INTRODUCTION

Chapter 8: The use of the mixture model analysis as a tool for early prediction of fault-

prone program modules is investigated in this chapter. The EM algorithm is en-

gaged to build the model. By employing only software size and complexity met-

rics, this technique can develop a model for predicting software quality without

the prior knowledge of the number of faults in the software modules. In addition,

Akaike Information Criterion (AIC) is employed to select the model number, which

is assumed to be the number of classes the program modules should be classified

into. The technique is successful in classifying software into fault-prone and non

fault-prone modules with a relatively low error rate, providing a reliable indicator

for software quality prediction.

7

Chapter 2

Regularization: Feedforward Neural
Networks Case

2.1 Introduction

It is well known that the goal of training neural networks is not to learn an exact repre-

sentation of the training data itself, but rather to build a statistical model of the process

which generates the data. In practical application of the feedforward neural networks,

if the network is over-fitting to the noise on the training data, especially for the small

number training samples case, it will give poor generalization. To control an appropriate

complexity of the network can improve generalization. There are two main approaches

for this purpose: model selection and regularization. Model selection for a feedforward

neural network requires choosing the number of hidden neurons and thereof connection

weights. The common statistical approach to model selection is to estimate the gener-

alization error for each model and to choose the model minimizing this error [16, 17].

Regularization involves constraining or penalizing the solution of the estimation problem

to improve network generalization ability by smoothing the predictions [18, 19]. Most

common regularization methods include weight decay [20] and addition of artificial noise

to the inputs during training [21, 22].

Regularization method is widely used for smoothing output [23, 24]. A value of the

regularization parameter is determined by using the statistical techniques such as cross-

8

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

validation [25], booststrapping [26], and Bayesian method [27]. Most work uses a vali-

dation set to select the regularization parameter [28, 29, 30, 31]. This requires to split a

given data set into training and validation sets. The optimal selection of the regularization

parameter on the validation set sometimes depends on how to partition the data set. For a

small number data set, we usually use leave-one-out cross-validation method. However, a

recent study shows that cross-validation performance is not always good in the selection

of linear models [32].

In this chapter, under the framework of the Kullback-Leibler divergence, we show

that a particular case of the system entropy with Gaussian probability density and kernel

density estimation for feedforward neural networks reduces into the first order Tikhonov

regularizer. The smoothing parameter in the kernel density function plays the role of the

regularization parameter. Under some approximation, an estimation formula can be de-

rived for estimating the regularization parameter based on training data set. There is a lot

of research work in smoothing parameter estimation of kernel density function; however,

in this chapter we only focus on comparing the obtained result with maximum aposte-

riori (MAP) framework [27]. Experimental results show that the new derived estimation

formula works well in the sparse and small training sample case.

2.2 System Probability Function

When given a data setD = fxi; zigNi=1, we consider that the data can be modelled by a

probability function. At one particular architecture design, we can let the kernel density

of the given data set beph(x; z); and the network function mapping is denoted as a joint

probability functionp(x; z) on the data setD. The relative entropy or Kullback-Leibler

divergence for this particular system denoted byJ(h;�) cost function, where� stands for

a parameter vector, then the quantity of interest is the “distance” of these two probability

densities, which can be measured as follows [33, 34],

9

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

J(h;�) =

ZZ
ph(x; z) ln

ph(x; z)

p(x; z)
dxdz

= �
ZZ

ph(x; z) ln p(zjx)dxdz

+

ZZ
ph(x; z) ln

ph(x; z)

p0(x)
dxdz

= J1(h;�) + J2(h): (2.1)

(For simplicity, unless specified, the lower value is�1, the upper value is1 for those

integrals involve in probability functions in the thesis.)

Where we use the notation and Bayes theorem,

p(x; z) = p(zjx;�)p0(x): (2.2)

p(zjx;�) is a parameter conditional probability andp0(x) is a prior probability function.

J1(h;�) � �
ZZ

ph(x; z) ln p(zjx;�)dxdz (2.3)

is related to network parameter vector�; and smoothing parameterh = fhx; hzg,

J2(h) �
ZZ

ph(x; z) ln ph0(x; z)dxdz;

ph0(x; z) �
ph(x; z)

p0(x)
(2.4)

only related to the smoothing parameterh:

We can assign a prefixed kernel functionK(�) and smoothing parametershx; hz for

nonparametric density estimation [35, 36] ofph(x; z) for a given discrete training data set

D, where the kernel density function [36] is

10

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

phx(x) =
1

N

X
xi2D

Khx(x� xi);

Khx (x� xi) =
1

hdx
K(
x� xi
hx

) (2.5)

NoteN represents the number of samples in the data setD; d is the dimension of a random

variablex, and the joint distributionph(x; z) in this work is designed as

ph(x; z) =
1

N

X
xi;zi2D

Khx(x� xi)Khz (z� zi): (2.6)

The mostly used kernel density function is Gaussian kernel,

Kh(r) = G(r; 0; hId) =
1

(2�h)d=2
expf�jjrjj

2

2h
g: (2.7)

In the kernel density function,Id is ad�d dimensional identity matrix. In this chapter,

we usefdx; dzg to represent the dimension of inputx and outputz vector, respectively.

According to the principle of minimum description length (MDL) [37, 38], the best

model class for a set of observed data is the one whose representative permits the shortest

coding of the data, then the system should be optimized with optimal oridealcodelength.

The parameterhx; hz should be chosen with minimized Kullback–Leibler divergence

function based on the given data set according to,

fhx; hzg = argminhJ(h;�
�); (2.8)

where�� stands for learned parameter andJ(h;�) is represented by Eq. (2.1).

In the following we will discuss the regularization problem with a finite training data

setD.

11

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

2.3 Tikhonov Regularizer

When estimating network parameter by Maximum Likelihood (ML) learning, we mini-

mize the functionJ(h;�) to find the network parameter� with a fixed parameterh. For

a particular design, the conditional probability function can be written in the form

p(zjx;�) = p(zjf(x;�)): (2.9)

wheref(x;�) is a function of input variablex and parameter�.

In the network parameter learning procedure, onlyJ1 is involved becauseJ2 dose not

contain the parameter�.

To evaluate the functionJ1, one of the techniques is the well-knownMonte Carlo

integration [39, 40]. In theMonte Carlo integrationapproximation, when substituting

Eqs. (2.6) and (2.9) into Eq. (2.3), integration can be approximated by summation, and

we obtain

J1(h;�) = � 1

N 0

N 0X
i=1

ln p(z0ijf(x0i;�)); (2.10)

where

x0i = xi + ex; z0i = zi + ez: (2.11)

ex; ez are data points drawn from distributionph(x; z). In this case,J1(h;�) is equivalent

to a negative likelihood function of the system.

In theMonte Carlo integrationapproximation, we need to generate a number of data

set, which is very computation-intensive.

Another method is the Taylor expansion approximation for an integral, which we use

12

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

in this chapter,

J1(h;�) = �
ZZ

ph(x; z) ln p(zjf(x;�))dxdz: (2.12)

When we consider one special case,p(zjf(x;�)) = G(z; g(x;W); �2Idz) is Gaussian

density function,

G(z; g(x;W); �2Idz) =
1

(2��2)dz=2
exp[� 1

2�2
jjz� g(x;W)jj2]

J1(h;�) = �
ZZ

ph(x; z) lnG(z; g(x;W); �2Idz)dxdz

=

ZZ
ph(x; z)[

1

2�2
jjz� g(x;W)jj2]dxdz+ dz

2
ln 2��2: (2.13)

In this case,� = fk; �2;Wg stands for a network parameter set, andg(x;W) is a neural

network mapping function. For example, in three-layer feedforward neural network with

k hidden neurons case,

g(x;W) = S(
X

WzjyS(
X

Wyjxx)) (2.14)

W = fWzjy;Wyjxg is a network weight parameter vector,Wyjx is adx � k matrix which

connects the input spaceRx and the hidden spaceRy, Wzjy is a k � dz matrix which

connects the hidden spaceRy and the output spaceRz. S(�) is a sigmoidal function,

S(x) =
1

1 + e�x
: (2.15)

Eq. (2.13) will result in the traditional sum-square-errors function in maximum likeli-

hood learning case at the limit ofh! 0, when we omit some factors which are irrelevant

to the network weight parameterW .

Based on consideration of that random noise is added to the input data only during

training, Bishop [41] proved that in ML estimation case, Eq. (2.10) can be reduced to the

first order Tikhonov regularizer [42] for feedforward neural network with approximations.

13

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

On the other hand, as we know, the input data points can be modelled as samples drawn

from a delta distribution function�(x � xi). Intuitional speaking, whenh ! 0, kernel

density functionph(x) becomes a� function. If adding random noise to the input data,

the data distribution now can be described empirically by a density distribution function

p�(x) with � controlling the noise level. Moreover,p�(x) can take the similar function

form to kernel density functionph(x). So addition of random noise to the input data is

equivalent to smoothing in kernel density estimation, thus we can also obtain the Tikhonov

regularizer directly from Eq. (2.12).

Let f(x; z;W) = jjz � g(x;W)jj2, f(x; z;W) be a scale function of vector variable

x and z: When we expandf(x; z;W) as a Taylor series in powers of�x = x� xi;

�z = z� zi and denotef 0(xi; z;W) = rxf(xi; z;W). When taking only up to the

second order term, then we obtain

f(x; z;W) � f(xi; zi;W) + (f 0x)
T�x+

1

2
(�x)Tf 00x�x

+(�x)Tf 00x;z�z+ (f 0z)
T�z+

1

2
(�z)Tf 00z�z (2.16)

Eq. (2.13) becomes

J1(h;�) =

ZZ
ph(x; z)[

1

2�2
f(x; z;W)]dxdz+

dz

2
ln 2��2

� 1

2N�2

NX
i=1

ZZ
G(x;xi; hxIdx)G(z; zi; hzIdz)[f(xi; zi;W)

+(f 0x)
T�x+

1

2
(�x)Tf 00x�x+ (f 0z)

T�z+ (�x)Tf 00x;z�z

+
1

2
(�z)Tf 00z�z]dxdz+

dz

2
ln 2��2 (2.17)

Notice that for any density function, the integration in the whole space should be equal

to one, i.e.,

ZZ
G(x;xi; hxIdx)G(z; zi; hzIdz)dxdz = 1 (2.18)

14

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

ZZ
G(x;xi; hxIdx)G(z; zi; hzIdz)f(xi; zi;W)dxdz

= f(xi; zi;W) = jjzi � g(xi;W)jj2 (2.19)

For Gaussian type function integrals1, we can obtain

ZZ
G(x;xi; hxIdx)G(z; zi; hzIdz)[(f

0
x)
T�x+ (f 0z)

T�z]dxdz = 0ZZ
G(x;xi; hxIdx)G(z; zi; hzIdz)[(�x)

Tf 00x;z�z]dxdz = 0 (2.20)

ZZ
G(x;xi; hxIdx)G(z; zi; hzIdz)[

1

2
(�x)Tf 00x�x]dxdz

=
hx

2
trace[f 00x] = hxfjjg0(x;W)jj2 � jj[zi � g(xi;W)]g00(xi;W)jjg (2.21)

ZZ
G(x;xi; hxIdx)G(z; zi; hzIdz)[

1

2
(�z)Tf 00z�z]dxdz

=
hz

2
trace[f 00z] = dzhz (2.22)

With the above results, the integration becomes

J1(h;�) =

ZZ
ph(x; z)[

1

2�2
f(x; z;W)]dxdz+

dz

2
ln 2��2

� 1

2N�2

NX
i=1

fjjzi � g(xi;W)jj2 +

hx[jjg0(x;W)jj2� jj(zi � g(xi;W))g00(xi;W)jj]g

+hz
dz

2�2
+
dz

2
ln 2��2 (2.23)

Because the termhzdz=2�2 in the above equation is not implicitly related to the net-

work weight parameterW , we can omit this term in weight parameter learning. This also

1For mathematical method of Gaussian integrals, the reader is referred to Appendix B in Bishop’s
book[21].

15

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

illustrates that smoothing on output cannot improve network generalization, thus we can

let hz ! 0 without loss of generality. The last term in the above equation is irrelevant to

the weight parameter, and can be neglected too [21]. Now the equation becomes

J1(h;�) � 1

2N�2

NX
i=1

fjjzi � g(xi;W)jj2 +

hx[jjg0(x;W)jj2� jj(zi � g(xi;W))g00(xi;W)jj]g (2.24)

Rewrite the equation in the form

J1 � Js + hxJr (2.25)

where

Js =
1

2N�2

NX
i=1

jjzi � g(xi;W)jj2

Jr =
1

2N�2

NX
i=1

[jjg0(xi;W)jj2 � jj(zi � g(xi;W))g00(xi;W)jj]] (2.26)

In the above equation,Js represents the traditional sum-square-error function, while

Jr stands for a regularization term.

In Eq. (2.26), the second derivative term is the Hessian term. Reed [43] described it

as an approximate measure of the difference between the average surrounding values and

the precise value of the filed at a point, and assumed to be zero. While Bishop [41, 44]

considered that when minimizing the cost function, the second term inJr involving the

second derivatives of the network functiong(x;W) vanishes toO(hx). For sufficiently

small values of the smooth parameterhx, this leads to

J1 � Js + hxJr (2.27)

=
1

2N�2

NX
i=1

fjjzi � g(xi;W)jj2 + hxjjg0(xi;W)jj2g

16

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

From the above we can easily see that under some approximation discussed above,

one special caseJ(h;�) function is reduced to the first order Tikhonov regularizer in the

sense of maximum likelihood learning.

Furthermore, from the above results it is easy to see that the parameterhx controls

the degree of smoothness of the network mapping, just the same as the problem of con-

trolling the degree of smoothing in nonparametric estimation. The optimum value ofhx

is problem-dependent. Using the traditional sum-square-error function can not select this

parameter completely with a given data set; it needs to use separated training and valida-

tion data sets, and to be optimized by the cross-validation method or another validation

data set.

In the next section we develop a formula to estimate this regularization coefficient

based on the training data set.

2.4 Estimation of Regularization Parameter

Whenh 6= 0; according to the principle of MDL, the regularization coefficienth can be

estimated according to Eq. (2.8) with the minimizedKL distance.

In implementation, we can give a fixedhx value, run optimizing algorithm such as

Back-Propagation to obtain a series of network parameter��; then give anotherhx value,

so on and so forth. We chooseh�x such that its corresponding value ofJ(h�x;�
�) is the

smallest. This is an exhaustive search method, which is computation expensive, but it

can give an exact solution for regularization parameter. From practical implementation

consideration, in the following we will derive the formula which is approximately the es-

timation regularization parameter based on training data in the network parameter learning

processing.

For some problems, e.g. function mapping, in special cases we can assume thatp0(x)

is a uniformly distributed function and regard it ash independent. With this assumption,

from Eq. (2.1) with respect to@
@hx

J(h;�) = 0; we can obtain the formula for estimating

17

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

regularization parameter.

To find the minimization of Eq. (2.1) corresponding tohx, we conduct the following

derivation. ConsideringJ1(h;�) approximation (Eq. (2.27)), from Eq. (2.1) we obtain,

@

@hx
J(h;�) =

@

@hx
J1(h;�) +

@

@hx
J2(h)

� Jr +
@

@hx
J2(h): (2.28)

From Eq. (2.4), whenJ2(h) is a continuous and differentiable function, the last term

of the above equation becomes

@

@hx
J2(h) =

ZZ
@ph(x; z)

@hx
[1 + ln ph(x; z)]dxdz (2.29)

While it can be proved that

ZZ
@ph(x; z)

@hx
dxdz = 0; (2.30)

Proof. Because the joint kernel densityph(x; z) in this work is designed as Gaussian
kernel function,

ph(x; z) =
1

N

NX
i=1

G(x;xi; hxIdx)G(z; zi; hzIdz): (2.31)

We can compute the partial derivative ofph(x; z);

@

@hx
ph(x; z) = �

dx

2hx
ph(x; z) +

1

2Nh2x
[

NX
i

G(x;xi; hxIdx)G(z; zi; hzIdz)jjx� xijj2]

(2.32)

ZZ
@ph(x; z)

@hx
dxdz = � dx

2hx

ZZ
ph(x; z)dxdz (2.33)

+
1

2Nh2x

ZZ NX
i

G(x;xi; hxIdx)G(z; zi; hzIdz)jjx� xijj2dxdz

18

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

The first term in the above equation is

� dx

2hx

ZZ
ph(x; z)dxdz = � dx

2Nhx

NX
i

ZZ
G(x;xi; hxIdx)G(z; zi; hzIdz)dxdz

= � dx

2hx
: (2.34)

As the second term is also Gaussian type integration, it can be evaluated to

1

2Nh2x

ZZ NX
i

G(x;xi; hxIdx)G(z; zi; hzIdz)jjx� xijj2dxdz

=
dx

2hx
: (2.35)

Then we have ZZ
@ph(x; z)

@hx
dxdz = � dx

2hx
+

dx

2hx
= 0: (2.36)

With the above results, Eq. (2.29) reduces to

@

@hx
J2(h) =

ZZ
@ph(x; z)

@hx
ln ph(x; z)dxdz (2.37)

That is,

@

@hx
J2(h) = � dx

2hx

ZZ
ph(x; z) ln ph(x; z)dxdz

+
1

2Nh2x

NX
i

ZZ
G(x;xi; hxIdx) (2.38)

�G(z; zi; hzIdz)jjx� xijj2 ln ph(x; z)dxdz

For parameter optimization, the gradient descent rule becomes [45]

�hx = �
@J(h;�)

@hx
: (2.39)

When minimizingJ(h;�) with respect tohx , the following equation can be obtained

19

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

�hx = �Jr +
dx

2hx
Ea(h); (2.40)

or let�hx = 0; we get

hx =
dxEa(h)

2Jr
(2.41)

where

Ea(h) =

ZZ
ph(x; z) ln ph(x; z)dxdz

� 1

Ndxhx
[

NX
i

ZZ
G(x;xi; hxIdx)G(z; zi; hzIdz)

� jjx� xijj2 ln ph(x; z)dxdz: (2.42)

This is a formula for estimating regularization parameter based on training data. It can

be used to optimizehx iteratively. The integration in the above equation can be evaluated

by Monte Carlo integration.

In practical implementation, especially for the small training data set case, we can use

sparse data approximation in Eq. (2.42). That is, if datai is not correlated with dataj for

sparse data distribution, we can consider integration atx aroundxi; z aroundzi only, and

ignore other data. With this approximation, now let us evaluate the integration inEa(h),

in which

ZZ
ph(x; z) ln ph(x; z)dxdz (2.43)

=
1

N

NX
i=1

f
ZZ

G(x;xi; hxIdx)G(z; zi; hzIdz)

� ln

NX
j=1

G(x;xj; hxIdx)G(z; zj; hzIdz)dxdzg � lnN

20

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

Applying sparse data approximation (SDA) and considering smallh, we obtain,

G(x;xi; hxIdx)G(z; zi; hzIdz) ln

NX
j=1

G(x;xj ; hxIdx)G(z; zj ; hzIdz)

� G(x;xi; hxIdx)G(z; zi; hzIdz)flnG(x;xi; hxIdx)G(z; zi; hzIdz)g (2.44)

= G(x;xi; hxIdx)G(z; zi; hzIdz)f�
jjx� xijj2

2hx
� jjz� zijj

2

2hz

�dx
2

ln(2�hx)�
dz

2
ln(2�hz)g

The integration is reduced toZZ
ph(x; z) ln ph(x; z)dxdz

� �dx
2
[1 + ln(2�hx)]�

dz

2
[1 + ln(2�hz)]� lnN (2.45)

1

Ndxhx
[

NX
i

ZZ
G(x;xi; hxIdx)G(z; zi; hzIdz)jjx� xijj2 ln ph(x; z)]dxdz

� 1

Ndxhx

NX
i

ZZ
G(x;xi; hxIdx)G(z; zi; hzIdz)jjx� xijj2

�[�jjx� xijj
2

2hx
� jjz� zijj

2

2hz
� dx

2
ln(2�hx)�

dz

2
ln(2�hz)]dxdz� lnN

= �dx � dx(dx � 1)2 � dx

2
[1 + ln(2�hx)]�

dz

2
[1 + ln(2�hz)]� lnN (2.46)

Then

Ea(h) =

ZZ
ph(x; z) ln ph(x; z)dxdz�

1

Ndxhx

NX
i

ZZ
G(x;xi; hxIdx)G(z; zi; hzIdz)

�jjx� xijj2 ln ph(x; z)dxdz

� �dx
2
[1 + ln(2�hx)]�

dz

2
[1 + ln(2�hz)]� lnN

�[�dx � dx(dx � 1)2 � dx

2
[1 + ln(2�hx)]�

dz

2
[1 + ln(2�hz)]� lnN]

= dx[1 + (dx � 1)2] (2.47)

Notice that in maximum likelihood estimation,

�2 =
1

N

NX
i=1

jjzi � g(xi;W)jj2 (2.48)

21

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

From the above discussion, with Eqs. (2.26), (2.47) and (2.48), in sparse data approx-

imation case, from Eq. (2.41) we can obtain the following equation for rough estimation

of hx:

hx � d2x[1 + (dx � 1)2]

PN

i=1 jjzi � g(xi;W)jj2PN

i=1 jjg0(xi;W)jj2
(2.49)

This is an approximate estimation ofhx by using the sum-square-error and penalty

term, which is quite different with the equation obtained in paper [46]. In implementa-

tion, we need to findhx and weightW by some adaptive learning algorithm. For example,

we can first make an initial guess for a small non-zero value ofhx; and use this value to

evaluateW; then periodically re-estimate the value ofhx by Eq. (2.49) in training pro-

cessing. The advantage of this result is that only applying training data can be sufficient

in estimating regularization coefficients, andhx can be optimized on-line with minimized

generalization error.

2.5 Experiments

Several experiments have been done with dynamically adjusting regularization parameter

hx: Some results are drawn in Figures 2.1–2.7. The results show that the optimal regular-

ization parameterhx can be found by seeking the minimum ofJ(h;�) by training data set

only. We also apply the minimal generalization error method to validate the experiment

results, and the same order ofhx has been obtained (see Figure 2.3). This confirms that

the new parameter estimation formula is a good approximation. Unlike early stopping

strategy, this new regularization parameter formula can work for overtraining network

and does not need a validation set to guard when the training should stop.

The function mapping problem was considered in the experiments, and the sine and

exponential functions were applied. In order to represent sufficient network complexity,

we use 15 hidden neurons in three-layer network. Only 30 training samples were gener-

ated with Gaussian noise added to their output. With this kind of network architecture, if

22

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

(a) Without regularization

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

(b) With regularization

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

(c) Without regularization

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

(d) With regularization

Figure 2.1: Comparison of regularization in function mapping problem.

Dots are training samples, while solid line is the network output. (a, b) are
for the sine function approximation problem. After the training is stopped,
dynamically-estimatedhx = 2:87�10�4: (c, d) are for the exponential func-
tion approximation problem. After the training is stopped, dynamically-
estimatedhx = 1:27� 10�4.

23

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

0 2000 4000 6000 8000 10000

0.005

0.01

0.015

0.02

0.025

0.03

(a) Without regularization

0 2000 4000 6000 8000 10000

0.005

0.01

0.015

0.02

0.025

0.03

(b) With regularization

Figure 2.2: Training epoch for the exponential function approximation problem.

Upper line represents validation error, while lower line depicts training er-
ror. Without regularization, training error is small while validation error is
large. With regularization, validation error is reduced and training error is
increased a little, illustrating that over-fitting does not occur.

-10 -8 -6 -4 -2 0
log10hx

-3

-2.5

-2

-1.5

-1

E

MSE

J1

Figure 2.3: The training mean square error (MSE) on the training data set andJ1 on the
validation data set, plotted versus the smooth parameterhx:

The network was trained by 30 samples which are drawn from the exponen-
tial function. We use a validation data set with 30 data points to calculate
J1 value again after the training is stopped. For eachhx value, the network
was trained until the total errorJ1 (Eq. 2.27) was minimized, measured by
successive error difference being less than10�8 and over104 epoch being
passed. The minimalJ1 indicates an optimallog10 hx � �4: Dynamically-
estimatedhx value is 1.27�10�4 in this case.

24

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

(a) Without regularization

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

(b) With regularization

Figure 2.4: Software reliability growth model approximation problem with data set sys1.

Dots are training samples, while solid line is the network output. After the
training is stopped, dynamically-estimatedhx = 1:17 � 10�8: Because the
noise is very small, the difference with and without regularization is not
obvious.

0 2000 4000 6000 8000 10000

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

(a) Without regularization

0 2000 4000 6000 8000 10000

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

(b) With regularization

Figure 2.5: Training epoch for the software reliability growth model data set sys1.

Upper line represents validation error, while lower line depicts training er-
ror. Without regularization, training error is small while validation error is
a bit large. With regularization, validation error is reduced.

25

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

-14 -12 -10 -8 -6 -4 -2 0
log 10 hx

-10

-9

-8

-7

-6

-5

-4

-3

E

MSE

J1

Figure 2.6: The MSE on the training data set andJ1 on the validation data set, plotted
versus thehx for sys1 data set.

The network was trained by 37 samples which are drawn from the sys1 data
set. Use a validation data set with 17 data points to calculateJ1 value again
after the training is stopped. For eachhx value, the network was trained
until the total errorJ1 was minimized, measured by over104 epoch being
passed. The minimalJ1 indicates an optimal value aroundlog10 hx � �9:
Dynamically-estimatedhx value is 1.17�10�8 in this case.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 2.7: The neural network output for software reliability growth model approxima-
tion with data set sys3.

Dots are training samples, while solid line is the network output. For soft-
ware reliability growth model data set sys3. Regularization does not make
a significant difference.

26

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

without regularization, the phenomenon of over-fitting to noise can be observed as shown

in Figure 2.1. In Figures 2.1 and 2.2, it is shown that with regularization, the network out-

put is smoothed and generalization performance is improved. Figure 2.3 show the result

of validation method estimation for regularization parameter.

Real-world data sets are used in the experiments too. The data sets are software failure

data sys1 and sys3, which are contained in the attached Compact Disk of theHandbook

of software Reliability Engineering[47]. The sys1 data set contains 54 data points. In

order to validate the parameter estimation results, we partition the sys1 data into two

parts: a training set and a validation set. The training set consists of 37 samples which

are randomly drawn from the original data set. The remaining 17 samples comprise the

validation set. The data sets are normalized to the range of values [0,1]. Normalization

is a standard procedure for data preprocessing. In the software reliability investigation

problem, the network input is the successive normalized failure occurrence times, and

the network output is the accumulated failure number. During the training phase, each

input samplext at timet is associated with the corresponding output valuezt at the same

time t. The experimental results are shown in Figures 2.4–2.6. From Figure 2.5, it can

be observed that with regularization, the validation error is less than that without regular-

ization. Figure 2.6 shows that the minimalJ1 value indicateshx in the range of10�8 to

10�10, while dynamically-estimatedhx value is 1.17�10�8.

Another data set is sys3, which contains 278 data points. In the experiment, the num-

ber of training data is about2=3 of the total data number. That is, it consists of 186

randomly-drawn samples from the original data set. The remaining 92 samples form the

test set. Because this data set is a bit large and the noise is small, it makes no obvious dif-

ference in the obtained results with respect to regularization. The trained network output

is shown in Figure 2.7.

27

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

2.6 Discussion

In fact, the equation with regularization resulting fromKL distance for feedforward

networks is not completely equivalent to Tikhonov regularizer. Moreover, the starting

point of deriving the regularization parameter estimation equation is different from the

Mackey’s Bayesian evidence or the MAP for hyper-parameters[27, 48]. For example,

Mackey assumes theprior distribution of weight is Gaussian with hyper-parameter as

the regularization parameter, and the penalty term is in the weight decay form. While

we use nonparametric kernel density distribution, a particular approximation is equiva-

lent to Tikhonov regularizer. The penalty term is the first derivation of sum-square-errors

of a network mapping function. This form reduced to weight decay when the mapping

function is in a generalized linear network,gj(x;W) =
Pdx

l wj;lxl. Therefore,

NX
i=1

jjg0(xi;W)jj2 = N

MX
j=1

w2
j (2.50)

whereM represents the number of network weight parameters andwj is an element of

the matrixW in a vector expression.

With the generalized linear network assumption, Eq. (2.49) becomes

hx � d2x[1 + (dx � 1)2]

PN

i=1 jjzi � g(xi;W)jj2

N
PM

j=1 w
2
j

(2.51)

Now let us see the similarity of MAP approximation with our result in estimating the

regularization parameter.

The cost function in Mackey’s Bayesian inference is [27, 48],

S(w) =
�

2

NX
i=1

jjzi � g(xi;W)jj2 + �

2

MX
j=1

w2
j (2.52)

In minimizing this cost function to find network weight parameterW; the effective

value of the regularization parameter depends only on the ratio�=�; since an overall

28

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

multiplicative factor is unimportant. This meanshx should be equivalent to�=� under

some approximation.

In Mackey’s results[27, 48], a very rough approximation condition is = M and

N �M:

 �
MX
j=1

�j

�j + �
(2.53)

wheref�jg denote the eigenvalues ofH; the Hessian of unregularized cost function,

H = �r2
wED; ED =

1

2

NX
i=1

jjzi � g(xi; w)jj2 (2.54)

The matrixA is related to parameter� in the following form,

A = H+ �I: (2.55)

In order to compare with Mackey’s formula, we rewrite the parameter� and� from

[27, 48] in the following:

� = N=2ED = N=

NX
i=1

fzi � g(xi; w)g2 (2.56)

� = M=2EW =
MPM
j=1w

2
j

(2.57)

Consequently,

�

�
= M

PN
i=1fzi � g(xi; w)g2

N
PM

j=1 w
2
j

(2.58)

Here we can clearly note the similarity betweenhx in Eq. (2.51)) and�=� in Eq.

(2.58)), where their difference is only at the constant coefficient. Inhx estimation, the

constant coefficient is dependent on the dimension of input space, while in�=� estima-

tion, the constant coefficient is the dimension of weight parameter vector. This explains

that the Mackey’s result is obtained in parameter space approximation, while our result

29

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

Table 2.1: Experimental results for regularization parameter estimation.

No Reg: No regularization; TE: Test Error; SDA: Sparse Data Approxima-
tion; MAP: Maximum APosterioriapproximation;��: Unstable value.

N(M) TE(No Reg.) hx (SDA) TE (SDA) hx (MAP) TE(MAP)

sin(x) 30
k = 8 (24) 0.00842 4:185 � 10�6 0.00422 1:464 � 10�4 0.0043
k = 15 (45) 0.00695 2:87 � 10�4 0.00418 �� 0.097

Exp. 30
k = 8 (24) 0.0059 1:677 � 10�6 0.0053 9:705 � 10�5 0.0051
k = 15 (45) 0.013 1:27 � 10�4 0.0051 �� 0.102

Sys1 37
k = 9 (27) 0.0003284 6:86 � 10�9 0.000318 3:69 � 10�5 0.000984
k = 15 (45) 0.0000854 1.17�10�8 0.000267 1:36 � 10�4 0.001337
k = 20 (60) 0.000311 4.29�10�9 0.000258 1:12 � 10�2 0.00636

Sys3 186
k = 15 (45) 0.0001535 3:892 � 10�10 0.000104 1.118�10�4 0.00032
k = 30 (90) 7:55� 10�5 9.605�10�9 0:0002227 3:612 � 10�4 0:0003384
k = 60 (180) 0.0001025 5.696�10�10 0.0000675 2:83 � 10�4 0.000347

is in data space approximation. Compared to the approximation condition, our approxi-

mation is based on the sparse data set, which is a reasonable approximation for the small

number training data set case. While in Mackey’s approximation, it requiresN � M:

In our function mapping experiments, we design thatN = 30; dx = dz = 1; the hidden

neuron number isk = 15; M = (dx + 1) � k + k � dz = 45: Because the experimen-

tal condition does not satisfy Mackey’s very rough approximation conditionN � M; it

cannot be successful in estimating regularization parameter on-line with Eq. (2.58). In

fact, the conditionN � M means that training sample number should be large enough

compared to network complexity. If we have enough training samples, the generalization

is also improved without regularization [21]. The experiment for data set sys3 confirms

this observation.

Table 2.1 shows the experimental results for the comparison of regularization param-

eter estimation formula performance. It is seen that whenN > M or N � M , MAP

30

CHAPTER 2. REGULARIZATION: FEEDFORWARD NEURAL NETWORKS CASE

approximation based regularization parameter estimation formula performance is good,

sometimes is better than SDA based. However, when we use lots of hidden neurons, for

the caseN < M , MAP approximation based formula performance becomes poor.

As we know, there is no free lunch for the optimization problem. To get the best

regularization parameter value, the parameter numerical evaluation involves computa-

tion of Hessian matrix and log determinant ofA�1; as well as eigenvalues of Hessian

in Mackey’s Bayesian inference. While in our approximation, it involves integration in

data space. To save computational cost and on-line optimizing regularization parameter,

a rough approximation is needed, but in this case the parameter value may not be the best

one, and generalization error may not be the smallest with approximations.

2.7 Summary

In this chapter, we show that one particular case of the system entropy with Gaussian

probability density reduces into the first order Tikhonov regularizer for feedforward neu-

ral networks in the maximum likelihood learning case, where the regularization param-

eter is the smoothing parameterhx in the kernel density function. Under the framework

of Kullback-Leibler divergence, we derive the formula for approximately estimating reg-

ularization parameter using training data only, without need to use validation data set.

Experiments show that our estimated regularization parameter is in the same order as that

estimated by the validation method. However, our method requires much less compu-

tation resource than the validation search method. The similarity and difference of the

obtained results with others’ work also discussed in this chapter.

31

Chapter 3

Classification for Small Sample Set with
High Dimension

3.1 Introduction

The goal of the classification is to assign each sample in a given data set to a class ac-

cording to some criterion of class membership. Classification has two aspects: super-

vised classification (discrimination) and unsupervised classification (clustering). In re-

cent years, several classification algorithms have been developed to partition a data set

into pre-defined classes. When the data are viewed as arising from two or more clus-

ters mixed in varying proportions, we can use the finite Gaussian mixture distribution to

analyze the data set. The Gaussian mixture distribution analysis method has been used

widely in a variety of important practical situations, where the likelihood approach to the

fitting of Gaussian mixture models has been utilized extensively [49, 50, 51, 52].

When classifying data with the Gaussian mixture model, the mean vector and covari-

ance matrix of each component are not known in advance, and they have to be estimated

from the given data set. While a large-size data set is desirable for estimating the pa-

rameters more accurately, in some real world situation, only a small-size data set can be

obtained because of some restriction, e.g, high cost in collection such data set. For a rela-

tively small-number sample data set, if the dimensiond of variablex is comparable to the

number of training samplesnj in classj; the problem may become poorly-posed. Worse,

32

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

if the numbernj of training samples is less than the dimensionality, the problem becomes

ill-posed. In this case, not all parameters can be properly estimated and classification

accuracy is degraded.

There are two possible solutions to solve this kind of problem: one is dimensionality

reduction, and the other is regularization [53]. Regularization is the procedure of allowing

parameters bias towards what are thought to be more plausible values, which reduces the

variance of the estimates at the cost of introducing bias. The regularization techniques

have been highly successful in classifying small number data with some heuristic approx-

imations [53, 54, 55]. However, heuristic methods, for example RDA [54], require to

select regularization parameters (or called Model) with some statistical techniques such

as leave-one-out cross-validation, which is computation-expensive. Furthermore, a recent

study shows that cross-validation performance is not always good in the selection of linear

models [32]. Therefore, it is worthy to develop new techniques to deal with this problem.

Kullback-Leibler information measure [33, 34] can be considered as “distance” be-

tween two probability density models. This measure is also calledKullback-Leibler di-

vergence. In this chapter, based on the mixture model analysis with the Kullback-Leibler

information measure [56], we present the results of investigating covariance matrix es-

timation and regularization parameter selection in the Gaussian classifier for the small-

sample set with high-dimension classification problem.

3.2 Classifications

3.2.1 Classification with Finite Gaussian Mixture Model

In supervised classification we have a set of data samples, each consisting of measure-

ments on a set of variables, with associated labels, the class types. These are used as

exemplars in the classifier design. In unsupervised classification we need to estimate

prior probability andposteriorprobability in the classifier design. If these probabilities

are known, it becomes supervised classification. So unsupervised classification is more

33

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

general than supervised classification in the mixture analysis case. Let us consider the

general case first.

The data pointsD = fxigNi=1 to be classified are assumed to be modelled by a mixture

of k Gaussian densities with joint probability density of which the mathematical expres-

sions are as the followings equations.

p(x;�) =

kX
j=1

�jG(x;mj;�j);

with �j � 0; and
kX

j=1

�j = 1 (3.1)

where

G(x;mj;�j) =
exp[�1

2
(x�mj)

T��1
j (x�mj)]

(2�)d=2j�jj
1

2

(3.2)

is a general multivariate Gaussian density function,x denotes a random vector,d is the

dimension of thex; and parameter� = f�j;mj;�jgkj=1 is a set of finite mixture model

parameter vectors. Here�j is theprior probability,mj is the mean vector, and�j is the

covariance matrix of thej-th component. Based on the given data set, these parameters

can be estimated by the maximum likelihood (ML) method with Expectation-Maximum

(EM) algorithm [57, 58].

In Gaussian mixture model case the Bayesian decision rule is used to classify the

vectorx into classj with the largestposterior probability. Theposterior probability

P (jjx) represent the probability that samplex belongs to classj. Now we use Bayesian

decisionj� = argmaxj P (jjx) to classifyx into classj�: The probabilityP (jjx) is

usually unknown and have to be estimated from the training samples. With maximum

likelihood estimation, theposteriorprobability can be written in the form

P (jjx) =
�jG(x;mj;�j)

p(x;�)
;

with j = 1; 2; � � � ; k; (3.3)

34

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

Taking the logarithm to above equation and omitting the common factors of the classes,

the classification rule becomes,

j� = arg min
j

dj(x); j = 1; 2; � � � ; k (3.4)

with

dj(x) = (x�mj)
T��1

j (x�mj) + ln j�j j � 2 ln�j (3.5)

This equation is often called the discriminant score forj-th class in the literature[53].

Furthermore, if theprior probability�j is the same for all classes, it becomes discriminant

function when omitting the term2 ln�j.

3.2.2 Covariance Matrix Estimation

When the sample numberN is small, the sample-base estimated class-specific covariance

matrix becomes inaccurate, and hence results in lowered classification accuracy. To solve

this problem, there are several techniques are proposed. In this chapter, we address this

problem by using Kullback-Leibler divergence.

We consider that the given data can be modelled by a finite Gaussian mixture model,

from the other side, the data set can be considered as samples drawn from a nonparametric

density distributionph(x) [35]. The same data set is described by two different function

with some parameters. To make the two models consistency, we should estimate the

parameters in the model based on given data. The “distance” of these two probability

densities should be minimized in principle, then this quality usually is measured with the

following Kullback-Leibler divergence[33, 34],

KL(h; k;�) =

Z
ph(x) ln

ph(x)

p(x;�)
dx (3.6)

35

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

The aboveKL function, also called the system cost function, can be rewritten in the

form,

KL(h; k;�) = �
Z

ph(x) lnp(x;�)dx+

Z
ph(x) ln ph(x)dx (3.7)

where

ph(x) =
1

N

NX
i=1

G(x;xi;Bh) =
1

N(2�)d=2jBhj
1

2

NX
i=1

exp[�1

2

dX
j=1

(x;j � xi;j)
2

hj
] (3.8)

is assigned as Gaussian kernel density for given training samplesD

Herexi;j represents thej-th component of the data pointi;Bh is a (d�d) dimensional

diagonal matrix with general form,

Bh =

0
BBBB@

h1 0 0

0
... 0

0 0 hd

1
CCCCA (3.9)

hi; i = 1; 2; :::; d are smoothing parameters in nonparametric kernel density. In the

following we denote the seth = fhigdi=1.

The ordinary EM algorithm[57, 58] can be re-derived based on the minimization of

the Kullback-Leibler divergence function (3.6) in the limith ! 0, which we describe as

the following [59],

E-step:

Calculate theposteriorprobabilityP (jjxi) according to Eq. (3.3).

M-step:

�newj =
1

N

NX
i=1

�oldj G(xi;mj;�j)Pk

j=1 �
old
j G(xi;mj;�j)

=
1

N

NX
i=1

P (jjxi) (3.10)

36

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

mj =

PN

i=1 P (jjxi)xiPN

i=1 P (jjxi)
=

1

nj

XN

i=1
P (jjxi)xi (3.11)

b�j =
1

nj

XN

i=1
P (jjxi)(xi �mj)(xi �mj)

T : (3.12)

Herenj = �jN is an effective class sample number. The two steps are iterated until

convergence to one of the local minima in the parameter space.

Unlike the supervised learning, the ML with EM algorithm can be used for total, un-

labelled training data set. For small number samples, the ML estimated covariance matrix

b�j becomes singular whennj < d; leading to unstable classification rate. To deal with

this difficulty, one approach is regularization. In the following we address this problem

based on Kullback-Leibler divergence withh 6= 0.

In an nonparametric kernel density function, the smoothing parameterh in Gaussian

kernel density plays an important role in estimating mixture model parameters. The most

concerned problem is covariance matrix estimation in classification, the mixture weight

�j and class meanmj can be estimated with summation under theh = 0 approximation

as in Eq. (3.12). Then we focus on covariance matrix estimation problem in the following.

When minimizing cost function (3.6), that is, setting@
@�j

KL(h; k;�) = 0; the following

covariance matrix estimation formula can be obtained,

�j =

R
ph(x)P (jjx)(x�mj)(x�mj)

TdxR
ph(x)P (jjx)dx : (3.13)

With above equation the parameters still need to be iterative estimating. There are

several ways to evaluate this probability-type integration in each iterative estimating step.

One of the techniques is the well knownMonte Carlo integration[39, 40], which is

calledStochastic Approximationin paper [46]. InMonte Carlo integrationapproximation,

we generaten0 number of samples with Gaussian distribution around the data samplexi;

x0i = xi + ex; (3.14)

37

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

whereex is the Gaussian noise drawn from the distributionG(ex; 0;Bh). With this ap-

proximation, the covariance matrix can be estimated according to

�j =

PN 0

i=1 P (jjx0i)(x0i �mj)(x
0
i �mj)

TPN 0

i=1 P (jjx0i)
(3.15)

now total number of samples becomesN 0 = (n0 + 1)N:

Another method to evaluate the integration is to use Taylor expansion approximation,

which is used in this chapter. Because theph(x) term is contained in the integration of Eq.

(3.13), whenx far awayxi; the function value becomes very small when every component

of h is small. In this case we can use Taylor expansion forP (jjx) atx = xi and take up

to second order approximation.

P (jjx) � P (jjxi) + (x� xi)TrxP (jjxi) +
1

2
(x� xi)THi(j)(x� xi) (3.16)

The integration of Eq. (3.13) now can be evaluated, leading to the following covari-

ance matrix estimation formulae.

�
(2)

j (h) = (1 +
1

2
Trace[BhH(j)])Bh +

�e

(1 + �)
+

b�Q

(1 + �)
(3.17)

whereH(j) = 1

nj

PN

i=1Hi(j); Hi(j) is the Hessian matrix,Hi(j) = r2
xP (jjxi). Be-

cause this estimation is derived under the framework of Kullback-Leibler information

measure, it is called as KLIM2 in our work.

If we only consider the first order approximation, the estimate becomes

�
(1)

j (h) = Bh + b�j (3.18)

This estimation is called as KLIM1 in this work.

The following notations are used in above equations,

� =
1

2nj
S(h; j); nj = �jN;

S(h; j) =

NX
i=1

Trace[BhHi(j)];

�e = BhHeBh (3.19)

38

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

He is a diagonal matrix in which the diagonal elements are the eigenvalues ofH(j);

andb�j is represented by Eq. (3.12),

b�Q =
1

nj

NX
i=1

[P (jjxi) +
1

2
Trace(BhHi(j))](xi �mj)(xi �mj)

T :

The Hessian matrix of theposteriorprobability function is computed as following,

Hi(j) = P (jjxi)f��1
j (xi �mj)(xi �mj)

T��1
j

�
kX

j=1

P (jjxi)[��1
j (xi �mj)(xi �mj)

T��1
j]g

+P (jjxi)f
kX

j=1

P (jjxi)��1
j ���1

j g

+2P (jjxi)[
kX

j=1

P (jjxi)��1
j (xi �mj)� ��1

j (xi �mj)]

�
kX

j=1

P (jjxi)(xi �mj)
T��1

j (3.20)

The quantity in the form
Pk

j=1 P (jjx)Q(j), whereQ(j) stands for those terms fol-

lowing P (jjx) in above equation, represents the weighted average valueQ(j) over all

classes, the above Hessian equation reflects the difference between single class quantity

and averaged quantity. If there is only one class, this Hessian matrix will become null

matrix and�(2)

j (h) reduces into�(1)

j (h):

From above, we can see that new kinds of regularized covariance matrix, thereof reg-

ularized Gaussian classifier are obtained based on Kullback-Leibler information measure,

where the smoothing parameterh controls the degree of regularization. Because multi-

parameter optimization is more difficult than single parameter optimization, in this chap-

ter we only consider one special case that the smoothing parameters are the same for all

dimension, this means that

Bh = hId; (3.21)

39

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

whereId is d� d dimensional identity matrix.

In the next section we discuss how an optimal value of smoothing parameterh can be

selected based on the training samples.

3.3 Smoothing Parameter Selection

There are several ways to select smoothing parameterh; for examples, with training sam-

ples we can use statistical technique cross validation to select the optimal smoothing pa-

rameter. As we know, the goal in selecting smoothing parameter is to produce a model for

the probability density which is as close as possible to the unknown densityp(x;�)[21].

We can select theh by the following two methods.

3.3.1 Selectingh by Monte Carlo method

According to the principle ofKL information measure, whenh 6= 0; the smooth param-

eterh can be estimated with minimizedKL divergence,

h� = arg minJ(h); J(h) = KL(k�;��; h) (3.22)

In practical implementation, we can use exhaust search method. That is, for eachh;

we compute theJ(h) function values to search the minima ofJ(h), and choose theh�

that minimizeJ(h). Note in this approach all the samples can be used to estimateh�.

Therefore, it is different from cross-validation method which must split data into training

set and validation set.

When selecting optimalh, we have to evaluate the integration equation ofJ(h). The

integral can be approximated byMonte Carlo methodas mentioned above,

J(h) � � 1

N 0

N 0X
i=1

flnp(x0i;�)� ln ph(x
0
i)g (3.23)

40

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

In implementation, we generaten0 number of samples around each original sample

point, the accuracy of this approximation apparently depends onn0: Whenn0 ! 1; it

evaluates the integration with arbitrarily small error. However, in practical evaluation

of this integration, it is impossible to use very large number of samples to calculate Eq.

(3.23), and only a limited number of generated samples is used, otherwise it is too com-

putation expensive to implement. To get sufficient approximation accuracy without using

very large generated samples set, here we can use extrapolation method. We can use an

exponential function to regressn0 with h, after get the mapping function ofn0 to h, we

can extrapolate theh value atn0 ! 1. As an example, Figure 3.1 illustrates the result

of this method. UsingMonte Carlo methodwith extrapolation method we can computeh

with higher accuracy. However, the cost is very computational intensive, especially in the

high dimension case which we deal with in this chapter.

150 175 200 225 250 275 300 325

2.2

2.4

2.6

2.8

3

3.2

Figure 3.1:h vs. generated sample numbern0.

These data points can be used to regress a nonlinear function, then applying
the extrapolation method to determine theh value forn0 !1: Whenn0 >
300; theh value tends to be stable. This figure is ford = 6; nj = 15 and
k = 3: Sample data points are drawn from a gaussian density function

41

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

3.3.2 Selectingh by Taylor expansion Approximation

Because computing the integration byMonte Carlo methodis very time expensive, we

proposed to use second order approximation for estimating smoothing parameterh:

Applying Taylor expansion for integration,

J(h) = �
Z

ph(x) lnp(x;�)dx+

Z
ph(x) ln ph(x)dx

= J0(h) + Je(h) (3.24)

where

J0(h) = �
Z

ph(x) lnp(x;�)dx

Je(h) =

Z
ph(x) lnph(x)dx:

Now we apply Taylor expansion to logarithm function atx = xi and only keep the

second order term, the integration can be evaluated out. It results in the approximation of

J0;

J0(h) � J01(xi;�) + hJr(xi;�) (3.25)

where

J01(xi;�) = � 1

N

NX
i=1

ln

kX
j=1

�jG(xi;mj;�j)

Jr(xi;�) = � 1

2N

NX
i=1

Trace[r2
x ln p(xi;�)] (3.26)

While the logarithmic mixture density Hessian matrix can be computed as,

r2
x ln p(xi;�) = �f

kX
j=1

P (jjxi)f��1
j � ��1

j (xi �mj)(xi �mj)
T��1

j g (3.27)

+f
kX

j=1

P (jjxi)[(xi �mj)
T��1

j]Tgf
kX

j=1

P (jjxi)[(xi �mj)
T��1

j]gg

42

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

Similar toJ0, we can obtainJe(h) term as following,

Je(h) �
1

N

NX
i=1

R(xi; h) +
h

2N

NX
i=1

Trace[r2
xR(xi; h)]

R(xi; h) = ln ph(xi)

Whiler2
xR(xi; h) is

r2
xR(xi; h) =

1

h2
f

NX
j=1

�(xi;xj)[(xi � xj)(xi � xj)T � hId]

�[
NX
j=1

�(xi;xj)(xi � xj)][
NX
j=1

�(xi;xj)(xi � xj)]Tg

where

�(x;xi) =
G(x;xi; hId)PN

i=1G(x;xi; hId)
;

and note that

NX
i=1

�(x;xi) =

NX
i=1

G(x;xi; hId)PN

j=1G(x;xi; hId)
= 1:

With this relation,

h

2N

NX
i=1

Trace[r2
xR(xi; h)] =

1

2Nh

NX
i=1

f
NX
j=1

�(xi;xj)[jjxi � xjjj2]

�jj
NX
j=1

�(xi;xj)(xi � xj)jj2g �
d

2

Now the functionJ(h) can be computed based on the original samples with summa-

tion instead of integration.

43

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

For very sparse data distribution, we can use the following approximation to estimate

smoothing parameter.

ph(x) lnph(x) �
1

N

NX
i=1

G(x;xi; hId) ln
1

N
G(x;xi; hId)

=
1

N

NX
i=1

G(x;xi; hId)[�
d

2
ln(2�h)� 1

2h
jjx� xijj2 � lnN]

Je(h) =

Z
ph(x) lnph(x)dx

� �d
2
ln(2�h)� d

2
� lnN

So we get the approximation formula forJ(h);

J(h) � J01(xi;�) + hJr(xi;�)� d

2
ln(h) + C (3.28)

whereC is a constant irrelevant toh.

Taking partial derivative ofJ(h) to h and let it be equal to zero,

@

@h
J(h) = Jr(xi;�)� d

2h
= 0;

the very roughly estimation formula is obtained as

h =
d

2Jr
(3.29)

3.4 Approximations for Regularization Term

In practice, the computation of� and Hessian matrix of equations (3.19) is still complex,

some proper approximations should be adopted to simplify the calculation. Now let us

consider several special cases.

44

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

Case 1: the mean and covariance of all classes are the same (All classes are overlapped

together).

In this case, the quality
Pk

j=1 P (jjxi)Q(j) = Q(j); it leads toHi(j) = 0: Then

� = 0 (3.30)

it reduces into the first order approximation KLIM1.

Case 2: the mean of all classes is equal to each other, or using averaged mean instead

of individual class mean. Denote the weighted average
Pk

j=1 P (jjxi)Q(j) = Q(j); then,

Hi(j) = P (jjxi)f��1
j (xi �mj)(xi �mj)

T��1
j

�
kX

j=1

P (jjxi)[��1
j (xi �mj)(xi �mj)

T��1
j]g

+P (jjxi)f��1
j � ��1

j g

+2P (jjxi)[��1
j � ��1

j](xi �mj)(xi �mj)
T��1

j (3.31)

with the approximation
PN

i=1 P (jjxi)(xi �mj)(xi �mj)
T � nj�j; and omit the cross

term between classes,

� � hTrace[��1
j � ��1

j] (3.32)

Case 3: the class covariance matrices are all the same,�j = �

Hi(j) = P (jjxi)f��1(xi �mj)(xi �mj)
T��1

�[��1(xi �mj)(xi �mj)T�
�1]g

+2P (jjxi)��1[(xi �mj)� (xi �mj)]

�(xi �mj)T�
�1: (3.33)

When dropping the first two term in above equation if we assume that the difference

is very small, then,

� � h

NX
i=1

Trace[P (jjxi)��1[(xi �mj)� (xi �mj)](xi �mj)T�
�1]: (3.34)

45

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

When above approximations are used, the computation cost will be significantly re-

duced.

From above approximations, it is known that second order regularization involves in

calculation of the inverse covariance matrix. In the case ofnj > d; we can use Eq. (3.40)

to estimate initial value of�j : While for the casenj < d; b�j becomes singular, but with

KLIM1 estimator,�j is not singular as long ash is not too small. In this case, we adopt

KLIM1 estimated covariance matrix as initial value to calculateH(j) and�:

In fact, if we let the eigenvector and eigenvalue of a covariance matrixb�j beui and

�i, respectively,

b�jui = �iui; uTi uj = �ij: (3.35)

The inverse matrix of�j in KLIM1 can be expressed as

��1
j = (hId + b�j)

�1 =

dX
i=1

uiu
T
i

�i + h
(3.36)

then,

Trace[��1
j] =

dX
i=1

1

�i + h
(3.37)

If b�j is singular, thenjb�jj = 0 and hencej�I� b�jj = 0. This means a singular matrix

has at least one zero eigenvalue, and resulting in one term is proportional toh�1 in the

above equation. It is clearly seen that as long ash is not too small,��1
j exists with finite

value and the estimated classification rate will be stable.

46

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

3.5 Comparison of KLIM with Other Discriminant Anal-
ysis Methods

3.5.1 Review of previous work

When the class membership of given training samples is known, the “hard-cut” version of

P (jjx) is used in the mean vector and covariance matrix estimation,

P (jjxi) =

8<
:

1;

0;

If xi 2 classj

If xi =2 classj
(3.38)

In this case,

mj =
1

nj

Xnj

i=1
xi (3.39)

b�j =
1

nj

Xnj

i=1
(xi �mj)(xi �mj)

T : (3.40)

now thexi is a sample from classj with probability one, andnj is the training sample

number of classj: This is the traditional ML estimator. When using unbiased estimation,

b�j =
1

nj � 1

Xnj

i=1
(xi �mj)(xi �mj)

T ; (3.41)

this is called sample covariance matrix in the literature[35].

Using the classification rule Eq. (3.4) and Eq. (3.5) with above covariance estimation

is called quadratic discriminant analysis (QDA). When class sample sizenj is approxi-

mately equal to or small compared with the dimensiond, the covariance estimation with

Eq. (3.40) will become highly variable, in this case it becomes ill- or poorly-posed classi-

fication problem. To improve classification performance, we can apply regularization as

mentioned.

47

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

One of the regularization methods to deal with the poorly-posed problem is linear

discriminant analysis (LDA)[60]. In LDA, theb�j in Eq. (3.5) is replaced with following

pooled covariance matrix, also called common covariance matrix,

b� =
1

N

kX
j=1

njb�j (3.42)

This applies a considerable degree of regularization by substantially reducing the num-

ber of parameters to be estimated.

Regularized discriminant analysis (RDA) is another regularization method which was

proposed by Friedman in 1989[54]. RDA is designed for small number samples case, the

covariance matrix takes the following form:

�j(�;) = (1�)�j(�) +
Trace[�j(�)]

d
Id (3.43)

where

�j(�) =
(1� �)nj b�j + �N b�
(1 � �)nj + �N

(3.44)

The two parameters� and; which are restricted to the range0 to 1; are regular-

ization parameters to be selected according to maximum the leave-one-out classification

accuracy.� controls the amount of theb�j that are shrunk towardsb�; while controls the

shrinkage of the eigenvalues towards equality as Trace[�j(�)]=d is equal to the average

of the eigenvalues of�j(�):

There exists another covariance matrix estimation formula which was proposed by

Hoffbeck and Landgrebe in 1996.[55] They examine the diagonal sample covariance ma-

trix, the diagonal common covariance matrix, and some pair-wise mixtures of those ma-

trices. The proposed estimator has the following form:

48

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

�j(�j) = �j1diag(b�j) + �j2b�j + �j3b�+�j4diag(b�) (3.45)

The elements of the mixing parameter�j = [�j1; �j2; �j3; �j4]
T are required to sum

to unity: �4
l=1�jl = 1: In order to reduce the computation cost, they only consider three

cases: (�j3; �j4) = 0; (�j1; �j4) = 0; and (�j1; �j2) = 0: They called the covariance matrix

estimator as LOOC because the mixture parameter� was optimized by Leave-One-Out

Cross validation method.

3.5.2 Comparison of KLIM with RDA and LOOC

Now let us consider a special approximation of matrixH(j) in order to compare KLIM

with other discriminant analysis methods.

The estimation of eigenvalue matrix ofposteriorprobability Hessian is iterative pro-

cedure, where initialization is necessary. At the beginning, we don’t know the true dis-

tribution of the samples, therefore the form of matrix�j is also unknown. One of the

assumptions is that let�j = Id be the initial value. Under this assumption, theposterior

probability Hessian matrix becomes:

H(j) =
1

nj

NX
i=1

fP (jjxi)f(xi �mj)(xi �mj)
T

�
kX

j=1

P (jjxi)[(xi �mj)(xi �mj)
T]g

+2P (jjxi)[
kX

j=1

P (jjxi)(xi �mj)� (xi �mj)]

�
kX

j=1

P (jjxi)(xi �mj)
Tg (3.46)

Furthermore, if we regard that
Pk

j=1 P (jjxi)mj = m as averaged mean, the above

equation becomes,

49

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

H(j) = b�j � b� +
2

nj

NX
i=1

P (jjxi)(xi �m)(xi �m)T � 2

nj

NX
i=1

P (jjxi)(xi �mj)(xi �m)T :

(3.47)

The last term represents the cross variance between individual class and common

class, if classes overlapped part is very small, this term had very little significance, so

it can be omitted under some cases. The third term can be regarded as approximately

equivalent to the two times of the common covariance matrix, under this approximation,

the Hessian matrix can be written as

H(j) = b�j + b� (3.48)

When we rearrange the term in KLIM2, it leads to,

�
(2)

j (h) = (1 +
h

2
Trace[H(j)])hId +

h2

(1 + �)
ev(b�j) +

h2

(1 + �)
ev(b�) + b�Q

(1 + �)
(3.49)

whereev(�) stands for a diagonal matrix in which the diagonal elements are the eigen-

values of�.

This result is interesting when compared to other’s regularized matrix estimator. The

termh2=2Trace[H(j)])Id is very similar with term=dTrace[�j (�)]Id of RDA in form,

but the coefficient is different. While the terms of diagonal matrices are similar with

LOOC, especially ifb� andb�j are diagonal, the eigenvalue matrixev(�) is exactly equal

to diagonal(�), here again the coefficients are quite different. The most important differ-

ence of KLIM with RDA is that RDA uses two parameters control regularization, while

KLIM uses the single parameterh. LOOC uses single parameter to control the mixing

of two covariance matrix, while the KLIM just use the same portion to add eigenvalue

matrices of sample and common covariance matrix. From above equations, we can regard

50

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

that the KLIM includes parts of RDA and parts of LOOC, it is an integration of RDA and

LOOC.

KLIM is derived under the framework of Kullback-Leibler information measure, while

RDA and LOOC are heuristically proposed. KLIM, RDA and LOOC are similar in that

they all consider ML estimated covariance matrix and addition of extra matrices, KLIM

and RDA both have an identity matrix multiplied by a scalar, but scalar term is differ-

ent from each other. There is also a term in KLIM2 which is the eigenvalue matrix of

posteriorprobability Hessian, while RDA considers it with LDA estimation, and LOOC

considers it with the diagonal sample or common covariance matrix. Moreover, the ML

estimate in KLIM2 has the regularization coefficient which related to difference between

averaged classes quantities and single class quantities, while RDA is simply related to

sample covariance matrix estimation.

KLIM is different with LOOC in that LOOC considers mixing sample covariance ma-

trix and its diagonal, or common covariance. However, the value of mixing parameter

�j in LOOC is still selected by using leave-one-out cross validation statistical methods.

In KLIM, the regularization parameter is the smoothing parameter in kernel density es-

timation, which can be selected based onKL divergence with all samples. While in

RDA, regularization parameter is heuristically proposed, which must use some statistical

method, such as bootstrap, leave-one-out cross validation, to optimize. In this point, RDA

requires much more computation than KLIM.

In the following we show that at one special approximation, when covariance matrices

are identical to each other, that is�j = �Id, we can geth =Trace[�j(�)]=d:

From Eqs. (3.26) and (3.29),

Jr(xi;�) =
1

2N
Trace

NX
i=1

[�r2
x ln p(xi;�)] (3.50)

while

51

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

�
NX
i=1

r2
x ln p(xi;�) =

NX
i=1

f
kX

j=1

P (jjxi)[��1
j � ��1

j (xi �mj)(xi �mj)
T��1

j]

+[

kX
j=1

P (jjxi)[(xi �mj)
T��1

j]T][

kX
j=1

P (jjxi)[(xi �mj)
T��1

j]g

Using approximation
PN

i=1 P (jjxi)(xi�mj)(xi�mj)
T = njb�j ;

PN

i=1 P (jjxi) = nj;

and��1
j
b�j = Id; the first term in above equation is equal to zero. In considering hard-

cut case, the cross terms in second term of above equation can be omitted. The equation

reduced into

Jr(xi;�) =
1

2N
Trace

NX
i=1

[�r2
x lnp(xi;�)]

� 1

2N
Trace

kX
j=1

njX
i=1

��1
j (xi �mj)(xi �mj)

T��1
j

=
1

2
Tracef

kX
j=1

�j�
�1
j g

From the Eq. (3.29),

h =
d

2Jr(xi;�)
� d

Trace[
Pk

j=1 �j�
�1
j]

(3.51)

In a special case,

�j = �Id; h = � = Trace[�j]=d (3.52)

In RDA, if we let � = 1 and = 1; the covariance matrix will reduce to the same

equation as above. Here we can see that even in the first order approximation, there still

exists some relationship of KLIM1 with RDA.

52

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

3.6 Experiment Results

In order to investigate the performance of KLIM compared with RDA and LDA, we use

both synthetic data and the real world Raman Spectra data set to conduct experiments.

3.6.1 Synthetic data

In the experiments, the synthetic data set have been generated under different conditions.

Three experiments with various distributions adapted from Friedman’s paper[54] and four

dimension, (d = 6; 10; 20; 40), were carried out. 15 training samples in each class were

randomly drawn from three different Gaussian distribution, the mean and covariance ma-

trix were estimated based on these training samples. Additional 100 independent test

samples from each class were generated to be used as verifying classification accuracy.

Each experiment is repeated 26 times and the mean of classification accuracy as well as

standard deviation were reported.

In the experiments, the smoothing parameterh was estimated using Eqs. (3.22) and

(3.24). This estimated value is smaller than that obtained by using Eq. (3.23). Figures

3.2a and 3.2b are typicalJ(h) vs. h curves. We select the smallesth value corresponding

to local minima of theJ(h). In the case ofnj > d; we can use Eq. (3.29) for fast

estimation ofh as an initial value. In RDA, the values of both� and were sampled over

a very coarse grid, (0.0, 0.25, 0.50, 0.75, 1.0), resulting in 25 data points.

In experiment 1, the covariance matrices of all three classes were equal to the identity

matrix, that is, the equal spherical covariance matrices. The mean of the first class was

at the origin, the mean of second class was 3.0 in the first variable and 0 in the other

variables, and the mean of third class was 3.0 in the second variable and 0 in the other

variables. Table 3.1 is the results for this experiment. In the tables presented at this

chapter, the value in parentheses represents the standard deviation and dash lines represent

the covariance matrix is singular in which case reliable results can’t be obtained.

In experiment 2, all three classes had identical, highly ellipsoidal covariance matrices.

53

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

0 1 2 3 4 5 6
h

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Jh

(a)

0 1 2 3 4 5 6
h

0

0.05

0.1

0.15

0.2

Jh

(b)

Figure 3.2: TheJ(h) function with some approximation.

(a) J(h) vs. h curve computed by Monte Carlo integration approxima-
tion with Eq. (3.23). (b)J(h) vs. h curve computed by Second order
approximation with Eq. (3.24).

Table 3.1: Mean classification accuracy for experiment 1
d = 6 d = 10 d = 20 d = 40

LDA 84.5(3.58) 75.3(6.86) - - - - - -
QDA 84.5(3.58) 75.3(6.88) - - - - - -
RDA 90.2(1.43) 88.57(5.37) 87.16(2.58) 91.2(2.09)
KLIM I 90.2(1.43) 91.73(1.29) 88.4(1.4) 91.26(1.29)
KLIM II 90.5(1.39) 92.17(1.61) 63.9(2.07) 63.0(3.61)

54

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

Table 3.2: Mean classification accuracy for experiment 2
d = 6 d = 10 d = 20 d = 40

LDA 98.1(0.9) 100(0.01) - - - - - -
QDA 98.1(0.9) 100(0.01) - - - - - -
RDA 98.9(0.8) 100(0.0) 100(0.0) 100(0.0)
KLIM I 99.88(0.16) 100(0.0) 100(0.0) 100(0.0)
KLIM II 99.88(0.16) 100(0.0) 100(0.0) 100(0.0)

The covariance matrix for all three classes was a diagonal matrix whose diagonal elements

were given by

�i = [9(i� 1)=(d � 1) + 1]2; 1 � i � d (3.53)

The mean vector of the first class was at the origin, the elements of the mean vector of

the second class were given by

�2;i = 2:5
p
�i=d[(d� i)=(d=2 � 1)];

and the mean of last class was defined by�3;i = (�1)i�2;i: The results of this experiments

are listed in Table 3.2.

In experiment 3, all of the mean vectors of the three classes were at the origin, but the

class covariance matrices were the unequal highly ellipsoidal. The diagonal elements of

the covariances for first class was defined by Eq. (3.53), the other two were defined by

�2;i = [9(d � i)=(d� 1) + 1]2; (3.54)

and

�3;i = [9(i� (d� 1)=2)=(d � 1)]2 (3.55)

55

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

Table 3.3: Mean classification accuracy for experiment 3
d = 6 d = 10 d = 20 d = 40

LDA 38.8(4.79) 42.2(4.25) 43.16(4.5) 39.64(5.2)
QDA 84.2(3.77) 84.1(6.3) - - - - - -
RDA 84.0(3.27) 84.9(5.78) 89.73(2.62) 74.2(8.6)
KLIM I 85.8(2.26) 92.7(2.65) 85.84(3.15) 81.75(3.47)
KLIM II 85.6(2.27) 92.1(4.46) 84.98(3.35) 55.67(2.62)

In the experiment 1 and 2, in most cases, KLIM led to higher classification accuracy

than that by LDA and QDA. In experiment 3, the KLIM1 classification accuracy was

higher than other covariance matrix estimation except in one case (d = 20). Table 3.3

shows the experiment results.

3.6.2 Raman Spectra Data

This real world data set was collected in the laboratory experiments from the physics de-

partment at Peking university. It includes 37 Raman spectra whose wave number ranges

are from 320 to 1640 cm�1, where each spectrum measured by the Charge-Coupled De-

vice (CCD) detector with 1340 effective channel at the same time. The raw data set

consists of three classes: 3 Raman spectra for Ethanol, 5 for Acetic acid, and 29 different

time measures in synthesizing Ethyl acetate. The dimension of the raw data set is 1340

and the sample number is 37.

Because the dimension of the raw data set is very high and number is too small, we

first divide each sample into 10 samples. From every 10 variables of the raw spectrum

vector one point is drawn and used to construct a new sample vector. By this method, each

original sample is subdivided into 10 samples, and the dimensiond from 1340 is reduced

to 134. We also scale the intensity of Raman spectra to the range of [0,1].

The data set we used for classification experiments isd = 134 now, where class 1 has

30 samples, class 2 has 50 samples and class 3 has 290 samples after preprocessing the

data set. In order to study the performance of the regularized classifiers, we use bootstrap

56

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

technique [26] to conduct the experiments. 20 training samples are randomly drawn from

each class and used to estimate the mean and covariance matrices. The remaining samples

are used as test samples to verify classification accuracy. The experiments is repeated 26

times, the obtained result is averaged value. The same data set is used with different

classification methods. This is still an ill-posed problem because ofnj < d. In this case,

when we apply LDA and QDA to this Raman spectra data set, they are failed to give

reliable classification results because the covariance matrix is singular.

On the other hand, the bootstrap experiments show that for RDA gives an averaged

classification accuracy 99.27% , the standard deviation is 0.43, while the classification

accuracy for KLIM1 and KLIM2 both reaches 99.81%, the standard deviation is 0.28. The

results also illustrate that these three classes are well separated from each other in the high-

dimension space. Here we should indicate that the classification results are comparable

because we use the same data set for LDA, QDA, RDA, KLIM1 and KLIM2, it is not

dependent on preprocessing of the data set.

3.6.3 Discussions

From these experiments we see that the performance of various classification schemes is

generally data-dependent. For example, if all the classes have the same covariance ma-

trix, LDA will lead to a higher classification accuracy than that of QDA. In experiment 1,

the true covariance matrix is in equal sphere, which is a situation that may favor RDA as

well as KLIM1. However, KLIM1 led to either the same or a little higher classification

accuracy than RDA. In experiment 2, the classes are highly equal ellipsoidal distribution,

and their mean positions are separated well with little overlapping. Consequently, all clas-

sification estimators produced high classification accuracy. This example also illustrates

that the classification accuracy strongly depends on the degree of overlapping between

classes. In experiments 3, the classes are heavily overlapped with highly unequal ellip-

soidal distribution, in which case LDA performance is very poor. With properly selected

57

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

smoothing parameter, KLIM1 is better than RDA except in one case (d = 20). These

experimental results indicate that KLIM1 covariance matrix estimator can lead to a higher

classification accuracy, suggesting that KLIM1 is simple and good-enough for most cases.

From these experiments, we also find that smoothing parameter values for KLIM were not

an accurate requirement, as there exists a range of values in which a higher classification

accuracy can be obtained. This range depends on training samples distribution. In most

cases, however, smoothing parameter selection methods used in this chapter work quite

well.

In comparing KLM1 and KLIM2, KLIM2 estimator led to the same or a higher classi-

fication accuracy than KLIM1 in poorly-posed problem, but its performance is not as good

in ill-posed problem. One of the possible reason is that in ill-posed case, the computation

of covariance matrixb�j is highly variable, resulting in a large difference value between

averaged quantity and single class quantity. This leads to strong regularization in estimat-

ing b�Q, consequently deteriorating KLIM2 estimation. Nevertheless, this phenomenon

occurred only in cases in which classes are overlapped. When the classes are well sepa-

rated from each other, the probability ofxi belonging to only one class will approach 1,

resulting in� ! 0 and KLIM2 automatically reduces to KLIM1. In the case that we hope

to take advantage of KLIM2, one possible method is to use pre-processed training sam-

ples, e.g., by a data dimension reduction technique such as Principal Component Analysis

(PCA) [61] to reduce the dimension of the data set.

Another advantage of KLIM1 and KLIM2 is that they can be used to classify total

un-labelled samples in small number and high dimension case, since they were derived

based on minimizingKL divergence in which EM algorithm can be re-derived [59].

3.7 Summary

In this chapter, based onKL information measure, the KLIM covariance matrix estima-

tion was derived and investigated for the classification problem. An efficient smoothing

58

CHAPTER 3. CLASSIFICATION FOR SMALL SAMPLE SET WITH HIGH
DIMENSION

parameter approximation formula was derived, and the approximation was found to be

accurate for most cases in our experiments. With theKL information measure, total sam-

ples can be used to estimate smoothing parameter, making it less computation-expensive

than using leave-one-out cross-validation method proposed in the literature. With theKL

information measure based estimation method, more than half of the experiments show

that the obtained KLIM estimator works well, as they show a little higher classification

accuracy than RDA. Besides, in all experiments KLIM estimators are consistently better

than QDA and LDA estimators.

59

Chapter 4

Cluster Number Selection in Small
Sample Set Case

4.1 Introduction

In intelligent statistical data analysis or unsupervised classification, cluster analysis is to

determine the cluster number or cluster membership of a set of given samples,fxigNi=1 [62,

52, 63], by its mean vector,fmygky=1. In most cases, the first step of the clustering is to

determine the cluster number. The second step is to design a proper clustering algorithm.

In recent years, several clustering analysis algorithms have been developed to partition

samples into several clusters, in which the number of clusters ispre-determined. The

most notable approaches are, for example, the Mean Square Error (MSE) clustering and

finite mixture model analysis.

The MSE clustering method typically is implemented by the well-knownk-mean al-

gorithm [62]. This method requires specifying the number of clusters,k, in advance. Ifk

is correctly selected, then it can produce a good clustering result; otherwise, data sets can-

not be grouped into appropriate clusters. However, in most cases the number of clusters is

unknown in advance. Because it is difficult to select appropriate number of clusters, some

heuristic approaches have been used to tackle this problem. The Rival Penalized Compet-

itive Learning (RPCL) [64] algorithm has demonstrated a very good result in finding the

cluster number. However, there is still no appropriate theory being developed [65, 66, 67].

60

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

In the mixture model cluster analysis, the sample data are viewed as two or more mix-

tures of normal (Gaussian) distribution in varying proportion. The cluster is analyzed by

means of mixture distribution. The likelihood approach to the fitting of mixture models

has been utilized extensively [68, 58, 49, 69, 70, 71, 50, 72, 73]. However, the determina-

tion of the appropriate cluster number still remains one of the most difficult problems in

cluster analysis [51, 74].

The Bayesian-Kullback Ying-Yang (BYY) learning theory has been proposed in [75].

The BYY learning is a unified algorithm for both unsupervised and supervised learning

which provides us a reference for solving the problem of selecting cluster number. The

experimental results worked very well for a large set of samples when the smoothing

parameterh! 0 [76, 77]. However, for a relatively small set of samples, the Maximum

Likelihood (ML) method with the Expectation-Maximization (EM) algorithm [57] for

estimating mixture model parameters will not adequately reflect the characteristics of

the cluster structure. In this way, the selected cluster number is incorrect. To solve the

problem for the small set of samples, the BYY theory for data smoothing is developed in

[46] is approach considers the nonparametric density estimation and the smoothing factor

in the Parzen window.

In this chapter, we investigate the problem of determining the smoothing parameter

and the model selection in clustering. We compare the parameter estimation result by

using the bootstrap technique [78] and by using the smoothing EM algorithm. With this

approach, the performance of the BYY model selection criterion for determining cluster

number is greatly improved. Finally, we propose an efficient gradient descent smoothing

parameter estimation approach that not only reduces the complicated computation proce-

dure but also gives the optimal result.

61

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

4.2 Cluster Number Selection

First, we briefly review the finite mixture model and the BYY theory for model selection

[76, 79].

4.2.1 Finite Mixture Model

Let us consider a Gaussian mixture model, the joint probability density which consists of

k component Gaussians of which the mathematical expressions are the Eqs. (3.1-3.2) in

Chapter 3.

Based on the given data setD, these mixture parameters can be estimated by maxi-

mum likelihood learning with EM algorithm.

4.2.2 BYY theory for finite mixture model and EM algorithm

As mentioned in [79, 80], unsupervised learning problems can be summarized into the

problem of estimating joint distributionP (x;y) of patterns in the input spaceX and the

representation spaceY. By the Bayesian Kullback Ying-Yang theory, we have the follow-

ing Kullback–Leibler divergence [79]:

KL(M1;M2) =

ZZ
PM1

(yjx)PM1
(x) ln

PM1
(yjx)PM1

(x)

PM2
(xjy)PM2

(y)
dxdy (4.1)

whereM1 andM2 are two different models.

The minimization ofKL(M1;M2) can be implemented by theAlternative Minimiza-

tion procedure which alternatively minimizes one model while keeping other models tem-

porarily fixed [79].

We can obtain a general form ofKL function in the Gaussian mixture model case as:

KL(M1;M2) =

ZZ
P (yjx)phx(x) ln

P (yjx)phx(x)
�yG(x;my;�y)

dxdy (4.2)

62

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

To match two modelM1 andM2 will lead to

P (yjx) = �yG(x;my;�y)

pM2
(x;�)

; pM2
(x;�) =

kX
y=1

�yG(x;my;�y) (4.3)

theKL function becomes

KL(k; h;�) = �
Z

phx(x) ln pM2
(x;�)dx+

Z
phx(x) ln phx (x)dx (4.4)

This function in fact is the system relative entropy function.

For mixture model parameter learning,

� = arg min
�

KL(�); KL(�) = KL(k; h;�) (4.5)

If KL function is minimized with respect to parameter�; the EM algorithm[57, 58]

can be re-derived in the limith ! 0. The mathematical expression of the EM algorithm

are written as in Chapter 3 as Eqs. (3.3) and (3.12).

4.2.3 Model Selection Criterion

The determination of an appropriate number of clusters in a data set is one of the most dif-

ficult problems in clustering analysis [51, 74]. In the literature, there are several heuristi-

cally proposed information theoretical criteria. Following Akaike’s pioneering work [81]

in which an information criterion was first proposed for use in selecting the number of

clusters in the mixture model cluster analysis. Similar studies include AICB [82], CAIC

[83], and SIC [84]. These criteria combine the maximum value of the likelihood with the

number of parameters.

The cluster number,k, is actually a structural scale parameter of the BYY system.

From the BYY system, the BYY model selection criterion for determining the correct

cluster number is derived in [76] as follows:

k = argmin
k

J(k); J(k) =

8<
: J1(k);

J2(k);
(4.6)

63

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

J1(k) = H1(k) + J
g
2 (k); J2(k) = rH1(k) + J

g
2 (k) (4.7)

0 � r � 1 (4.8)

where

J
g
2 (k) =

kX
y=1

�y ln
q
j�yj �

kX
y=1

�y ln�y (4.9)

H1(k) =
1

N

NX
i=1

kX
y=1

P (yjxi) lnP (yjxi) (4.10)

If taking r = 0; we haveJ2(k) = J
g
2 (k): In practice, we start withk = 1, estimate

the parameter� by the EM algorithm based on the given samples, and computeJ(k).

Then, we proceed tok ! k + 1, and computeJ(k) again. We continue this process after

we gather a series ofJ(k). The appropriate cluster number,k, is selected from the one

with minimalJ(k).

4.3 Parameter Estimation with Bootstrap Technique

Although the model selection approach discussed above works well for a good size of

data samples, we found out, from several experimental results, that the selected cluster

number was not correct for a relatively small set of samples. The results are also incor-

rect with other theoretical information criteria mentioned above. The reason is that the

MLE with the EM algorithm that estimates mixture model parameters will not reflect the

characteristics of cluster structures adequately. As a result, it affects the correctness of

determining the cluster number. In order to study the effect of parameter estimation on

the BYY model selection, we incorporate the bootstrap technique with the EM algorithm

in the MLE of mixture parameters as described in this section [78].

64

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

4.3.1 Bootstrap Technique

The bootstrap is a random resampling technique. In principle, the sampling process is

described as following [26]:

Suppose the original data set isDo = fxigNi=1. We randomly draw a sample from this

data set with probability1=N: The definition of random sampling allows a single sample

xi to appear more than once in the sample set. By this method, a bootstrap sample set,

D1 = fx�1igNi=1, is obtained by randomly samplingN times from the samples. Using the

above resampling techniqueM times, we obtainM groups of data sets,D1;D2; � � � ;DM .

These are called bootstrap data sets. For each bootstrap data set, we calculate the maxi-

mum likelihood estimation of the finite mixture model parameterb�j using the EM algo-

rithm. In this way, we can obtain the correspondingM sets of mixture model parameters,

b�1; b�2; � � � ; b�M , for M groups of data sets. This process is called theparametric boot-

strapmethod.

With maximum likelihood estimation, the parameter� has a normal distribution. The

mean of estimated parameters is

� =
1

M

MX
j=1

b�j (4.11)

The true value of� is approximated by the mean value�:

4.3.2 Parameter Estimation with Bootstrap

In practical bootstrap implementation, the first step is to initialize the mixture parameters

randomly. Since noa priori information is available, with random method the EM algo-

rithm often converges to an undesirable local minima. In this work we propose a ”seed

generation” method for initializing the mixture parameters to avoid the undesirable local

minima. The ”seed generation” method generates the parameters systematically instead

of randomly. Namely, we start with the whole data set to estimate the mixture parameters

65

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3

3.5

(a)

0 2 4 6 8

0.2

0.4

0.6

0.8

1

J2

(b)

0 2 4 6 8

0.2

0.4

0.6

0.8

1

J2

(c)

1

2

3

4

5

(d)

Figure 4.1: The 2-D synthetic data set with three clusters.

The 2-D synthetic data set and the comparison ofJ2 � k curves with boot-
strap to without bootstrap for three clusters. (a) data set, (b)J2 � k curve
without bootstrap approach, (c)J2� k curve with bootstrap approach, (d)A
histogram plot of mean component of a cluster, which is similar to the nor-
mal distribution as expected.

with the EM algorithm. After repeating this procedure several times, we take the most

probable parameters at each test. The obtained parameters are called “seeds” and are used

as the initial values in the bootstrap sample estimation. Because the bootstrap data set

is part of original data samples, the estimated value will be slightly different from the

“seeds” value. In this way, the mixture parameters estimated with the bootstrap data set

will be very close to the same local minima. There are two advantages for this “seeds”

initialization approach. First, it guarantees to converge to close the same local minima.

Secondly, the convergence speed is fast because only small variation is made.

Another problem in maximum likelihood estimation is that there is no label was given

to clusters in the casek � 2 test. To avoid calculating the mean using different clusters

parameters, we label clusters according to their mean center position. This guarantees that

66

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

averaging the obtained parameters according to same label to compute the mean value

become meaningful. Otherwise, it will get wrong results if different cluster parameters

are used to compute the mean of a cluster.

We use some synthetic data sets and the real world IRIS data set to study the BYY

criterion with bootstrap technique.

In the synthetic data set, we use 30�k samples which are randomly generated from

k-Gaussian mixtures, in which each cluster consists of 30 data points. During the experi-

ment, we varyk between 1 to 8. For each generated data setD, we resample itM times

and generateM bootstrap data sets. In our work,M = 25 is used. Parts of the data sets

and simulation results are shown in figures 4.1-4.2.

Figure 4.1 shows the experimental result of cost functionJ2(k) versusk for 3 different

Gaussian mixture synthetic data sets. The second example is the IRIS data set. This is

perhaps the best known database to be found in the pattern recognition literature. The

data set consists of 3 classes of 50 samples, each with 4-dimension, where each class

refers to a type of Iris plant. Within the data set, one class is linearly separable from

the other two, and the other two are not linearly separable. Using the Gaussian mixture

model approximation to investigate the structure of the IRIS data set, we found out that the

approximation is somewhat difficult but is possible to get a good approximations. Figure

4.2 is the results of the IRIS data set. Although there are two overlapping clusters, the

BYY criterion with bootstrap technique can determine the correct cluster number.

From the experiments, we find that if the parameters are estimated with the EM algo-

rithm based on a given small data set without any correlation, the BYY criterion as well

as other information criteria fail to detect correct cluster number. When the bootstrap

technique together with ”seeds generation” is used to estimate the mixture parameters,

the BYY criterion can select the correct cluster number. In most cases, reasonable results

can be obtained with this combined technique.

67

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

5

6

7

0

2

4

6

0

1

2

+++
+
+

++
++
+ +
+
++

+

+++ ++ +
+

+

++
+
+
++

++ +
+ +

++ +
++ ++

++
+ +

+ ++
++

o
o o

o
oo
o

o

oo

o

o

o

o

o
o

o

o

o

o

o

o

o
o
o o

o

o
o

o
oo

o

o
o o

o
oooo
o

o
o

ooo o

o

o

*

*
*

*

* *

*
**

*

**
**

*
*

*

*
*

*

*
*

*

*

*
*

**

*

*
* *

*

*
*

*
*

*
*

*

*

**

**

*
* *

*

*

5

6

7

0

2

4

6

(a)

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

J2

(b)

0 2 4 6 8

0.2

0.4

0.6

0.8

1

J2

(c)

1

2

3

4

5

(d)

Figure 4.2: Bootstrap experiment for Iris data set

The Iris data set and the comparison ofJ2 � k curves with bootstrap to
without bootstrap estimated mixture parameters. (a) data set inx1; x3; x4
axis view, (b)J2�k curve without bootstrap approach, (c)J2�k curve with
bootstrap approach, (d) A histogram plot of mean component of a cluster,
which is similar to the normal distribution as expected.

4.3.3 Summary for Bootstrap Technique

For small set of samples, by incorporating the bootstrap technique with the EM algo-

rithm, we obtain a relatively robust performance for determining the cluster number with

the BYY criterion and clustering. This illustrates that the proposed approach together

with BYY criterion works well for small number sample case as long as mixture model

parameters are properly estimated.

In the next section, we investigate the BYY data smoothing theory for parameter esti-

mation.

68

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

4.4 BYY Data Smoothing Theory

Under theconditional mean field approximation, minimizingKL function corresponding

parameter� will lead to the Smoothing EM (SEM) algorithm [80], where the updates in

E-step and M-step are given as follows:

E-step:

P (yjxi) =
�yG(xi;my;�y)Pk

y=1 �yG(xi;my;�y)
(4.12)

M-step:

�newy =
1

N

NX
i=1

�oldy G(xi;my;�y)Pk
y=1 �

old
y G(xi;my;�y)

(4.13)

mnew
y =

PN

i=1 P (yjxi)xiPN
i=1 P (yjxi)

=
1

�yN

XN

i=1
P (yjxi)xi (4.14)

b�new
y = hId +

1

�yN

XN

i=1
P (yjxi)[(xi �my)(xi �my)

T]: (4.15)

We can find that the SEM algorithm is different from the ordinary EM algorithm in

that it employs covariance estimation correction.

According to the principle of minimizingKL function, whenh 6= 0; the smoothing

parameterh should be estimated as

h = arg minJ(h); J(h) = KL(k�;��; h) (4.16)

4.5 Practical Implementation Consideration

The BYY data smoothing is a quite new technique. Two aspects for implementing BYY

data smoothing should be discussed. One aspect is that we need to verify if the estimated

69

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

parameter for determining the cluster number with data smoothing. The other aspect is

the selection of a proper smoothing parameter to estimate the mixture parameter.

Without loss of generality, we use a heuristic estimation of smoothing parameterh for

fast implementation. For example, we can use1=N of average distance approximation to

estimateh value as follows:

h =
1

dNN2

NX
i=1

NX
j=1

jjxj � xijj2 (4.17)

4.5.1 Experiments for Data Smoothing

In order to investigate the data smoothing effect, we first use some synthetic data sets to

conduct the experiments.

The data sets have been generated under different conditions, such as different Gaus-

sian mixtures, different meanmy , and different covariance�y of each cluster. In order to

eliminate the influence of the EM algorithm that converges to different local minima, we

repeat the experiments with the same condition but with different initial parameter values

for each test.

In computer experiments, we randomly generate 30�k two-dimensional samples and

50�k three-dimensional samples, wherek is the number of Gaussian mixtures, varying

from 1 to 8. Three data sets and their experimental results are shown in Figures 4.3- 4.5.

The cluster number selection criterion is when the cost functionJ(k;�) versusk

reaches its global minimum point atk = k�; wherek is the candidate cluster number

andk� is the actual number of Gaussians in the finite Gaussian mixture model. Figure

4.3 shows the experimental result of the cost functionJ2(k) versusk for two dimen-

sional Gaussian mixture data set. From Figure 4.3(b), we find that the ordinary EM al-

gorithm over-estimates the actual cluster number (which gives us 6 clusters), while the

data smoothing SEM algorithm gives a reasonable result. In Figure 4.3(c) the best cluster

70

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

(a) Data set

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

J2

(b) Without data
smoothing

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

J2

(c) With data smooth-
ing,h = 0:0207

Figure 4.3: The synthetic data set, 4 clusters

The 2-D synthetic data set and the comparison ofJ versusk (b) The result
“without data smoothing” approach, (c) The result “with data smoothing”
approach. The results show that 4 clusters is the best number.

number is 4 from theJ2 versusk plot. Similarly in Figure 4.4(c), the best cluster number

is 6, while the result of the ordinary EM algorithm shown in Figure 4.4(b) is 8. As for

large samples case, the experiments show no obvious difference betweenh = 0 andh 6= 0

in search of the correct cluster numbers [77].

Another example is the same IRIS data set that was used in the bootstrap experi-

ment previously. Figure 4.5 depicts the results of the IRIS data set. The experimental

results show that the correct cluster number is 3 from Figure 4.5(c). We see that with data

smoothing, the performance of cluster number selection is improved.

4.5.2 Smoothing Parameter Estimation

According to the principle of minimizingKL function, the optimal smoothing parameter

can be obtained from Eq. (4.16). However, the evaluation of integration is computation-

expensive. Therefore, we propose an approximation scheme in order to avoid the inte-

gration. In the following, we first review the quantized method which is recommended in

[46]; then we derive a new gradient descent approximation for estimating this smoothing

parameterh.

The Quantized Method:

71

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

0
1

2

3

4

0

1

2

3

-1

0

1

2

3

0
1

2

3

4

0

1

2

3

(a) Data set

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

J2

(b) Without data
smoothing

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

J2

(c) With data smooth-
ing,h = 0:00799

Figure 4.4: The synthetic data set, 6 clusters

The 3-D synthetic data set and the comparison ofJ versusk (b) The curve
“without data smoothing”, (c) The curve “with data smoothing”. The results
show that 6 clusters is the best number.

On each of the quantized levelshr; r = 1; 2; :::; nh; we run the SEM algorithm to ob-

tain a series of mixture parameter��: We then choose onehr such that its corresponding

value ofKL(��; k; hr) is the smallest. This approach is an exhaustive search method and

usually is computation-expensive.

Gradient descent approach

For the gradient descent approach, we need to find an approximation for estimating

parameterh. Referring to [46]1, we first briefly review the following equation.

h2x =
1

dxNN 0

NX
i=1

N 0X
j=1

�i(x
0
j)jjx0j � xijj2jholdx [46; eq:14b]

where

�i(x) =
G(x;xi; h

2
xIdx)PN

i=1G(x;xi; h
2
xIdx)

NoteG(x;xi; h
2
xIdx) is a Gaussian density function.

Now let us denote
1Theh2 in Eq. [46, eq.14b] is equal toh used in this report.

72

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

5

6

7

0

2

4

6

0

1

2

+++
+
+

++
++
+ +
+
++

+

+++ ++ +
+

+

++
+
+
++

++ +
+ +

++ +
++ ++

++
+ +

+ ++
++

o
o o

o
oo
o

o

oo

o

o

o

o

o
o

o

o

o

o

o

o

o
o
o o

o

o
o

o
oo

o

o
o o

o
oooo
o

o
o

ooo o

o

o

*

*
*

*

* *

*
**

*

**
**

*
*

*

*
*

*

*
*

*

*

*
*

**

*

*
* *

*

*
*

*
*

*
*

*

*

**

**

*
* *

*

*

5

6

7

0

2

4

6

(a) 3-D view basex1;
x3; x4 axis

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

J2

(b) Without data
smoothing

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

J2

(c) With data smooth-
ing,h = 0:0153

Figure 4.5: The Iris data set, 3 clusters

The IRIS data set and the comparison ofJ versusk (a) IRIS data set in
x1; x3; x4 axis view. (b) The curve “without data smoothing”, (c) The curve
“with data smoothing”. The results show that 3 clusters is the best number.

I1 =
1

dxN

NX
i=1

Z
�i(x)jjx� xijj2dx

I2 =
1

dxN

NX
i=1

Z
G(x;xi; h

2
xIdx)jjx� xijj2dx

IntegrateI2, we getI2 = h2x:

Because�i(x) is positive and�i(x) � G(x;xi; h
2
xIdx) for 8 x; it lead to

�i(x)jjx� xijj2 � G(x;xi; h
2
xIdx)jjx� xijj2

This indicatesI1 � I2 = h2x, no matter howxi distributed.

As we know, for any finite number of samplesN 0; the summation value will be less

than the integration value when the function is positive, i.e.,

(h2x)
new < I1 � I2 = (h2x)

old

73

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

From the above inequality, we can see that the approach always finds ah2x regardless

the data distribution and initialization. Becauseh2x is non-negative, the value ofh2x will

approach to zero eventually. Our experimental results verified this conclusion.

In order to cope with the above-mentioned efficiency, we derive a new equation for

estimating smoothing parameterh based on Kullback-Leibler divergence.

Rewrite Eq. (4.4) in the following form:

KL(�) =

Z
phx (x)g(x;�)dx+

Z
phx(x) ln phx(x)dx

= J0 + Jh (4.18)

where

J0 �
Z

phx(x)g(x;�)dx (4.19)

Jh �
Z

phx(x) ln phx(x)dx (4.20)

g(x;�) � � lnPM2
(x;�) (4.21)

If we use Gaussian kernel density

phx (x) =
1

N

NX
i=1

G(x;xi; hId) (4.22)

then we have

J0 =

Z
phx(x)g(x;�)dx =

1

N

NX
i=1

Z
G(x;xi; hId)g(x;�)dx (4.23)

74

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

Because theG(x;xi; hId) term is inside the integral in above equation, whenxmoves

away fromxi, the function value becomes very small. So we can use Taylor expansion

for g(x;�) atx = xi: Whenh is small, we can omit the higher order terms and only keep

the first order term. By doing this, we have the following approximation ofJ0 (detailed

derivations are given in Appendix A):

J0(x;�; h) � J01(xi;�) + h
1

2N

NX
i=1

trace[rrg(xi;�)]

= J01(xi;�) + hJr(xi;�) (4.24)

KL(x;�; h) � J0(xi;�) + hJr(xi;�) +

Z
phx (x) ln phx(x)dx (4.25)

@

@h
KL(x;�; h) � Jr(xi;�) +

@

@h

Z
phx(x) ln phx(x)dx (4.26)

We know that

@

@h

Z
phx (x) lnphx (x)dx =

Z
ln phx(x)

@phx(x)

@h
dx+

Z
@phx(x)

@h
dx (4.27)

where

@

@h
phx (x) = �

1

2h
dxphx (x) +

1

2N(h)2

NX
i

G(x;xi; hId)jjx� xijj2 (4.28)

the last term in Eq. (4.27) can be calculated,

Z
@phx(x)

@h
dx = 0 (4.29)

75

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

So equation (4.27) becomes

@

@h
Jh =

Z
ln phx(x)

@

@h
phx(x)dx (4.30)

= � d

2h

Z
phx (x) lnphx (x)dx

+
1

2N(h)2

Z
ln phx (x)

NX
i

G(x;xi; hId)jjx� xijj2dx

From

@

@h
KL(x;�; h) = 0 (4.31)

and with mean center approximation (see Appendix A) we can obtain the new gradient

decent formula for estimatingh as:

hnew = hold + ��h (4.32)

where� is a learning parameter and

�h � hJr �
1

2N

NX
j

(phx(xj)� 1) ln phx(xj) (4.33)

Jr(xi;�) =
1

2N

NX
i=1

jj
kX

y=1

P (yjxi)(xi �my)
T��1

y jj2g: (4.34)

Let �h = 0, we obtain the following estimation equation forh:

h =

1

2N

PN

j [phx(xj)� 1] ln phx(xj)

Jr(xi;�)
(4.35)

76

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

0 0.5 1 1.5 2 2.5 3

1.5

2

2.5

3

3.5

(a) The data set, 3 clusters, each
cluster 30 points.

0

0.02

0.04

h2

0

2

4

6

8

k

-1.6

-1.4

-1.2

-1

J2

-1.6

-1.4

-1.2

-1

J

(b) The 3-D view ofJ2 vs.h andk

Figure 4.6: The quantized method for the synthetic data set with 3 clusters.

From the 3-D view ofJ2 versush, andk; we find that a local minima occurs
atk = 3 andh is around 0.006.

4.5.3 Experiments

Now we present the experimental results for both the quantized and the gradient descent

approximations ofh.

In the experiments, we varyh value from 0.001 to 0.05 andk from 1 to 8. From Figure

4.6, we see that using the quantized method,k andh can be determined simultaneously.

From these results, we obtainh value at minimalKL(h; k�;��): In fact, with a range ofh

value, we can determinek� from theJ2 plot. Usually, in the range ofh value, we choose

h to be the smallest one. Figure 4.7 shows that whenh value is between 0.005 to 0.05,

the correctk� can be determined.

From these experiments, we know that by using the gradient method, the searching

range is limited in a small region ofh value compared to the quantized level method.

Different k will result in different mixture model parameters,�; therefore it produces

different h estimations. To find the optimal one, we can use the properties ofJ1 and

J2 [46] to analyze the results and to determinek andh: We know that ifh = 0 or h is

too small,k will be over-estimated. Ifh is too large, the curve will be too smooth and

77

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

1 2 3 4 5 6 7 8

-1.6

-1.4

-1.2

-1

(a)h = 0:001

1 2 3 4 5 6 7 8
-1.5

-1.4

-1.3

-1.2

-1.1

-1

-0.9

(b)h = 0:002

1 2 3 4 5 6 7 8

-1.4

-1.3

-1.2

-1.1

-1

-0.9

(c) h = 0:004

1 2 3 4 5 6 7 8

-1.4

-1.3

-1.2

-1.1

-1

-0.9

(d)h = 0:005

1 2 3 4 5 6 7 8
-1.4

-1.3

-1.2

-1.1

-1

-0.9

(e)h = 0:006

1 2 3 4 5 6 7 8

-1.3

-1.2

-1.1

-1

-0.9

(f) h = 0:008

1 2 3 4 5 6 7 8

-1.3

-1.2

-1.1

-1

-0.9

(g)h = 0:01

1 2 3 4 5 6 7 8
-1.3

-1.2

-1.1

-1

-0.9

(h)h = 0:015

1 2 3 4 5 6 7 8
-0.925

-0.9

-0.875

-0.85

-0.825

-0.8

-0.775

-0.75

(i) h = 0:05

Figure 4.7: TheJ2 versusk plots for differenth values.

A correct cluster number can be detected from a range ofh values. The data
set used is the same as the one in Figure 4.6 (a).

78

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

0 250 500 750 1000 1250 1500 1750
0

0.02

0.04

0.06

0.08

Figure 4.8: Gradient descent approximation ofh.

Iterative epochs of findingh using differentJr(k;��) for differentk. From
the top to the bottom: curves are fork = 2, 3, 4, 5, 6, 7, respectively.
Learning factor,�, for this experiment is 0.0001.

1 2 3 4 5 6 7 8

-0.225

-0.22

-0.215

-0.21

(a) h = 0:3783:

1 2 3 4 5 6 7 8

-1

-0.95

-0.9

-0.85

-0.8

-0.75

(b) h = 0:04814:

1 2 3 4 5 6 7 8
-1.15

-1.1

-1.05

-1

-0.95

-0.9

-0.85

-0.8

(c)h = 0:03415:

1 2 3 4 5 6 7 8
-1.15

-1.1

-1.05

-1

-0.95

-0.9

-0.85

-0.8

(d)h = 0:03413:

1 2 3 4 5 6 7 8

-1.6

-1.4

-1.2

-1

(e)h = 0:0024:

1 2 3 4 5 6 7 8
-1.8

-1.6

-1.4

-1.2

-1

(f) h = 0:0006:

Figure 4.9: The results for the gradient descent approach that estimatesh and the corre-
spondingJ1(k) curves.

If h = 0:3783, k is under-estimated, while forh less than0:0024; thek is
over-estimated.

79

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

1 2 3 4 5 6 7 8

0

0.5

1

1.5

(a)h = 0:3783:

1 2 3 4 5 6 7 8

-0.925

-0.9

-0.875

-0.85

-0.825

-0.8

-0.775

(b) h = 0:04814:

1 2 3 4 5 6 7 8

-1.05

-1

-0.95

-0.9

-0.85

-0.8

(c)h = 0:03415:

1 2 3 4 5 6 7 8

-1.05

-1

-0.95

-0.9

-0.85

-0.8

(d)h = 0:03413:

1 2 3 4 5 6 7 8
-1.5

-1.4

-1.3

-1.2

-1.1

-1

-0.9

(e)h = 0:0024:

1 2 3 4 5 6 7 8
-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-1

-0.9

(f) h = 0:0006:

Figure 4.10: The results for the gradient descent approach that estimatesh and the corre-
spondingJ2(k) curves.

From these figures, same phenomenon was observed as in Figure 4.9.

k will be under-estimated (see Figure 4.9 for the comparison). In most cases, we can

easily determinek andh from the experimental results. For example, in the experiments,

the effect of data smoothing is somehow similar to increase of the number of samples.

According to the theorem in [76],J1(k�) < J1(k) if k < k�; andJ1(k�) = J1(k) if

k � k�: Figures 4.8-4.10 show the results of the gradient descent approach. From Figure

4.10, we can easily find the possiblek� is 3. From these figures, we obtain the optimal

h values, as 0.04814, 0.03413 and 0.03415, respectively, through the gradient descent

approach.

4.6 Summary

In this chapter, we first review the BYY learning theory scheme for data smoothing. For a

small set of samples, by combining the bootstrap technique with the EM algorithm, we ob-

80

CHAPTER 4. CLUSTER NUMBER SELECTION IN SMALL SAMPLE SET CASE

tain a relatively robust performance for determining the cluster number. The experimental

results, both with the bootstrap and with the SEM technique, show that the BYY-based

model selection algorithm performs quite well in cluster number determination provided

that the mixture model parameters are properly estimated.

The selection of the smoothing parameterh is a crucial problem. In this study, we

derive an estimating formula for the smoothing parameterh. Often with the estimated

h parameter, we can obtain a correct cluster number. Based on Kullback–Leibler diver-

gence, we derive the gradient descent approach for estimating the smoothing parame-

ter. The experiments indicate that the proposed approach works very well, and it is less

computation-intensive compared to the exhausted search methods.

In fact, under the circumstance of different models, different sample sizes, and dif-

ferent data distributions, the determination of an appropriate cluster number using the

Gaussian mixture model is very difficult. From our derivations and experiments, the

BYY-based model selection criterion can select a reasonable cluster number even in a

small set of samples.

81

Chapter 5

Ensemble Neural Networks

5.1 Introduction

For a given finite data set we usually train several neural networks with different archi-

tectures and different initial weights. Combining these neural networks together forms a

committee of networks, which is called ensemble neural networks. This approach gives

the advantage that prediction using the average of the committee gives a better general-

ization than the single network in the committee[85]. In the literature, it is a common

practice to form ensemble networks with two steps[86]. First, several individual networks

were generated by various methods. For example, we can use identical training data to

train networks with different architectures, with different initial conditions, or various

training algorithms [87, 85]. We can also use statistical techniques, such as bootstrap

and cross validation[26], to partition training data set, then use the partitioned data set to

train the networks. It is calledbagging predictorsif using bootstrap samples[88]. In the

application of neural networks to a classification problem, some authors pay particular

attention to this first step[89, 90, 91, 92, 93]. For the second step, we combine trained

networks together with proper weighting coefficients to form the ensemble networks. The

optimal ensemble averaging of the neural networks problem is also noted by some authors

[87, 94, 95, 96]. In this chapter, we show a more general case based on the mixture mod-

els, and address the practical implement problem encountered in averaging the ensemble

82

CHAPTER 5. ENSEMBLE NEURAL NETWORKS

networks in the parameter space.

The mixture model, or called mixture of experts (ME) [97] as well as its alternative

model [98], employs a modular network structure and applies the soft-max gating network

to control the individual network output. This approach will make the individual network

to become an expert at some local input region, and produce biased estimations in the

special input region. When the soft-max gating network is assumed irrelevant to input

variables, ME reduces to the ensemble neural networks model. This model will globally

optimize the ensemble networks instead of its separate steps. In this model, the weighting

coefficient is based on the probability of members in the ensemble networks. Under some

approximation, it reduces to the least-square-error-based weighting coefficient.

The relationship between mixture of experts and Combining Multiple Classifiers (CMC)

has been addressed in paper [87] and [94]. In recent years, there are some new develop-

ments in the ensemble nets [99]. In the following section, we show that the ME is a more

general model than the ensemble networks, and the result in paper [99] can be obtained

as a special case of the ME.

5.2 Relationship between ME and Ensemble Neural Net-
works

5.2.1 Review of Mixture of Experts

Here we briefly review mixture of experts (ME) [97].

The ME can be described using the following conditional probabilities of network

outputz on given inputx at parameter�:

p(zjx; �) =
KX
i

gi(x; �)p(zjx; �i): (5.1)

In network output is the real case,p(zjx; �i) = G(z; g(x;W i); �2i Idz) is Gaussian

density,

83

CHAPTER 5. ENSEMBLE NEURAL NETWORKS

G(z; g(x;Wi); �
2
i Idz) =

expf� 1

2�2
i

jjz� g(x;Wi)jj2g
[2�(�2i)]

dz=2
(5.2)

wherex 2 Rdx ; z 2 Rdz ; � consists of� andfWi; �
2
i gKi=1: The vectorg(x;Wi) is theith

expert network output. Thegi(x; �) is scalar soft-max function given by

gi(x; �) =
e�i(x;�)PK

j e�j(x;�)
(5.3)

In the above equation,f�i(x; �)gKi=1 are the outputs of the gating network.

In the alternative model of ME (called AME in the remaining text) [98], the soft-max

function and mixture density are

gi(x; �) =
�iP (xjvi)PK
j �jP (xjvj)

P (xjvj) = �j(vj)
�1bj(x) expfcj(vj)T tj(x)g (5.4)

whereP (xjvj)’s are density functions from the exponential family. The AME soft-

max function represents a more general case of the gating network.

When we assume that training data setD = fxi; zigNi=1 , the log likelihood function

for ME is,

L(�;K) =
X
x;z2D

ln p(zjx; �)

=

NX
i=1

lnf
KX
j

gj(xi; �)p(zijxi; �j)g (5.5)

The parameter� is estimated by the Maximum Likelihood(ML) learning method,

where the ML estimation of parameter� can be found using EM algorithm[57].

The idea of using a mixture model to address the ensemble nets problem can be traced

back early in [94]. At that time, the ensemble nets is called Combining Multiple Clas-

sifiers (CMC). Later in [98], as a special case of the ME, CMC was further discussed.

84

CHAPTER 5. ENSEMBLE NEURAL NETWORKS

Recently, some new results are presented in the ensemble nets study [99]. In the follow-

ing we will show that the obtained result in [99] is still a special case of the ME.

5.2.2 Ensemble Networks

When we simply assume that gating network outputs�i(x; �); i = 1; 2; � � � ;K; are con-

stants in the ME, Eq. (5.5) become,

L(�;K) =

NX
i=1

lnf
KX
j

gj(xi; �)p(zijxi; �j)g

=

NX
i=1

lnf
KX
j

�jp(zijxi; �j)g (5.6)

where�i’s are combining coefficients,�i � 0;
PK

i=1 �i = 1:

This equation represents the log likelihood for a distribution ofK mixture density

functions, or the so-called ensemble networks. Here we can see that the mixture model

naturally includes the ensemble nets, and the weighting parameter is a special case of the

soft-max network assumed to be constant. When the soft-max network is independent

of input variables, each network in the ensemble networks is effective in the whole input

region. The difference of each model in the ensemble networks may be caused by network

structures, initial conditions,et al. Especially, when the weighting coefficient�i equals

to 1=K, it becomes a simple average ensemble network.

We can rewrite Eq. (5.6) as

L(�;K) =

NX
i=1

lnf
KX
j

�jG(zi; g(xi;Wj); �
2
j)g (5.7)

As a special case of the ME, the EM-like algorithm can be used to find the maximum

likelihood solution for these specific parameters. This is shown as follows:

E-step: fix �oldi ; W old
i and (�2i)

old; and computeh(i; j) by

85

CHAPTER 5. ENSEMBLE NEURAL NETWORKS

h(i; j) =
�oldi G(zj ; g(xj;Wi); �

2
i)PK

l �oldl G(zj ; g(xj;Wl); �
2
l)

(5.8)

M-step: find new estimations of parameter�newi ;W new
i and (�2i)

new with :

�newi =
1

N

NX
j=1

h(i; j)

W new
i = maxL(Wi; (�

2
i)
old;K)

(�2i)
new = maxL(W old

i ; �2i ;K) (5.9)

For example, moving one step along the gradient descent direction, we get

W new
i = W old

i +
@L

@Wi

jWi=W
old
i

(5.10)

(�2i)
new = (�2i)

old +
@L

@(�2i)
j(�2i)=(�2i)old

where is a learning constant.

In this way, we can find network parameterWi and variances�2i ; as well as weighting

parameter�i by adaptive learning. This is global optimizing ensemble networks instead

of separate steps by using the ML estimation. Here we can see that ME is a more general

and powerful model than the ensemble networks. Even in a simple case of ME-based

model,(i.e, when network parameters are known or obtained by some other optimizing

algorithm, and only�i is learned [98]), we can also obtain the optimal weighting-average

parameter. Following we will discuss some approximation cases for the weighting param-

eter.

One of the approximation for the weighting parameter�i is a simple calculation with

obtained parameter values instead of an adaptive computation. Suppose we have obtained

every network parameters with the above EM-like algorithm or some other optimizing

algorithms, then�i2 can be obtained with the maximum likelihood estimation,

86

CHAPTER 5. ENSEMBLE NEURAL NETWORKS

�2i =
1

N

NX
j=1

[zj � g(xj;Wi)]
2 (5.11)

and let�oldi = 1=K: From Eqs. (5.8) and (5.9) we can obtain

�i =
1

N

NX
l=1

G(zl; g(xl;Wi); �
2
i)PK

j G(zl; g(xl;Wj); �
2
j)

(5.12)

=
1

N

NX
l=1

(�2i)
�dz=2 expf� 1

2�2
i

jjzl � gi;ljj2gPK

j (�
2
j)
�dz=2 expf� 1

2�2
j

jjzl � gj;ljj2g

This is another form of weighting combination parameter in the maximum likelihood

sense for the ensemble networks.

If network output is binary, for example, a two-class situation, we specifyp(zjx; �i) =

gzi (1 � gi)
1�z; z = f0; 1g: In this case, with�oldi = 1=K; �i becomes

�i =
1

N

NX
l=1

h(i; l)

=
1

N

NX
l=1

gzli (1� gi)
1�zlPK

j gzlj (1 � gj)1�zl
(5.13)

From this equation we can see that the dynamically weighted ensemble neural network

[99] is ME’s hard-cut approximation.

Now let us consider a special approximation for Eq. (5.7).

Suppose we have obtained the network parameters by using the above EM-like algo-

rithm or some other optimizations procedure. We substitute averaged network function

f(x;W) =
PK

i �ig(x;Wi) into Eq.(5.7) and regard variance the same in each model,

The Eq. (5.7) becomes

87

CHAPTER 5. ENSEMBLE NEURAL NETWORKS

L(�) =

NX
l=1

lnf
KX
i

�iG(zl; g(xl;Wi); �
2
i)

�
NX
l=1

lnf
KX
i

�iG(zl; f(xl;W); �2) (5.14)

� �
NX
l=1

[
1

2�2
(zl � f(xl;W))2 +

dz

2
ln�2]

When omitting some constants irrelevant to�; we have

E(�) =
1

2

NX
l=1

[zl �
KX
i

�ig(xl;Wi)]
2 (5.15)

This form represents the traditional ensemble networks with weighting coefficient�i:

Minimizing E(�) can obtain the corresponding optimal weighting parameter�i for aver-

aging in functional space which was directly obtained by [85]:

�i =

P
j(�i�j)

�1P
l

P
j(�l�j)

�1
(5.16)

Here we can see that the traditional ensemble network is just a special case of the

mixture model. However, the optimizing parameter algorithm is also presented in our

model. The algorithm provides us not only every network function parameter, but also

the ensemble weighting parameter.

The advantage of using the mixture-density-based model for ensemble networks is that

it gives a global consideration, which results the optimal combining networks. Since the

model includes the ordinary committee network, it also provides a better generalization

88

CHAPTER 5. ENSEMBLE NEURAL NETWORKS

than single network. In fact, the expectation output for this mixture model is:

z =

Z
zp(zjx; �)dz

=

Z
z

KX
i

�iG(z; g(x;Wi); �
2
i)dz

=

KX
i

�ig(x;Wi) (5.17)

This is the averaging ensemble networks. From the statistical point of view, it is

obvious that Gaussian mixtures can provide a more accurate model for estimating gener-

alization error than a single Gaussian.

Table 5.1: The ensemble network weighting parameter�i, �i and individual network�2i .

Networki 1 2 3 4 5 6 7 8

�2i (�10�3) 5.5437 5.5721 5.4374 5.7276 5.1445 5.5665 5.6398 5.3832
�i 0.0561 0.1926 0.2156 0.0484 0.3866 0.0249 0.0219 0.0534
�i 0.1245 0.1242 0.1257 0.1225 0.1291 0.1242 0.1234 0.1263

5.2.3 Experiments for Averaging in the Functional Space

In the experiments, we use the three-layer neural network architecture. That is,g(x;W) =

S(
P

W o
ijSj(

P
W h

jtxt)); whereS(�) is sigmoid activation function, andW = fW o
ij;W

h
jtg

stands for network hidden and output connecting weights. The target sample can be

viewed as being generated according to the signal-plus-noise model,

zi = h(xi) + �i: (5.18)

In our experiments, we constructh(x) = sin(x) cos(3x) + x=3 nonlinear function as

the underlying function. 30 training samples are uniformly chosen from this function,

and input region is restricted in0 � x � �; then scale this region to0 � x � 1: With

Gaussian noise added to the output, the target function isy(x) = sin(x) cos(3x)+x=3+�;

89

CHAPTER 5. ENSEMBLE NEURAL NETWORKS

where� is the noise with meanme = 0 and variance� =0.1. In addition, another 30 data

pairs are randomly generated with noise and used as test data.

We train the neural network with 10+i hidden neurons,i = 0; 1; :::;K, and the initial

weight values are randomly initialized in the range of[�1:5; 1:5]:Namely, the architecture

of each network is different from each other, and the connecting weight parameter is

different from each other also. In practice, in order to speed up the convergence, only

re-estimating values of�i periodically in the M-step of the adaptive algorithm is needed.

The weighting parameters are shown in Table 5.1. In Table 5.1, all parameters are

obtained based on the training data set.�i value is computed according to Eq. (5.16).

When errors are uncorrelated,�i�j ' 0 if i 6= j: �i will then become simple GEM

form[85],i.e.,

�i =
�i

�2P
j �j

�2
(5.19)

We can use maximum likelihood estimation for�i
2, regard 1

�2i
fzn � g(xn;Wi)g2 near

a constant, and consider the case ofdz = 2 in Eq. (5.12). Under this rough approximation,

we have

�i =
�i

�2P
j �j

�2
(5.20)

Which reduces into the form of a simple GEM.

Figure 5.1 displays the total test error vs. the network numberK: In Figure 5.1, the

sum-of-square errors are computed by using the test data set, which can be regarded as

an estimated generalization error. It is seen that the ensemble networks total test error

is small when using weighting parameter�i than using�i for most cases. This implies

that�i is somewhat optimal comparing with�i. Similar results are obtained for several

different data sets and for different network architectures.

90

CHAPTER 5. ENSEMBLE NEURAL NETWORKS

The experimental results demonstrate that with an adaptive learning, better ensemble

averaging parameters can also be obtained. The generalization error is less than using the

least-square error based on an averaging parameter.

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Figure 5.1: The scaled test errors vs. network numberK

The lines are for ensemble nets weighted by�i and�i, respectively. The
line with diamond is for�i, and the line with star is for�i

5.3 Averaging Connecting Weights

In the above experiments, we use different network structure to average ensemble net-

works. This can only be combined in the functional space. If we hope to make an ef-

ficient finite data usage, we can adopt some statistical resampling techniques, such as

jackknifing, bootstraps and cross-validation[26]. That is, using resample techniques, we

getm group data sets,D1; D2; ::: ; Dm, to train network, with corresponding param-

etersb�1; b�2; :::; b�m: Among these parameters if only one is chosen and the others are

discarded, the chosen network should have the best performance on the validation data

set. However, it may not be the one with the best approach to�� and it may not get the

best performance on new test data.

In real applications, if we fix the network architecture, the parameters in a feedforward

neural network take the form of connecting weights, which usually have many different

91

CHAPTER 5. ENSEMBLE NEURAL NETWORKS

local minima. Therefore, the simply averaging the weightscW1;cW2; :::;cWm cannot ex-

pect to improve the network performance. Thus, the method of combining the networks

usually lies in network functional space instead of in parameter space. For Generalized

Ensemble Method network function[85],gfav(x;W) is

gfav(x;W) �
mX
i=1

�igi(x;W) =

mX
i=1

�ig(x;cWi) (5.21)

This expression is for averaging in functional space, applying a linear combination of

trained networks. The advantage of the functional average is that networks with different

architectures can then be combined together. But the combined network requires storing

all trained network functions for ensemble purpose. While for averaging in parameter

space, we have,

W =

mX
i=1

�icWi; gpav(x;W) = g(x;W) (5.22)

Apparently the last network architecturegpav(x;W) is simpler thangfav(x;W). When

we make prediction using new data bygfav(x;W), we need to input new data to every

single network, and average all output data of these networks. While ingpav(x;W), be-

cause the obtained network is still in the original model space, we only need to store the

averaged weight parameter, and do not need to average all output of networks. From this

point of viewgpav(x;W) is superior togfav(x;W) both in memory requirement and in

recall speed.

5.3.1 Problems of Weights Average

There are two problems we should be dealt with weight average. One is how to get the

proper weights, and the other is how to combine these weights.

Let us first consider the proper weights problem. Because the Back Propagation as

well as other gradient decent algorithms sometimes fall into local minima, the value of

cW not only depends on training data, but also depends on initial starting value. Even

for the same data set, different starting values might result in differentcW; sometimes

92

CHAPTER 5. ENSEMBLE NEURAL NETWORKS

far away fromW: If we use the gradient decent algorithm to find the connecting weight

parameters, averaging the parameter cannot improve network performance. Figure 5.2 is

an example to illustrate the network connecting weight tracking in a training processing.

To our knowledge, so far ensemble network just averages in the functional space, and

no one has investigated and implement parameter average to get a good generalization

performance.

As for combining the weights, whenW =
Pm

i=1 �i
cWi is used, we have an error

function for finite data set

J =
1

2N

NX
i=1

jjzi � g(xi;W)jj2

=
1

2N

NX
i=1

jjzi � g(xi;
Xm

i=1
�icWi)jj2 (5.23)

In principle, we can determine the optimal ensemble coefficient�i by

�i = arg minJ(x;
Xm

j=1
�jcWj); with

mX
i=1

�i = 1

Becauseg(xi;
Pm

j=1 �j
cWj) usual takes a nonlinear form, it is impossible to get explicit

expression for�i, and we must seek some approximate solution for�i:

One special case is using linear approximation. When assuming square error of each

network is uncorrelated and zero mean, we can obtain Eq. (5.19),

�i =
��2iP
j �

�2
j

(5.24)

To focus the problem in the parameter space, in the following we use this average

weighting coefficient�i instead of�i

5.3.2 Solutions for Weights Average

As illustrated in Figure 5.2, there are many local minima in the parameter space. The

difficulty of making parameter average becomes practically notable in that the weight for

93

CHAPTER 5. ENSEMBLE NEURAL NETWORKS

W* W

W1

W2

W3

W4

W i

Wm

W

Weight Space

(a)

0 2.5 5 7.5 10 12.5 15

0.4

0.6

0.8

1

1.2

1.4

(b)

Figure 5.2: Weight space with local minima.

(a) The relation of weight average with generalization.W � stands for the
network trained with large scale data. WithW � the network has good gener-
alization ability. With finite data set trained network, the weight approaches
toWi: While regularizer forces weight approach tocW: With resample tech-
niques such as bootstrapping to train the network, we can get a set of weights
W1; W2; :::;Wm: Averaging these weights we get the average weightW to
approachW �. In this way we improve network generalization ability. (b)
The tracks of the weight vector when training network with BP algorithm.
Horizontal axis stand forjWhj; the length of hidden layer weight vector,
while the vertical axis isjWoj; the length of output layer weight vector.
Three lines represent the three times of training network using the same
data set, respectively. Each line represents that weight vector starting at
small values and ending at different point with others in the weight space.

each network is not around the same local minima. How to guarantee the weight in the

newly trained network is not far away from the other local minima? In our view, the

possible solution is to develop a special methodology so that as long as the data set does

not change a lot, the weights also does not change a lot. That is, to lock it at one minima.

Based on this idea, we developed a novel method called PIL to train the feedforward

neural network [100, 101]. This algorithm can find the global minimacW , which only

depend on the training data set. That is, as long as the training data is the same, the

weight will be the same. By using PIL, every time we take one group partitioned data

set to train the network, and get onecWi: The algorithm adopts in a batch way to train the

94

CHAPTER 5. ENSEMBLE NEURAL NETWORKS

0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

1.5

(a)

0 0.2 0.4 0.6 0.8 1
-0.5

0

0.5

1

1.5

(b)

Figure 5.3: The individual networks output and the ensemble network output with aver-
aged weight parameter.

(a) The individual networks output. Because in each CV training data set
there is only one data point different from others, the weight changes a little,
and output also changes a little. This illustrates that our method indeed locks
weights near one local minimum; (b) Dots represent training data, and the
solid line is the ensemble network output with averaged weight parameter.

network, and calculate the pseudoinverse of the hidden output matrix. The details of the

PIL algorithm will be presented in the next chapter. In the following section we would

explain our method through an example and show the experimental results of the weights

averaging ensemble network.

5.4 Experimental Illustration

One necessary condition to get good generalization is that the underlying function should

be, in some sense, smooth. In the experiments, we adopt thesin(x) cos(3x)+x=3 nonlin-

ear function as used in the last section, and one exponential function as training patterns.

Different from averaging in the above functional space experiments, leave-one-out

cross-validation method is now used to partition 30 training samples, and 30 group-

replicated training data sets, called CV samples, can be obtained. Each CV sample set

has one validation data pair and 29 training data pairs. Therefore 30 networks are ob-

95

CHAPTER 5. ENSEMBLE NEURAL NETWORKS

0

1

2

3

4

5

6

7

Figure 5.4: The output layer weights distribution of 30 networks.

tained with the CV training set.

We train the neural network with 29 hidden neuron numbers, which is equal to the

training sample number used in training the expected network. After input matrix is mul-

tiplied with hidden weight matrix, nonlinear sigmoid transformation is applied to produce

hidden output. The output layer weight is the multiplication of pseudoinverse of the hid-

den output and the desired output data.

In order to reduce the fluctuation of the connecting weight, we use fixed hidden

weights, This will not only reduce the complexity of the network, but also get good gen-

eralization. The hidden weight values are randomly initialized only once in the range of

[�0:5; 0:5].

We define the generalized error as the training error plus the test error. That is, for

leave-one-out cross-validation, the single network generalized error is mean square error;

GE =
1

2N
[

NX
i6=j

(zi � g(xi;W))2 + (zj � g(xj;W))2]

=
1

2N

NX
i

(zi � g(xi;W))2 (5.25)

For computingPAV , errors for averaging ensemble networks in parameter space,

g(x;W) uses Eq. (5.22) instead. For computingFAV , errors for averaging ensemble

networks in functional space,g(x;W) uses Eq. (5.21) instead.

The comparison of generalized errors are shown in Table 5.2. These results indicate

96

CHAPTER 5. ENSEMBLE NEURAL NETWORKS

0 1 2 3 4
-1.25

-1

-0.75

-0.5

-0.25

0

0.25

0.5

(a)

0 1 2 3 4

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

(b)

Figure 5.5: Experiment for exponential function mapping

(a) The 100 individual networks output. (b) Dots are training data, the light
gray line is the underlying function, and the dash line is the ensemble net-
work output with averaged weight parameter. The ensemble net output is
close to the underlying function.

Table 5.2: The networks Errors

Min Max Mean PAV FAV

GE 0.00384 0.00494 0.00391 0.00392 0.00389

that the performance of our model is near the same as functional averaging. The reason is

that we use partial linear approximation in our approach.

The individually trained network as well as the weight average ensemble networks

output are shown in Figure 5.3a and 5.3b. We can see that the generalization indeed

improves. Figure 5.4 is the distribution of output weights, in which we can easily see that

our method indeed locks at one local minimum. In considering only 30 training samples,

this is the best obtainable results based on a small training set.

Another example, using an exponential function, is shown in Figure 5.5.

The results demonstrate that our method not only can keep nonlinear mapping prop-

erties of neural networks, but also can realize the parameter space average. It is obvious

that the results are dependent on training data and validation data. For this training data

97

CHAPTER 5. ENSEMBLE NEURAL NETWORKS

set one may find a single network with minimal test error, but this is only for a particular

data set, while the ensemble networks approach is more general and robust.

5.5 Summary

In this chapter, we discuss the relationship between mixture of experts and the ensemble

networks. In a special case that soft-max function is independent of input variables, the

ME reduces to ensemble neural networks. With this approximation, it is a global opti-

mization of ensemble nets instead of individual members. Simultaneously, the weighting

average coefficient for ensemble nets can be obtained through the EM algorithm. Exper-

iments show that the ME is a more general and powerful model than ensemble networks

in parameter estimation with maximum likelihood learning.

In the average parameter space experiments, we use the cross-validation-based parti-

tion training data set to train neural networks. By using a learning methodology to avoid

networks problems falling into different local minima, we overcome the difficulty of av-

eraging ensemble networks in the parameter space. Experimental results show that the

adopted strategy is efficient in improving networks performance with finite training sam-

ples, and the ensemble network architecture is much simple than that in the functional

space.

98

Chapter 6

Pseudoinverse Learning Algorithm

6.1 Introduction

Multilayer feedforward neural networks have already been found to be successful for var-

ious supervised learning tasks. Both theoretical and empirical studies have shown that

the networks are of powerful capabilities for pattern classification and universal approx-

imation [21, 102, 103]. Several adaptive learning algorithms for multilayer feedforward

neural networks have recently been proposed [104, 45, 105, 106]. Most of these algo-

rithms are based on variations of the gradient descent algorithm, for example, Back Prop-

agation (BP) algorithm [104]. These algorithms usually have a poor convergence rate

and sometimes fall into local minima instead of global minima [107]. Convergence to

local minima can result from the insufficient number of hidden neurons as well as im-

proper initial weight settings. However, slow convergence rate is a common problem of

the gradient descent methods, including the BP algorithm. Various attempts have been

made to speed up learning, such as proper initialization of weights to avoid local minima,

and an adaptive least-square algorithm using the second order terms of error for weight

updating [108]. There is another drawback for most gradient descent algorithms, namely,

“learning factors problems”, such as learning rate and momentum constant. The values

of these parameters are often crucial for the success of the algorithm. Most gradient de-

scent methods depend on these parameters which have to be specified by the user, as no

99

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

theoretical basis for choosing them exists. Furthermore, for applications which require

high precision output, such as the prediction of chaotic time series, the known algorithms

are often too slow and inefficient. In some cases, for example, likestacked generalization

[109] which requires training a lot of networks to get level-1 training samples, it is very

computation-time consuming when applying BP algorithm to perform the required task.

Therefore, it is worthwhile to seek new algorithms which are suitable for the applications

that require high precision output, whereas the network structure is less important.

In order to reduce training time and investigate the generalization properties of learned

neural networks, this chapter presents aPseudoinverse Learning algorithm(PIL), which

is a feedforward-only algorithm. Learning errors are transferred forward and the network

architecture is established. The previously trained weights in the network are not changed.

Hence, the learning errors are minimized separately on each layer instead of globally for

the network as a whole. The learning accuracy is determined by the number of layer. By

adding layers to eliminate errors, all examples of a training set can be exactly learned.

From a mathematical computational point of view, the algorithm is based on generalized

linear algebraic method and employs matrix inner products and pseudoinverse operations.

6.2 The Network Structure and Learning Algorithm

6.2.1 The network Structure

Let us consider a multilayer feedforward neural network. The network has one input

layer, one output layer and several hidden layers. The first layer withn neurons is the

input layer including last neuron being a bias neuron of constant output. The last layer

with m neurons is the output layer. The number of hidden layers depends on the desired

learning accuracy and the used data set.

The weight matrixWl connects layerl and layerl + 1 with elementswl
i;j. Element

wl
i;j connects neuronsi of layer l with neuronsj of layerl + 1. Note that theW0 matrix

connects the input layer and the first hidden layer, whereas theWL matrix connects the

100

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

last hidden layer and the output layer. We assume only the input layer has the bias neu-

ron, while the hidden layer(s) and the output layer have no bias neuron. The nonlinear

activation function is denoted as�(�). For example, we can use the so-called sigmoidal

function,

�(x) =
1

1 + e�x
(6.1)

whose output is in the range of (0,1), or a hyperbolic function

�(x) = tanh(x) =
ex � e�x

ex + e�x
(6.2)

whose output is in the range of (-1,1) as an activation function.

Given a training data setD = fxi;oigNi=1; let (xi;oi) be theith input-output training

pair, wherexi = (x1; x2; : : : ; xn) 2 Rn is the input signal vector andoi = (o1; o2; : : : ; om) 2

Rm is the corresponding target output vector. For givenN sets of input–output vector

pairs as examples to be learned, we can summarize all given input vectors into a matrix

X0 with N rows andn+ 1 columns. Here the last column ofX0 is a bias neuron of con-

stant value�. Each row ofX0 contains the signals of one input vector. NoteX0 = [Xj�],

where matrixX consists of all signalxi as row vectors. All desired target output vectors

are summarized into a matrixO with N rows andm columns. Each row of the matrixO

contains the signals of one output vectoroi.

The described networks are of multilayer perception type: They first compute an inner

product of the incoming signals matrix with their respective weight matrix. Afterwards,

an activation function is applied, producing the output of the neuron which is sent to all

neurons of the following layer. In this designed network structure, the activation function

is not applied to the output layer, so the last layer is linear.

Basically, the task of training the network means trying to find the weight matrix

101

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

which minimizes the sum-square-error function,

E =
1

2N

NX
i=1

mX
j=1

jjgj(xi;�)�oj;ijj2; (6.3)

whereg(x;�) is a network mapping function and� is the network parameter set.�

includes connection weightW and a bias parameter. In a three-layer structure case,

gj(x;�) =

NX
i=1

wi;j�i(

nX
l=1

wi;lxl + �i): (6.4)

where�i is a bias value for the network input.

For simplifying, we can write the system error function in the matrix form,

E =
1

2N
Trace[(G�O)T (G�O)]: (6.5)

Propagating the given examples through the network, multiplying the output of layerl

with the weights between layersl andl+1, and applying the nonlinear activation function

to all matrix elements, we get:

Yl+1 = �(YlWl); (6.6)

and the network output should be

G = YLWL; (6.7)

where we use superscriptL to donate the last layer.

By examining the above equations and reformulating the task of training, the problem

becomes

minimizejjYLWL �Ojj2: (6.8)

This becomes a linear least-square problem. If we can find the network weight parameter

such thatjjYLWL �Ojj2 = 0, we will have trained the neural network to learn all given

examples exactly, that is, a perfect learning.

We focus our discussion on the last hidden layer now. For the sake of convenience, in

the remaining of the chapter we drop superscript indexL in Eq. (6.7).

102

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

6.2.2 Existence of the Solution

Now let us discuss the equation

YW = O; W 2 Rp�m; Y 2 RN�p; O 2 RN�m (6.9)

When p < N; the system is anunderdeterminedsystem. Notice that such a system either

has no solution or has an infinitive number of solutions.

If Y 2 RN�N is invertible and has been learned inL� 1 layer, then the system of Eq.

(6.9) is, in principle, easy to solve. The unique solution for the last layer weight matrix is

W = Y�1O. If Y is an arbitrary matrix inRN�p; then it becomes more difficult to solve

Eq. (6.9). There may be none, one or an infinite number of solutions depending on where

O 2 R(Y) space and whetherN� rank(Y) > 0.

One would like to be able to find a matrix (or some matrices)C, such that solution of

Eq. (6.9) are of the formCO. But if O =2 R(Y); then Eq. (6.9) has no solution.

In order to make our approach self-contained, we rewrite the relative linear algebra

theorem in the following. The corresponding proof is from the reference book [110].

Theorem 1: The systemYW = O has a solution if and only if

rank([Y;O]) = rank(Y): (6.10)

Proof: Let S denote the column space ofY, and letS� denote the column space of

[Y;O], thenYW = O has a solution if and only ifO is inS. ButO is inS if and only if

S andS� have the same dimension, i.e.,Y and [Y;O] have the same rank. (The rank of

a matrix is equals to the maximal number of independent rows or columns.)

6.2.3 Pseudoinverse Solution is the Best Approximation

We intend to use the pseudoinverse solution for finding weight matrices, as the theorem

from linear algebra states that pseudoinverse solution is the best approximation solution

103

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

for Eq. (6.9). It achieves a global minimum in the weight parameter space if the exact

solution is reached.

Theorem 2: Suppose thatX 2 Rp�m; A 2 RN�p; B 2 RN�m; then the best

approximate solution of the equationAX = B isX0 = A+B (we use superscript “+” to

denote the pseudoinverse form of a matrix).

Theorem 2 can be similarly derived from [110]). From the theorem 2 we get:

Corollary 1: The best approximate solution ofAX = I isX = A+:

Based on the above analysis, we try to find the output layer weight in the following

way. LetW = Y+O, the learning problem becomesjjYY+O�Ojj2 = 0, whereY+ is

the pseudoinverse ofY . This is equal to finding the matrixY so thatYY+�I = 0, where

I is the identity matrix. Now the task of training the network becomes that of managing

to raise the rank of matrixY up to a full rank. As soon asY becomes a full rank matrix,

YY+ will be equal to the identity matrixI. Note that since we multiplyY on the right

side byY+, it only requires the right inverse ofY to exist, andY+ is not necessary to

be a two-sided inverse ofY. This means thatY needs not be a square matrix, but its

number of columns should not be less than its number of rows. This condition requires

that hidden neuron numbers be greater than or equal toN . If the condition is satisfied, we

can find an exact solution for the weight matrix. In our network architecture design, we

set the hidden neuron number to be equal toN . With this network structure, we can find

the weight matrix which can exactly map to the training set.

6.2.4 The Pseudoinverse Learning Algorithm

According to the above discussion, we first let the weight matrixW0 be equal to(Y0)+

which is an(n + 1) � N matrix. Then we apply a nonlinear activation function, that is,

to computeY1 = �(Y0W0), then compute (Y1)+, the pseudoinverse ofY1, and so on.

Because the algorithm is feedforward only, no error will propagate back to the preceding

layer of the neural network, and we cannot use a standard error formE = 1
2N

Trace[(G�

104

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

O)
T
(G � O)] to judge whether the trained network has reached the desired accuracy

during the training procedure. Instead, we use the criterionjjYl � (Yl)+ � Ijj2 < E.

At each layer, we computejjYlYl+ � Ijj2. If it is less than the desired error, we set

WL = (YL)+O and stop the training procedure. Otherwise, letWl = (Yl)+, add

another layer, and feed forward previous layer output to the next layer again, until we

reach the required learning accuracy.

To use any nonlinear activation function in the hidden nodes is to utilize the nonlin-

earity of the function, and to increase the linear independency among the column (row)

vectors or, equivalently, the rank of the matrix. It is proven that sigmoid functions of a

hidden layer of the network can raise the dimension of the input space up to the number

of the hidden neurons [111]. So through a nonlinear activating action, the rank of the

transformed matrix will be raised layer by layer.

In this way, we get a feedforward-only algorithm which reduces learning error on

every layer. First we establish a two-layer neural network. If the given precision cannot

be reached, a third layer is added to eliminate the remaining error. If the third added

layer still cannot satisfy the desired accuracy, then another hidden layer is added again

to reduce the learning errors, so on and so forth until the required accuracy is achieved.

Mathematically, we can summarize the algorithm to the following steps:

Step 1. Set hidden neuron number asN; and letY0 = X0.

Step 2. Compute (Y0)+ =Pseudoinverse(Y0).

Step 3. ComputejjYl � (Yl)+ � Ijj2. If it is less than the given errorE, go to step 6.

If not, go on to the next step.

Step 4. LetWl = (Yl)+. Feed forward the result to the next layer, and compute

Yl+1 = �(YlWl).

Step 5. Compute (Yl+1)+ =Pseudoinverse(Yl+1), setl l + 1, and go to step 3.

Step 6. LetWL = (YL)+O.

Step 7. Stop training. The network mapping function isG = �(: : : �(�(Y0W0)W1) : : :)WL:

105

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

6.3 Adding and Deleting Samples

The proposed algorithm is a batch-way learning algorithm, in which we assume that all

the input signals are available at the time of training. However, in real-time applications,

as a new input vector is given to the network, the weight matrix must be updated. Or,

we need to delete a sample from the learned weight matrix. It is not efficient at all if we

recompute the pseudoinverse function of a new weight matrix in the PIL algorithm. When

we assign the hidden neuron number to be equal to the number of training samples, adding

or deleting samples is equivalent to adding or deleting hidden neuron number. Here we use

neuron addition or deletion algorithms to efficiently compute the pseudoinverse matrix.

According to Griville’s theorem [112], the firstk columns ofY matrix consist of a

submatrix, and the pseudoinverse function of this submatrix can be calculated from the

previous(k � 1)th pseudoinverse submatrix. That is,

Y+
k =

2
4 Y+

k�1(I� ykbT)

bT

3
5 (6.11)

where the vectoryk is thek�th column vector of the matrixY, while

b =

8><
>:

(I�Yk�1Y
+
k�1)yk; if jjI�Yk�1Y

+
k�1ykjj 6= 0

(Y
+

k�1
)TY

+

k�1
yk

1+jjY+

k�1
ykjj2

; otherwise.
(6.12)

It needs at mostN times iterative cycles to obtain the pseudoinverse function of a

matrix if there areN columns in this matrix. With this theorem, we can add the hidden

neurons relatively easy to calculate the pseudoinverse matrix.

When a hidden neuron is deleted, the matrix needs to be updated. It is not efficient

at all if we compute the pseudoinverse matrix from the beginning. Here we consider

using bordering algorithm[113] to compute the inverse of the matrix1. The formula for

1For some cases if the matrix is singular, we can add the same dimension gaussian noise matrix to
perturb the matrix. Because the noise is identical and independent distribution, the perturbed matrix will
have the inverse function with probability one.

106

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

the pseudoinverse matrix can be obtained also from a partitioned matrix multiplication.

Given the inverse of ak � k matrix, the method shows how to find the inverse of a

(k + 1) � (k + 1) matrix, which is the samek � k matrix with an additional row and an

additional column at its borders.

If the column vectorsyi inY is linearly independent to each other, then by definition,

Y+ = (YTY)�1YT : (6.13)

LetV = YTY; and we can calculateV�1
k+1 from the prior V�1

k without inverting a

matrix. The algorithm is

V�1
k+1 =

0
@ V�1

k + 1
�
vvT � 1

�
v

� 1

�
vT 1

�

1
A (6.14)

wherev = V�1
k Y

T
k yk+1; and� = vTkY

T
k yk+1.

When deleting a vector from the matrix, consider the original matrix containingk+1

vector pairs. The key step is to computeV�1
k from V�1

k+1: When the(k + 1)th pair is

deleted from the matrix, we rewriteV�1
k+1 as four partitions:

V�1
k+1 =

0
@ A b

bT c

1
A (6.15)

whereA is k�k; b is k�1; andc is a scalar. By comparing with Eq. (6.14), it is apparent

thatA = V�1
k + 1

�
vvT ; b = (1=�)v, andc = 1=�: From these expressions, we find that

the desired result is

V�1
k = A�1

c
bbT : (6.16)

The inverse of thek�k matrix can now be calculated from the (k+1)�(k+1) matrix.

This is equivalent to deleting the last hidden neuron and updating the weight matrix.

This algorithm is very effective in the case of leave-one-out cross-validation partition

training samples (CVPS). Because in each CVPS data set only one sample is different

107

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

0 1 2 3 4 5 6
Input

-1

-0.5

0

0.5

1

O
u

tp
u

t

*

*

*

*
* *

*

*

*

*

*

*

*

*
* *

*

*

*

*

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o
o

o

o

o o

o

o

o

o

o

o

o o

o

o

o
o

o

o

o

o
o

o

o

o
o

o

oo

o

o

o
o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

Figure 6.1: The trained network output fory = sin(x) function mapping problem.

Where the “�” stands for training data output, while “o” stands for test data.

from the total sample set. We can first compute the inverse of the matrix which is obtained

based on the full sample set, then at each time, move only one sample to the last column

position, and use the above algorithm to delete this sample. In this way we can obtain the

desired weight matrices on CVPS data sets efficiently.

6.4 Numerical Examples

6.4.1 Function Mapping Examples

The algorithm is tested with the following function mapping examples. The total learning

error is defined as in Eq. (6.3), while average learning error is:

RMSE =
1

N

1

m

vuut NX
j

mX
i

(gj;i � oj;i)2 (6.17)

whereoj;i andgj;i are the desired network output and the actual output, respectively.

Example 1. Consider a nonlinear mapping problem ofSine function by neural net-

works. For the training set, 50 input-output signals(xi; yi) pairs are generated with

108

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

0 0.5 1 1.5 2 2.5 3
Input

-0.5

0

0.5

1

1.5

O
u

tp
u

t

*

*
*

*

*

*

* *

*

*

*

*

* *

*

*

*
*

*

*
o

o

o
o

o

o

o

o
o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o

o

o
o

o

o
o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o
o

o

o

o
o

o

o

o

o

o

o
o

o

o

o

o
o

o o

o

oo

o

o

o
o

o

o

o

o

oo

o

o

o

o

o

o
o

o

Figure 6.2: The trained network output fory = sin(x)cos(x) + x=3 function mapping
problem.

Where the “�” stands for training data, while “o” stands for test data.

0 1 2 3 4 5 6
Input

-1.5

-1

-0.5

0

0.5

1

1.5

O
u

tp
u

t

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

o

o

o

o

o

o

o

o

o

oo

o

o

o

o

o

o
o

o

o

o
o

oo
o

o

o

o

o

o

o

oo

o

o

o

o
o

o

o

o

o

o

o

oo

o

o

o

o

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o
o

o

o

o

o

o

o
o

o

o
o

o

o

o

oo

Figure 6.3: The trained network output for function defined in Eq. (6.19).

With 20 learning examples trained network output. The “�” stands for train-
ing data, while “o” stands for test data.

109

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

0 1 2 3 4 5 6
Input

-1.5

-1

-0.5

0

0.5

1

1.5

O
u

tp
u

t

*

*

*

*

*

o

o
o

o
o

o

o
o

o

o

oo

o

o

o

o

o
o

o

o

o

oo

o o

oo

o

o

o
o

o

o
o

o

oo

o

o

o

o

o

o

o

o

o

o

o o
o

o

o

o

o

o

o

o ooo

o
o

o

o

o

o

o

o

o

o

o

o

oo

o

o
o

o

o

o
o

o

o

o

o

o
o

o

o

o

o

o

o
o

o

o

o
o

o

o

Figure 6.4: The trained network output for function defined in Eq. (6.19).

With only 5 learning examples trained network output. The “�” stands for
training data, while “o” stands for test data.

xi = 2� � i=49, for i = 0; 1; 2; � � � ; 49, and the correspondingyi’s are computed us-

ing yi = sin(xi). The given learning error isE = 10�7. If the learning error isE < 10�7,

we regard that perfect learning has been reached. For this problem, input neuron number

is n + 1 = 2 including the bias one, output neuron ism = 1, and hidden layer neuron

number isN = 50. After using the pseudoinverse learning algorithm proposed above,

we reach the perfect learning when two hidden layers are added. The trained network

altogether has four layers including input and output layers. The actual learning error is

E = 7:533 � 10�18.

Example 2.This is the nonlinear mapping of eight input quantitiesxi into three output

quantitiesyi problem, defined by Biegler-K¨onig and Bärmann in [114]:

y1 = (x1 � x2 + x3 � x4 + x5 � x6 + x7 � x8)=4:0

y2 = (x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8)=8:0 (6.18)

y3 = (1 � y1)
0:5

110

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

Table 6.1: Generalization ability test results. Given training error is10�7.
Input range N Test SetN1 GeneralizedE GeneralizedRMSE Max deviation

Example 1 0–2� 20 100 0.00049 0.00031 0.0121
Example 2 0–1 20 100 0.23481 0.00228 0.1838
Example 3 0–� 20 100 0.00452 0.00095 0.0899

Table 6.2: Generalization ability comparison of two examples.
Input range N Test SetN1 GeneralizedE GeneralizedRMSE Max deviation

Example 1 0–2� 5 100 0.47846 0.00971 0.16118
50 100 2:439 � 10

�9
0:9843 � 10

�7
2:5148 � 10

�5

Example 4 0–2� 5 100 5.00536 0.03164 0.56247
50 100 0.41345 0.00455 0.21708

All three functions are defined for values between 0 and 1 and they produce values in

this range. For the training set, 50 sets of input signalsxi are randomly generated in the

range of 0 to 1, and the correspondingyi’s are computed using the above equation. The

desired learning error we require isE = 1:0 � 10�7. When training is finished, only one

hidden layer is added, and the actual learning error isE = 3:573�10�25 for this problem.

Example 3.Another functional mapping problem isy = sin(x)cos(3x) + x=3. Sim-

ilar to Example 1, we use 50 examples withxi in the region of 0 to� to train the network.

Perfect learning is reached after two hidden layers are added. Actual learning error is

E = 4:734 � 10�17.

6.4.2 Generalization

We also tested the generalization ability of trained networks to forecast function values

of examples not belonging to the training set. ForSine functional mapping, we train

the network using 20 examples withxi = 2� � i=19, for i = 0; 1; 2; � � � ; 19, and the

correspondingyi computed usingyi = sin(xi). After the network is trained,N1 =

100 input signalsxi’s are randomly generated within the range of 0 to2� for testing

the network, and the correspondingyi’s are computed using the trained network. Figure

6.1 shows the result, which is reasonably good. We have also tested Examples 2 and 3

with 20 examples training network and using 100 randomly generated input signals for

testing. The results are shown in the Table 6.1 and Figure 6.2. In the tables of this chapter,

111

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

Max deviation is defined as the maximum value of the difference between real network

output values and the desired values. Namely, Max deviation =maximumjgj;i� oj;ij, for

i = 1; 2; � � �m andj = 1; 2; � � � ; N1.

From Table 6.1, we see thatSine function mapping problem has the least generalized

errors. For further investigating the proposed network architecture and learning algo-

rithm’s response to unlearned data, we present the following example.

Example 4. A Sine-like piecewise linear function is defined by:

y =

8>>>><
>>>>:

x; if 0 � x < �=2;

� � x; if �=2 � x < 3�=2;

x� 2�; if 3�=2 � x � 2�:

(6.19)

First, 20 examples withxi = 2� � i=19, for i = 0; 1; 2; � � � ; 19, and the corresponding

yi’s computed based on the above equation are used to train the network. Then 100 input

signals randomly generated in the range of 0 to2� are used to test the trained network.

The result is shown in Figure 6.3.

When using five set examplesf(0; 0); (�=2; 1); (�; 0); (3�=2;�1); (2�; 0)g to train the

network, we get a network structure which has one hidden layer with five hidden neurons.

The learning error isE = 3:314�10�26. Afterward, 100 sets of input signalsxi randomly

generated within the range of 0 to2� are applied to test the network. The result is shown

in Figure 6.4. From Figure 6.4, it can be seen that the network acts like aSine function.

It should be reminded that the architecture and weight matrices are the same for Example

1 and Example 4 when using the above five examples. This result shows that the network

forecast ability is better for smooth function when the data are in the range of training

input space. When 50 examples withxi = 2� � i=49, for i = 0; 1; 2; � � � ; 49, and the

correspondingyi computed with corresponding equation are used to train the network,

100 randomly-generated input signals in the range of 0 to2� are applied to test the trained

network, and the results are shown in Table 6.2. In Example 1 and Example 4, onlyWL

112

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

matrix is different, and the other matrices are the same whereas 50 set examples are used to

train the network. But the network’s response to the same input matrix is totally different.

One point that needs to be mentioned is that the computation accuracy is machine-

dependent due to recision of internal data representation. Furthermore, randomly-generated

test data may vary when re-computed. Therefore, only the order of magnitude of the

learning error is of practical interest.

6.5 Stacked Generalization

As we know, one of the important purpose to train a neural network is for generalization.

When training samples set is small and deteriorates by random noise, the network is

sometimes overtrained and becomes fitted to the noise, while overfitting the noisy data

will degrade the prediction accuracy of the network.

The method ofstacked generalization[109] provides a way of combining trained net-

works together, engaging partitioning of the data set to find an overall system with im-

proved generalization performance. The idea is to train the level-0 networks first and then

examine their behavior when generalizing. This provides a new training set for training

the level-1 network.

The specific procedure for setting up the stacked generalization system is as follows.

Let the complete set of available data be denoted byD. We first leave aside a single data

point fromD as a validation point, and treat the remainder ofD as a training set. All

level-0 networks are then trained by the training partition and their outputs are measured

using the validation data point. This generates a single pattern for a new data set which

will be used to train the level-1 network. The inputs of this pattern consist of the outputs

of all the level-0 networks, and the target value is the corresponding target value from

the original full data set. This process is repeated with a different choice for the data

point which is kept aside. After cycling through the full data set ofN points we haveN

patterns in the new data set, which is now used to train the level-1 network. Finally, all

113

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

of the level-0 networks are re-trained using the full data setD. Predictions on new data

can now be made by presenting new input vector to the level-0 networks and taking their

outputs as the inputs to the level-1 network, whose output constitutes the predicted output.

Mathematical expression is as the following for CVPS of stacked generalization.

Given a training data setD = fxi;oigNi=1, we randomly partition the data intoK almost-

equal subsetDs1;Ds2; � � � ;DsK . DefineDsj andDs(�j) = D�Dsj to be the validation

and training sets for thejth fold of aK-fold cross-validation. These are called level-0

models. Especially, ifK = N , the validation set only has one sample, while training set

containsN � 1 samples. This is called leave-one-out cross-validation.

Let zi denote the validation output of the modelMj on xi. At the end of the entire

cross-validation process, the data set assembled from the outputs of the models is

Dcv = fzi;oigNi=1: (6.20)

This is the level-1 data set used to train level-1 model. To complete the training process,

the final level-0 model is derived using all the data inD.

The experiments show that with smooth function or piecewise smooth function, the

trained network generalization performance is good with stacked generalization. The

examples also illustrate that generalization can be expected when the underlying function

is sufficiently smooth. However, for noisy data, if the network is overtrained (overfitting

to noise), the generalization will be poor. Using stacked generalization can not improve

the network performance when overtrained networks are engaged. The reason is that the

overtrained network is biased to particular training samples; therefore, forecasting the

values which are not in the training set will be far away from the expected values.

In order to investigate the properties of the stacked generalization technique in noisy

data case, we adopt real world data sets in further experiments. The data sets are Sys1 and

Sys3 software failure data applied for software reliability growth modelling in [47].

114

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

0 0.2 0.4 0.6 0.8 1
Execution Time

0

0.2

0.4

0.6

0.8

1

N
u

m
b

e
r

o
f

fa
ilu

re
s

*

*
*

*

*

*

*

*
*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

o
o

o

o

o
o

o

o

o

o

o

o

o

o

o

o

Figure 6.5: The neural network model trained with software reliability Sys1 data set (nor-
malized).

Solid line is original data, “�” stands for training data samples, while “o”
stands for test data samples. Because of overfitting the training samples, the
network generalization is poor.

Sys1 data set contains 54 data pairs. In the experiment, we partition the data into two

parts: training set and test set. The training set consists of 37 samples which are randomly

drawn from the original data set. The remaining 17 samples consist the test set. The

data set are normalized to the range of [0,1]. Normalizing is a standard procedure for

data preprocessing. In this problem, the network input is normalized successive failure

occurrence times, and the network output is the accumulated failure number. During

training, each input samplext at timet is associated with the corresponding output value

ot at the same timet. This kind of training is called generalization training [115].

Figure 6.5 shows the experimental result for software reliability growth modelling

trained by using data set Sys1, which is one of the level-0 network output. Figure 6.6

shows the stacked generalization output for Sys1 data set. Because of overfitting the

training samples, the level-0 output strays away. These samples are not in level-1 training

115

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

0 0.2 0.4 0.6 0.8 1
Execution Time

0

0.2

0.4

0.6

0.8

1

N
u

m
b

e
r

o
f

fa
ilu

re
s

oo
o

o
o

oo o
o

o
o

o

o

o

o

o

+

++

+

+

+

+ +

++

+
+

+

+

+ +

Figure 6.6: The stacked generalization output for Sys1 data set (normalized).

Solid line is the original data, “o” stands for test data output of level-0 neural
network, while “+” stands for test data output of level-1 network output. The
results are also poor.

data either, and the level-1 network outputs are further away from the desired values. The

generalization ability is not improved by stacked generalization because of overfitting to

the noise. Here we can see that when overfitting to the noise occurs, stacked generaliza-

tion is not a suitable technique for improving network generalization performance. Poor

generalization ability is not what we expected, so we should seek for the methods that can

avoid the overfitting in noisy data cases.

As we have mentioned early in this chapter, PIL algorithm is eliminating learning

errors layer by layer. For the generalization problem, we do not expect to realize the

perfect learning. Therefore, we may adopt the strategy like early stopping to employ a

three-layer neural network structure.

Figure 6.7 shows the experimental result by adopting three-layer structure trained with

data set Sys1, which is one of the level-0 network output. To avoid overfitting, the training

116

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

0 0.2 0.4 0.6 0.8 1
Execution Time

0

0.2

0.4

0.6

0.8

1

N
u

m
b

e
r

o
f

fa
ilu

re
s

*
*
**

*
**

**

*
*

*

*

**** *
**

* *

Figure 6.7: The three-layer network trained with software reliability Sys1 data set (nor-
malized).

Solid line is the original data and “�” stands for training data samples. Train-
ing accuracy is not very high and overfitting is avoided.

error is not small, and the network outputs for training samples are not completely fitting

the target values. Compared with perfect leaning error which is2:3 � 10�9, the training

error is now0:0034. This introduces the bias to the training samples, and the output tend

to be a smooth curve.

Figure 6.8 shows the stacked generalization output for Sys1 data set. In this case, with

stacked generalization, the total sum-of-square test error is0:0152. While without stacked

generalization, the total sum-of-square test error is0:0434. Therefore, generalization abil-

ity is improved by stacked generalization.

Another data set is Sys3. In this data set, altogether there are 278 data pairs. In the

experiment, we partition the data into a training set and a test set. The number of training

data is about2=3 of the total data number, consisting of randomly drawn 186 samples

from the original data set. The remaining 92 samples form the test set.

117

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

0 0.2 0.4 0.6 0.8 1
Execution Time

0

0.2

0.4

0.6

0.8

1

N
u

m
b

e
r

o
f

fa
ilu

re
s

oo
o
o
o
oo

ooo
o

oo

o

o

o

++
+
+
++
+
+++
+

++

+

+

+

Figure 6.8: The stacked generalization output for Sys1 data set (normalized).

Solid line is the original data, “o” stands for test data output of level-0 neural
network, while “+” stands for test data output of level-1 network output.
Generalization is improved at the cost of introducing training bias.

If we assign the training error as10�7, after two hidden layers are added, the final

training error reaches the order of10�14. But with this trained network, the test error

(20.329) is large. Figure 6.9 shows the results.

Now we still use leave-one-out CVPS to train level-0 neural networks for stacked

generalization. At this time, the three-layer network structure is adopted. For individual

network, the training error is about 0.0442, while the test error is 0.0221. Figure 6.10

shows the individual network training output, while Figure 6.11 is for stacked generaliza-

tion results.

From these real-world experimental results, we can see that it is at the cost of in-

troducing the bias (training error) to reduce the variance (generalization error) [8]. For

most generalization problems the stacked generalization can be expected to reduce the

generalization error rate. For example, in the Sys1 experiment, the test error is 0.0434

118

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

Table 6.3: Training error and generalization error for software reliability growth model
data set

Data Set Sys1 Sys3
Training number 37 186
Test number 17 92
Individual net (4-layers) Training error 3.49�10�4 1.47�10�14

Test error 58.003 20.329
Individual net (3-layers) Training error 0.0181 0.0442

Test error 0.0434 0.0215
Stacked (level-1) Test error 0.0152 0.0221

without stacked generalization, while the test error reduces to 0.0152 with stacked gener-

alization. However, for some particular data set such as Sys3, stacked generalization dose

not show significant improvement (test error is reduced from 0.0221 to 0.0215), but the

computation time is dramatically increased. The results are summarized in Table 6.3.

For a large-scale data set, one of the well-known techniques isdivide-and-conquer

method. That is, partition the data set into subsets, so as to reduce the individual network

size. We can also use other methods such as ensemble networks [85] to improve the

network performance and then apply weight parameter average to reduce the network size

[116]. For example, we can employk-fold CVPS to train neural networks. As presented

in the previous chapter, the ensemble neural network size is reduced by averaging in

parameter space.

6.6 Discussions on PIL Features

In this section, we discuss the characteristics of the proposed Pseudoinverse learning al-

gorithm.

On examining the algorithm, it can be seen that we do not need to consider the question

of how the weight matrix should be initialized to avoid local minima. We just feed forward

examples to get a weight matrix and its solution. The algorithm will not converge to a local

minima because the pseudoinverse solution achieves a global minima. This is different

119

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

0 0.2 0.4 0.6 0.8 1
Execution Time

0

0.2

0.4

0.6

0.8

1

N
u

m
b

e
r

o
f

fa
ilu

re
s

*

*
*

*
*

*
*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*
**

*

*

*
*

*

*
**

*

*

*
*

*

*

*

*

*

*

**

*
*

**
*

*

*

*

**

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

**

* *

*

*

*

*
*

*

*

**

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*
*

*

*

*

*

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

**

*

*

*

*

*
*

*

* *
*
*

*

o

ooo

o
o

o
o

o
oo

ooo

o
o
o

o
o
o

o

o
o

o

o

o

o

o

o

o

o

o

o

oo

o

oo
o

o

o

oo

o
o
o
o

o

o

o
o

o

o

o
o

o
o
o

o
o

o

o

o

o
o

o

oo

o
o

o
o

o

o
o

o

o

o

o

o

o

o

oo o

o

o
o

o

o
o
o

Figure 6.9: The network output for Sys3 data set (normalized).

Solid line is the original data and “o” stands for test data output. Because of
overfitting the training samples, the network generalization is poor.

from the BP algorithm.

Furthermore, in PIL, the output layer is a linear layer. The resulting advantages are

two-fold. First advantage is that the output values are not restricted to the region between

-1 and +1. They can be any finite values. Second, we do not need to calculate the inverse

of the activation function. It does not need to be a invertible activation function. In

this aspect, the PIL is different from either the BP algorithm or other gradient descent

algorithms.

As a comparison, the BP algorithm requires user-selected parameters, such as step size

or momentum constant. These parameters have an effect on the learning speed. There is

no theoretical basis which guides us how to select these parameters to speed up learning.

In PIL, on the other hand, such a problem does not exist.

Another important feature of the algorithm is that desired output matrixT is embed-

ded in the weight matrixWL which connects last hidden layer and output layer. This

120

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

0 0.2 0.4 0.6 0.8 1
Execution Time

0

0.2

0.4

0.6

0.8

1

N
u

m
b

e
r

o
f

fa
ilu

re
s

**

*** **** ****

Figure 6.10: The three layer network model trained with software reliability Sys3 data
set(normalized).

Solid line is the original data and “�” stands for training data samples. Train-
ing accuracy is not very high and overfitting is avoided.

gives us a very easy and fast way to get the weight matrix for different target output, as

long as input matrix is the same. For example, after we have trained the network to learn-

ing Sine function mapping in the region from 0 to2�, we only need recalculate theWL,

in order to getCosine function mapping problem in the same region withSinefunction.

On the other hand, for BP algorithm, it is necessary to train whole network again to get all

weight matrices forCosine function mapping though input matrix is the same withSine

function.

It can also be seen that the training procedure is in fact the processing of raising the

rank of the weight matrix. When a matrix of some hidden layer output becomes full rank,

the right inverse of the matrix can be obtained, thus completing the training procedure.

From this learning procedure, it is obvious that no differentiable activation function is

needed. We only require that the activation function can perform nonlinear transform to

121

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

0 0.2 0.4 0.6 0.8 1
Execution Time

0

0.2

0.4

0.6

0.8

1

N
u

m
b

e
r

o
f

fa
ilu

re
s

oooooooooooooo ooooo
oooo

oooooo
ooo

ooooo
oooo

ooo
ooooooo

oooo
oooo

oooo
ooooooo

oo
ooooooo ooooo o oooo

oo

+++++++++++
+++

+++++
++
+++++
+++++
+++++
+++++
+++
+++++
+++++
+
++++
++++
+++
+++
+ +

+
+++++++

+++++ +
++++

++

Figure 6.11: The stacked generalization output for Sys3 data set (normalized).

Solid line is the original data, and “o” stands for test data output of level-
0 neural network, while “+” stands for test data output of level-1 network
output. Generalization is improved at the cost of introducing training bias.

raise the rank of the weight matrix. Nevertheless, a sigmoidal-like nonlinear function is

used in this chapter since its transformation has been proven to be capable of raising the

rank of a matrix [111].

Because the PIL algorithm is based on the nonlinear function transformation to raise

the matrix rank, it will fail if there two or more input vectors are identical in the input

matrix. But this case can be eliminated through preprocessing input patterns. The previ-

ously proposed algorithm [100] can perform perfect learning with the fast learning speed

for some problems. When the rankr of the input matrix is approximately equal to the

number of input training patternsN , it is easy to reach perfect learning without further

training. Whenr � N , it can give good estimated initial weight matrix, but it is still

necessary to adopt some training algorithm in order to reach high learning accuracy. The

PIL algorithm developed in this chapter improves this drawback.

122

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

Another characteristics is that if the input matrix has rankN then a right inverse ex-

ists, and we will get a linear network with only two layers. If we give learning error

E = 1:0� 10�7 to Example 1, and whenN is greater than 2 and less than 10, it is neces-

sary to add one hidden layer in order to reach the learning accuracy. IfN is greater than

10, it is necessary to add two hidden layers. In Example 2, whenN is less than 10, we

will get a linear network with input and output layer only. The situation of Example 3 is

the same as in Example 1 because the input matrices have the same rank. For most prob-

lems, with two hidden layers, the network can reach the required high learning accuracy.

From the above examples, we see that the network layer number is not only dependent

on learning accuracy, but also on the data to be learned. One thing we should address is

that after the nonlinear transformation, the degree of rank change is data dependent. It

is a more difficult problem to formulate a universal theory to determine how many layers

are needed for the perfect learning. To reduce the network complexity, if we add a same

dimension gaussian noise matrix to perturb the transformed matrix in step 4 of the PIL

algorithm, the perturbed matrix will have the inverse with probability one because the

noise is an identical and independent distribution. In such a strategy, we can constrain the

hidden layers to at most two to reach the perfect learning. However, the trained network

generalization will be degraded with noisy data set. In fact, high learning accuracy is not

needed for some real-world tasks.

We have not compared the overall performance of this algorithm with other gradient

descent algorithms. Obviously, the number of iterations is not a valid metric considering

the fact that the calculation complexity per iteration is not the same for any of the algo-

rithms. However, if we consider the CPU time cost on training network to reach the same

high learning accuracy using the same machine, the PIL algorithm is much faster than

other gradient descent algorithms in its learning speed. For example, we use the same

machine (Sun Ultra 5/270 workstation) and the same software environment (Mathematica

software) to train one neural network with the data Sys3 to reach the learning accuracy as

123

CHAPTER 6. PSEUDOINVERSE LEARNING ALGORITHM

high as10�14, it takes less than 7.8 seconds (including display time) when using the PIL

algorithm. As a contrast, it requires more than 10 hours of computation time when using

the BP algorithm to reach the same results.

6.7 Summary

The pseudoinverse learning algorithm was introduced in this chapter. The algorithm is

more effective than the standard BP and other gradient descent algorithms for most prob-

lems. The algorithm does not contain any user-dependent parameters whose values are

crucial for the success of the algorithm. This algorithm is especially suitable for func-

tional mapping and pattern recognition problems. When considering its learning speed

and accuracy, the PIL algorithm is most competitive to other gradient descent algorithms

in real-time or near real-time applications for practical use. The algorithm is tested on

case studies with the stacked generalization applications to software reliability growth

modelling data. The fast learning property of the PIL algorithm makes it possible for us

to investigate the computation-intensive generalization techniques more efficiently.

124

Chapter 7

Application: Automatic Image
Segmentation

7.1 Introduction

Image segmentation is an important aspect of computer vision. The goal of it is to parti-

tion a given image into some regions corresponding to different objects or the background.

Also, it is a basic step for high-level image understanding and interpretation. There are

a wide variety of image segmentation techniques [117], among which feature space clus-

tering is one of the most popular methods. Pixels of the same segment can usually be

characterized by certain features. These features are quantified into feature variables so

that pixels of the same segment essentially have similar values of the feature variables,

and pixels of different segments have dissimilar values. Then image segmentation can

be performed by clustering the feature space and mapping each point back to the spatial

pixel.

Among various clustering techniques like the well knownk-mean algorithm, com-

petitive learning, etc, the finite mixture of densities, in particular mixture of Gaussian

model, has been widely used in many practical situations. The maximum likelihood ap-

proach has been utilized extensively to the fitting of finite mixture models [62, 58]. This

approach has attracted considerable interest in the image segmentation field in recent

years [118, 119, 120].

125

CHAPTER 7. APPLICATION: AUTOMATIC IMAGE SEGMENTATION

In paper [118, 119, 120], the authors use color or grey level feature space, or Gauss-

Markov random field in image domain. And by assuming data points are generated from

a finite mixture distribution, they estimate the probability density using EM algorithm

or Generalized EM algorithm with pre-assigned cluster number in feature space. With

the learned probability density function, Bayesian pixel classification method was used to

produce the image segmentation in paper [120].

In fact, in the feature space clustering method to image segmentation, the number of

segment to be yield can be considered as the number of cluster,k, in the feature space. In

the clustering methods mentioned above,k has to be specified in advance. Ifk is correctly

selected, good clustering result can be yielded, otherwise, data points cannot be grouped

into appropriate clusters and image segmentation cannot be performed appropriately. To

determine a reasonable region number is one of difficult things in machine learning. This

problem affects the ability to automatically interpret images by a machine, which has

been one of the major challenges in computer vision. In the past, most of the work use

pre-assigned number of regions or heuristics to determine the number of regions.

In this chapter, we report that apply BYY model selection criterion to determine region

number to perform automatic image segmentation. The algorithm we used in clustering

is the EM algorithm on finite mixture model.

Apparently, the distribution of clusters depend on the color space selection, there-

fore determined region number is variable for different color space. The influence of the

color space selection on region number determination also experimentally explored in this

chapter.

7.2 Background

The application of finite mixture model to image segmentation is based on the assumption

that the value of each data point in feature space for given image, e.g., grey-level or color,

can be considered as a sample arising from a finite mixture density distribution.

126

CHAPTER 7. APPLICATION: AUTOMATIC IMAGE SEGMENTATION

7.2.1 Clustering using Finite Mixture Model

When an image was given, supposing the image hasN pixels, we usexi to denote the

observation at theith pixel. The total samples in the image form a data setD = fxigNi=1;

and assuming thatxi is a sample from a finite mixture distribution.

The most used finite mixture distribution is Gaussian, in this work we will adopt Gaus-

sian finite mixture model with EM algorithm without loss generality. The mathematical

expression of equations that describes the mixture model joint probability density of sys-

tem is shown in Chapter 3 Eq.(3.1)-(3.2).

7.2.2 Model Selection Criterion

There exist some information theoretical criteria which can be used to select the number

of models, such as AIC [81], AICB [82], CAIC [83], SIC [84]. In this work, we adopt

BYY model selection criterion.

The BYY model selection criteria are shown as Eqs. (4.7) and (4.9) in Chapter 4.

With the model selection functionJ(k;�);we can select the region numberk� simply

by k� = arg mink J(k;�
�) with MLE obtained��. In practice, we usually start with

k = 1, estimating parameter��, computingJ(k = 1;��). Thenk ! k + 1, computing

J(k = 2;��) and so on. After getting a series ofJ(k;��), we choose the minimal one

and get correspondingk�. This k� is assumed as the region number an image should be

segmented.

7.2.3 Bayesian Probabilistic Classification

When an image withN pixels was given, we usexi to represent random feature vector

in feature space for pixeli: For example, in RGB color space,xi = fRi; Gi; Big is three

dimensional vector, the component ofxi stands for Red, Green, Blue color value of pixel

i of an image respectively, wherei = 1; 2; � � � ; N: These vectors can be regarded as iden-

tical independent distribution. After we gotk� with BYY criterion and the mixture model

127

CHAPTER 7. APPLICATION: AUTOMATIC IMAGE SEGMENTATION

parameter�� with EM algorithm, we can calculatea posteriorprobability of samplexi

belong to regiony: From Bayesian rule, The posterior probability is expressed as Eq.

(3.3).

For givenxi; we can obtaink probabilityP (y = 1jxi), P (y = 2jxi), � � � , P (y =

kjxi), now use the Bayesian decision to classify pixeli into regiony by the solution of:

if y� = argmaxyP (yjxi); for y = 1; 2; � � � ; k; pixel i will be classified to regiony�:

Therefore, the finite mixture model image segmentation is actually a pixel classification

procedure.

7.3 Application to Image Segmentation

In practice, we have noprior knowledge about how many regions should be segmented

when an image is presented. If we use a machine to perform automatic image segmenta-

tion, this is the first problem we should attack. As mentioned before, at here we assume

that the region number in image domain is equal to cluster number in feature space. With

this assumption, we can use BYY model selection criterion to determine the region num-

ber, it can be considered as how to comprehend the structure for the given image by BYY

machine.

Roughly speaking, It takes two mainly steps to perform the automatic image segmen-

tation. First we need to decide how many region there should be, this step is done by

searchingJ2(k;�) function, find its minima and correspondingk�: The second step is

using Bayesian decision to classify the image pixels intok� non-overlapped regions.

We can summarize the processing into following steps:

Step (1) Selecting feature space of an image. In the beginning, we choose 3-dimensional

RGB color vector of the pixels as feature variables. (If a grey-level image was given, the

intensity space will be feature space.) Features on spatial relations of the pixels should

be added in further work. For am � n pixel image, theN = m� n RGB vectors of the

pixels are input as data points in the feature space for clustering.

128

CHAPTER 7. APPLICATION: AUTOMATIC IMAGE SEGMENTATION

(a) (b)

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

J2

(c)

(d) (e) (f)

(g) (h)

Figure 7.1: “House” image.

(a) original image, 128�128 pixels; (b) feature space data distribution; (c)
J2 � k curve; (d) 2-region segmented image. (e) 3-region segmented im-
age. (f) 5-region segmented image. (g) 9-region segmented image. (h)
12-region segmented image. Each region is represented by its mean vec-
tor color. 3-region and 9-region segmentation are the possible selections by
BYY criterion.

129

CHAPTER 7. APPLICATION: AUTOMATIC IMAGE SEGMENTATION

Step (2) Estimating the mixture model parameters with EM algorithm based on fea-

ture space data set. Then the parameter learning for eachk and the determination ofk�

according to the model selection criterion mentioned in Chapter 4 is run.

Step (3) Search the most probable region numberk� based on BYY model selection

criterion for Gaussian mixture case.

Step (4) With this obtainedk�;we segment the given image intok� regions by classify-

ing pixelxi into one of non-overlapping regions in feature space by Bayesian probabilistic

Decision with obtained posterior probability.

Step (5) Mapping the feature space back to the image domain and labeling the seg-

mented region. In this way, image segmentation with auto-determination of segment num-

ber is performed.

In our experiments, we tried two commonly used images - the “house” image and

“sailboat” image. Both images are of 128� 128 pixels. The image segmentation results

are shown in Figure 7.1 and 7.2, respectively, though only grey-scaled rather color pictures

are printed out.

From theJ2 - k curve in Figure 7.1c, we can see that there are two local minima.

One is atk = 3 and the other is atk = 9. Intuitively speaking, this illustrates that 3 is

an appropriate number of segments for rough segmentation and 9 is another appropriate

number of segments which gives more refined segments. Sub-figure (7.1 d to h) show the

resulting segmentation withk = 2; 3; 5; 9; 12 for comparison. For the 2-region segmenta-

tion, we can see that the roof is mixed with the wall. 3-region segmentation can represent

the main structure of the house image. While segmentation with more regions increases

more details of the image, there is hardly significant increase in quality of segmentation

when increasingk from 9 to 12, and 9 can more or less be regarded as an appropriate

segment number.

In Figure (7.2), results of 5, 8 and 11-region segmented images are shown.k = 8 is

determined to be an appropriate segment number by the model selection criterion. The

130

CHAPTER 7. APPLICATION: AUTOMATIC IMAGE SEGMENTATION

8-region segmentation can reconstruct the original “sailboat” image well, while the sky

and cloud are mixed in the 5-region segmentation and the 11-region segmentation does

not show significant increase in segmentation quality.

(a) (b)

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

J2

(c)

(d) (e) (f)

Figure 7.2: “Sailboat” image.

(a) original image, 128�128 pixels; (b) feature space data distribution; (c)
J2�k curve; (d) 5-region segmented image; (e) 8-region segmented image;
(f) 11-region segmented image. Each region is represented by its mean
vector color. BYY criterion selected region number is 8.

7.3.1 Color Space

When we segment a color image, apparently the distribution of clusters depend on the

color space selection, therefore determined region number is variable for different color

space. In this section, we investigate the effect of color space selection on the region

number determination problem.

A digital color image is represented by three components, such as RGB, XYZ, YIQ,

131

CHAPTER 7. APPLICATION: AUTOMATIC IMAGE SEGMENTATION

(a) Synthetic image (b) X1X2X3 color
space

(c) RGB color space

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

J2

(d) J2 � k curve for
RGB space,k = 8

is correct selected.

(e) Scaled HSI color
space

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

J2

(f) J2 � k curve
for HSI space, it
over estimates re-
gion number.

(g) Scaled YIQ
color space

2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

J2

(h) J2 � k curve for
YIQ space, it un-
der estimates region
number.

Figure 7.3: Synthetic image with 8 classes

In some color spaces,J2 � k curve for determining segment region num-
ber.J2 � k curves for X1X2X3, XYZ and I1I2I3 color system are similar to
RGB’s.

132

CHAPTER 7. APPLICATION: AUTOMATIC IMAGE SEGMENTATION

HSI and so on[121]. Which color space is suitable for clustering and how it affects the

proper region number determination? There is no theoretical guide for this quite new

problem, we believe that the probable answer should be based on experimental testing

only.

In this chapter, we concentrate on the following color spaces.

(1) RGB: (Original tristimuli Red, Green, and Blue), this color space is used for dis-

play.

(2) YIQ: for color system of TV signal.

(3) XYZ: for C.I.E X-Y-Z color system.

(4) X1X2X3: this color feature is obtained by Karhunen Lo´eve transformation, also

called PCA. X1, X2, X3 are uncorrelated each other.

(5) I1I2I3 : for uncorrelated features.

(6) HSI: (Hue, Saturation and Intensity) for human perception.

Relations of above color system with RGB are as following, the transformation matri-

ces are not the standard ones[121].

(a) YIQ

Y = 0:299R + 0:587G + 0:114B

I = 0:5R � 0:23G � 0:27B

Q = 0:202R � 0:5G + 0:298B (7.1)

(b) XYZ

X = 0:618R + 0:177G + 0:205B

Y = 2:299R + 0:587G + 0:114B

Z = 0:056G + 0:944B (7.2)

133

CHAPTER 7. APPLICATION: AUTOMATIC IMAGE SEGMENTATION

(c) I1I2I3

I1 = (R +G +B)=3

I2 = (G �B)=2

I3 = (2G �R �B)=4 (7.3)

(d) HSI

H = arctan

 p
3(G �B)

2R �G�B

!

S = 1� min(R;G;B)

R+G +B

I = R+G +B (7.4)

(e) X1X2X3

X1 = wR1R+ wG1G + wB1B

X2 = wR2R+ wG2G + wB2B

X3 = wR3R+ wG3G + wB3B (7.5)

whereWi = (wR; wG; wB), i = 1; 2; 3 are three eigenvectors of�; �Wi = �iWi; �i is

eigenvalue, and

m =
1

N

NX
i=1

xi(R;G;B)

� =
1

N

NX
i=1

(xi �m)(xi �m)T

With these relation equations, other color spaces are transformation of RGB color

space.

7.4 Experiments for Color Space Selection

In the experiments, we use one synthetic image and some standard images such as “house”

and “sailboat” to test the effect of color space selection on BYY model selection criterion.

134

CHAPTER 7. APPLICATION: AUTOMATIC IMAGE SEGMENTATION

Each image is 24 bit color with size of 128�128 pixels.

Choosing different color space will result different shape and distribution of clusters,

which leads to estimated parameter variable, though the EM algorithm and classification

rule is same for all color spaces. In the experiments, with selected color space, we run

EM algorithm to estimate mixture parameters and computeJ(k;��) curves. In order to

eliminate the influence of EM algorithm converge to different local minima, we repeat

experiment with same condition but with different initial parameter values several times,

then using most probable results.

Several experiments have been done, here only parts of experimental results for the

synthetic image are shown in Figure 7.3. Similar results are observed for “house” and

“sailboat” images. In the synthetic image, there are 8 colors, each color represents one

cluster in color space. If colors are similar for some regions, clusters will overlap in color

space, e.g. in HSI or YIQ color space. Overlap has an negative influence on properly

clustering, it results in poor region number selection.

In experiments, it is found that using RGB, XYZ, X1X2X3 and I1I2I3 color spaces

yield same reasonable region number. In X1X2X3 or I1I2I3 color space, it is easily clus-

tering with EM algorithm and computation time is also less than using HSI color space.

When using HSI color space, Hue value is unstable when Saturation value is near zero, in

this case, it would be very difficult for correctly determining region number and segmen-

tation. On the other side, based on experimental testing, the final choice of color space

is X1X2X3 or I1I2I3 system. This is that X1X2X3 or I1I2I3 color coordinates are almost

uncorrelated, they are effective for region number determination based on BYY model

selection criterion.

From experiments, we know that by using BYY model selection criterion, as long as

the proper color space was used, in most cases we can select the reasonable region number,

and make it possible in automatic segmenting given image withouta priori knowledge.

135

CHAPTER 7. APPLICATION: AUTOMATIC IMAGE SEGMENTATION

7.5 Summary

While most previous works on feature space clustering for image segmentation need man-

ually specifying the number of segments ina priori, we apply the model selection criterion

to this approach and obtain a method for automatic determination of an appropriate num-

ber of segmentation. In other words, it is possible that the BYY model selection criterion

give reasonable insight on the structure of the presented image.

In this chapter, we have investigated the effect of color space selection on determining

image segmentation region number based on BYY model selection criterion also, six

color spaces have been tested and compared experimentally. EM algorithm was used to

estimate mixture model parameters and Bayesian decision rule was used to classify pixels

into proper regions. Form the experimental results, we can conclude that RGB space is

the basic selection while X1X2X3 or I1I2I3 color space is more appropriate for clustering

and BYY criterion application.

136

Chapter 8

Application: Software Quality
Prediction

8.1 Introduction

Software reliability engineering is one of the most important aspect of software quality

[47]. The interest of the software community in program testing continues to grow –

as does the demand for complex, and predictively reliable programs. It is no longer ac-

ceptable to postpone the assurance of software quality until prior to a product’s release.

Delaying corrections until testing and operational phases may lead to higher costs [122],

and it may be too late to improve the system significantly. Recent research in the field

of computer program reliability has been directed towards the identification of software

modules that are likely to be fault–prone, based on product and/or process–related met-

rics, prior to the testing phase, so that early identification of fault–prone modules in the

life–cycle can help in channeling program testing and verification efforts in the productive

direction.

Software metrics represent quantitative description of program attributes and the crit-

ical role they play in predicting the quality of the software has been emphasized by Perlis

et al [123]. That is, there is a direct relationship between some complexity metrics and

the number of changes attributed to faults later found in test and validation [124]. Many

1This chapter is identical to the paper with the title “Software Quality Prediction using Mixture Model
with EM algorithm”,Proceedings of APAQS’2000, Hong Kong, pp69-78, 2000.

137

CHAPTER 8. APPLICATION: SOFTWARE QUALITY PREDICTION

researchers have sought to develop a predictive relationship between complexity metrics

and faults. Crawfordet al [125] suggest that multiple variable models are necessary to

find metrics that are important in addition to program size. Consequently, investigating

the relationship between the number of faults in programs and the software complexity

metrics attracts researchers’ interesting.

Several different techniques have been proposed to develop predictive software met-

rics for the classification of software program modules into fault–prone and non fault–

prone categories. These techniques include discriminant analysis [126, 127], factor anal-

ysis [128], classification trees [129, 130, 131], pattern recognition (Optimal Set Reduction

(OSR)) [126, 132], feedforward neural networks [133], and some other techniques [134].

Most of these techniques are classification models and they partition the modules into

two categories, namely, fault–prone and not fault–prone. With these predictive models,

the troublesome modules can be identified earlier in the life–cycle of a software product.

The advantage of these fault prediction models are multi-fold; however, when building

the models, they require to know the number of changes (faults) at the same time. That is,

the model parameters need to be estimated with a supervised learning procedure [21]. As

we know, to obtain the dependent criterion variable, we will need to a long time for the

feedback of test and validation results. For example, for the software of Medical Imaging

System (MIS) presented later in this paper, the actual number of changes (faults) in that

program is collected during three-year observation period. As software complexity met-

rics can be obtained relatively early in the software life-cycle, it is worthy to explore new

techniques for early prediction of software quality based on software complexity metrics.

In this chapter we present one such new approach – using a finite mixture model with

Expectation-Maximum (EM) algorithm [57, 58] to investigate the predictive relationship

between software metrics and the classification of the program module. With the mixture

model analysis, we can develop a prediction model without the need to know the number

of changes (faults) in advance. Namely, it is only based on software complexity metrics

138

CHAPTER 8. APPLICATION: SOFTWARE QUALITY PREDICTION

to build the model. The model parameters are estimated by using EM algorithm, which

is a procedure of unsupervised learning since the class membership of those metrics is

unknown and the metrics are treated as un-labeled vectors.

The mixture model analysis is mainly a probabilistic classification procedure. It is

used to assign program modules to classes of modules of similar characteristics without

the knowledge of fault rate in advance. By this statistical technique, we can identify

a program or a program module as a class of low or high fault rate in the early stage of

program development. In addition, we also show that the discriminant analysis is a special

case of the mixture model analysis.

8.2 Modeling Methodology

We propose to use the finite mixture model analysis with EM algorithm technique in

software quality prediction to classify fault-prone and non fault-prone modules. In the

following we will briefly review the mixture model with EM algorithm, and Akaike In-

formation Criterion (AIC) model selection criterion.

The mixture distribution, particular in Gaussian (normal) analysis method, has been

used widely in a variety of important practical situations, where the likelihood approach

to the fitting of mixture models has been utilized extensively [49, 50, 51, 52]. The applica-

tion of the finite mixture model to software quality prediction is based on the assumption

that the software complexity metrics in a vector space can be considered as a sample

arising from two or more models mixed in varying proportions.

8.2.1 Finite Gaussian Mixture Model With EM Algorithm

A mixture model can be of any mixed distribution function, but the mostly-used model is

the Gaussian distribution model. Hence, in this paper we only investigate the Gaussian

density case. In the software complexity metrics vector space, one module can be consid-

ered as one point, and altogetherN points consistent ofN modules can form a given data

139

CHAPTER 8. APPLICATION: SOFTWARE QUALITY PREDICTION

setD. The data setD = fxigNi=1 ready for classification is assumed to be samples from a

mixture ofk Gaussian densities with joint probability density

p(x;�) =

kX
j=1

�jG(x;mj;�j);

with �j � 0; and
kX

j=1

�j = 1 (8.1)

where

G(x;mj;�j) =
exp[�1

2
(x�mj)

T��1
j (x�mj)]

(2�)d=2j�jj
1

2

(8.2)

is multivariate Gaussian density function,x denotes random vector (which integrates a

variety of software metrics),d is the dimension ofx; and parameter� = f�j ;mj;�jgkj=1
is a set of finite mixture model parameter vectors. Here�j is the mixing weights,mj is

the mean vector, and�j is the covariance matrix of thej-th component. In fact, as these

parameters are unknown, using how many Gaussian density components can best describe

the probability density of the system is also unknown. Usually with a pre-assumed number

k, the mixture model parameters are estimated by the maximum likelihood learning (ML)

with EM algorithm [57, 58].

The log likelihood function of the system to be explored is

l(�jx) = lnL(�jx) =
NX
i=1

ln(

kX
j=1

�jG(xi;mj ;�j)) (8.3)

Maximizing this function will re-derive the EM algorithm, which we show in two

steps.

1. E-step:(Expectation step)

Calculate theposteriorprobabilityP (jjxi) according to

P (jjx) = �jG(x;mj; b�j)

p(x;�)
; with j = 1; 2; � � � ; k; (8.4)

140

CHAPTER 8. APPLICATION: SOFTWARE QUALITY PREDICTION

2. M-step:(Maximum step)

�newj =
1

N

NX
i=1

�oldj G(xi;mj;�j)Pk

j=1 �
old
j G(xi;mj;�j)

=
1

N

NX
i=1

P (jjxi) (8.5)

mj =

PN

i=1 P (jjxi)xiPN
i=1 P (jjxi)

=
1

�jN

XN

i=1
P (jjxi)xi (8.6)

b�j =
1

�jN

XN

i=1
P (jjxi)[(xi �mj)(xi �mj)

T]: (8.7)

The two steps are iterated until convergence to one local minima is obtained.

Unlike supervised learning, the ML with EM algorithm can be used for a totally un-

labeled data set; that is, the case of sample class membership is unknown.

In practical implementation, the problem to be handled first is the mixture parameter

initialization. It is a common practice that the parameter values are random initialized

since noa priori information is available. In this paper, we use the following methods to

initialize mixture model parameters:

�0j =
1

k
; (8.8)

m0
j = min

1�i�N
(xi) + j � f max

1�i�N
(xi)� min

1�i�N
(xi)g=(k + 1) (8.9)

b�0
j =
jjmax(xi)�min(xi)jj

20
Id: (8.10)

whereId represents thed � d dimension identity matrix. This initialization method can

guarantee that the mean vectors are within the range of the data setD: The alternative

method used is an addition of a small random value on the above equations.

141

CHAPTER 8. APPLICATION: SOFTWARE QUALITY PREDICTION

8.2.2 Model Selection Criterion

When the software complexity metric data are to be classified into several classes, each

class contain the data samples with similar characteristics. With prior knowledge, we

usually divide the modules into two classes: one is fault-prone and the other is non fault-

prone. However, by the mixture model approach, how many classes the metric data should

be divided is not known. Consequently, the number of Gaussian density components can

best describe the probability density of the system is unknown. Nevertheless, we can use

some model selection criterion to determine a proper number of model components.

Following Akaike’s pioneering work [81] in selecting the number of components in

the mixture model analysis, a lot of researchers have developed some modified and newly

proposed criteria such as AICB [82], CAIC [83], SIC [84]. These criteria combine the

maximum value of the likelihood function with the number of parameters used in achiev-

ing that value. Here we list the corresponding AIC formula for a convenient use af-

terwards, in whichL(k) means likelihood function of the numberk model with other

parameters like� has been estimated by using the Eq. (8.3):

AIC(k) = �2 ln[maxL(k)] + 2mk; (8.11)

where themk = kd+ (k � 1) + kd(d+ 1)=2 is a penalty term. The other criteria such as

AICB, CAIC and SIC are similar to AIC, with the difference at the penalty term.

From the aboveAIC(k); we can select the model numberk� simply by the solution

of k� = arg mink AIC(k) with ML obtained parameter��. In practice, we start with

k = 1, estimate parameter��, and computeAIC(k = 1). Then by iteratingk ! k + 1,

we computeAIC(k = 2), and so on. After getting a series ofAIC(k), we choose the

minimal one and get the correspondingk�. Thisk� is assumed as the number of classes

of the program modules should be partitioned.

142

CHAPTER 8. APPLICATION: SOFTWARE QUALITY PREDICTION

8.2.3 Bayesian Probabilistic Classification

In the mixture model case a Bayesian decision rule is used to classify the vectorx into

classj with the largestposteriorprobability. TheposteriorprobabilityP (jjx) represents

the probability that samplex belongs to classj. The probabilities ofP (jjx) are usu-

ally unknown and have to be estimated from the training samples. With the maximum

likelihood estimation, theposteriorprobability can be written in the form of Eq. (8.4).

For a givenxi; we can obtaink probabilitiesP (j = 1jxi), P (j = 2jxi), � � � , P (j =

kjxi). Now we use the Bayesian decision rule to classifyxi into one of the non-overlapping

classj� by the solution of

j� = arg max
j

P (jjxi); for j = 1; 2; � � � ; k: (8.12)

If j� is corresponding to maximumP (jjxi); the ith program module will be classified

into classj� with probabilityP (j�jxi):

When we take the logarithm to Eq. (8.4) and omit the common factors of the classes,

such asln p(x;�); d=2 ln 2�; the classification rule becomes

j� = argmin
j

dj(x); for j = 1; 2; � � � ; k (8.13)

with

dj(x) = (x�mj)
T��1

j (x�mj) + ln j�j j � 2 ln�j (8.14)

This equation is often called the discriminant score for thejth class in the literature

[135]. Furthermore, if theprior density�j is the same for all classes (an equal sample

number in each class), it becomes discriminant function when omitting the term2 ln�j . If

a pooled covariance matrix is used, it is called linear discriminant analysis (LDA), which

was used by Munson and Khoshgoftaar for detection of fault-prone programs [127].

If the class membership relation of the sample as well as the numberNj of each class is

known, which is assumed in the discriminant analysis application [127], the mean vector

143

CHAPTER 8. APPLICATION: SOFTWARE QUALITY PREDICTION

mj and the covariance matrix�j can be evaluated based on given samples with maximum

likelihood estimation. They take the following forms:

mj =
1

Nj

XNj

i=1
xi (8.15)

b�j =
1

Nj � 1

XNj

i=1
(xi �mj)(xi �mj)

T : (8.16)

They are called sample mean and sample covariance matrix, respectively [35]. Here

we can see they are different with EM estimate. In a supervised learning case, each sample

has determined class membership, while in EM estimate, each sample can belong to every

class at the same time with a certain probability value.

8.3 Data Description and Analysis Procedure

In this section, we present a real project to which we apply the finite mixture model with

EM algorithm for quality prediction and data analysis. The data used for the application

of the mixture model represents the results of an investigation of software for a Medical

Imaging System (MIS). The total system consisted of about 4500 modules amounting

to about 400,000 lines of code written in Pascal, FORTRAN, assembler and PL/M. A

random sample of 390 modules, from the ones written in Pascal and FORTRAN were

selected for analysis. These 390 modules consists of approximately 40,000 lines of code.

The software was developed over a period of five years, and was in commercial use at

several hundred sites for a period of three years[133].

The number of changes made to a module, documented as Change Reports (CRs), was

used as an indicator of the number of faults introduced during development[136]. The

changes made to the routines were analyzed, and only those that affected the executable

code were counted as faults (aesthetic changes such as comments were not counted)[137].

144

CHAPTER 8. APPLICATION: SOFTWARE QUALITY PREDICTION

In addition to the change data, the following 11 software complexity metrics were

developed for each of the modules:

� Total lines of code (TC) – Total number of lines in the routine including comments,

declarations and the main body of the code.

� Number of code lines (CL) – Number of lines of executable code in the routine

excluding the declaration and comment lines.

� Number of characters (Cr) – All characters in the routines.

� Number of comments (Cm) – For the Pascal routines, a comment is either a line be-

ginning with test %%, or text in comment brackets, either of the formf< comment

> g or (* < comment>*). For FORTRAN routines, a comment consists of the text

on a line after eitherj, C or *.

� Number of comment characters (CC) – The amount of text found in the routines

comments.

� Number of code characters (Co)– The amount of text which makes up the exe-

cutable code in the routine.

� Halstead’s Program Length (N 0), whereN 0 = N 0
1 + N 0

2 andN 0
1 represents a total

operator count andN 0
2 represents a total operand count [138]

� Halstead’s Estimate of Program Length Metric (Ne), whereNe=�1 log2 �1+�2 log2 �2;

and�1 and�2 represent the unique operator and operand counts, respectively[138].

� Jensen’s Estimate of Program Length Metric (JE), whereJE=log2 �1! + log2 �2!

[139].

� McCabe’s Cyclomatic Complexity Metric (M), whereM = e � n + 2; and e

represents the number of edges in a control flow graph ofn nodes [140].

145

CHAPTER 8. APPLICATION: SOFTWARE QUALITY PREDICTION

� Belady’s bandwidth metric (BW), where:

BW =
1

n

X
i

iLi (8.17)

andLi represents the number of nodes at leveli in a nested control flow graph of

n nodes [139]. This metric indicates the average level of nesting or width of the

control flow graph representation of the program.

By using these independent metrics as integrated complexity metrics, the random vec-

tor x is a 11-dimension vector with each metric as one component. Each vectorxi repre-

sents one sample point in the metric space, and we can apply the mixture model analysis in

this high-dimension vector space to partition data samples into proper classes. When es-

timating mixture model parameters, we do not need to know the change requests (faults).

Principal Components Analysis(PCA): In a software development application, the

independent variables (complexity metrics) may be strongly interrelated as they demon-

strate a high degree of multicollinearity. We first examine the relationship of metric TC

with other metrics, as shown in Figure 8.1.

It is clearly seen in Figure 8.1 that the metric TC has nearly linear relationship with

some metrics such as LOC, Cr and Co. Several independent variables demonstrating a

high degree of multicollinearity will have a negative effect on the regression model. One

distinct result of multicollinearity in the independent variables is that the statistical mod-

els developed from them have highly unstable regression coefficients [127]. To reduce the

interrelated effect, we adopt PCA (also calledKarhunen-Loéve transformation) to trans-

form the original complexity metrics space into an orthogonal vector space. The principle

of PCA is simple. Let us assume the data set has a covariance matrix�; which is a real

symmetric matrix and can be decomposed as follows:

� = U�UT (8.18)

146

CHAPTER 8. APPLICATION: SOFTWARE QUALITY PREDICTION

200 400 600 800

100

200

300

400

500

600

700

(a) LOC vs. TC

200 400 600 800

5000

10000

15000

20000

(b) Cr vs. TC

200 400 600 800

50

100

150

(c) Cm vs. TC

200 400 600 800

2000

4000

6000

8000

10000

(d) CC vs. TC

200 400 600 800

2000

4000

6000

8000

10000

(e) Co vs. TC

200 400 600 800

500

1000

1500

2000

(f) N 0 vs. TC

200 400 600 800

250

500

750

1000

1250

1500

1750

(g) Ne vs. TC

200 400 600 800

200

400

600

800

1000

1200

1400

(h) JE vs. TC

200 400 600 800

20

40

60

80

(i) M vs. TC

200 400 600 800

2

4

6

8

10

12

(j) BW vs. TC

Figure 8.1: The relationship of metric TC with other metrics.

From (a) to (j): horizontal axis is metric TC , vertical axes are metric LOC,
Cr, Cm, CC, Co,N 0, Ne, JE, M and BW respectively. There are several
metrics that exhibit multicollinearity.

whereU is a matrix whose columni is the eigenvectorui; and� is a diagonal matrix

of eigenvalues. Note that each of the eigenvectors is called a principal component. The

vectorsx are projected onto the eigenvectors to give the components of the transformed

vectorsx0. That is,

x0= UTx: (8.19)

PCA can be used to reduce the dimension of the data space by takingM < d eigen-

147

CHAPTER 8. APPLICATION: SOFTWARE QUALITY PREDICTION

Table 8.1: The eigenvalues for the MIS data set

Component 1 2 3 4 5 6
Eigenvalue 1.28�107 6.05�105 1.71�104 1.34�104 4.77�103 2.41�103
Component 7 8 9 10 11
Eigenvalue 1.78�102 47.2 31.5 13.5 0.98

vectors corresponding to the firstM largest eigenvalues to construct the transform matrix.

The error introduced by a dimensionality reduction using PCA can be evaluated using

EM =
1

2

dX
i=M+1

�i; (8.20)

where the smallestd �M eigenvalues�i and their corresponding eigenvectors are dis-

carded.

The eigenvalues for the MIS data set are shown in Table 8.1.

When using PCA to reduce the dimension of data space, we know from Table 8.1 that

the first 7 components can represent main feature of the data set with a relatively small

error (EM =46.6338). However, some patterns are separable in high dimension space,

but they become inseparable when projected into low dimension space. Therefore, we

just apply PCA to transform data into an orthogonal set, using all 11-dimension in the

data analysis. The results presented in this paper are based on PCA transformed data

space, which is a 11-dimensional vector space. Figure 8.2 shows data distribution when

projected onto first two principal components space and third-fourth principal components

space.

For such a data space, each point represents one program module, which is charac-

terized by its complexity metrics. These points can be assumed as samples arising from

two or more models mixed in varying proportions. When the mixture model analysis

with EM algorithm was applied to the 390 program modules in the PCA de-correlated

11-dimensional vector space, the most probable results are shown in Figure 8.3 for log

148

CHAPTER 8. APPLICATION: SOFTWARE QUALITY PREDICTION

-25000 -20000 -15000 -10000 -5000 0
-400

-200

0

200

400

600

800

1000

(a)

-400 -200 0 200 400 600 800 1000

-400

-200

0

200

400

(b)

Figure 8.2: Data distribution in vector space

(a) first two principal components and (b) third-fourth principal compo-
nents.

likelihood function vs. model component numberk as well as AIC vs.k.

In Figure 8.3a, we can see that the log likelihood function of the system increases

as the model number increases. Increasing model number makes finer classification for

given software modules, and each model represents a subset of the data in which samples

have similar characteristics. The AIC model selection criterion in Figure 8.3b shows

that with PCA de-correlated data set, classifying the modules into two groups is a proper

selection. This gives us an insight into some intrinsic properties of the PCA de-correlated

complexity metrics data set.

With two-class classification, the experimental results as obtained from Eq. (8.12)

show that the module number in each group isN1 = 264 andN2 = 126, respectively.

Note there are unequal sample numbers for the two-group classification.

The estimated mixture model parameters with EM algorithm for the casek = 2 are as

the following:

Mixture weights: �1 � 0:673; and�2 � 0:327: Recall that�j = 1

N

NP
i=1

P (jjxi); then

149

CHAPTER 8. APPLICATION: SOFTWARE QUALITY PREDICTION

2 4 6 8 10 12

-11500

-11000

-10500

-10000

-9500

(a)

0 2 4 6 8 10 12

0.2

0.4

0.6

0.8

1

(b)

Figure 8.3: The log likelihood function as well as AIC vs.k.

(a) The log likelihood function vs. model number. With the increase of the
model numberk, the function tends to increase too. (b) Typical results for
AIC’s vs. model numberk for PCA de-correlated data set. The minima
occurs atk� = 2:

Nj =
NP
i=1

P (jjxi) = �jN: This should be the possible module number in classj: The

obtained results areN1 � 0:673� 390 = 262 andN2 � 0:327� 390 = 128, respectively,

which is agreeable with the experimental results obtained by using Eq. (8.12). As the

mixture weights are a rough indication of module number distribution, this implies a high

confidence in our results.

Mean vector: With two-class partition, the mean vector for each group is shown in

Table 8.2 for the original complexity metrics. The maximum and minimum values are

also listed in Table 8.2 for reference. Notice that for the sake of readability, the values

listed in Table 8.2 are transformed back from the PCA de-correlated space to the original

data space.

The positions of the mean for each metric (i.e.,m1 andm2) show the information to

partition modules using single metric. Note that for all the 11 metrics,m2 > m1. This

means class two consistently has a higher value than class one for all the metrics.

150

CHAPTER 8. APPLICATION: SOFTWARE QUALITY PREDICTION

Table 8.2: Mean vector component as well as maximum and minimum value for each
metric, and the diagonal values of covariance matrices obtained by ML with EM algo-
rithm.

min max m1 m2 �1(diag.) �2(diag.)
TC 3 944 68.04 260.01 1565.7 26771
LOC 2 692 52.28 210.23 1125.9 18132
Cr 59 21266 1458 5620 766272 1.284�107
Cm 0 194 12.02 48.54 62.429 1258.87
CC 0 9946 561.52 1825 222703 2.703�106
Co 30 10394 761.37 3469 225432 4.573�106
N 0 3 2083 137 629 7392.55 158213
Ne 2 1777.3 183.7 669.6 10534 135308
JE 0.8 1437.2 132.8 521.7 6143.7 89333
M 1 80 5.76 24.56 12.507 249.496
BW 1 12.56 2.1 3.13 0.78547 3.774

Covariance matrix: The covariance matrix is a symmetric matrix. Its diagonal el-

ement is the variance of each metric, while off-diagonal elements reflect the correlation

between the metrics. (Refer to Eq.(8.7).) Here Table 8.2 only shows diagonal elements

of the covariance matrices in the last two columns. Some metrics show high variance

with two classes partition, implying that two-class partition is not the best choice from

the point of view of minimal variance reduction.

The total module number is 390 in the given data set. With the two mixture models

approach, the first group has 264 modules, while the second group has 126 modules, and

the ratio is about 2/3 and 1/3 respectively. By the mixture model analysis, we now know

that there are two classes for the given program modules: class one has more modules

than class two for this data set. Furthermore, class two has higher complexity metrics

values than class one.

Although at this stage we do not have failure data, we can pretty much determine

that class one is non fault-prone while class two is fault-prone. The reason is two-fold.

The first reason is that class two has consistently higher values of the complexity metrics,

151

CHAPTER 8. APPLICATION: SOFTWARE QUALITY PREDICTION

Table 8.3: The classification for MIS data set by mixture model analysis.

CRs 0,1 2,3 4,5 6,7 8,9 10,11 12,13 14,15 16,17 18-98
Number of group 1 104 66 33 25 11 9 6 1 4 5
Total modules 114 78 49 36 24 19 12 10 9 39
Percent of group 1 91.2 84.6 67.3 69.4 45.8 47.4 50 10 44 12.8

indicating its fault-prone nature. The second reason is that most (80%) of faults are found

in a small portion (20%) of the software code, so we can label that the class with larger

number of modules as non fault-prone class, and the class with less number modules as

fault-prone class. Here we can see that very little prior knowledge about the number of

faults is needed to develop this predictive model using mixture model with EM algorithm.

This is the major advantage of our approach compared with previous model classification

techniques published in the literature.

8.4 Quality Prediction Results and Discussion

8.4.1 Misclassification errors

The above analysis of program metrics with a mixture model can be obtained in early

software develop stage. When the change of requests (CRs) become available later, we

can use the CRs to assess the merit of the mixture model. The data analysis results are

shown in Table 8.3.

There are two types of errors that can be made in the partition. A Type I error is

the case where we conclude that a program module is fault-prone when in fact it is not.

A Type II error is the case where we believe that a program module is non fault-prone

when in fact it is fault-prone. Of the two types of errors, Type II error has more serious

implications, since a product would be seem better than it actually is, and testing effort

would not be directed where it would be needed the most.

When we consider module with 0 or 1 CRs to be non fault-prone, those with CRs from

152

CHAPTER 8. APPLICATION: SOFTWARE QUALITY PREDICTION

Table 8.4: Misclassification rate for randomly drawing 30 samples out of 89 modules
without replacement. The mean and standard deviation are computed based on 50 times
repeated experiments.

min. max. mean std.
misclass. rate 0.133 0.40 0.271 0.064

18 to 98 to be fault-prone, then Type I error is 8.8% and Type II error is 12.8%. When

modules with CRs from 10 to 98 are considered as fault-prone, then Type II error will

rise to 28.1%. It is noted that in supervised learning, the data set is partitioned into two

parts: training samples and validation samples. The method of partition data set can have

an effect on the prediction accuracy, as shown in the following experiment.

For MIS data set, there are 89 modules with CRs from 10 to 98, which are considered

as fault-prone modules. Now let us randomly draw 30 modules (i.e., one third) from this

subset of MIS data set. From mixture model analysis results, we can know the Type II

error computed from these 30 modules. The Table 8.4 shows the experimental results of

randomly drawing 30 samples from 89 modules without replacement, where the exper-

iments are repeated 50 times. It can be known that the best result for Type II error is

about 13%, which is the same as that of discriminant analysis method [127]. The statis-

tical mean for Type II error is 27.1%, which is nearly the same as 28.1% obtained by the

mixture model analysis based on all 89 modules.

8.4.2 Classification Probability

As stated in Section 8.2.3, assigning a module as either fault-prone or non fault-prone is

based on Bayesian classification rule.

In two-model mixed case, the joint density of the system can be written in the form,

p(x;�) = �1G(x;m1;�1) + (1� �1)G(x;m2;�2): (8.21)

153

CHAPTER 8. APPLICATION: SOFTWARE QUALITY PREDICTION

-25000 -20000 -15000 -10000 -5000 0 5000
0

0.00005

0.0001

0.00015

0.0002

0.00025

(a)

-2000 0 2000 4000 6000
0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

(b)

-400 -200 0 200 400 600 800 1000
0

0.0005

0.001

0.0015

0.002

0.0025

0.003

(c)

-400 -200 0 200 400
0

0.001

0.002

0.003

0.004

0.005

(d)

-300 -200 -100 0 100 200
0

0.002

0.004

0.006

0.008

(e)

-100 0 100 200 300
0

0.0025

0.005

0.0075

0.01

0.0125

0.015

0.0175

(f)

-60 -40 -20 0 20 40 60
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

(g)

-30 -20 -10 0 10 20 30
0

0.01

0.02

0.03

0.04

0.05

0.06

(h)

-20 -10 0 10 20 30
0

0.02

0.04

0.06

0.08

(i)

0 5 10 15 20
0

0.02

0.04

0.06

0.08

(j)

-8 -6 -4 -2 0 2
0

0.1

0.2

0.3

0.4

(k)

Figure 8.4: The plot for two components of the joint density projected at principal axis.

The figures from (a) to (k) is corresponding to the 11 principal component
axes in order.

The posterior probabilities become

P (1jx) =
�1G(x;m1; b�1)

p(x;�)
;

P (2jx) =
(1 � �1)G(x;m2; b�2)

p(x;�)
= 1� P (1jx): (8.22)

Figure 8.4 shows the two-component probability distribution of the joint density pro-

jected at each principal component axis. The solid line depicts the component�1G(x;m1;�1),

while the dashed line depicts the component(1 � �1)G(x;m2;�2). At each point, the

value of each probability component is proportional to the value of the posterior prob-

ability. When we use Bayesian decision to classify program modulei into classj; the

154

CHAPTER 8. APPLICATION: SOFTWARE QUALITY PREDICTION

misclassification risk can be obtained with Figure 8.4. If the position of a module is at or

near the position at which the values of the two components are nearly equal, (i.e., where

the solid line and the dashed line intersect in each figure) the misclassification risk will be

high.

Each principal component metric is a linear combination of the original complexity

metrics. When we predict that one program module is possible of either fault-prone or

non fault-prone, the decision is made by combining all principal components together, not

just a single metric. Combining all metrics to predict the software quality is one of the

way to reduce the risk of misclassification.

8.4.3 Advantages of Mixture Model Analysis

Building model to support the prediction of software quality based on software complexity

metrics can be quite challenging due to various inherent constraints. Sometimes the values

of complexity metrics are not complete because it needs a long time collecting them, and

building models requires the use of complete data types of variables. The EM algorithm

was originally developed for incomplete data set, therefore the approach described above

can handle the types of variables with partial missing values. Other methods such as

regression tree modeling [131] needs to assign a threshold to split the data set, and requires

to know fault number in advance. On the other hand, in the mixture model analysis with

EM algorithm, only little prior knowledge is needed to predict the module characteristics

based on the complexity metrics.

The mixture model analysis method also does not require an equal class number, so it

is a more general model and classification rule used than that discriminant analysis [127].

In the linear discriminant analysis, the covariance matrices are assumed the same for all

classes, which is seldom the case in the real world.

Furthermore, if we suppose that the mixture model classification result is correct, from

the results shown in Table 8.3, we know that the most non fault-prone modules should

155

CHAPTER 8. APPLICATION: SOFTWARE QUALITY PREDICTION

have no more than 3 CRs, which has the percentage greater than 88%. Furthermore, the

modules with CRs from 4 to 17 should be mediately fault-prone modules, and the modules

with CRs 18 to 98 is the fault-prone group. This shows that the mixture model can help

us gain an insight in the relationships between the software complexity metrics and the

number of faults in the module.

8.5 Summary

Software metrics can reveal a lot of information about the code at several stages of de-

velopment. They can identify the routines which need to be redesigned due to higher

complexity, routines which may require thorough testing, and features which may require

more support. The mixture model with EM algorithm is a novel way to analyze software

metrics, to understand the involved relationships among them, to identify the fault-prone

modules, and thus to take remedial actions before it is too late. Based on the experimental

results, this modeling approach provides an effective way to predict software quality in a

very early stage of program development.

156

Chapter 9

Conclusions

This thesis covers both theoretical and experimental studies on model selection and regu-

larization for generalization in neural networks. One of our main focus is the regulariza-

tion. Under a general framework, we have shown that one particular case of the system

entropy with Gaussian probability density reduces into the first order Tikhonov regular-

izer for feedforward neural networks in the maximum likelihood learning case, where the

regularization parameter is the smoothing parameterhx in the kernel density function.

We derive the formula for approximately estimating the regularization parameter. Ex-

periments show that the estimated regularization parameter is in the same order as that

obtained by the validation method.

Under the same framework, we consider the Gaussian mixture model for classifica-

tion, and the KLIM covariance matrix estimation is derived and investigated. An efficient

smoothing parameter approximation formula was provided, and the approximation was

found to be accurate for most cases in our experiments.

For model selection in clustering, we perform experiments with bootstrap and data

smoothing, and the results indicate that the model selection criterion performance is im-

proved in the small sample number set case.

To select all models in forming ensemble neural networks, we propose an approach

to overcome the difficulty in averaging ensemble networks in the parameter space. Ex-

perimental results show that the adopted strategy is efficient in improving network per-

157

CHAPTER 9. CONCLUSIONS

formance with finite training samples and the ensemble network architecture is a simple

one.

Stacked generalization can be considered as nonlinear combination of trained net-

works to form ensemble neural networks, which use data set partition to find an overall

system with improved generalization performance. In order to efficiently investigate the

performance of the stacked generalization, the PIL algorithm is developed for feedfor-

ward neural networks. This algorithm is more effective than the standard BP and other

gradient descent algorithms for most problems. The fast learning property of the PIL al-

gorithm makes it possible for us to investigate the computation-intensive generalization

techniques, such as stacked generalization, more efficiently.

In the application areas, we employ the model selection criterion to image segmen-

tation and obtain a method for automatic determination of the appropriate number of

segmentation. We also apply the AIC model selection criterion and the mixture model to

analyze software reliability metrics. This approach provides an effective way to predict

software quality in an early stage of program development.

The work described in the thesis can be improved or extended in a number of ways,

and several interesting problems are worthy of investigation. Our feeling is that some

details for generalization in neural networks are still unexplored. In some aspects the

Kullback-Leibler distance function may be more general and useful, but one of the open

problems in applications is to design reasonable system probability functions for specific

problems. Furthermore, the differences in various designed models should be investi-

gated.

On the other hand, the results gained in our techniques should be compared with the

results obtained using other techniques with real-world data sets. Different approxima-

tions should be analyzed and tested as well. It is considered an important direction to

establish an efficient method to estimate the error bound for approximations. Comparing

the traditional statistical techniques, such as cross-validation and bootstrap approaches,

158

CHAPTER 9. CONCLUSIONS

to neural network models in their generalization capabilities will also extend the research

work broadly.

Applying neural network models to software reliability engineering will be a new and

interesting research field, and it may foster significant impact to the software industry.

159

Appendix A

Formula of Estimating Smoothing
Parameter

Here we derive the formula for estimating smoothing parameter in Gaussian mixture

model case.

In multi-dimension case,

Jr(xi;�) =
1

2Nh

NX
i=1

Z
G(x;xi; hI)(x� xi)Trrg(xi)(x� xi)dx

whilerrg(xi) is

rrg(xi) = � [rrPM2
(xi)]PM2

(xi)� [rPM2
(xi)][rPM2

(xi)]

(PM2
(xi))2

=

kX
y=1

P (yjxi)f��1
y � ��1

y (xi �my)(xi �my)
T��1

y g

+f
kX

y=1

P (yjxi)(xi �my)
T��1

y gf
kX

y=1

P (yjxi)[(xi �my)
T��1

y]Tg

When integrated out,

Jr(xi;�) =
1

2N

NX
i=1

tr[rrg(xi)]

� 1

2N

NX
i=1

jj
kX

y=1

P (yjxi)(xi �my)
T��1

y jj2

160

APPENDIX A. FORMULA OF ESTIMATING SMOOTHING PARAMETER

From equation (4.26) and (4.30), we have

hJr �
d

2
h

Z
phx(x) ln phx(x)dx+

1

2N

NX
i

Z
ln phx(x)G(x;xi; hI)jjx� xijj2dx = 0

(A.1)

For the last term of above equation, we use mean center approximation, that is, let

ln phx(x) � ln phx (xi)

1

2N

NX
i

Z
ln phx (x)G(x;xi; hI)jjx� xijj2dx

� h

2N

NX
i

ln phx (xi) (A.2)

Combine above equations and with mean field approximation, we can obtain follow-

ing equation

�h � Jrh
old � 1

2N

NX
j

[phx(xj)� 1] ln phx (xj) (A.3)

161

Appendix B

Publication List

Here is the list of my research works which have been published or finished since May

1997, I entered the Chinese University of Hong Kong to begin my Ph.D study.

1. Z.B. Lai,P. Guo, T. J. Wang and L. Xu. “Comparison on Bayesian YING-YANG

theory based clustering number selection criterion with information theoretical cri-

teria”. In Proceedings of IEEE International Joint Conference on Neural Networks

(IJCNN’98), volume I, pp725-729, Anchorage, USA, 1998.

2. Ping Guo, “Averaging ensemble neural networks in parameter space”. InProceed-

ings of fifth international conference on neural information processing(ICONIP’98),

pp486-489, Kitakyushu, Japan, 1998.

3. Ping Guo, et. al. “Region number determination in automatic image segmen-

tation based on BKYY model selection criterion”. InProceedings of 1999 IEEE-

EURASIP Workshop on Nonlinear Signal and Image Processing(NSIP’99), pp743-

746, Antalya, Turkey, 1999.

4. Ping Guo and Lei Xu. “On the study of BKYY cluster number selection criterion

for small sample data set with bootstrap technique”. InProceedings of 1999 Inter-

national Joint Conference on Neural Networks(IJCNN’99), volume I, pp965-968,

Washington, DC, USA, 1999.

162

APPENDIX B. PUBLICATION LIST

5. Ping Guo and Lei Xu. “Relationship between mixture of experts and ensemble

neural networks”. InProceedings of the 6th International Conference on Neural

Information Processing(ICONIP’99), pp.246-250, Perth, Australia, 1999.

6. Ping Guo, et. al. “Dynamics of a coupled double-cavity optical interference filter,”

Journal of Modern Optics, vol. 46, no. 1, pp. 167–174, 1999.

7. Ping Guo and C.L.Philip Chen, “Regularization parameter estimation based on

BKYY data smoothing theory for feedforward nets,” inProceedings of Artificial

Neural Network in Engineering(ANNIE 2000), pp. 51–56, Missouri, USA, 2000,

(AwardedSecond Runner-Up).

8. Ping Guo and C.L.Philip Chen, “A new approach to smoothing parameter esti-

mation in small sample set case,” inProceedings of Artificial Neural Network in

Engineering(ANNIE 2000), pp. 147–152, Missouri, USA, 2000 .

9. Ping Guo and Michael R. Lyu, “A study on color space selection for determining

image segmentation region number,” inProceedings of The 2000 International

Conference on Artificial Intelligence(IC-AI’00), H. R. Arabnia, Ed., vol.III, pp.

1127–1132, CSREA Press, Las Vegas, Nevada, USA, June 26-29, 2000.

10. Ping Guo and Michael R. Lyu, “Classification for high-dimension small-sample

data sets based on kullback-leibler information measure,” inProceedings of The

2000 International Conference on Artificial Intelligence(IC-AI’00), H. R. Arabnia,

Ed., vol.III, pp. 1187–1193, CSREA Press, Las Vegas, Nevada, USA, June 26-29,

2000.

11. Ping Guo and Michael R. Lyu, “Software quality prediction using mixure model

with em algorithm,” inProceedings of The First Asia-Pacific Conference on Quality

Software(APAQS 2000), Hong Kong, vol. I of2, pp. 725–729, IEEE Computer

Society Press, October 30-31,2000.

163

APPENDIX B. PUBLICATION LIST

12. Ping Guoand Michael R. Lyu, “Pseudoinverse learning algorithm for feedforward

neural networks,” inAdvances in Neural Networks and Applications(NNA’01), N.

E. Mastorakis Eds., WSES Press (Athens), pp.321–326, 2001.

13. Ping Guo, et. al, “Pattern Recognition for the Classification of Raman Spec-

troscopy Signals,” Accepted byJournal of Electron and Information, 2001, (Chi-

nese).

14. Ping Guoand Michael R. Lyu, “ A New Approach to Optical Multilayer Learning

Neural Network”, in theProceedings of 2001 International Conference on Artificial

Intelligence(IC-AI’01). vol.I, pp. 426–432, CSREA Press, Las Vegas, Nevada,

USA, June 26-29, 2001.

15. Ping Guo, et al. “Cluster Number Selection for Small Set of Samples Using the

Bayesian Ying-Yang Model”. Accepted conditionally by theIEEE trans. Neural

Network, 2001.

16. Ping Guo and Michael R. Lyu, “ A Case Study on Stacked Generalization with

Software Reliability Growth Modeling Data”, accepted bythe 8th International

Conference on Neural Information Processing(ICONIP’01), 2001.

Pending Paper

Has submitted the following papers to some proper journals

1. Ping Guo, et. al, “Study on the Effect of Color Space Selection for Determining

Image Segmentation Region Number,” Submittted to a journal , 2001, (In Chinese).

2. Ping Guo, et al. “Regularization Parameter Estimation for Feedforward Neural

Networks”. Submitted to a journal, 2001.

3. Ping Guoand Michael R. Lyu. “A New Approach to Regularized Gaussian Classi-

fication for High-Dimension Small Sample Set”. Submitted to a journal, 2001.

164

APPENDIX B. PUBLICATION LIST

4. Ping Guoand Michael R. Lyu. “A Pseudoinverse Learning Algorithm for Feedfor-

ward Neural Networks with Stacked Generalization Application to Software Relia-

bility Growth Data”. Submitted to a journal, 2001.

5. Ping Guo and Michael R. Lyu. “Software Metrics Classification for Early De-

tection of Fault-Prone Modules Using an Unsupervised Learning Algorithm”. In

resubmission, 2001.

165

Bibliography

[1] V. Vemuri, Ed., Artifical Neural Networks: Theotetical Concepts, Computer Soci-

ety Press of the IEEE, Washington, D.C,1988.

[2] Jacek M. Zurada,Introduction to Artificial Neural Systems, West, St. Paul, 1992.

[3] J. Hertz, A. Krogh and R.G. Palmer,Introduction to the Theory of Neural Compu-

tation, Addison Wesley, Redwood City, CA, 1991.

[4] Vwani Roychowdhury, Kai-Yeung Siu, Alon Orlitsky, Ed.,Theoretical Advances

in Neural Computation and Learning, Kluwer Academic, Boston, 1994.

[5] Philip D. Wasserman,Neural Computing: Theory and Practice, Van Nostrand

Reinhold, New York, 1989.

[6] M. Vidyasagar, A Theory of Learning and Generalization: with Applications to

Neural Networks and Control Systems, Springer, London; New York, 1997.

[7] M. Smith, Neural Networks for Statistical Modeling, International Thomson Com-

puter Press, Boston, MA, 1996.

[8] S. Geman, E. Bienenstock, and R. Doursat, “Neural Networks and the

Bias/Variance Dilemma,”Neural Computation, vol. 4, pp. 1–58, 1992.

[9] J. E. Moody, “The Effective Number of Parameters: An Analysis of Generalization

and Regularization in Nonlinear Learning Systems,” inAdvanced in Neural Infor-

166

BIBLIOGRAPHY

mation Processing Systems, J.E. Moody, S.J. Hanson, and R.P. Lippmann, Ed.,

Cambridge, MA, 1992, vol. 4, pp. 847–854, MIT Press.

[10] A. Weigend, “On Overfitting and the Effective Number of Hidden Units,” in

Proceedings of the 1993 Connectionist Models Summer School, M. C. Mozer, Ed.,

Boulder, CO, 1994, pp. 335–342, LEA/Lawrence Earlbaum Association.

[11] Warren S. Sarle, “Stopped Training and Other Remedies for Overfitting,” inPro-

ceedings of the 27th Symposium on the Interface of Computing Science and Statis-

tics, Convention Center and Vista Hotel, Pittsburgh, PA, 1995, vol. 27, pp. 352–

360.

[12] Amanda J.C. Sharkey, Ed.,Combining Artificial Neural Nets: Ensemble and Mod-

ular Multi-net Systems, Springer, London; New York, 1999.

[13] P. L. Bartlett, “For Valid Generalization, the Size of the Weights is more Important

than the Size of the Network,” inAdvanced in Neural Information Processing

Systems, M.C. Mozer, M.I. Jordan, and T. Petsche, Ed., Cambridge, MA, 1997,

vol. 9, pp. 134–140, MIT Press.

[14] A. Blumer, A. Ehrenfeucht, D. Haussler, and M.K. Warmuth, “Learnability and

the Vapnik-Chervonenkis Dimension,”Journal of the Association for Computing

Machinery, vol. 36, no. 4, pp. 929–965, 1989.

[15] Y. S. Abu-Mostafa, “The Vapnik-Chervonenkis Dimension: Information versus

Complexity in Learning,”Neural Computation, vol. 1, no. 3, pp. 312–317, 1989.

[16] Y. Le Cun, J.S. Denker and S.A. Solla, “Optimal Brain Damage,” inAdvanced

in Neural Information Processing Systems, D. S. Touretzky, Ed., San mateo, CA,

1990, vol. 2, pp. 598–605, Morgan Kaufmann Publisher.

167

BIBLIOGRAPHY

[17] Lars K. Hansen and Carl E. Rasmussen, “Pruning from Adaptive Regularization,”

Neural Computation, vol. 6, no. 6, pp. 1222–1231, 1994.

[18] F. Girosi, M. Jones and T. Poggio, “Regularization Theory and Neural Networks

Architectures,”Neural Computation, vol. 7, pp. 219–269, 1995.

[19] Lizhong Wu and John Moody, “A Smoothing Regularizer for Feedforward and

Recurrent Neural Networks,”Neural Computation, vol. 8, no. 3, pp. 463–491,

1996.

[20] G. E. Hinton, “Learning Translation Invariant Recognition in Massively Parallel

Networks,” inProceedings PARLE Conference on Parallel Architectures and Lan-

guages Europe, A. J. Nijman J.W. de Bakker and P. C. Treleaven, Eds., Berlin,

1987, pp. 1–13, Springer-Verlag.

[21] C. M. Bishop,Neural Networks for Pattern Recognition, Oxford University Press,

Oxford, 1995.

[22] Yves Grandvalet and Stephane Canu, “Noise Injection: Theoretical Prospects,”

Neural Computation, vol. 9, no. 5, pp. 1093–1108, 1997.

[23] Alan M. Thompson, John C. Brown, Jim W. Kay and D. Michael Titterington, “A

Study of Methods of Choosing the Smoothing Paprameter in Image Restoration by

Regularization,”IEEE Transaction on Pattern Analysis and Machine Intelligence,

vol. 13, no. 4, pp. 326–339, 1991.

[24] Peter R. Jonston and Ramesh M. Gulrajani, “A New Method for Regularization

Parameter Determination in the Inverse Problem of Electrocardiography,”IEEE

Trans. on Biomedical Engineering, vol. 44, no. 1, pp. 19–39, January 1997.

168

BIBLIOGRAPHY

[25] G. Wahba,Spline Models for Observational Data, vol. 59 ofCBMS-NSF regional

conference series in applied mathematics, Society for Industria and Applied math-

ematics, Philadelphia, PA, 1990.

[26] B. Efron and R. Tibshirani,An Introduction to the Bootstrap, Chaoman and Hall,

London, 1993.

[27] D. J. C. MacKay, “Bayesian Interpolation,”Neural Computation, vol. 4, no. 3, pp.

415–447, 1992.

[28] J. Larsen, L.K. Hansen, C. Svarer and M. Ohlsson, “Design and Regularization

of Neural Networks: the Optimal Use of a Validation Set,” inProceedings of the

1996 IEEE Signal Processing Society Workshop on Neural Networks for Signal

Processing, S. Usui, Y. Tohkura, S. Katagiri and E. Wilson, Ed., 1996, vol. VI, pp.

62–71.

[29] L. Nonboe Andersen, J. Larsen, L.K. Hansen and M. Hintz-Madsen, “Adaptive

Regularization of Neural Classifiers,” inProceedings of the 1997 IEEE Workshop

on Neural Networks for Signal Processing, J. Principe, L. Gile, N. Morgan and E.

Wilson, Ed., 1997, vol. VII, pp. 24–33.

[30] Dingding Chen and M. T. Hagan, “Optimal Use of Regularization and Cross-

validation in Neural Network Modeling,” inProceedings of the 1999 International

Joint Conference on Neural Networks, 1999, vol. 2, pp. 1275–1280, (IJCNN’99).

[31] Katsuyuki hagiwara and Kazuhiro Kuno, “Regularization Learning and Early Stop-

ing in Linear Networks,” inProceedings of the IEEE-INNS-ENNS International

Joint Conference on Neural Networks, S-I, Amari, C.L. Giles, M. Gori and V. Pi-

uri, Ed., 2000, vol. 4, pp. 511–516, (IJCNN 2000).

[32] Isabelle Rivals and Leon Personnaz, “On Cross Validation for Model Selection,”

Neural Computation, vol. 11, pp. 863–870, 1999.

169

BIBLIOGRAPHY

[33] S. Kullback,Information Theory and Statistics, Wiley, New York, 1959.

[34] L. Devroye,A Course in Density Estimation, Birhhauser Publisher, Boston, 1987.

[35] K. Fukunaga, Introduction to Statistical Pattern Recognition, Academic Press,

Boston, second edition, 1990.

[36] D. Bosq, Nonparametric Statistics for Stochastic Processes: Estimation and Pre-

diction, Springer-Verlag Inc., New York, 1996.

[37] J. Rissanen, “Modeling by Shortest Data Description,”Automatica, vol. 14, pp.

465–471, 1978.

[38] Andrew Barron, Jorma Rissanen and Bin Yu, “The Minimum Description Length

Prnciple in Coding and Modeling,”IEEE Trans. on Information Theory, vol. 44,

no. 6, pp. 2743–2760, October 1998.

[39] George S. Fishman, Monte Carlo: Concepts, Algorithms, and Applications,

Springer-Verlag, New York, 1996.

[40] James E. Gentle, Random Number Generation and Monte Carlo Methods,

Springer, New York, 1998.

[41] C. M. Bishop, “Training with Noise is Equivalent to Tikhonov Regularization,”

Neural Computation, vol. 7, no. 1, pp. 108–116, 1995.

[42] A. N. Tikhonov and V. Y. Arsenin,Solutions of Ill-posed Problems, V. H. Winston

and sons, Washington D.C., 1977.

[43] Russell Reed, Robert J. Marks II, and Seho Oh, “Simiarities of Error Regulariza-

tion, Sigmoid Gain Scaling, Target Smoothing, and Training with Jitter,”IEEE

Trans. Neural Networks, vol. 7, no. 3, pp. 529–538, 1995.

170

BIBLIOGRAPHY

[44] C. M. Bishop, “Regularization and Complexity Control in Feed-forward Net-

works,” Technical Report NCRG/95/022, Aston University, Birmingham, UK,

1995.

[45] R. A. Jacobs, “Increased Rates of Convergence through Learning Rate Adaptation,”

Neural Networks, vol. 1, pp. 295–307, 1988.

[46] Lei Xu, “Bayesian Ying-Yang System and Theory as A Unified Statistical Learn-

ing Approach (VII): Data Smoothing,” inProceedings of Intentional Confer-

ence on Neural Information Processing, Kitakyushu, Japan, 1998, 1, pp. 243–248,

(ICONIP’98).

[47] Michael R. Lyu, Handbook of Software Reliability Engineering, IEEE Computer

Society Press, McGraw Hill, 1996.

[48] D. J. C. MacKay, “A Practical Bayesian Framework for Backpropagation Net-

works,” Neural Computation, vol. 4, no. 3, pp. 448–472, 1992.

[49] G. J. McLachlan and K. E. Basford,Mixture Models: Inference and Applications

to Clustering, Dekker, New York, 1988.

[50] B. S. Everitt and D. Hand,Finite Mixture Distributions, Chapman and Hall, Lon-

don, 1981.

[51] N. E. Day, “Estimating the Component of a Mixture of Normal Distributions,”

Biometrika, vol. 56, pp. 463–474, 1969.

[52] H. H. Bock, “Probability Models and Hypotheses Testing in Partitioning Cluster

Analysis,” inClustering and Classification, Riverside, California, 1996, pp. 377–

453, World Scientific Press.

171

BIBLIOGRAPHY

[53] Stefan Aeberhard, Danny Coomans and Olivier de Vel, “Comparative Analysis

of Statistical Pattern Recognition Methods in High Dimensional Settings,”Patt.

Recog., vol. 27, no. 8, pp. 1065–1077, 1994.

[54] J. H. Friedman, “Regularized Discriminant Analysis,”J. Amer. Statist. Assoc., vol.

84, pp. 165–175, 1989.

[55] J.P. Hoffbeck and D.A. Landgrebe, “Covariance Matrix Estimation and Classifi-

cation With Limited Training Data,”IEEE Transaction on Pattern Analysis and

Machine Intelligence, vol. 18, no. 7, pp. 763–767, 1996.

[56] Ping Guo and Michael R. Lyu, “Classification for High-Dimension Small-Sample

Data Sets Based on Kullback-Leibler Information Measure,” inProceedings of The

2000 International Conference on Artificial Intelligence, H. R. Arabnia, Ed., Monte

Carlo Resort, Las Vegas, Nevada, USA, 2000, vol. III, pp. 1187–1193, CSREA

Press, (IC-AI’00).

[57] A. P. Dempster, N. M. Laird and D. B. Rubin, “Maximum-likelihood from Incom-

plete Data via the EM Algorithm,”J. Royal Statist. Society, vol. B39, pp. 1–38,

1977.

[58] R. A. Redner and H. F. Walker, “Mixture Densities, Maximum Likelihood and the

EM Algorithm,” SIAM Review, vol. 26, pp. 195–239, 1984.

[59] Andrew R. Webb,Statistical Pattern Recognition, Oxford University Press, Lon-

don, 1999.

[60] A. Mkhadri, G. Celeux, A. Nasroallah, “Regularization in Discriminant Analysis:

An Overview,” Computational Statistics & Data Analysis, vol. 23, pp. 403–423,

1997.

[61] I. T. Jolliffe, Principal Component Analysis, Springer-Verlag, New York, 1986.

172

BIBLIOGRAPHY

[62] E. W. Forgy, “Cluster Analysis of Multivariate Data: Efficiency Versus Inter-

pretability of Classifications,” inBiometric Soc, Meetings, Riverside, California,

1965, (Abstract in Biometrics 21, No.3, p768).

[63] J. A. Hartigen, “Distribution Problems in Clustering,” inClassification and Clus-

tering, J.van Ryzin, Ed., New York, 1977, pp. 45–72, Academic Press.

[64] L. Xu, A. Krzyzak and E. Oja, “Rival Penalized Competitive Learning for Clus-

tering Analysis, RBF net and Curve Detection,”IEEE Trans. on Neural Networks,

vol. 4, no. 4, pp. 636–649, 1993.

[65] K. Matusita and N. Ohsumi, “A Criterion for Choosing the Number of Clusters

in Cluster Analysis,” inRecent Development in Statistical Inference and Data

Analysis, Amsterdam, North Holland, 1980, pp. 203–213.

[66] H. Bozdagan, “Mixture-Model Cluster Analysis using Model Selection Criteria

and a New Informational measure of Complexity,” inProceeding of the First US/

Japan Conference on the Frontiers of Statistical Modeling: An Informational Ap-

proach, 1994, vol. 2, pp. 69–113.

[67] E. P. Rosenblum, “A Simulation Study of Information Theoretic Techniques and

Classical Hypothesis Tests in One Factor ANOVA,” inProceeding of the First

US/ Japan Conference on the Frontiers of Statistical Modeling: An Informational

Approach, 1994, vol. 2, pp. 319–346.

[68] R. B. Calinski and J. A. Harabasz, “A Dendrite Method for Cluster Analysis,”

Communications in Statistics, vol. 3, pp. 1–27, 1974.

[69] D. M. Titterington, “Some Recent Research in the Analysis of Mixture Distribu-

tions,” Statistics, vol. 21, pp. 619–641, 1990.

173

BIBLIOGRAPHY

[70] J. H. Wolfe, “Pattern Clustering by Multivariate Mixture Analysis,”Multivariate

Behavioural Research, vol. 5, pp. 329–350, 1970.

[71] F. H. C. Marriott, “Separating Mixtures of Normal Distributions,”Biometrics, vol.

31, pp. 767–769, 1975.

[72] M. P. Windham and A. Culter, “Information Ratios for Validating Mixture Anal-

yses,” Journal of the American Statistical Association, vol. 87, pp. 1188–1192,

1992.

[73] J. Geweke and R. Meese, “Estimating Regression Models of Finite but Unknown

Order,” International Economic Review, vol. 22, pp. 55–70, 1981.

[74] T. Terasvirta and I. Mellin, “Model Selection Criteria and Model Selection Tests

in Regression Models,”Stand. J. Statist., vol. 13, pp. 159–171, 1986.

[75] Lei Xu, “How Many Clusters?: A YING-YANG Machine Based Theory for A

Classical Open Problem in Pattern Recognition,” inProceeding of IEEE Interna-

tional Conference on Neural Networks, 1996, vol. 3, pp. 1546–1551.

[76] Lei Xu, “Bayesian Ying-Yang Machine, Clustering and Number of Clusters,”Pat-

tern Recognition Letters, vol. 18, no. 11-13, pp. 1167–1178, 1997.

[77] Z.B. Lai, P. Guo, T. J. Wang and L. Xu, “Comparison on Bayesian YING-YANG

Theory based Clustering Number Selection Criterion with Information Theoreti-

cal Criteria,” in Proceedings of IEEE International Joint Conference on Neural

Networks, Anchorage, USA, 1998, vol. I, pp. 725–729, IEEE Press, (IJCNN’98).

[78] Ping Guo and Lei Xu, “On the Study of BKYY Cluster Number Selection Criterion

for Small Sample Data Set with Bootstrap Technique,” inProceedings of 1999

International Joint Conference on Neural Networks, Washington, DC, USA, 1999,

vol. I, pp. 965–968, IEEE Press, (IJCNN’99).

174

BIBLIOGRAPHY

[79] Lei Xu, “Bayesian YING-YANG System and Theory as A Unified Statistical

Learning Approach(I): for Unsupervised and Semi-Unsupervised Learning,” in

Brain-like Computing and Intelligent Information Systems, S. Amari and N. Kass-

abov, Eds. 1997, pp. 241–247, Springer-Verlag.

[80] Lei Xu, “Bayesian YING-YANG System and Theory as A Unified Statistical

Learning Approach (II): From Unsupervised Learning to Supervised Learning and

Temporal Modeling,” inTheoretical Aspects of Neural Computation: A Multidis-

ciplinary Perspective, I. King K.W.Wong and D.Y.Yeung, Eds. 1997, pp. 25–42,

Springer-Verlag, (TANC97).

[81] H. Akaike, “A New Look at the Statistical Model Identification,”IEEE Transac-

tions on Automatic Control, vol. AC-19, pp. 716–723, 1974.

[82] H. Bozdogan,Multiple Sample Cluster Analysis and Approaches to Validity Studies

in Clustering Individuals, Doctoral dissertation, University of Illinois ar Chicago

Circle, Chicago,IL, 1981.

[83] H. Bozdogan, “Modle Selection and Akaike’s Information Criterion: The General

Theory and its Analytical Extensions,”Psychometrika, vol. 52, no. 3, pp. 345–370,

1987.

[84] G. Schwarz, “Estimating the Dimension of a Model,”The Annals of Statisticals,

vol. 6, no. 2, pp. 461–464, 1978.

[85] M. P. Perrone and L. N. Cooper, “When Networks Disagree: Ensemble Methods

for Hybrid Neural Networks,” inArtificial Neural Networks for Speech and Vision,

R. J. Mammone, Ed., London, 1993, pp. 126–142, Chapman & Hall.

[86] A. J. C. Sharkey, “On Combining Artificial Neural Nets,”Connection Science, vol.

8, pp. 299–313, 1996.

175

BIBLIOGRAPHY

[87] L. Xu, A. Krzyzak, and C.Y. Suen, “Methods of Combining Multiple Classifiers

and Their Application to Handwriting Recognition,”IEEE Trans. on Systems, Man,

and Cybernetics, vol. 22, no. 3, pp. 418–435, 1992.

[88] L. Breiman, “Bagging Predictors,” Tech. Rep. 421, Department of Statistics, Uni-

versity of California at Berkely, 1994.

[89] A. Krogh and J. Vedelsby, “Neual Network Ensemble, Cross Validation, and Active

Learning,” inAdvanced in Neural Information Processing Systems, D.S.Touretzky

G. Tesauro and T.K.Leen, Eds., Cambridge, 1995, vol. 7, pp. 231–238, MIT Press.

[90] K. Tumer and J. Ghosh, “Error Correlation and Error Reduction in Ensemble Clasi-

fiers,” Connection Science, vol. 8, no. 3-4, pp. 385–404, 1996.

[91] J. Ghosh, L. Deuser, and S. Beck, “A Neural Network based Hybrid System for

Detection, Characterization and Classification of Short-duration Oceanic Signals,”

IEEE Journal of Ocean Engineering, vol. 17, no. 4, pp. 351–363, October 1992.

[92] T.K.Ho, J.J. Hull, and S.N.Srihari, “Decision Combination in Multiple Classifier

System,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.

16, no. 1, pp. 66–76, 1994.

[93] Jianchang Mao, “A Case Study on Bagging, Boosting, and Basic Ensembles of

Neural Networks for OCR,” inProceedings of IEEE International Joint Conference

on Neural Networks, Anchorage, USA, 1998, vol. III, pp. 1828–1833, (IJCNN’98).

[94] L. Xu and M.I. Jordan, “EM Learning on a Generalized Finite Mixture Model

for Combining Multiple Classifiers,” inProceedings of World Congress on Neural

Networks, Portland, OR, 1993, vol. IV, pp. 227–230.

[95] U. Naftaly, N. Intrator and D. Horn, “Optimal Ensemble Averaging of Neural

Networks,” Network: Comput. Neural Syst., vol. 8, pp. 283–296, 1997.

176

BIBLIOGRAPHY

[96] M. Taniguchi and V. Tresp, “Averaging Regularized Estimators,”Neural Compu-

tation, vol. 9, pp. 1163–1178, 1997.

[97] R.A. Jacobs, M.I.Jordan, S.J. Nowlan and G.E. Hinton, “Adaptive Mixtures of

Local Experts,”Neural Computation, vol. 3, pp. 79–97, 1991.

[98] L. Xu, M. I. Jordan and G. E. Hinton, “An Alternative Model for Mixtures of

Experts,” in Advances in Neural Information Processing Systems, G. Tesauro

J.D. Cowan and J. Alspector, Eds., Cambridge,MA, 1995, vol. 7, pp. 633–640,

MIT Press.

[99] Daniel Jimènez and Nicolas Walsh, “Dynamically Weighted Ensemble Neural Net-

works for Classification,” inProceedings of IEEE International Joint Conference

on Neural Networks, Anchorage, USA, 1998, vol. I, pp. 753–756, (IJCNN’98).

[100] P. Guo, C.L.P. Chen and Y.G.Sun, “An Exact Supervised Learning for a Three-

Layer Supervised Neural Network,” inProceedings of International Confer-

ence on Neural Information Processing, Beijing, China, 1998, pp. 1041–1044,

(ICONIP’95).

[101] Ping Guo and Michael R. Lyu, “Pseudoinverse Learning Algorithm for Feed-

forward Neural Networks,” inAdvances in Neural Networks and Applications,

N. E. Mastorakis, Ed., Puerto De La Cruz, Tenerife, Canary Islands, Spain, Febru-

ary 2001, World Scientific and Engineering Society, pp. 321–326, WSES Press,

(NNA’01).

[102] S. Haykin and C. Deng, “Classification of Radar Clutter Using Neural Networks,”

IEEE Transactions on Neural Networks, vol. 2, pp. 589–600, 1991.

[103] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard and W. Hubbard,

“Handwritten Digit Recognition with a Back-propagation Network,” inAdvanced

177

BIBLIOGRAPHY

in Neural Information Processing Systems, D. S. Touretsky, Ed., San Mateo, CA,

1990, pp. 396–404.

[104] D. E. Rumelhurt, G. E. Hinton and R. J. Williams, “Learning Internal Represen-

tations by Error Propagating,” inParallel Distributed Processing, D.E.Rumelhart

and J.L.McClelland, Eds., Cambridge, MA, 1986, vol. 1, pp. 318–362, MIT Press.

[105] P. Patrick and Van Der Smagt, “Minimization Methods for Training Feedforward

Neural Networks,”Neural Networks, vol. 7, pp. 1–11, 1994.

[106] E. Barnard, “Optimization for Training Neural Nets,”IEEE Transactions on Neural

Networks, vol. 3, no. 2, pp. 232–240, 1992.

[107] F. A. Zodewyk, Wesswls and B. Etienne, “Avoid False Local Minima by proper

Initializations of Connections,”IEEE Transaction on Neural Networks, vol. 3, no.

6, pp. 899–905, 1992.

[108] S. Kollias and D. Anastassiou, “An Adaptive Least Squares Algorithm for the

Efficient Training of Artificial Neural Networks,” IEEE Transaction on Circuit

and System, vol. CAS-36, pp. 1092–1101, 1989.

[109] D. H. Wolpert, “Stacked Generalization,”Neural Networks, vol. 5, pp. 241–259,

1992.

[110] Thomas L. Boullion and Patrick L. Odell,Generalized Inverse Matrices, John

Wiley and Sons, Inc., New York, 1971.

[111] S. Tamura, “Capabilities of a Tree Layer Feedforward Neural Network,” inPro-

ceedings of International Joint Conference on Neural Networks, Seattle, USA,

1991, pp. 2757–2762, (IJCNN’91).

[112] C. R. Rao and S. K. Mitra,Generalized Inverse of Matrices and Its Applications,

Wiley, New York, 1971.

178

BIBLIOGRAPHY

[113] Jon F. Claerbout,Fundamentals of Geophysical Dada Processing with Applica-

tions to Petroleum Prospecting, McGraw-Hill Inc, USA, 1976, (TN 271, P4C6).

[114] F. Biegler-König and F. B¨armann, “A Learning Algorithm for Multilayered Neural

Networks Based on Linear Least Squares Problems,”Neural Networks, vol. 6, pp.

127–131, 1993.

[115] N. Karunanithi, D. Whitley and Y. K. Malaiya, “Prediction of Software Reliability

Uisng Connectionist Models,”IEEE Transaction on Software Engineering, vol. 18,

pp. 563–574, 1992.

[116] Ping Guo, “Averaging Ensemble Neural Networks in Parameter Space,” in

Proceedings of fifth International Conference on Neural Information Processing,

Takashi Omori Shiro Usui, Ed., Kitakyushu, Japan, 1998, pp. 486–489, IOS Press,

(ICONIP’98).

[117] K. S. Fu and J. K. Mui, “A Survey on Image Segmentation,”Pattern Recognition,

vol. 13, pp. 3–16, 1981.

[118] H. S. Choi, D. R. Haynor and Kam, “Partial Volume Tissue Classification of Mul-

tichannel Magnetic Resonance Images–Amixel Model,”IEEE Trans. Med. Image.,

vol. 10, pp. 395–407, 1991.

[119] P. Santago and H. D. Gage, “Statistical Models of Partial Volume Effect,”IEEE

Trans. Image Processing, vol. 4, no. 11, pp. 1531–1540, 1995.

[120] S. Sanjay-Gopal and Thomas J. Hebert, “Bayesian Pixel Classification Using Spa-

tially Variant Finite Mixtures and the Generalized EM Algorithm,”IEEE Transac-

tion on Image Processing, vol. 7, no. 7, pp. 1014–1028, 1998.

[121] Yu-TCHi, Takeo Kanade, and Toshiyuki Sakai, “Color Information for Region

Segmentation,”Computer Graphics and Processing, vol. 13, pp. 222–241, 1980.

179

BIBLIOGRAPHY

[122] B. W. Boehm and P. N. Papaccio, “Understanding and Controlling Software Costs,”

IEEE Trans. on Software Engineering, vol. 14, no. 10, pp. 1462–1477, October

1988.

[123] A. J. Perlis, F. G. Sayward and M. Shaw,Software Metrics: An Analysis and

Evaluation, MIT Press, Cambridge, MA, 1981.

[124] V. Y. Shen, T. Yu, S. M. Thebaut, and L. R. Paulsen, “Identifying Error-prone

Software — An Empirical Study,” IEEE Trans. on Software Engineering, vol.

SE-11, pp. 317–323, April 1985.

[125] S. G. Crawford, A. A. McIntosh, and D. Pregibon, “An Analysis of Static Metrics

and Faults in C Software,”J. Syst. Sofyware, vol. 5, pp. 27–48, 1985.

[126] L. C. Briand, V. R. Basili, and C. Hetmanski, “Developing Interpretable Models for

Optimized Set Reduction for Identifying High-Risk Software Components,”IEEE

Trans. on Software Engineering, vol. SE-19, no. 11, pp. 1028–1034, November

1993.

[127] J. Munson and T. Khoshgoftaar, “The Detection of Fault-prone Programs,”IEEE

Trans. on Software Engineering, vol. SE-18, no. 5, pp. 423–433, May 1992.

[128] T. Khoshgoftaar and J. Munson, “Predicting Software Development Error Using

Software Complexity metrics,”IEEE Trans. on Software Engineering, vol. 8, no.

2, pp. 253–261, February 1990.

[129] A. A. Porter and R. W. Selby, “Empirically Guided Software Development Using

Metric-based Classification Trees,”IEEE Software, vol. 7, no. 2, pp. 46–54, March

1990.

180

BIBLIOGRAPHY

[130] R. W. Selby and A. A. Porter, “Learning from Examples: Generation and Evolu-

tion of Decision Trees for Software Resource Analysis,”IEEE Trans. on Software

Engineering, vol. 14, no. 12, pp. 1743–1756, December 1988.

[131] S. S. Gokhale and M. R. Lyu, “Regression Tree Modeling for the Prediction of Soft-

ware Quality,” inProceedings of Third ISSAT International Conference:Reliability

& Quality in Design, Hoang Pham, Ed., Anaheim, CA, 1997, pp. 31–36.

[132] L. C. Briand, V. R. Basili, and W. M. Thomas, “A Pattern Recognition Approach

for Software Engineering Data Analysis,”IEEE Transaction on Software Engi-

neering, vol. SE-18, no. 11, pp. 931–942, November 1992.

[133] T. Khoshgoftaar, D. L. lanning and A. S. Pandya, “A Comparative Study of Pattern

Recognition Techniques for Quality Evaluation of Telecommunications Software,”

IEEE J. Selected Areas in Communication, vol. 12, no. 2, pp. 279–291, February

1994.

[134] L. M. Ottenstein, “Quantitative Estimates of Debugging Requirements,”IEEE

Trans. on Software Engineering, vol. SE-5, no. 2, pp. 504–514, September 1979.

[135] W. R. Dillon and M. Goldstein,Multivariate Analysis, Wiley, New York, 1984.

[136] V. R. Basili and D. H. Hutchens, “An Empirical Study of a Syntactic Complexity

Family,” IEEE Trans. on Software Engineering, vol. SE-9, no. 6, pp. 664–672,

November 1983.

[137] R. K. Lind, “An Experimental Study of Software Metrics and their Relationship

to Software Error,” M.S. thesis, University of Wisconsin-Milwaukee, Milwaukee,

December 1986, Master’s thesis.

[138] M. Halstead,Elements of Software Science, New York Elsevier, North-Holland,

1977.

181

BIBLIOGRAPHY

[139] H. Jensen and K. Vairavan, “An Experimental Study of Software Metrics for Real-

Time Software,” IEEE Trans. on Software Engineering, vol. SE-11, no. 2, pp.

231–234, February 1994.

[140] T. J. McCabe, “A Complexity Measure,”IEEE Trans. on Software Engineering,

vol. SE-2, no. 4, pp. 308–320, 1976.

182

