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Online Services are Everywhere

Web search

Office apps

Social network

Online 
shopping

And many others…
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Service Reliability is Crucial
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Service reliability is vital for both service providers and users

Service issues User dissatisfactionRevenue loss
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2021 Facebook Outage
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State-of-the-art service reliability: 5-6 9s (99.9999% up time)

Facebook service traffic during 2021 outage**

*Data from: https://www.datacenterdynamics.com/en/opinions/too-big-to-fail-facebooks-global-outage/
**Image from: https://en.wikipedia.org/wiki/2021_Facebook_outage

$47 billion loss*

Three nines left 
in that year!

https://www.datacenterdynamics.com/en/opinions/too-big-to-fail-facebooks-global-outage/
https://en.wikipedia.org/wiki/2021_Facebook_outage


Reliability monitoring for online 
service systems is crucial,

but challenging
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Service Reliability is Challenging
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Challenge 1: Large scale and complexity

Image from: https://www.vice.com/en/article/m7jpab/21-terabytes-of-open-source-code-is-now-stored-in-an-arctic-vault

https://www.vice.com/en/article/m7jpab/21-terabytes-of-open-source-code-is-now-stored-in-an-arctic-vault
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Service Reliability is Challenging
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Challenge 2: Fast development iteration

Image from: https://github.com/microsoft/vscode/pulse

https://github.com/microsoft/vscode/pulse
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Service Reliability is Challenging
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Challenge 3: Complicated service dependencies

A prototype of Google search service

Image from: Zhu, Jieming. Data-Driven Quality Management of Online Service Systems. 2016.
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Traditional engineering 
techniques are often insufficient

Intelligent service monitoring is 
in need

AI
Techniques

Intelligent
Service

Monitoring
Big IT Data
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Key Qualities of Intelligent Service Monitoring
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Large scale and complexity Fast development iteration Complicated service dependencies

Good performance: 
accurate, fast, and 

high-coverage

Adaptivity and 
interpretability

Impact scope 
estimation
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Intelligent Service Monitoring
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Intelligent service monitoring

Monitoring
data collection

Logs

Metrics

Topology

Alerts/Events

Service usage

Network 
infrastructure

VM & Containers

Apps & Services

An empirical study on 
industrial incident 

management

1

A systematic review 
on DL-based log 

anomaly detection

2

Interpretable and 
adaptive performance 

anomaly detection

3

Unsupervised and 
unified alert 
aggregation

4
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Thesis Contributions
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An empirical study on industrial incident management
Identify the key problems of intelligent service monitoring

Logs

Metrics

Topology

Alerts/Events

Intelligent service monitoring
1

(Chapter 4) 
[FSE ’20, AAAI ’20, SIGOPS ’22]

A systematic review on DL-based log anomaly detection
Help customize and integrate end2end solutions into services

2
(Chapter 5)
[arXiv ’21, CSUR ’21]

Interpretable and adaptive performance anomaly detection
Accumulate human knowledge for anomaly explanation

3
(Chapter 6)
[ICSE ’22, ICSE ’23 (in submission)]

Unsupervised and unified alert aggregation
Accelerate failure understanding and impact scoping

4
(Chapter 7)
[ASE ’21, ICSE ’23 (in submission)]
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Outline

oTopic 1: An empirical study on industrial incident management

oTopic 2: Interpretable and adaptive performance anomaly detection

oTopic 3: Unsupervised and unified alert aggregation

oConclusion and Future work

12
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Outline
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An empirical study on industrial incident management

Logs

Metrics

Topology

Alerts/Events

Intelligent service monitoring
1

(Chapter 4)

A systematic review on DL-based log anomaly detection

2

(Chapter 5)

Interpretable and adaptive performance anomaly detection

3

(Chapter 6)

Unsupervised and unified alert aggregation

4

(Chapter 7)
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Content

oTopic 1: An empirical study on industrial incident management
üMotivation & methodology
ü Incident characteristics
üKey challenges of incident management
üSummary

14
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What is a Service Incident?

Service interruption or performance degradation
o Is or will be affecting user experience
o Can be referred to as failure
o Examples

ü Bad HTTP requests
ü Power outages
ü Customer-reported errors

Low

Medium

High

Critical

15
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Incident Management Procedure

Incident management procedure
o Incident reporting

o Incident triage

o Incident mitigation
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Motivation

o A lack of comprehensive study of incident management

o Understand the key challenges of incident handling

o Identify the unaddressed problems of service monitoring

17
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Methodology

Raw dataset
o Two years of incident tickets at Microsoft

Six core services
o Datacenter Management (DCM)
o Networking
o Storage
o Compute
o Database
o Web Service (WS)

Study approaches
o Incident ticket analysis
o Field studies
o Validation through quantitative experiments

The cloud stack of Microsoft Azure

An example of incident ticket
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Content

oTopic 1: An empirical study on industrial incident management
üMotivation & Study methodology
ü Incident characteristics
üKey challenges of incident management
üSummary

19
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Incident Characteristics

Incident root causes
o Human Errors
o Network Issues
o Deployment Issues
o External Issues
o Capacity Issues
o Others

37.3%30.6%

Distribution of incident root causes
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Incident Characteristics

Incident severity
o Low + Medium incidents > 90%
o Critical incidents [0.01%, 0.4%]

Incident fixing time
o In many cases, the time Critical incidents 

take is larger than the sum of others

Distribution of incident fixing time

Distribution of incident severity
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Content

oTopic 1: An empirical study on industrial incident management
üMotivation & Study methodology
ü Incident characteristics
üKey challenges of incident management
üSummary
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Key Challenges of Incident Management

Challenge 1: Resource health assessment
o Problem detection based on various signals (metrics, logs, etc.)
o Hard-to-understand problems with complex and changing patterns

23
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Key Challenges of Incident Management

Challenge 1: Resource health assessment
o Problem detection based on various signals (metrics, logs, etc.)
o Hard-to-understand problems with complex and changing patterns

24

Accurate, adaptive, and interpretable anomaly detection 
alleviates flooding alarms and gray failures [Topic 2]

Flooding alarms

Compute Cluster Storage Cluster

Datacenter

Row

Rack

Node
Server DB

Engineers

Gray failures
Subtle failures that defy quick 
and definitive detection [1].

[1] Huang et al. Gray Failure: The Achilles' Heel of Cloud-Scale Systems. HotOS ’17.
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Key Challenges of Incident Management

Challenge 2: Resource dependency discovery 
o Services rely on each other (microservices)
o Incomplete, outdated, and human-dependent
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Key Challenges of Incident Management

Challenge 2: Resource dependency discovery 
o Services rely on each other (microservices)
o Incomplete, outdated, and human-dependent

Redundant engineering efforts
Network

Storage
VM

SQL

Imprecise impact estimation

Identifying related problems facilitates failure impact 
estimation and duplicate effort saving [Topic 3]
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Understanding the Key Challenges

Challenge 1: Resource health assessment
o System fault tolerance
o Monitor design and distribution
o …

Challenge 2: Resource dependency discovery
o Software system modularity
o Physical infrastructure virtualization
o Dynamic deployment
o Load balancing
o …

A typical cloud computing architecture

An incident showing Challenge 1 An incident showing Challenge 2
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Content

oTopic 1: An empirical study on industrial incident management
üMotivation & Study methodology
ü Incident characteristics
üKey challenges of incident management
üSummary

28
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Summary of Topic 1

o A comprehensive study of industrial incident management

o The general management procedure of incidents and their characteristics

o Study the key challenges of incident handling and the underlying reasons

o Findings motivate the studies in Topic 2 and Topic 3
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Outline

30

An empirical study on industrial incident management

Logs

Metrics

Topology

Alerts/Events

Intelligent service monitoring
1

(Chapter 4)

A systematic review on DL-based log anomaly detection

2

(Chapter 5)

Interpretable and adaptive performance anomaly detection

3

(Chapter 6)

Unsupervised and unified alert aggregation

4

(Chapter 7)



30/11/2022 Intelligent Reliability Monitoring and Engineering for Online Service Systems

Content

oTopic 2: Interpretable and adaptive performance anomaly detection
üMotivation
üAnomaly detection based on pattern sketching
üEvaluation
üSummary

31
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Performance Anomaly Detection

Performance anomalies
o Slow service response
o High temperature
o …

Service performance is monitored with metrics
o Request latency
o Request success rate
o Traffic volume
o …

An anomaly is an observation or a sequence 
of observations which deviates remarkably 
from the general distribution of data [1].

[1] Braei et al. Anomaly Detection in Univariate Time-series: A Survey on the State-of-the-Art. arXiv ’22.
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Why Yet Another Detection Algorithm?

Indeed, many existing unsupervised approaches
o Forecasting-based: LSTM
o Reconstruction-based: Donut, LSTM-VAE
o Probabilistic: LODA, DAGMM, Extreme Value Theory
o Tree-based: Isolation Forest
o Others: SR-CNN, …

In production, we need
o Interpretability: gain engineers’ trust, accelerate failure understanding
o Online adaptability: accommodate unseen patterns
o Human knowledge reusage: valuable company asset
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Motivating Observations

Key observations
o Metric time series tends to develop individual and 

stable patterns
ü A metric pattern: repeated similar subsequences
ü Similar observations have been made [1-3]

o Similar anomalies incur similar anomalous patterns
on the metric time series [4]

Anomalous patterns captured in Huawei Cloud

[1] Hu et al. TS-InvarNet: Anomaly Detection and Localization based on Tempo-spatial KPI Invariants in Distributed Services. ICWS ’22.
[2] Wu et al. Identifying Root-Cause Metrics for Incident Diagnosis in Online Service Systems. ISSRE ’21.
[3] Ma et al. Diagnosing root causes of intermittent slow queries in cloud databases. VLDB ’20.
[4] Lim et al. Identifying Recurrent and Unknown Performance Issues. ICDM ’14.

ü Find metric patterns
ü Distinguish the anomalous patterns from the normal ones
ü Adapt to unseen patterns



30/11/2022 Intelligent Reliability Monitoring and Engineering for Online Service Systems 35

Motivating Observations

Anomaly detection strategy – Pattern Sketching
o When a service runs normally, it produces normal patterns
o If a new pattern deviates substantially from the normal ones, it could be abnormal

Interpretability
o If a known abnormal patterns is detected, we know what performance anomalies have 

happened

Mapping

Anomalous patterns Anomalies
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Content

oTopic 2: Interpretable and adaptive performance anomaly detection
üMotivation
üAnomaly detection based on pattern sketching
üEvaluation
üSummary

36
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ADSketch Overview

Metric pattern discovery
(offline anomaly detection)

Online anomaly 
detection

Adaptive 
pattern learning
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The Smallest Pair-Wise (SPW) Distance

o A subsequence: a continuous part of a metric time series

o The SPW distance of a subsequence: its smallest distance to other subsequences

o If a subsequence has a large SPW distance , it is likely an anomaly

The SPW distance of a metric time series

o Brute-force searching is not scalable
o STAMP [1] is faster by orders of magnitude

ü Fast Fourier Transform (FFT)

[1] Yeh et al. Matrix profile I: all pairs similarity joins for time series: a unifying view that includes motifs, discords and shapelets. ICDM ’16.
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Metric Pattern Discovery

Break due to percentile 
threshold unfulfillment Isolated subgraphs, 

also the anomaly 
candidates

The mean of each cluster

Metric patterns, and
is the only abnormal pattern

Apply Affinity 
Propagation to the 
mean of each subgraph

o Algorithm inputs
ü 1. Anomaly-free time series         2. Time series for anomaly detection

o Algorithm outputs
ü Anomalies
ü Normal and abnormal patterns

anomalies
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ADSketch Overview

Metric pattern discovery
(offline anomaly detection)

Online anomaly 
detection

Adaptive 
pattern learning
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Online Anomaly Detection

o Algorithm inputs
ü Streaming time series for anomaly detection

o Algorithm outputs
ü Anomalies in the time series

Stream metric 
time series

Metric 
patterns

Anomalous 
pattern

Prediction results
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ADSketch Overview

Metric pattern discovery
(offline anomaly detection)

Online anomaly 
detection

Adaptive 
pattern learning
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Adaptive Pattern Learning

o Algorithm inputs
ü Streaming time series for anomaly detection

o Algorithm outputs
ü Anomalies
ü Updated metric patterns

Stream metric 
time series

Metric 
patterns

A new anomaly
pattern!

The mean

close enough to                         ?

Yes

No

Update the pattern

Create a new 
anomalous pattern The worst case for pattern updates
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Complexity Analysis

o Time complexity
ü The closest pair searching: 𝒪 𝑛!

ü Affine propagation algorithm: 𝒪 𝐶 ! , 𝐶 is the number of clusters, which is small
ü Online anomaly detection and pattern updating: 𝒪 𝑛
ü Overall: 𝒪 𝑛!

ü Easily parallelizable
ü Ultra-fast approximation is attainable

o Space complexity
ü The indexes of metric patterns: 𝒪 𝐶
ü The storage of metric patterns: 𝒪 𝑚× 𝐶 , 𝑚 is the length of subsequences
ü Our design makes it trivial
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Content

oTopic 2: Interpretable and adaptive performance anomaly detection
üMotivation
üAnomaly detection based on pattern sketching
üEvaluation
üSummary
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Evaluation Questions

o RQ1: How effective is ADSketch’s offline anomaly detection?

o RQ2: How effective is ADSketch’s online anomaly detection?

o RQ3: How effective is ADSketch’s adaptive pattern learning?
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Experiment Settings

o Datasets

o Evaluation Metrics

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 , 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 , 𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
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Experimental Results

oOffline anomaly detection
ü2.1%-54% improvement in Yahoo
ü26%-86% improvement in AIOps18
ü 17%-70% improvement in Industry
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Experimental Results

oOnline anomaly detection
ü24%-65% improvement in AIOps18
ü0.8%-48% improvement in Industry
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Experimental Results

oAdaptive anomaly detection
ü35%-42% improvement in AIOps18
ü52%-83% improvement in Industry
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Industrial Deployment

ADSketch has been deployed in Huawei Cloud
o Serve tens of thousands of service instances and devices
o The accuracy of anomaly detection has been substantially improved
o Being integrated into the anomaly detection service for internal users

https://www.huaweicloud.com/lab/cnl/paper_anomaly_detection.html

https://www.huaweicloud.com/lab/cnl/paper_anomaly_detection.html
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Content

oTopic 2: Interpretable and adaptive performance anomaly detection
üMotivation
üAnomaly detection based on pattern sketching
üEvaluation
üSummary
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Summary of Topic 2

oADSketch: A performance anomaly detector based on pattern sketching
üAn explicit metric pattern discovery algorithm

üAn adaptive pattern learning algorithm

üA labeling scheme to improve interpretability and reuse human knowledge

oADSketch has been deployed in production and performs well
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Outline

54

An empirical study on industrial incident management

Logs

Metrics

Topology

Alerts/Events

Intelligent service monitoring
1

(Chapter 4)

A systematic review on DL-based log anomaly detection

2

(Chapter 5)

Interpretable and adaptive performance anomaly detection

3

(Chapter 6)

Unsupervised and unified alert aggregation

4

(Chapter 7)
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Content

oTopic 3: Unsupervised and unified alert aggregation
üMotivation
üGraph representation learning for alert aggregation
üEvaluation
üSummary

55
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Alerting in Online Services

o Alerting gives timely awareness to problems in cloud 
applications

o Monitors render an alert upon alerting policy violation
o E.g., Specify the values of HTTP response latency that require 

user responses

56

Alert title: The HTTP response latency is higher than 2s for at least 5m.

Alert format Alert ID, Alert type, Alert title, Alert 
time, Severity, Component, etc.

Setting alert rules in Microsoft Azure

Image from: https://learn.microsoft.com/en-us/azure/event-grid/set-alerts

https://learn.microsoft.com/en-us/azure/event-grid/set-alerts
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Flooding Alerts

Incidents often come with many alerts
o Complex service dependencies, i.e., cascading effect
o Conservative alerting policies

Pain points of site reliability engineers
o Duplicate engineering efforts
o Delayed root cause analysis

57
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Alert Aggregation

58

Group alerts associated with 
the same failure

ü Estimate failure impact scope
ü Save duplicate engineering effort
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Challenges

o Background noise

o Little textual similarity
ü “Traffic burst seen in Nginx node” and “Traffic burst seen in LVS node”
ü “Virtual machine is in abnormal state” and “OSPF protocol state change”

o Lack of labeled data

o Incomplete failure-impact graph based on alerts
ü Alerting policies not triggered
ü Fault tolerance bears anomalies

59
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Incorporating Metric Information

o Metrics characterize failure impact in a more fine-grained way

60

Node A

Node B

Node E

Node D

Metric similarity

Metrics TopologyAlerts/Events
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Content

oTopic 3: Unsupervised and unified alert aggregation
üMotivation
üGraph representation learning for alert aggregation
üEvaluation
üSummary
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Girdle Overview

Service failure 
detection

Failure-impact 
graph completion

Graph representation 
learning

Online alert 
aggregation
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Service Failure Detection

o Detect historical failures for alert correlation learning

o Flooding alerts (check the no. of alerts/min)

o Extreme Value Theory (EVT)
ü No hand-set thresholds
ü No assumption on data distribution
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Failure-impact Graph Completion

o Identify alerts triggered by the common failure

o Community detection
ü Identify similar node sets in a graph
ü The key is the design of two nodes’ similarity

v Alert set similarity (Jaccard index)
v Metric similarity (Dynamic time warping)

o Preliminary correlations between alerts

64

Deal with possible clock non-sync 
between nodes during metric collection

Dynamic time warping*
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Graph Representation Learning

o Learn more significant correlations between alerts from historical failures

o Existing work combines different features by a simple weighted sum

o Graph representation learning
ü Learn a feature vector 𝑣 for each unique type of alert
ü Unify the temporal and topological correlations of alerts
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Online Alert Aggregation

o Quickly aggregate alerts when failures happen in production environment

o Two alerts 𝑖 and 𝑗 will be grouped if their similarity score is large

𝑠𝑖𝑚 𝑖, 𝑗 = 𝒯 𝑖, 𝑗 ×ℋ 𝑖, 𝑗

Historical closeness

ℋ 𝑖, 𝑗 =
𝑣! ' 𝑣"

||𝑣!||×||𝑣"||

Topological rescaling

𝒯 𝑖, 𝑗 =
1

max(1, 𝑑𝑖𝑠 𝑖, 𝑗 − 𝒟)



30/11/2022 Intelligent Reliability Monitoring and Engineering for Online Service Systems

Content

oTopic 3: Unsupervised and unified alert aggregation
üMotivation
üGraph representation learning for alert aggregation
üEvaluation
üSummary
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Dataset

o Alerts
ü Networking service of Huawei Cloud
ü Alerts are reported by various devices and virtual network function (VNF) instances

o Metrics
ü CPU usage
ü Round trip delay
ü Port in-bound/out-bound traffic rate
ü Package receiving/sending rate
ü Package receiving/sending error rate
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Evaluation Metrics

o Service failure detection (binary classification)
ü Precision, Recall, and F1 score

o Alert aggregation (clustering)
ü Normalized Mutual Information (NMI) in [0, 1] (the larger the better)

𝑁𝑀𝐼 𝑌, 𝐶 =
2×𝐼(𝑌; 𝐶)
𝐻 𝑌 + 𝐻(𝐶)

𝑌 = 𝑐𝑙𝑎𝑠𝑠 𝑙𝑎𝑏𝑒𝑙𝑠
𝐶 = 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑙𝑎𝑏𝑒𝑙𝑠
𝐻 ' = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦
𝐼 𝑌; 𝐶 = 𝑀𝑢𝑡𝑢𝑎𝑙 𝑖𝑛𝑓𝑜 𝑏/𝑤 𝑌 𝑎𝑛𝑑 𝐶

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃
𝑇𝑃 + 𝐹𝑁

, 𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
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Service Failure Detection

oGirdle outperforms simple thresholding by 8.9%- 24.7%
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Alert Aggregation

oGirdle achieves 10.4%-72.7% improvement
üFP-Growth [1] is vulnerable to noise and unable to address rare yet important alerts
üUHAS [2] does not learn from history
üLiDAR [3] uses textual similarity which is not reliable

[1] Han et al. Mining frequent patterns without candidate generation. ACM SIGMOD Record ’00.
[2] Zhao et al. Understanding and handling alert storm for online service systems. ICSE-SEIP ’20.
[3] Chen et al. Identifying linked incidents in large-scale online service systems. ESEC/FSE ’20.
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Content

oTopic 3: Unsupervised and unified alert aggregation
üMotivation
üGraph representation learning for alert aggregation
üEvaluation
üSummary
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Summary of Topic 3

oGraph representation learning for alert aggregation
ü Incomplete cascading topology of failures

üLearn alert correlation with multi-source information

oGirdle has been deployed in production and we received positive feedback
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Outline

oTopic 1: An empirical study on industrial incident management

oTopic 2: Interpretable and adaptive performance anomaly detection

oTopic 3: Unsupervised and unified alert aggregation

oConclusion and Future work
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Conclusion

75

Software reliability engineering
Intelligent Service Monitoring

Metric anomaly 
detection

ü Metric pattern extraction
ü Interpretable results
ü Adaptable to new patterns

Alert aggregation

ü Multi-source data usage
ü Unsupervised alert correlation 

learning

Log anomaly 
detection

ü Experience report
ü A toolkit for reuse

Incident management 
study

ü Empirical study
ü Challenges and reasons of 

incident handling
ü Thesis guidance

Good performance: 
accurate, fast, and high-

coverage

Interpretability 
and adaptivity

Impact scope 
estimation



30/11/2022 Intelligent Reliability Monitoring and Engineering for Online Service Systems

Future Work
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Service usage

Network 
infrastructure

VM & Containers

Apps & ServicesSoftware side of the cloud, 
i.e., SaaS and PaaS layers

Current work

Full-stack 
monitoring

Network 
infrastructure

Future work
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Future Work (1)

Performance Monitoring and Diagnosis for Cloud Overlay Networks
o Overlay networks are created by abstracting physical infrastructure

o Performance monitoring via probing

o Probing task design with the following two objectives
ü Minimum probing overhead
ü Fast diagnosis capability
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Cross-layer Failure Propagation Modeling in Cloud Systems
o Existing work assumes isolated failures

ü Faults only exist in the service or layer under discussion, while others function normally
ü Not realistic in production systems

o Full-stack cloud monitoring
ü Trace problems at all cloud layers

Future Work (2)
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Server Power

Computer Room

ECS
Network

Storage

RDS DCS

Cross-layer failure propagation
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