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Introduction

Machine Learning

Learning from labeled data

Supervised learning

Learning from unlabeled data

Unsupervised learning

Learning from labeled and unlabeled data

Semi-supervised learning (SSL)
Self-taught learning
Learning with Universum
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Introduction

Semi-supervised learning and unlabeled data

Semi-supervised learning

Unlabeled data and labeled data are assumed to be generated from the
same distribution.

Unlabeled data

Are not necessarily generated from the same distribution as labeled
data

May be from other tasks

May be irrelevant

In this thesis, unlabeled data has a more general meaning than that in
semi-supervised learning.
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Introduction

Types of unlabeled data

Figure: A categorization of unlabeled data and their related learning paradigms.
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Introduction

Types of unlabeled data (I)

Labeled

Unlabeled

same-distribution

Unlabeled data and labeled data
are drawn from the same
distribution

Share the same label

Semi-supervised learning

Manifold assumption or low
density assumption

E.g., Transductive Support
Vector Machine (TSVM)

Survey: [zhu, 2005], [Chapelle
et al., 2006]
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Introduction

Types of unlabeled data (II)

Labeled

Unlabeled

Variance-shifted

Drawn from a variance-drifted
distribution

Share the same label with
labeled data

Learning under covariance shift
or sample bias correction

E.g., [Shimodaira et al., 2000],
[Zadrozny et al., 2004]
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Introduction

Types of unlabeled data (III)

Labeled

Unlabeled

Weakly-related

Share no common labels with
labeled data

Structurally related

Self-taught learning: transfer
learning from unlabeled data

E.g., [Raina et al., 2007]
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Introduction

Types of unlabeled data (IV)

Labeled

Unlabeled

Irrelevant

Unlabeled data are irrelevant
data or background data

Share no common labels

Learning with universum

E.g., [Weston et al., 2006]
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Introduction

Types of unlabeled data (V)

Labeled

Unlabeled

Mixture

Mixture of two or more types of
unlabeled data

Relevant mixed with others

Semi-supervised learning from a
mixture

E.g., [Zhang et al., 2008],
[Huang et al., 2008]
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Introduction

Challenging issues in learning with unlabeled data

Challenges

How to learn an efficient Convex relaxation for TSVM?

How to efficiently learn a kernel?

What is the relationships between the assumptions of semi-supervised
learning?

Contributions

An efficient convex relaxation model for Transductive SVM (NIPS
2007) (Chapter 3)

An efficient method for multiple kernel learning (NIPS 2008) (Chapter
4)

A unified framework for assumptions in semi-supervised learning
(Chapter 5)

Zenglin Xu (CUHK) Learning with Unlabeled Data November 17th, 2008 12 / 79



Introduction

Challenging issues in learning with unlabeled data

Challenges

How to learn an efficient Convex relaxation for TSVM?

How to efficiently learn a kernel?

What is the relationships between the assumptions of semi-supervised
learning?

Contributions

An efficient convex relaxation model for Transductive SVM (NIPS
2007) (Chapter 3)

An efficient method for multiple kernel learning (NIPS 2008) (Chapter
4)

A unified framework for assumptions in semi-supervised learning
(Chapter 5)

Zenglin Xu (CUHK) Learning with Unlabeled Data November 17th, 2008 12 / 79



Introduction

Challenging issues in learning with unlabeled data

Challenges

How to better utilize the weakly-related unlabeled data?

How to learn a model when irrelevant data are mixed with relevant
data?

How to actively find unlabeled data if they are not given?

Contributions

A supervised self-taught learning (SSTL) model that can deal with
weakly-related unlabeled data (Chapter 6)

A framework for learning with a mixture of relevant and irrelevant
unlabeled data (ICDM 2008) (Chapter 7)

A framework for semi-supervised text categorization that actively
retrieves unlabeled documents from the Internet (CIKM 2008)
(Chapter 8)
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Introduction

Presented topics

Topics

1 An efficient convex relaxation model for Transductive SVM (NIPS
2007)

2 An efficient method for multiple kernel learning (NIPS 2008)

3 A framework for semi-supervised text categorization that actively
retrieves unlabeled documents from the Internet (CIKM 2008)
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Efficient Convex Relaxation for TSVM

Outline

1 Introduction

2 Efficient Convex Relaxation for TSVM
Model
Experiments

3 Extended Level Method for Multiple Kernel Learning
Level method for MKL
Experiments and Discussion

4 Semi-supervised Text Categorization by Active Search
Framework
Experiments

5 Conclusion

Zenglin Xu (CUHK) Learning with Unlabeled Data November 17th, 2008 15 / 79



Efficient Convex Relaxation for TSVM Model

Transductive SVM

SVM

SVM with unlabeled data

Transductive SVM
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Efficient Convex Relaxation for TSVM Model

Transductive SVM

TSVM: label y as a free variable

min
w,b,y∈{−1,+1}n,ξ

‖w‖22 + C
n∑

i=1

ξi (1)

s. t. yi (w
>xi − b) ≥ 1− ξi ,

ξi ≥ 0, i = 1, 2, . . . , n

yi = y `
i , i = 1, 2, . . . , l ,

{xi}ni=1: training data, l labeled, n − l unlabeled

f = w>x− b: decision function

ξ: margin error

C : tradeoff parameter

Zenglin Xu (CUHK) Learning with Unlabeled Data November 17th, 2008 17 / 79



Efficient Convex Relaxation for TSVM Model

Primal form of TSVM

Semi-definite programming: [Lanckriet et al., 2004]

min
y∈{−1,+1}n,t,ν,δ,λ

t (2)

s. t.

(
yy> ◦K e + ν − δ + λy

(e + ν − δ + λy)> t − 2Cδ>e

)
� 0

ν ≥ 0, δ ≥ 0, yi = y `
i , i = 1, 2, . . . , l ,

K: kernel matrix

◦: element-wise product; �: positivesemi − definite

e: vector of all ones

ν ∈ Rn: α ≥ 0

δ ∈ Rn: α ≤ C

λ: α>y = 0
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Efficient Convex Relaxation for TSVM Model

Convex Relaxation of TSVM

Replace yy> with matrix M [Xu & Schuurmans, 2004]:

Convex Relaxation of TSVM

min
M,t,ν,δ,λ

t (3)

s. t.

(
M ◦K e + ν − δ

(e + ν − δ)> t − 2Cδ>e

)
� 0

ν ≥ 0, δ ≥ 0,

M � 0, Mi ,i = 1, i = 1, 2, . . . , n,

Mij = y `
i y

`
j , 1 ≤ i , j ≤ l

y `
i , i = 1, . . . , l : labels of labeled data
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Efficient Convex Relaxation for TSVM Model

Problems of the relaxation

1 O(n2) parameters in the SDP cone

high worst-case computational complexity: O(n6.5)
high storage complexity

2 Drop the rank constraint of the matrix y>y
Not tight approximation
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Efficient Convex Relaxation for TSVM Model

Our solution

TSVM in the dual form:

min
ν,y,λ

1

2
(e + ν + λy)>D(y)K−1D(y)(e + ν + λy)

s. t. ν ≥ 0,

yi = y `
i , i = 1, 2, . . . , l ,

y2
i = 1, i = l + 1, l + 2, . . . , n.

We introduce a variable z = D(y)(e + ν) = y ◦ (e + ν)

z can be used as the prediction function

min
z,λ

1

2
(z + λe)>K−1(z + λe)

s. t. y `
i zi ≥ 1, i = 1, 2, . . . , l ,

z2
i ≥ 1, i = l + 1, l + 2, . . . , n.
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Efficient Convex Relaxation for TSVM Model

Our solution

min
w

w>P>K−1Pw (4)

s. t. y `
i wi ≥ 1, i = 1, 2, . . . , l ,

w2
i ≥ 1, i = l + 1, l + 2, . . . , n,

−ε ≤ 1

l

l∑
i=1

wi −
1

n − l

n∑
i=l+1

wi ≤ ε.

w = (z, λ) ∈ Rn+1

P = (In, e) ∈ Rn×(n+1)

−ε ≤ 1
l

∑l
i=1 wi − 1

n−l

∑n
i=l+1 wi ≤ ε : balance constraint
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Efficient Convex Relaxation for TSVM Model

Our solution

w =
1

2
[A−D(γ ◦ b)]−1 (γ ◦ a− (α− β)c),

a = (yl , 0n−l , 0) ∈ Rn+1

b = (0l , 1n−l , 0) ∈ Rn+1

c = (1
l 1

l ,− 1
u1n−l , 0) ∈ Rn+1

A = P>K−1P

γ = arg max
γ,t

−1

4
t +

n∑
i=1

γi − ε(α + β)

s. t.

(
A−D(γ ◦ b) γ ◦ a− (α− β)c,

(γ ◦ a− (α− β)c)> t

)
≥ 0

α ≥ 0, β ≥ 0, γi ≥ 0, i = 1, 2, . . . , n.
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Efficient Convex Relaxation for TSVM Model

Properties of the proposed convex relaxation model

Lower worst-case computational complexity of O(n4.5): O(n)
parameters and O(n) linear equality constraints

Our prediction function f ∗ provides a tighter approximation: it
implements the conjugate of conjugate of the prediction function
f (x), which is the convex envelope of f (x) [Hiriart et al., 1993].

Related to the solution of the harmonic functions [Zhu et al., 2003]:

z =

(
In −

n∑
i=l+1

γiKIin

)−1( l∑
i=1

γiy
`
i K(xi , ·)

)
(5)
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Efficient Convex Relaxation for TSVM Experiments

Data sets

Table: Data sets used in the experiments, where d represents the data
dimensionality, l means the number of labeled data points, and n denotes the
total number of examples.

Data set d l n Data set d l n

Iono 34 20 351 WinMac-m 7511 20 300

Sonar 60 20 208 IBM-m 11960 20 300

Banana 4 20 400 Course-m 1800 20 300

Breast 9 20 300 WinMac-l 7511 50 1000

IBM-s 11960 10 60 IBM-l 11960 50 1000

Course-s 1800 10 60 Course-l 1800 50 1000
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Efficient Convex Relaxation for TSVM Experiments

Computation time comparison

CTSVM: proposed [Xu et al., 2007]
RTSVM: previous [Xu & Schuurmans, 2004]
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Efficient Convex Relaxation for TSVM Experiments

Accuracy comparison

Table: The classification performance of Transductive SVMs on benchmark data
sets.

Data Set SVM SVM-light ∇TSVM CCCP CTSVM
IBM-s 52.75±15.01 67.60±9.29 65.80±6.56 65.62±14.83 75.25±7.49
Course-s 63.52±5.82 76.82±4.78 75.80±12.87 74.20±11.50 79.75±8.45
Iono 78.55±4.83 78.25±0.36 81.72±4.50 82.11±3.83 80.09±2.63
Sonar 51.76±5.05 55.26±5.88 69.36±4.69 56.01±6.70 67.39±6.26
Banana 58.45±7.15 - 71.54±7.28 79.33±4.22 79.51±3.02
Breast 96.46±1.18 95.68±1.82 97.17±0.35 96.89±0.67 97.79±0.23
WinMac-m 57.64±9.58 79.42±4.60 81.03±8.23 84.28±8.84 84.82±2.12
IBM-m 53.00±6.83 67.55±6.74 64.65±13.38 69.62±11.03 73.17±0.89
Course-m 80.18±1.27 93.89±1.49 90.35±3.59 88.78±2.87 92.92±2.28
WinMac-l 60.86±10.10 89.81±2.10 90.19±2.65 91.00±2.42 91.25±2.67
IBM-l 61.82±7.26 75.40±2.26 73.11±1.99 74.80±1.87 73.42±3.23
Course-l 83.56±3.10 92.35±3.02 93.58±2.68 91.32±4.08 94.62±0.97
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Efficient Convex Relaxation for TSVM Experiments

Discussion

More efficient than that in [Xu & Schuurmans, 2004]

Effective prediction accuracy compared with other semi-supervised
SVM algorithms

All algorithms sensitive to data sets

Consistent to the results in [Chapelle et al., 2008]
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Extended Level Method for Multiple Kernel Learning

Multiple kernel kearning (MKL)

Multiple kernel learning

Given a list of base kernel functions/matrices Ki , i = 1, . . . ,m, MKL
searches for a linear combination of the base kernel functions that
maximizes a generalized performance measure.

Linear combination of kernels

K =
m∑

i=1

piKi , i = 1, . . . ,m

where p = (p1, . . . , pm) are combination weights in domain P

P = {p ∈ Rm : p>e = 1, 0 ≤ p ≤ 1}
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Extended Level Method for Multiple Kernel Learning

Multiple kernel learning (MKL)

A generic approach to kernel learning

Typical applications of multiple kernel learning

Multi-source data fusion (web classification, genome fusion)

Image annotation

Near duplicate frame detection in video

Novelty detection
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Extended Level Method for Multiple Kernel Learning

Multiple kernel learning

Multiple kernel learning

min
p∈P

max
α∈Q

f (p, α) = α>e− 1

2
(α ◦ y)>

(
m∑

i=1

piKi

)
(α ◦ y),

Properties

Convex-concave problem (convex in p and concave in α)

Saddle point (p∗, α∗) exists and corresponds to the optimal solution

f (p, α∗) ≤ f (p∗, α∗) ≤ f (p∗, α),∀p ∈ P, α ∈ Q
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Extended Level Method for Multiple Kernel Learning

Available optimization methods for MKL

min
p∈P

max
α∈Q

f (p, α) = α>e− 1

2
(α ◦ y)>

(
m∑

i=1

piKi

)
(α ◦ y),

Semi-definite Programming (SDP) [Lanckriet et al., 2004]: small scale

Quadratically Constrained Quadratic Programming (QCQP) [Bach et
al., 2004]: medium scale

Semi-Infinite Linear Programming (SILP) [Sonnenburg et al., 2006] :
large scale

Subgradient Descent (SD) [Rakotomamonjy et al., 2008] : large scale
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Extended Level Method for Multiple Kernel Learning

A general framework for solving large-scale MKL

Convex-concave optimization

1 Initialize p0 = e/m and i = 0

2 REPEAT

3 Solve dual SVM with kernel K =
∑m

j=1 pi
jKj for αi

4 Update kernel weights by pi+1 = arg min{f i (p) : p ∈ P}
5 Update i = i + 1 and calculate stopping criterion ∆i

6 UNTIL ∆i ≤ ε

Methods differ in f i (p)
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Extended Level Method for Multiple Kernel Learning

Semi-Infinite Linear Programming (SILP) for MKL

f i
SILP(p) = min

ν

{
ν : ν ≥ f (pj , αj) + (p− pj)>∇pf (p, αj), j = 0, . . . , i

}
fSILP(p) is a cutting plane model

Pros and Cons

Pro: utilize all {pj , αj}ij=0 obtained so far

Con: inaccurate when p is far from {pj}ij=1 → oscillating solutions
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Extended Level Method for Multiple Kernel Learning

Subgradient descent method (SD) for MKL

f i
SD(p) =

1

2
‖p− pi‖22 + γi (p− pi )>∇pf (p, αi )

Pros and Cons

Pro: regularize by ‖p− pi‖22, preventing p far from pi

Con: only utilize the current solution (pi , αi ).

Require line search to determine optimal step size γi

Computationally expensive for convex-concave
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Extended Level Method for Multiple Kernel Learning

Expected properties

Combining the strengths of SILP and SD

Utilize all {(pj , αj)}ij=0 of previous solutions

Keep the new solution not far from the current one pi

⇓

Level method

Utilize all {(pj , αj)}ij=1 via constructing cutting plane models

Adjust the new solution via projecting to level sets
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Extended Level Method for Multiple Kernel Learning Level method for MKL

Level Method

min
x
{f (x) = [x ]2 : x ∈ X ,X = [−4, 4]}

Initialization: x0 = −3, λ = 0.9

Construct a cutting plane model g1(x)

Construct a level set L1

level1 = λ× f (x0) + (1− λ)× (−33)
L1 = {x ∈ X : g1(x) ≤ level1}
Project x0 to level set L1 , i.e.,
x1 = arg min

x

{
‖x − x0‖22 : x ∈ L1

}

−4 −3 −2 −1 0 1 2 3 4
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Extended Level Method for Multiple Kernel Learning Level method for MKL

Level method

min
x
{f (x) = [x ]2 : x ∈ [−4, 4]}

Construct a new cutting plane model
g2(x) = min

x
hi (x)

Construct a new level set L2

Project x1 to L2
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Extended Level Method for Multiple Kernel Learning Level method for MKL

Key steps of level method for MKL

1 Build a cutting plane model

2 Construct a level set

Obtain an auxiliary solution by minimizing the cutting plane model
Estimate the lower and upper bounds for the optimal value of MKL
Compute the level value using the lower and upper bounds

3 Obtain the new solution by projecting the existing solution to the
level set
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Extended Level Method for Multiple Kernel Learning Level method for MKL

Cutting Plane Models

g i (p) = max
1≤j≤i

f (pj , αj) + (p− pj)>∇pf (pj , αj)

Proposition

For any p ∈ P, we have

g i+1(p) ≥ g i (p), and

g i (p) ≤ maxα∈Q f (p, α)
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Extended Level Method for Multiple Kernel Learning Level method for MKL

Lower and Upper Bounds

f i = min
p∈P

g i (p), f
i
= min

1≤j≤i
f (pj , αj)

Theorem

f i ≤ f (p∗, α∗) ≤ f
i
,

f
1 ≥ f

2 ≥ . . . ≥ f
i
,

f 1 ≤ f 2 ≤ . . . ≤ f i .

where p∗ and α∗ are the optimal solution.
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Extended Level Method for Multiple Kernel Learning Level method for MKL

Level Set

Li = {p ∈ P : g i (p) ≤ `i = λf
i
+ (1− λ)f i},

where λ ∈ (0, 1) is a predefined constant.

Larger λ→ more regularization

λ = 0: the level method becomes the SILP method
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Extended Level Method for Multiple Kernel Learning Level method for MKL

Projection to level set

pi+1 = arg min
p∈P

{
‖p− pi‖22 : p ∈ Li

}
Solve by efficient Quadratic Programming (QP)

Improve by using other distance metrics (e.g., L1 norm)

Projection ensures that the new solution pi+1 is close to pi

The level set ensures a significant progress
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Extended Level Method for Multiple Kernel Learning Level method for MKL

Stopping Criterion

Define the gap ∆i as

∆i = f
i − f i .

Corollary

1 ∆j ≥ 0, j = 1, . . . , i

2 ∆1 ≥ ∆2 ≥ . . . ≥ ∆i

3 |f (pj , αj)− f (p∗, α∗)| ≤ ∆i

∆i measures how close the current solution is from the optimal one,
serving as the stopping criterion.
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Extended Level Method for Multiple Kernel Learning Level method for MKL

The level method for multiple kernel learning

Given: λ (level set) and ε (desired accuracy)

1 Initialize: p0 = e/m, and i = 0

2 REPEAT

3 Solve dual SVM with K =
∑m

j=1 pi
jKj for αi

4 Construct the cutting plane model g i (p)

5 Compute the lower & upper bounds f i and f
i
, and gap ∆i

6 pi+1 ← projection of pi to the level set Li

7 Update i = i + 1

8 UNTIL∆i ≤ ε
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Extended Level Method for Multiple Kernel Learning Level method for MKL

Convergence rate

Theorem

To obtain a solution p that satisfies the stopping criterion, i.e.,

|max
α∈Q

f (p, α)− f (p∗, α∗)| ≤ ε,

the maximum number of iterations N that the level method requires is
bounded as follows

N ≤ 2c(λ)L2

ε2
,

where c(λ) = 1
(1−λ)2λ(2−λ)

and L = 1
2

√
mnC 2 max

1≤i≤m
Λmax(Ki ). Λmax(M)

computes the maximum eigenvalue of matrix M.
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Extended Level Method for Multiple Kernel Learning Level method for MKL

Convergence rate

According to Information Based Complexity (IBC) theory, O(1/ε2) is
almost the optimal worst-case convergence rate when the
optimization method is based on a black box first order oracle
[Nemirovsky, 1983; Lemarechal, 1995]

Real performance is usually far better
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Extended Level Method for Multiple Kernel Learning Experiments and Discussion

Experimental setup

Base kernel matrices ([Rakotomamonjy et. al, 2008])

Gaussian kernels with 10 different widths ({2−3, 2−2, . . . , 26}) on all
features and on each single feature
Polynomial kernels of degree 1 to 3 on all features and on each single
feature.

C set to be 100 for all experiments

λ: initial value 0.9, increased to 0.99 when ∆i/`i ≤ 0.01

A larger λ accelerates the projection near to the convergence

Stopping criterion

Duality gap ([Rakotomamonjy et. al, 2008])
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Extended Level Method for Multiple Kernel Learning Experiments and Discussion

Performance comparison

Table: n: number of training data, m: number of kernels.

SD SILP Level

Iono n = 175 m = 442
Time(s) 33.5 ±11.6 1161.0 ±344.2 7.1 ±4.3
Accuracy (%) 92.1 ±2.0 92.0 ±1.9 92.1±1.9
#Kernel 26.9 ±4.0 24.4 ±3.4 25.4±3.9

Breast n = 342 m = 117
Time(s) 47.4 ±8.9 54.2 ±9.4 4.6 ±1.0
Accuracy (%) 96.6 ±0.9 96.6 ±0.8 96.6±0.8
#Kernel 13.1 ±1.7 10.6 ±1.1 13.3±1.5

Pima n = 384 m = 117
Time(s) 39.4 ±8.8 62.0 ±15.2 9.1 ±1.6
Accuracy (%) 76.9 ±1.9 76.9 ±2.1 76.9±2.1
#Kernel 16.6 ±2.2 12.0 ±1.8 17.6±2.6
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Extended Level Method for Multiple Kernel Learning Experiments and Discussion

Time-saving ratio

Table: Time-saving ratio(%) of the level method over the SILP and the SD
method

Iono Breast Pima Sonar Wpbc Heart Vote Wdbc Average

SD−Level
SD

78.9 90.4 77.0 58.7 32.5 54.7 82.8 87.4 70.3

SILP−Level
SILP

99.4 91.6 85.4 98.7 88.7 97.3 84.5 89.4 91.9
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Extended Level Method for Multiple Kernel Learning Experiments and Discussion

Experimental setup: semi-supervised setting

Base kernel matrices for embedding

Gaussian kernels with 10 different widths ({2−3, 2−2, . . . , 26}) on all
features,
Polynomial kernels of degree 1 to 3 on all features,
linear kernel on each single feature.

Graphs: 20 NN, cosine similarity

Point-cloud-norm: [Sindhwani et al., 2005]

Other settings similar to the supervised setting
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Extended Level Method for Multiple Kernel Learning Experiments and Discussion

Semi-supervised settings

SD SILP Level

1 vs 7
Time(s) 13.7±10.7 511.6±698.9 2.7±1.1
Accuracy (%) 96.2±4.1 94.6±9.1 96.5 ±3.6
#Kernel 8.4±2.8 7.2±2.7 9.4±2.8

2 vs 3
Time(s) 17.0± 27.8 1362.0±611.4 2.4±1.4
Accuracy (%) 86.9±2.9 86.9±3.1 87.2±3.0
#Kernel 13.1±2.9 11.7±1.9 14.4±2.9

2 vs 7
Time(s) 16.3±10.5 1249.5±684.3 2.5±1.0
Accuracy (%) 88.3±3.9 88.1±4.0 88.6±3.8
#Kernel 12.4±2.4 10.2±1.9 13.4± 2.9

3 vs 8
Time(s) 11.6±9.8 990.0±726.1 2.4±1.3
Accuracy (%) 85.4±4.5 85.5±4.6 85.8±4.5
#Kernel 13.6±2.6 11.7±1.7 14.7±2.5

4 vs 7
Time(s) 13.6±9.2 671.8±682.2 1.7±0.7
Accuracy (%) 86.9±5.7 87.0±5.6 87.2±5.8
#Kernel 11.3±2.0 9.9±1.6 13.2±2.7
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Extended Level Method for Multiple Kernel Learning Experiments and Discussion

Objective evolution curves
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Figure: Evolution of objective values over time (seconds).
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Extended Level Method for Multiple Kernel Learning Experiments and Discussion

Kernel weights evolution curves for “Iono”

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration

p 
va

lu
es

Evolution of the kernel weight values in SD

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration

p 
va

lu
es

Evolution of the kernel weight values in SILP

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration

p 
va

lu
es

Evolution of the kernel weight values in Level method

(a) Iono/SD (b) Iono/SILP (c) Iono/Level

Figure: The evolution curves of the five largest kernel weights for “Iono”
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Kernel weights evolution curves for “Breast”
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Figure: The evolution curves of the five largest kernel weights for “Breast”
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Kernel weights evolution curves for “Pima”
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Figure: The evolution curves of the five largest kernel weights for “Pima”
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Extended Level Method for Multiple Kernel Learning Experiments and Discussion

Analysis

SILP

High computational cost due to the oscillation of solutions

SD

A large number of calls to SVM are required to compute the optimal
step size via a line search
e.g., for “iono”, 1231 times of calling to SVM for SD, while 47 for level
method

Level method

The cutting plane model utilizes the computational results of all
iterations
The projection to level sets ensures the stability of solutions
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Extended Level Method for Multiple Kernel Learning Experiments and Discussion

Summary

We propose an extended level method to efficiently solve the multiple
kernel learning problem

It utilizes the gradients of all the solutions that are obtained in past
iterations

It introduces a projection step to regularize the updated solution

It saves on average 91.9% of computational time over the SILP
method and 70.3% over the SD method.
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Semi-supervised Text Categorization by Active Search

Outline

1 Introduction
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Semi-supervised Text Categorization by Active Search Framework

Automated text categorization

Figure: Text categorization
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Semi-supervised Text Categorization by Active Search Framework

Problems in automated text categorization

bottleneck : sufficient numbers of labeled documents are expensive to
collect

solution : exploiting unlabeled documents by so-called
semi-supervised learning methods

What could we do when only a small amount of labeled documents are
available?

This study

answers the questions:

How to collect a multitude of unlabeled documents?

How to use the unlabeled documents? (They might be in poor
quality)
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Semi-supervised Text Categorization by Active Search Framework

Collecting unlabeled data

One way to collect the unlabeled documents is through the web search
engines.

Extract the keyword
(query word)

Retrieval the
Internet
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Semi-supervised Text Categorization by Active Search Framework

Semi-supervised text categorization framework

Framework

1 Query generation

2 Document retrieval

3 Semi-supervised text categorization

Figure: The framework of semi-supervised categorization by active searchZenglin Xu (CUHK) Learning with Unlabeled Data November 17th, 2008 64 / 79



Semi-supervised Text Categorization by Active Search Framework

Query generation

Problems

sparseness of words

unrelated query words

min
w,ξ

∑
j∈Vi

wj + C

nl∑
k=1

ξk (6)

s. t. yk

∑
j∈Vi

wjxk,j + b

 ≥ 1− ξk , ξk ≥ 0, k = 1, . . . , nl ,

wj ≥ 0, ∀j , wj = 0, ∀j /∈ Vi .

Each document xi generates a query qi

w : importance of a query word, ξ: classification error
Word features with large weights will be selected to form a query.
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Semi-supervised text categorization

Auxiliary approach

All the unlabeled documents Ui (retrieved by qi ) share the same
category label as xi

Label vector y∗ for retrieved data is not a free variable

Auxiliary approach

min
w,b

λ‖w‖22 +
∑
xi∈D

ξi + γ
∑
xj∈U

ξj (7)

s. t. yi (w
>xi + b) ≥ 1− ξi , ∀i xi ∈ D ,

y∗j (w>xj + b) ≥ 1− ξj , ∀j xj ∈ U ,

Zenglin Xu (CUHK) Learning with Unlabeled Data November 17th, 2008 66 / 79



Semi-supervised Text Categorization by Active Search Framework

Semi-supervised text categorization

Semi-supervised approach

Does not assume any relationship between the class labels assigned to
Ui and the class label of xi

Label vector y∗ for retrieved data is regarded as an optimization
variable

Semi-supervised approach

min
w,b,y∗

λ‖w‖22 +
∑
xi∈D

ξi + γ
∑
xj∈U

ξj , (8)

s. t. yi (w
>xi + b) ≥ 1− ξi , ∀i xi ∈ D ,

y∗j (w>xj + b) ≥ 1− ξj , ∀j xj ∈ U ,
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Semi-supervised text categorization

Solving method:
Auxiliary approach

SMO

Semi-supervised approach
Convex-concave procedure (CCCP)

Convex-concave procedure

Js(h) = λ‖w‖22 +
∑
xi∈D

max(0, 1− h(xi )yi )

+γ
∑
xj∈U

(Ls(h(xj),+1) + Ls(h(xj),−1)) .

Ls : Ramp loss

h: decision function
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Experimental results

Table: The classification accuracy (%) of text categorization

Data set SVM Auxi-SVM Semi-SVM

male vs. female 47.6 76.1 73.1
bacterial vs. virus 61.8 77.6 78.3
musculo vs. digestive 69.9 71.3 77.0
fourDisease 31.6 38.4 58.0
ship vs. trade 94.1 95.5 95.9
corn vs. wheat 69.2 69.0 71.6
money vs. trade 80.6 88.8 88.9
auto vs. motor 59.4 69.1 69.2
sci 35.5 56.1 56.8

average 61.1 71.3 74.3

Error reduction:

26.3% for Auxi-SVM
34.0% for Semi-SVM
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Comparison among different search engines
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Figure: bacterial vs. virus
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Comparison among different search engines
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(a) musculo vs. digestive (b) male vs. female

Figure: The classification accuracy of semi-supervised text categorization
methods (i.e., Auxi-SVM and Semi-SVM) using different search engines (i.e.,
Google, Yahoo!, and Alltheweb) on two data sets of Ohmued.
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Summary

Summary

1 A general framework for self-taught text categorization

2 A novel learning approach, named Discriminative Query Generation
(DQG) method, for query generation

3 Reduce the classification error by 30% when compared with the
state-of-the-art supervised text categorization method

Future work

Online semi-supervised text categorization algorithms?
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Conclusion

Conclusion

Presented

An efficient convex relaxation model for Transductive SVM (NIPS
2007)

An efficient method for multiple kernel learning (NIPS 2008)

A framework for semi-supervised text categorization that actively
retrieves unlabeled documents from the Internet (CIKM 2008)

Other contributions

A unified framework for assumptions in semi-supervised learning

A supervised self-taught learning (SSTL) model that can deal with
weakly-related unlabeled data

A framework for learning with a mixture of relevant and irrelevant
unlabeled data (ICDM 2008)
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