Distributed Distance Learning Algorithms and Applications

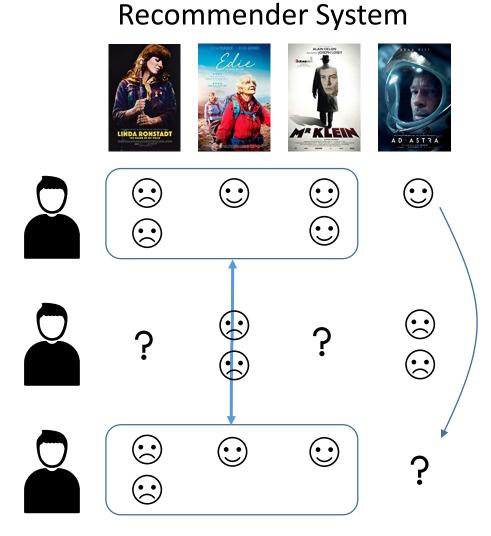
Yuxin Su

Ph.D. Oral Defense

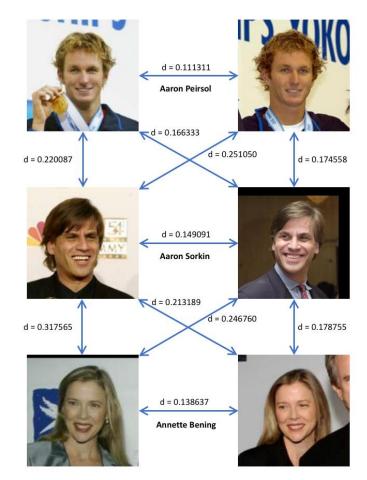
Supervisors: Prof. Michael Lyu and Prof. Irwin King 8/28/2019

香港中文大學 The Chinese University of Hong Kong

Similarity is the Fundamental



Face Verification



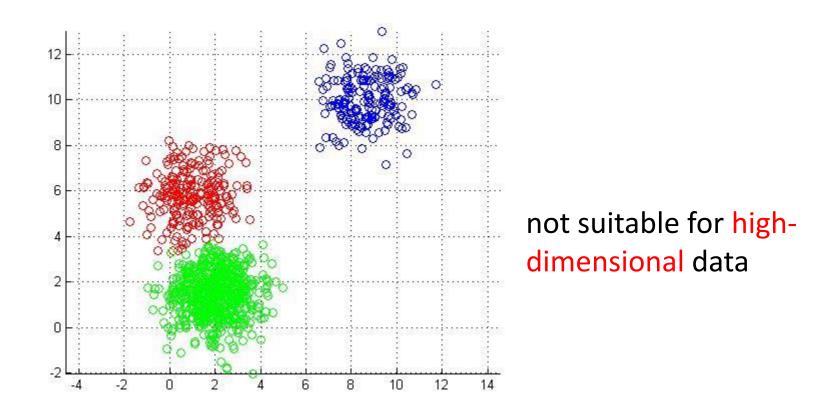
https://github.com/JifuZhao/face-verification

Popular Distance Functions

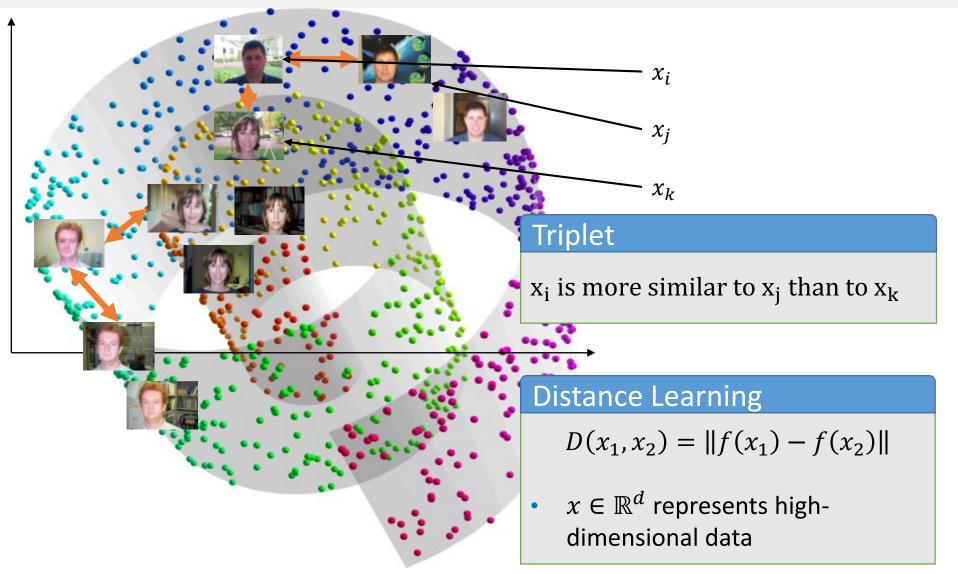
Name	Expression
Euclidean	$f(x,y) = \sqrt{(x-y)^{\top}(x-y)}$
Cityblock	$f(x, y) = \sum_{i} x_i - y_j $
Chebyshev	$f(x, y) = \max\{ x_i - y_i \}$
Minkowski	$f(x,y) = \left(\sum_{i} x_i - y_i ^p\right)^{\frac{1}{p}}$
Jaccard	$f(x, y) = 1 - \frac{\sum \min\{x_i, y_i\}}{\sum \max\{x_i, y_i\}}$
Cosine	$f(x, y) = 1 - \frac{x^{\top} y}{ x y }$
KL Divergence	$f(x, y) = \sum_{i} x_i \log \frac{x_i}{y_i}$
Mahalanobis	$f(x,y) = \sqrt{(x-y)^{T}M(x-y)}$

Euclidean Distance

$$f(\boldsymbol{x}_i, \boldsymbol{x}_j) = \sqrt{(\boldsymbol{x}_i - \boldsymbol{x}_j)^{\mathsf{T}}(\boldsymbol{x}_i - \boldsymbol{x}_j)}$$



Similarity between Images



Bellet, Aurelien, Amaury Habrard, and Marc Sebban. "A Survey on Metric Learning for Feature Vectors and Structured Data." arXiv: Learning (2013).

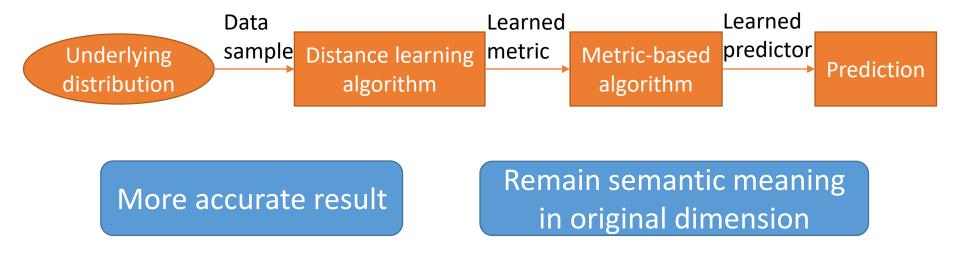
Distance Learning

• Beyond the Euclidean distance:

$$f(x_1, x_2) = \|\phi(x_1) - \phi(x_2)\|$$

• e.g. Mahalanobis distance:

$$f_M(\boldsymbol{x}_1, \boldsymbol{x}_2) = \sqrt{(\boldsymbol{x}_1 - \boldsymbol{x}_2)^{\mathsf{T}} M(\boldsymbol{x}_1 - \boldsymbol{x}_2)}$$



Supervision to Learn a Distance Function

• Positive / negative pairs:

$$S = \{(x_i, x_j) : x_i \text{ and } x_j \text{ should be similar}\}$$
$$\mathcal{D} = \{(x_i, x_j) : x_i \text{ and } x_j \text{ should be dissimilar}\}$$

• For positive/negative pairs, we need pre-assigned threshold:

$$S = \{ (x_i, x_j) : d_M(x_i, x_j) \le \mathbf{u} \}$$
$$\mathcal{D} = \{ (x_i, x_j) : d_M(x_i, x_j) \ge \mathbf{l} \}$$

Relative constraints:

 $\mathcal{R} = \{(x_i, x_j, x_k) : x_i \text{ should be more similar to } x_j \text{ then to } x_k\}$

Task-oriented Distance Measurement

Challenges in Big Data Era

Handle high-dimensional data

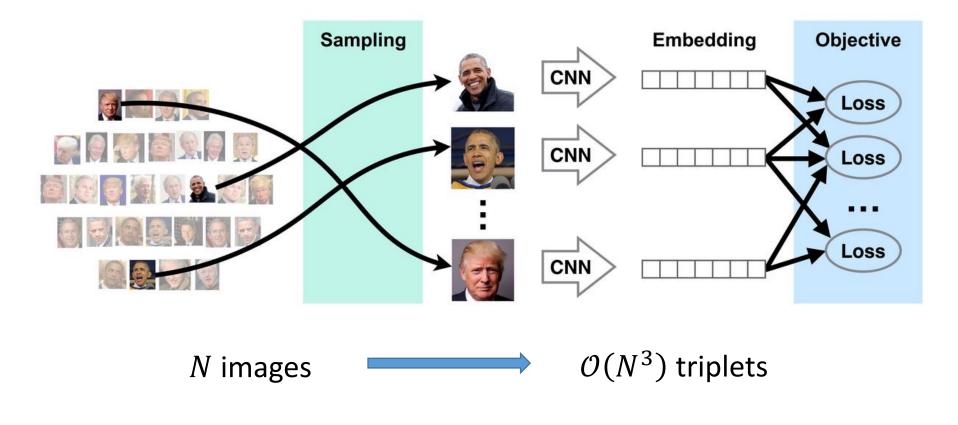
Positive Semidefinite Matrix

$$d_M(x_i, x_j) = (x_i - x_j)^T \times$$

$$M \in \mathbb{R}^{d \times d}$$

$$\times \left(x_i - x_j \right) \ge 0$$

Challenges: huge number of constraints

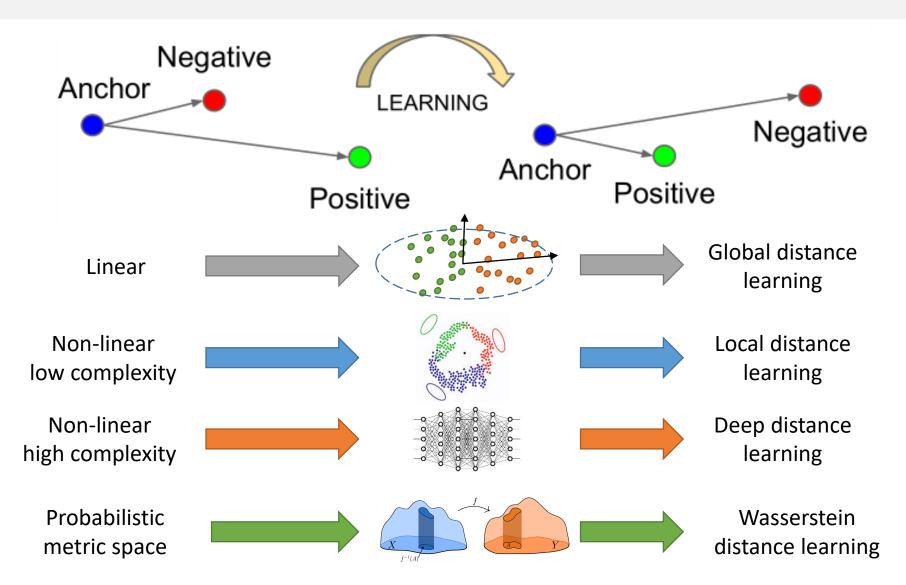


Impossible task for big data set

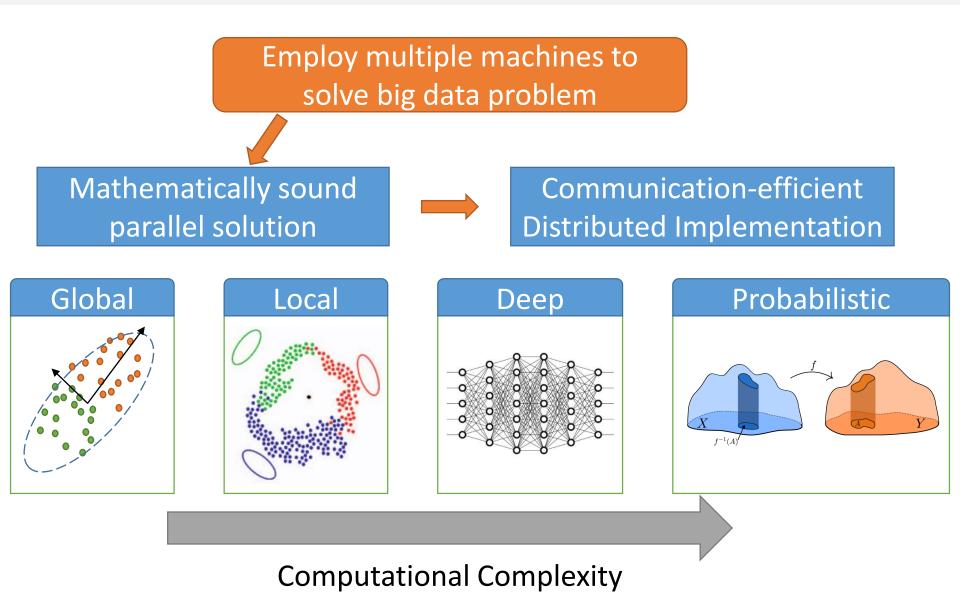
https://www.cs.utexas.edu/~cywu/projects/sampling_matters

SU, Yuxin

Category of Distance Function



Thesis Contribution in Overall



Thesis Organization

Introduction (Chapter 1)

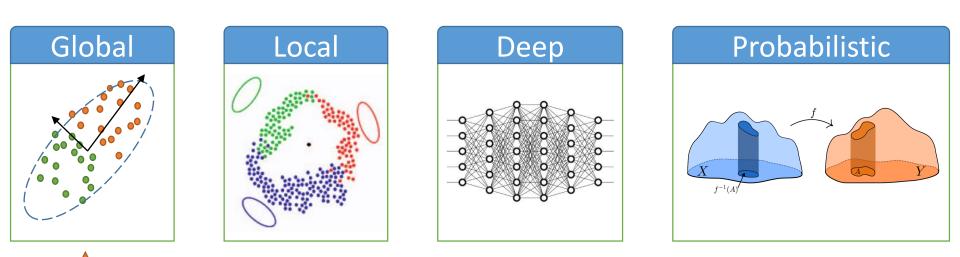
Background Review (Chapter 2)

Global Distance Learning (Chapter 3) [IJCNN'16]

Local Distance Learning (Chapter 4) [SIGIR'17]

Deep Distance Learning (Chapter 5) [CIKM'18] Probabilistic Distance Learning (Chapter 6) [IJCAI'19]

Conclusion (Chapter 7)



Parallel Algorithm

Distributed Implementation

Theoretical Analysis

Experiments

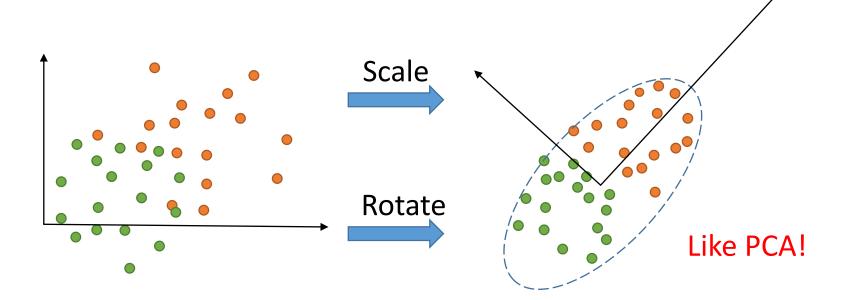
Linear Projection

• Mahalanobis distance:

$$d_M(\boldsymbol{x}_1, \boldsymbol{x}_2) = \sqrt{(\boldsymbol{x}_1 - \boldsymbol{x}_2)^{\mathsf{T}} M(\boldsymbol{x}_1 - \boldsymbol{x}_2)}$$

 $M \in \mathbb{S}^d_+ \to M = L^T L$

• Equivalent to a linear projection on Euclidean metric space



Information-Theoretical Metric Learning (ITML)

• Reformulate distance learning problem

$$\min D_{\phi}(A, A_0)$$

$$\operatorname{tr}(A(x_i - x_j)(x_i - x_j)^T) \le u, \quad (x_i, x_j) \in \mathcal{S}$$

$$\operatorname{tr}(A(x_i - x_j)(x_i - x_j)^T) \ge l, \quad (x_i, x_j) \in \mathcal{D}$$

• The global optimal solution does not rely on eigen-decomposition:

$$A_{t+1} = A_t + \beta A_t (x_i - x_j) (x_i - x_j)^T A_t$$

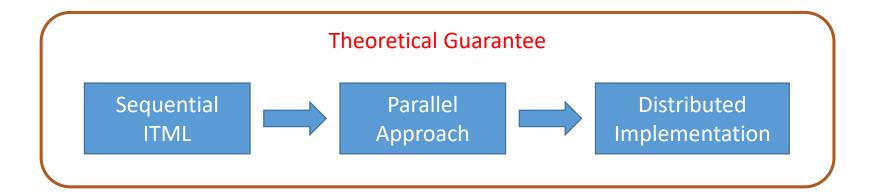
• Mahalanobis distance between data points:

$$p(t) = (x_i - x_j)^T A_t (x_i - x_j)$$

Davis, Jason V., et al. "Information-theoretic metric learning." Proceedings of the 24th international conference on Machine learning. ACM, 2007.

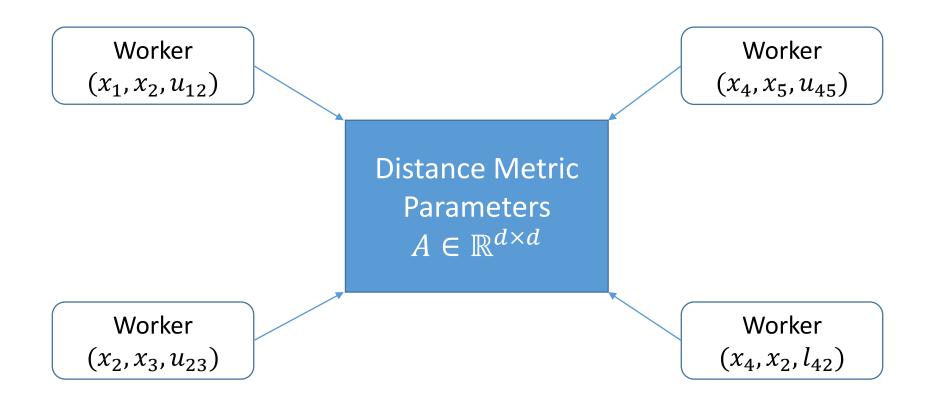
Contributions

- To handle high-dimensional data
 - A parallel Information-Theoretical Metric Learning (ITML) algorithm
 - Theoretical analysis to bound the gap
 - Well-designed approach for a popular distributed platform, Apache Spark



Parallel Computation

• Speed up the algorithm by parallel computation

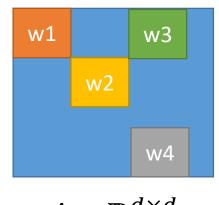


Parallel Updates to PSD Matrix

• Parallel updates will destroy the positive semidefinite property

Positive Semidefinite Matrix

$$d_A(x_i, x_j) = (x_i - x_j)^T \times$$



$$\times \left(x_i - x_j \right) \ge 0$$

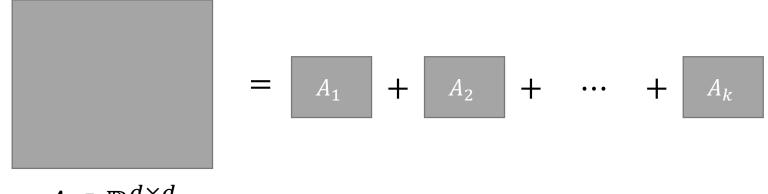
 $A \in \mathbb{R}^{d \times d}$

Decomposition of PSD Matrix

• Constraints:

$$rank(A_i) = 1 \quad \forall i \in [k]$$
$$tr(A_i) = 1 \quad \forall i \in [k]$$

Positive Semidefinite Matrix



 $A \in \mathbb{R}^{d \times d}$

Decomposition of Mahalanobis Matrix

• We reformulate Mahalanobis Matrix as

$$A = I + \sum_{i} \alpha_{i} z_{i} z_{i}^{T}$$

• Where $z_i \in \mathbb{R}^d$

• Bregman projection over all constraints:

$$A_{t+1} = I + \sum_{i=1}^{C} \beta_i(t) z_i(t) z_i^T(t)$$

- *C* is the number of constraints
- β is the step size of Bregman projection

Update z_i

• In Bregman projection, $A_t(x_i - x_j) \in \mathbb{R}^d$

$$z_{k}(t+1) = A_{t+1}(x_{i} - x_{j})$$

= $A_{t+1}c_{k}$
= $\left(I + \sum_{i=1}^{C} \beta_{i}(t)z_{i}(t)z_{i}^{T}(t)\right)c_{k}$

• In the original Bregman projection

$$\beta_k(t) \sim p_k(t)$$

- where $p_k(t)$ is the Mahalanobis distance between k-th constraint computed with A_t

Calculate Mahalanobis distance

$$p_{k}(t) = c_{k}^{T}A_{t}c_{k}$$

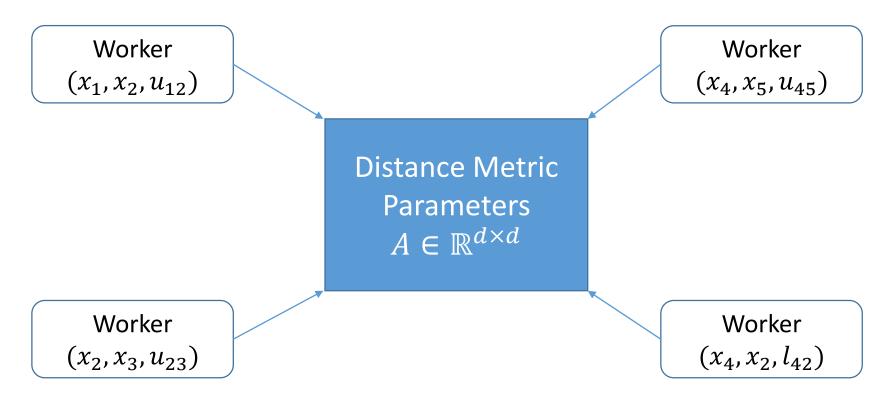
$$= c_{k}^{T}\left(I + \sum_{i=1}^{C}\beta_{i}(t)z_{i}(t)z_{i}^{T}(t)\right)c_{k}$$

$$= c_{k}^{T}c_{k} + \sum_{i=1}^{C}\beta_{i}(t)c_{k}^{T}z_{i}(t)z_{i}^{T}(t)c_{k}$$

The computation procedure is separable and easy to conduct in parallel

Parallel Computation

- For each worker:
 - Compute partial Mahalanobis distance
 - Collect z from other workers
 - Update z and broadcast its newer z to other workers



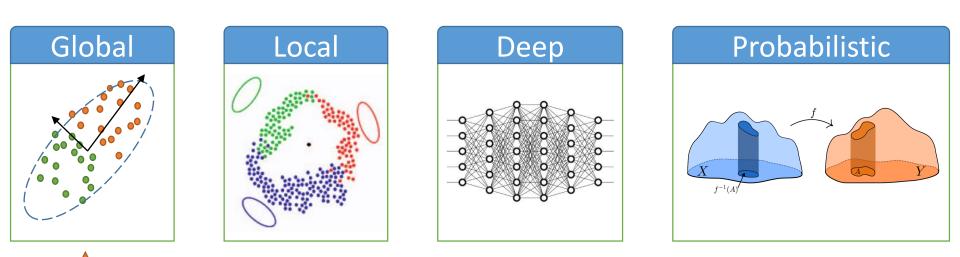
Algorithm

Input: S : set of similar pairs; D: set of dissimilar pairs; u, l : distance thresholds; γ : slack parameter **Output:** A : Mahalanobis matrix 1: A = I, C = |S| + |D|2: for constraint $(x_p, x_q)_k$, $k \in \{1, 2, ..., C\}$ do $\lambda_k \leftarrow 0$ 3: $d_k \leftarrow u$ for $(x_p, x_q)_k \in S$ otherwise $d_k \leftarrow l$ 4: $c_k \leftarrow (x_p - x_q)_k, \ z_k \leftarrow c_k$ 5: 6: end for 7: while β does not converge **do** for all worker $k \in \{1, 2, \dots, C\}$ do in parallel 8: $z_k = c_k + \sum_{i=1}^C \beta_i z_i z_i^T c_k$ 9: $p \leftarrow c_k^T z_k$ 10: if $(x_p, x_q)_k \in S$ then 11:

Algorithm (cont'd)

12:
$$\alpha \leftarrow \min\left(\lambda_k, \frac{1}{2}\left(\frac{1}{p} - \frac{\gamma}{d_k}\right)\right)$$

13: $\beta \leftarrow \frac{\alpha}{1-\alpha p}$
14: $d_k \leftarrow \frac{\gamma d_k}{\gamma + \alpha d_k}$
15: else
16: $\alpha \leftarrow \min\left(\lambda_k, \frac{1}{2}\left(\frac{\gamma}{d_k} - \frac{1}{p}\right)\right)$
17: $\beta \leftarrow \frac{-\alpha}{1+\alpha p}$
18: $d_k \leftarrow \frac{\gamma d_k}{\gamma - \alpha d_k}$
19: end if
20: $\lambda_k \leftarrow \lambda_k - \alpha$
21: $z_k \leftarrow \left(I + \sum_{i=1}^C \beta_i z_i z_i^T\right) c_k$
22: send z_k to other workers.
23: end for
24: end while
25: $A = I + \sum_{i=1}^C \beta_i z_i z_i^T$



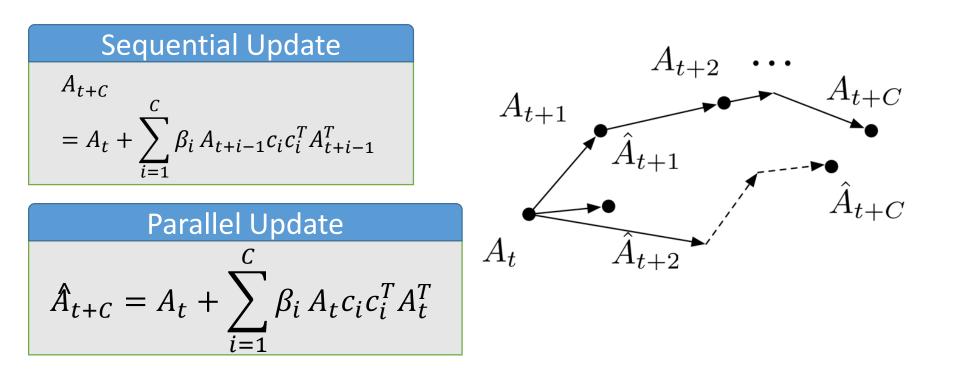
Parallel Algorithm

Distributed Implementation

Theoretical Analysis

Experiments

Parallel Update vs Delayed Sequential Update



• Parallel update is equivalent to the delayed sequential update

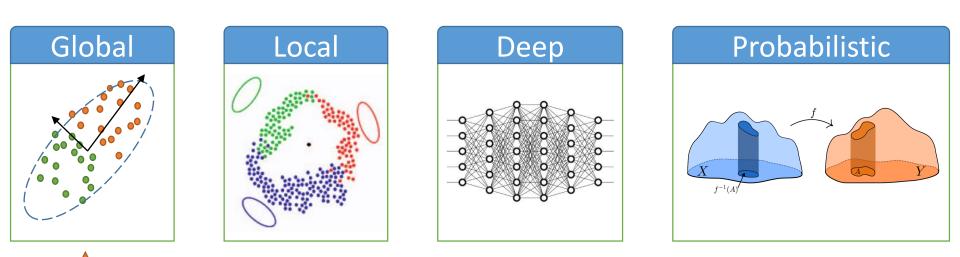
Major Result

Theorem: Delayed update under Bregman divergence

Assume the difference of matrices is measured by the Bregman divergence with respect to LogDet divergence $\phi(X) = -\log \det(X)$. The minimizer of $D_{\phi}(A_0, A)$ after T iterations is A^* :

$$R[A] \coloneqq \sum_{t=1}^{T} D_{\phi}(A_t, A^*) \le \frac{1}{\beta_{\min}} D_{\phi}(A^*, I) + \frac{1}{2} L\Omega$$

- *R* is the accumulated loss of learned distance function
- Ω is the length of convergence path.
- *L* denotes the length of projection path in the original sequential algorithm.



Parallel Algorithm

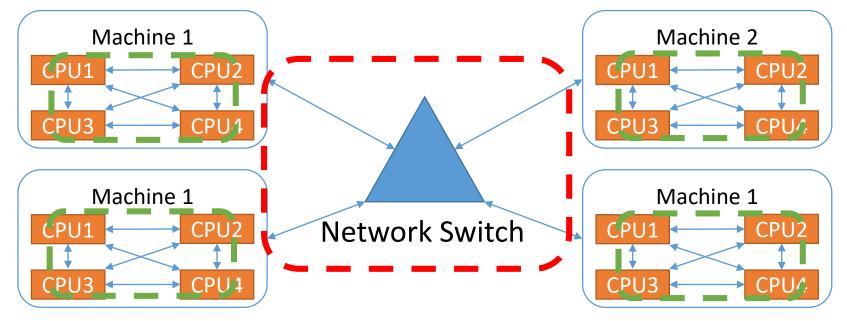
Distributed Implementation

Theoretical Analysis

Experiments

From "Parallel" to "Distributed"

- Parallel computation is not enough because of the limited memory
- One-by-one mapping between logical worker and real machine is not suggested because of
 - Heavy communication between machines
 - Imbalanced workload wastes physical resources



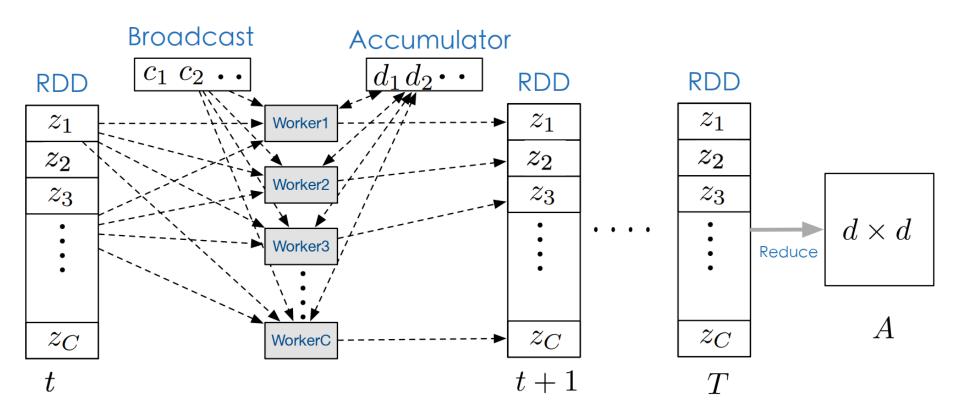
Apache Spark

- Apache Spark is the most popular distributed platform for largescale machine learning task.
- Resilient Distributed Datasets (RDD) in Spark is suitable for our approach.

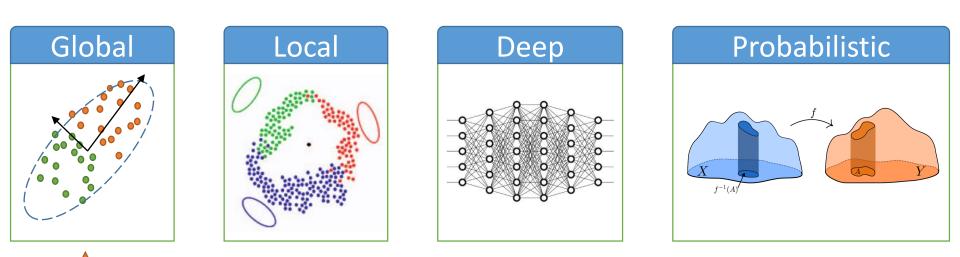
RDD Partition

	Node A	Node B	Node C	Node D
RDD 1	RDD 1 Partition 1		RDD 1 Partition 2	RDD 1 Partition 3
RDD 2		RDD 2 Partition 1		RDD 2 Partition 3
RDD 3	RDD 3 Partition 1	RDD 3 Partition 2	RDD 3 Partition 3	RDD 3 Partition 4

Framework of Parallel Distance Learning on Spark



- Broadcast and Accumulator are shared with workers.
- Worker *i* is responsible for updating z_i



Parallel Algorithm

Distributed Implementation

Theoretical Analysis

Experiments

Setup

Environment

- 32 physical machines, 4TB memory, 668 logical cores
- 10Gbps network switch
- Apache Spark 1.6.0 with Scala 2.10
- YARN cluster management

Synthetic Datasets

- Binary classification
- Dimensions range from 10^2 to 10^5
- The number of constraints range from 10 to 10⁴

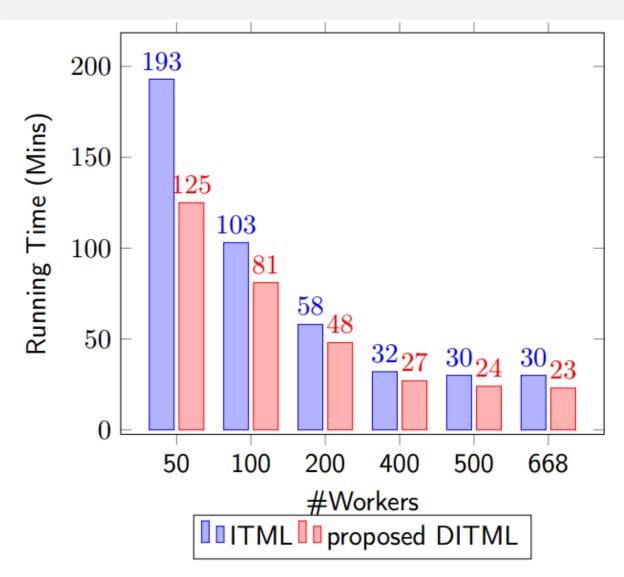
ImageNet Datasets

- DeCAF [1] features with 51,456 dimension
- 50 images with 1,225 constraints

• We also implement the sequential ITML in Apache Spark with distributed matrix multiplication.

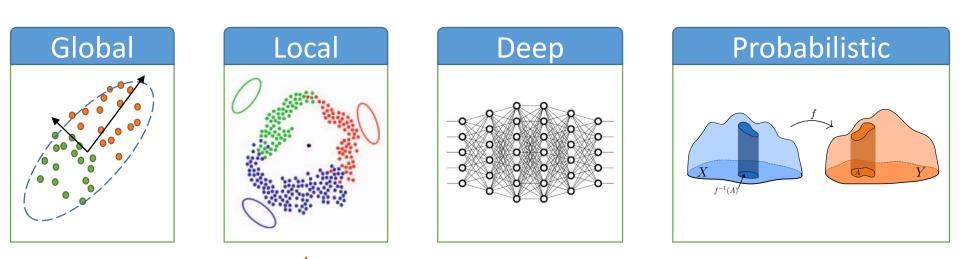
[1] Donahue, Jeff, et al. "DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition." international conference on machine learning (2014): 647-655.

Scalability



Accuracy of k-NN classification when k = 4

Accuracy	<i>k</i> -NN	ITML+ <i>k</i> -NN	Proposed DITML+ <i>k</i> -NN
Synthetic-10 ²	0.900	0.930	0.920
Synthetic-10 ³	0.940	0.962	0.957
Synthetic-10 ⁴	0.933	0.938	0.938
Synthetic-10 ⁵	0.812	0.923	0.900
ImageNet	0.682	0.835	0.830

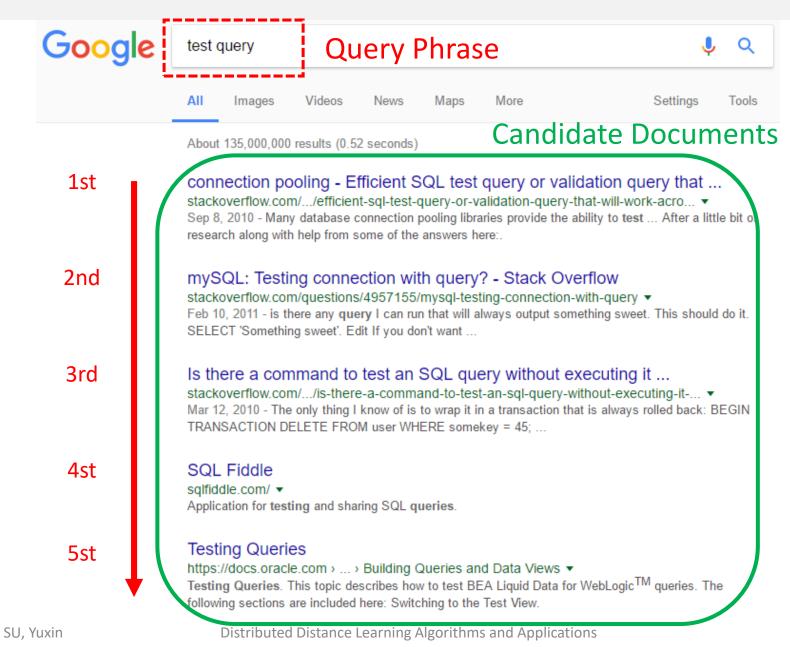


Local Distance Learning

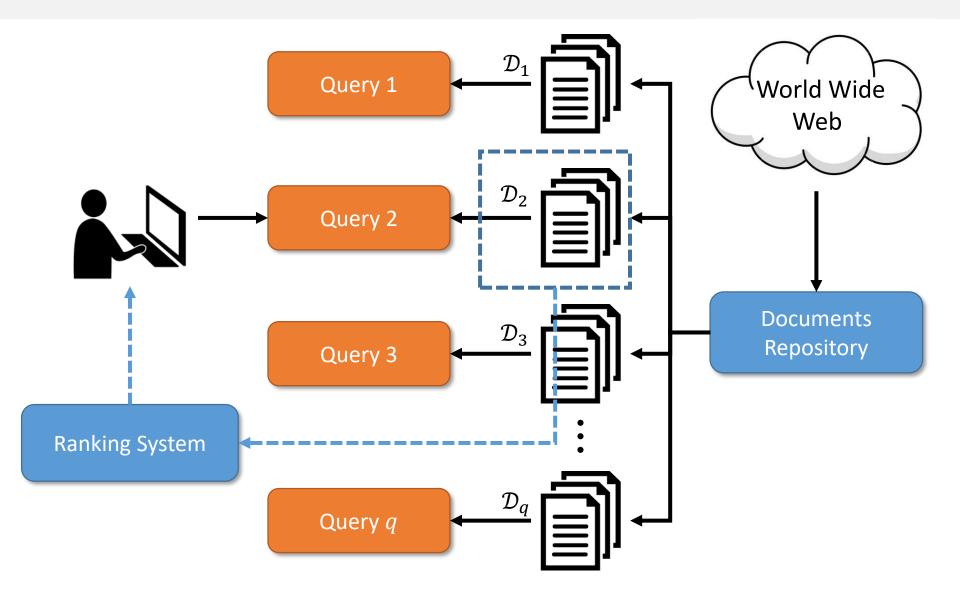
Learning to rank

Experiments

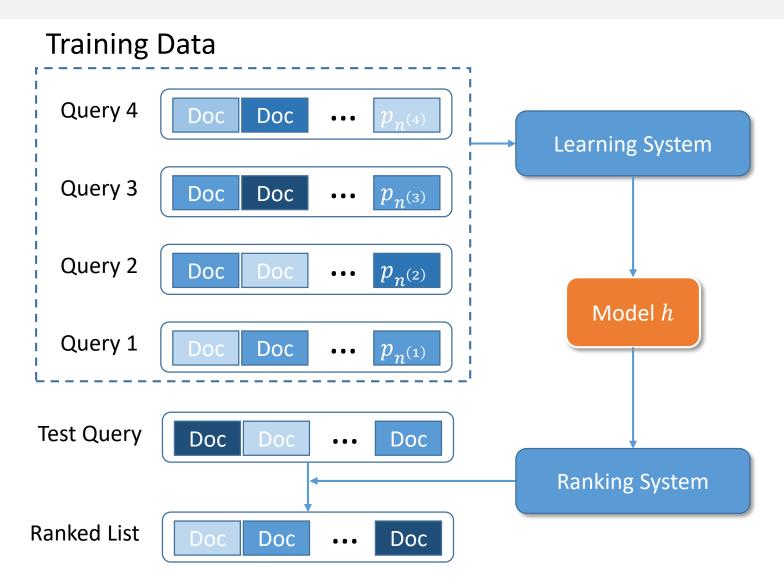
Search Engine



Candidate Documents: Query Independent



Learning to Rank for Query-document Pair



Feature List of Microsoft Learning to Rank Datasets

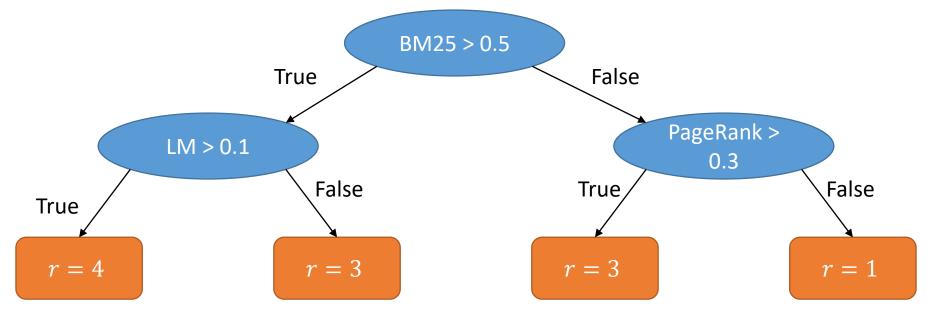
Feature ID	Description	Stream	
3		Title	
4	Covered query term number	URL	
5		Whole document	
71		Title	
72	Sum of TF-IDF	URL	
73		Whole document	
106		Title	
107 🛛 🔾	servation	URL	
108	Contain local structures in dat	Whole document	
128			
129	Out-link number		
130	PageRank		
131	SiteRank		
134	URL click count		

https://www.microsoft.com/en-us/research/project/mslr

SU, Yuxin

The State-of-the-art Methods

- Gradient-Boosted Regression Tree (GBRT) [1]
- λ-MART [2]



Drawback of decision tree-like methods

- Sensitive to noise
- No structural information (weak for theoretical analysis)

[1] Friedman, Jerome H. "Greedy function approximation: a gradient boosting machine." *Annals of statistics* (2001): 1189-1232.

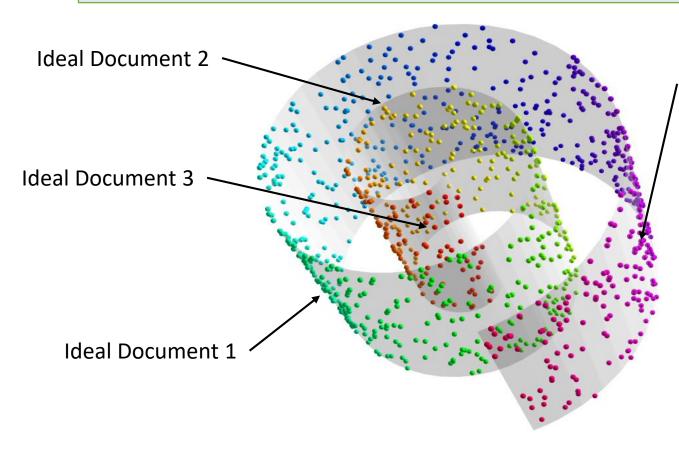
[2] Burges, Christopher, et al. "Learning to rank using an ensemble of lambda-gradient models." Proceedings of the learning to rank Challenge. 2011.

SU, Yuxin

Ideas from Manifold Learning

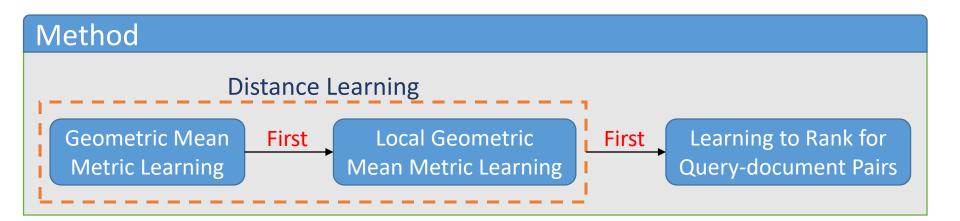
Motivation

• Find better similarity measurement on the feature space of query-document pair



Ideal Document 4

Contributions



Experiments: outperforms in terms of accuracy and computational complexity

- The state-of-the-art query-dependent metric-learning-to-rank algorithms
- The state-of-the-art learning-to-rank methods for query-document pairs

Geometric Mean Metric Learning

• Similar and Dissimilar Matrices:

$$\mathbf{S} = \sum_{(p_i, p_j) \in S} (p_i - p_j) (p_i - p_j)^{\mathsf{T}}$$
$$\mathbf{D} = \sum_{(p_i, p_k) \in D} (p_i - p_k) (p_i - p_k)^{\mathsf{T}}$$

• Compute the metric:

$$\mathbf{M} = \mathbf{S}^{-1/2} \left(\mathbf{S}^{1/2} \mathbf{D} \mathbf{S}^{1/2} \right)^{1/2} \mathbf{S}^{-1/2}$$

• The fastest distance metric learning algorithm

Zadeh, Pourya, Reshad Hosseini, and Suvrit Sra. "Geometric mean metric learning." International conference on machine learning. 2016.

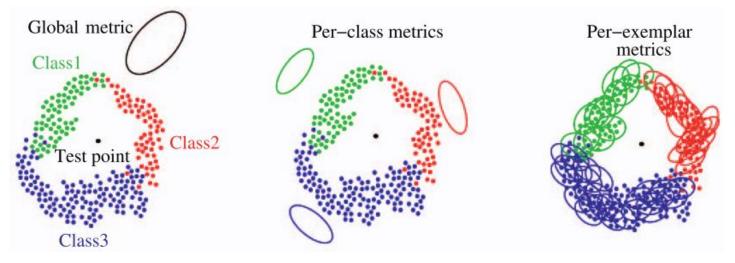
Localized Metric Learning

• A single (global) metric is a linear transformation

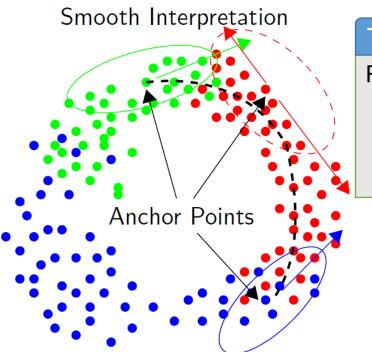
 $d_{\mathbf{M}}(p_1, p_2) = (p_1 - p_2)^{\top} \mathbf{M}(p_1 - p_2) = \left(\mathbf{L}(p_1 - p_2) \right)^{\top} \left(\mathbf{L}(p_1 - p_2) \right)$

Local metric contains multiple basis metrics:

$$d(p_i, p_j) = d_{\mathbf{M}(p_i)}(p_i, p_j)$$
$$\mathbf{M}(p_i) = \sum_{r=1}^m w_r(p_i) \mathbf{M}_r$$



Smooth Interpretation



Theorem

Riemannian metric M_p is a smoothly varying:

$$\langle x_i, x_j \rangle_p = x_i^T \mathbf{M}(p) x_j$$

• For the anchor document p_r , we propose a smoothing weight function:

$$w_r(p) = \exp\left(-\frac{\rho}{2}\|p - p_r\|_{\mathbf{M}_r}\right)$$

• Easy to compute

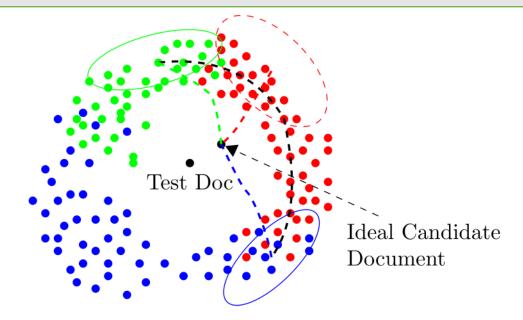
Hauberg, Søren, Oren Freifeld, and Michael J. Black. "A geometric take on metric learning." Advances in Neural Information Processing Systems. 2012.

Ideal Candidate Document

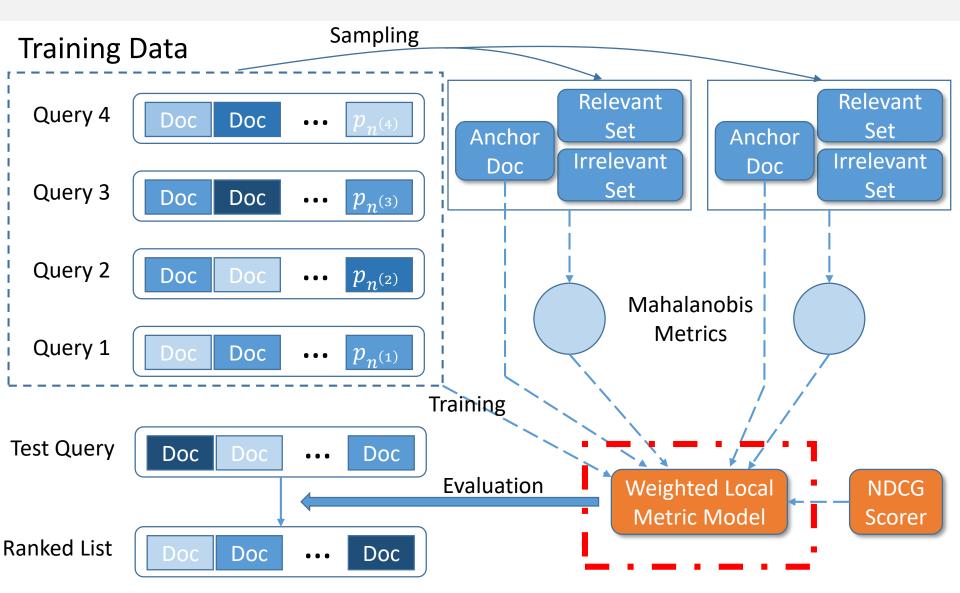
Evaluation Function

$$f_q(p, \Phi_q) = -\sum_{r=1}^m \Phi_q^{(r)} \cdot \exp(-\|p - p_r\|_{M_r}) \cdot \|p - p_r\|_{M_r}$$

- Relevance to *q* for document *p*
- Φ_q need to learn
- The combination of p_r is considered as ideal candidate document



Proposed Framework



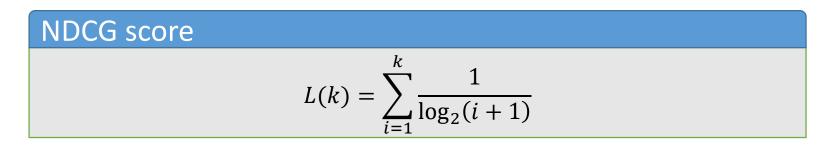
Weighted Approximate Rank Pairwise

• For a set of candidate document \mathcal{D}_q with query q:

Weighted Approximate Rank Pairwise (WARP) loss

$$\mathcal{L}(q) = \frac{1}{\left|\mathcal{D}_{q}^{+}\right|} \sum_{p \in \mathcal{D}_{q}^{+}} L\left(v_{q}(p^{+})\right)$$

$$v_q(p^+)$$
 is the number of violators in \mathcal{D}_q for positive p^+
 $v_q(p^+) = \sum_{p^- \in \mathcal{D}_q^-} \mathbf{I} \left[f_q(p^-, \Phi_q) - f_q(p^+, \Phi_q) \right]$



Jason Weston, Samy Bengio, and Nicolas Usunier. Large scale image annotation: learning to rank with joint word-image embeddings. Machine Learning, 81(1):21–35, 2010.

Update of Φ_q

Stochastic gradient descent to minimize the WARP loss

$$\begin{split} \Phi_q(t+1) \\ &= \Phi_q(t) - \mu \frac{\partial l(q,p^+,p^-)}{\partial \Phi_q(t)} \\ &= \Phi_q(t) - \mu L \left(\left| \frac{|\mathcal{D}_q^-|}{N_q} \right| \right) \cdot \left[\frac{\partial f_q(p^-,\Phi_q(t))}{\partial \Phi_q(t)} - \frac{\partial f_q(p^+,\Phi_q(t))}{\partial \Phi_q(t)} \right] \end{split}$$

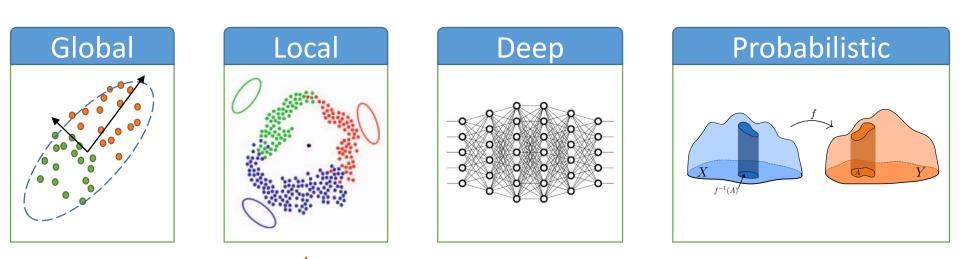
•
$$\frac{\partial f_q(p, \Phi_q)}{\partial \Phi_q} = \left[\frac{\partial f_q(p, \Phi_q^{(r)})}{\partial \Phi_q^{(r)}} \right]_{r=1...m}$$
•
$$\frac{\partial f_q(p, \Phi_q^{(r)})}{\partial \Phi_q^{(r)}} = \exp(-\|p - p_r\|_{M_r}) \cdot \|p - p_r\|_{M_r}$$

Algorithm

ALGORITHM 1: L-GMML to Rank

```
Input: Candidate set for c queries \{\mathcal{D}_1, \mathcal{D}_2, \ldots, \mathcal{D}_q, \ldots, \mathcal{D}_c\}, m: number of local
           metrics, T : number of iteration, \mu : step size, \zeta: hinge loss margin
Output: \{(p_1, M_1), (p_2, M_2) \dots, (p_m, M_m)\} : set of local metrics and associated
              anchor points, p \in \mathbb{R}^d, M \in \mathbb{S}^d_+, \Phi \in \mathbb{R}^{c \times m}: weights for local metrics to
              model the ideal candidate documents for each queries
for q \in [1, c] do
     Extract \mathcal{D}_q^+ and \mathcal{D}_q^- from \mathcal{D}_q;
end
for i \in [1, m] do
     Sample \mathcal{D}_i^+ and \mathcal{D}_i^- from \{\mathcal{D}_q\}_{q\in[1,c]};
     M_i = \mathsf{GMML}\left(\mathcal{D}_i^+, \mathcal{D}_i^-\right);
     for p \in \mathcal{D}_i^+ do
           \Gamma_p^{(i)} \leftarrow \text{Sort } \mathcal{D}_i \text{ in ascending order by computing } \|p-d\|_{M_i}^2 \quad \forall d \in \mathcal{D}_q;
     end
     Find the anchor point p_r with maximum NDCG score of \Gamma_{p_r}^{(i)};
end
```

for
$$t = 1$$
 to T do
Sample a tuple (q, p^+, p^-) from $\{\mathcal{D}_q\}_{q \in [1,c]}$ such that
 $\zeta + f_q (p^+, \Phi_q (t)) > f_q (p^-, \Phi_q (t));$
 $N_q \leftarrow$ the number of less relevant documents drawn with replacement from \mathcal{D}_q^- until
 p^- is found;
 $\Phi_q (t+1) = \left[\Phi_q (t) - \mu L \left(\left\lfloor \frac{|\mathcal{D}_q^-|}{N_q} \right\rfloor \right) \cdot \left[\frac{\partial f_q (p^-, \Phi_q (t))}{\partial \Phi_q (t)} - \frac{\partial f_q (p^+, \Phi_q (t))}{\partial \Phi_q (t)} \right] \right]_+;$
end



Learning to rank

Experiments

Datasets

Query-independent Datasets (Query-document pairs)

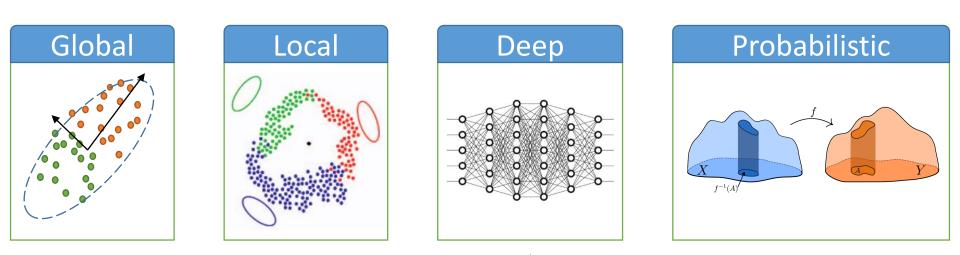
Name	# of Queries		# of	Doc.	Rel.	# of
	Train	Test	Train	Test	Levels	Features
Yahoo! Set I	19,944	6,983	473,134	165,660	5	519
Yahoo! Set II	1,266	3,798	34,815	103,174	5	596
MSLR-WEB10K	6,000	2,000	723,412	235,259	5	136
MSLR-WEB30K	31,531	6,306	3,771k	753k	5	136

Comparison between GBRT and Proposed L-GMML

		GBRT		L-GMML		
Dataset		Test Set	Time (min.)	Test Set	Time (min.)	
	NDCG@5	0.6529	0.6529 41.2		28.1	
Yahoo! Set I	NDCG@10	0.6824	0.6824 43.3 0.6715		28.9	
	NDCG@20	0.6912	41.5	0.6934	28.8	
Yahoo! Set II	NDCG@5	0.6731	37.6	0.7096	26.5	
	NDCG@10	0.6817	36.8	0.7264	26.6	
	NDCG@20	0.6954	37.4	0.7219	26.4	
MSLR-WEB10K	NDCG@5	$\textbf{0.4019} \pm \textbf{0.0083}$	49.4 ± 5.2	$\textbf{0.4771} \pm 0.0951$	19.7 ± 2.1	
	NDCG@10	0.4342 ± 0.0219	48.3 ± 2.1	$\textbf{0.5390} \pm 0.0812$	19 ± 3.1	
	NDCG@20	0.4512 ± 0.0279	48.8 ± 3.8	$\textbf{0.5510} \pm 0.0728$	19 ± 2.8	
MSLR-WEB30K	NDCG@5	0.409 ± 0.0312	167 ± 28.6	$\textbf{0.4837} \pm 0.0715$	71.7 ± 2.7	
	NDCG@10	0.4146 ± 0.0327	177 ± 30.1	$\textbf{0.4976} \pm 0.0619$	71.9 ± 3.9	
	NDCG@20	0.421 ± 0.361	167 ± 27.3	$\textbf{0.5038} \pm 0.0718$	72.5 ± 5.3	

Comparison between λ -MART and Proposed L-GMML

		λ -MART		L-GMML		
Dataset		Test Set Time (min.)		Test Set	Time (min.)	
Yahoo! Set I	NDCG@5 NDCG@10 NDCG@20	0.6567 0.7060 0.7091	46.5 48.0 46.9	0.6698 0.6715 0.6934	28.1 28.9 28.8	
Yahoo! Set II	NDCG@5 NDCG@10 NDCG@20	0.6791 0.7062 0.7087	43.1 43.3 43.8	0.7096 0.7264 0.7219	26.5 26.6 26.4	
MSLR-WEB10K	NDCG@5 NDCG@10 NDCG@20	$\begin{array}{c} 0.4417 \pm 0.0131 \\ 0.4513 \pm \textbf{0.0196} \\ 0.4634 \pm \textbf{0.0257} \end{array}$	58.3 ± 2.8 57.6 ± 3.8 57.1 ± 5.2	$\begin{array}{c} \textbf{0.4771} \pm 0.0951 \\ \textbf{0.5390} \pm 0.0812 \\ \textbf{0.5510} \pm 0.0728 \end{array}$	$\begin{array}{c} 19.7 \pm 2.1 \\ 19 \pm 3.1 \\ 19 \pm 2.8 \end{array}$	
MSLR-WEB30K	NDCG@5 NDCG@10 NDCG@20	$\begin{array}{c} 0.3812 \pm \textbf{0.0297} \\ 0.409 \pm \textbf{0.0232} \\ 0.4112 \pm \textbf{0.0240} \end{array}$	$\begin{array}{c} 182\pm19.8\\ 183\pm17.9\\ 181\pm10.7\end{array}$	$\begin{array}{c} \textbf{0.4837} \pm 0.0715 \\ \textbf{0.4976} \pm 0.0619 \\ \textbf{0.5038} \pm 0.0718 \end{array}$	$\begin{array}{c} 71.7 \pm 2.7 \\ 71.9 \pm 3.9 \\ 72.5 \pm 5.3 \end{array}$	



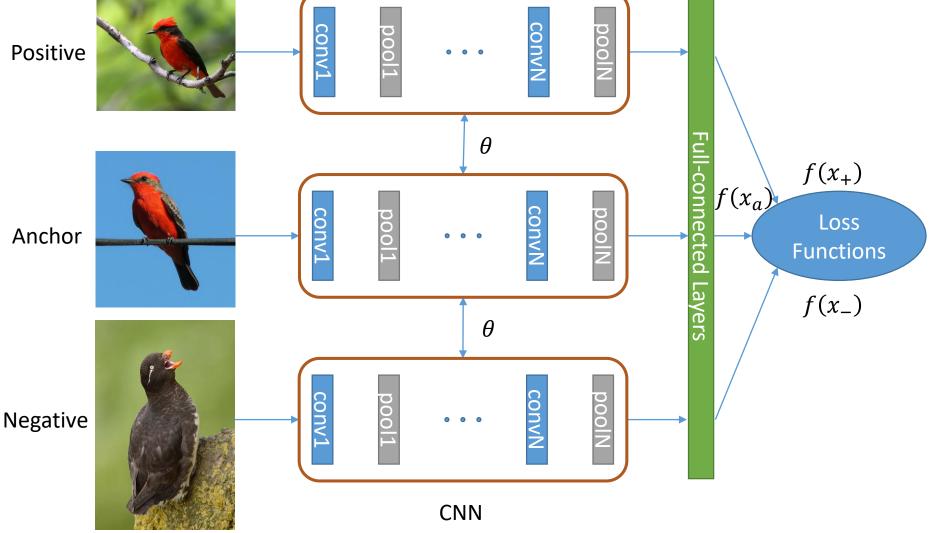
Deep Distance Learning

Parallel Algorithm

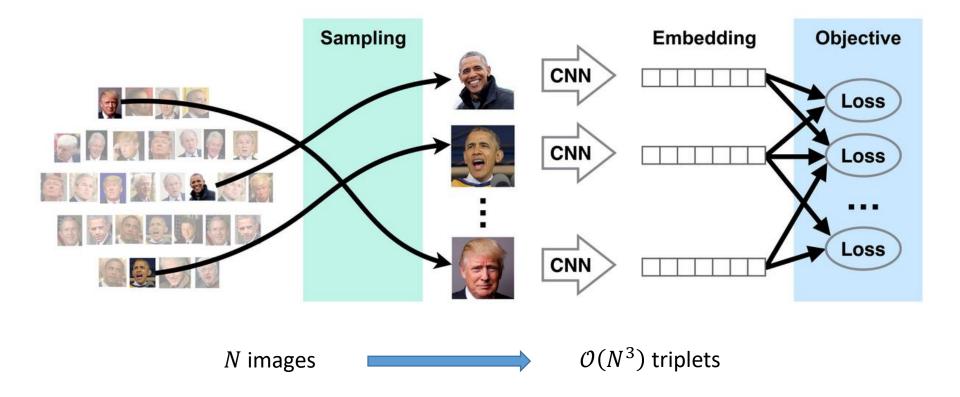
Experiments

Distributed Implementation

Siamese Networks



Most Important Issue: Sampling



Impossible task for big data set

https://www.cs.utexas.edu/~cywu/projects/sampling_matters

Semi-hard Negative Mining

• Each mini-batch:

$$\ell(X, y) = \frac{1}{|\mathcal{P}|} \sum_{(i,j)\in\mathcal{P}} \left[D_{i,j}^2 + \alpha - D_{i,k^*}^2 \right]_+$$

• Where

$$k^*(i,j) = \underset{k:y[k] \neq y[i]}{\operatorname{argmin}} D_{i,k}$$

Need very large minibatches (1800 images)

Schroff, Florian, Dmitry Kalenichenko, and James Philbin. "Facenet: A unified embedding for face recognition and clustering." Proceedings of the IEEE conference on computer vision and pattern recognition. 2015.

N-pairs Embedding

• Each mini-batch:

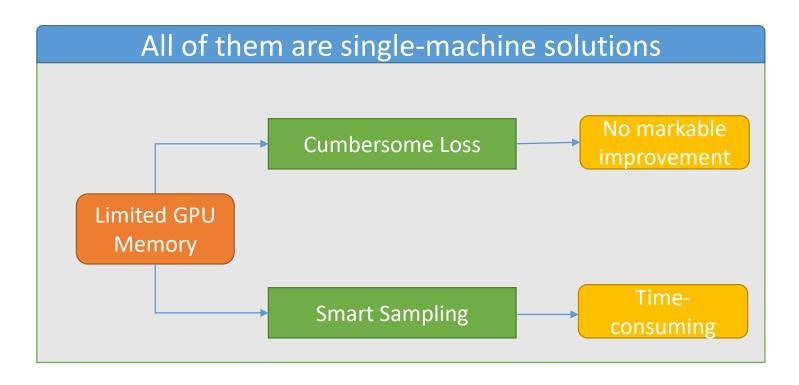
$$\ell(X, y) = -\frac{1}{|\mathcal{P}|} \sum_{(i,j)\in\mathcal{P}} \log \frac{\exp\{S_{i,j}\}}{\exp\{S_{i,j}\} + \sum_{k:y[k]\neq y[i]} \exp\{S_{i,k}\}} + \frac{\lambda}{m} \sum_{i}^{m} ||f(x_i)||_2$$

• where $S_{i,j} = f(x_i)^T f(x_j)$

Softmax cross-entropy loss among the pairwise similarity values

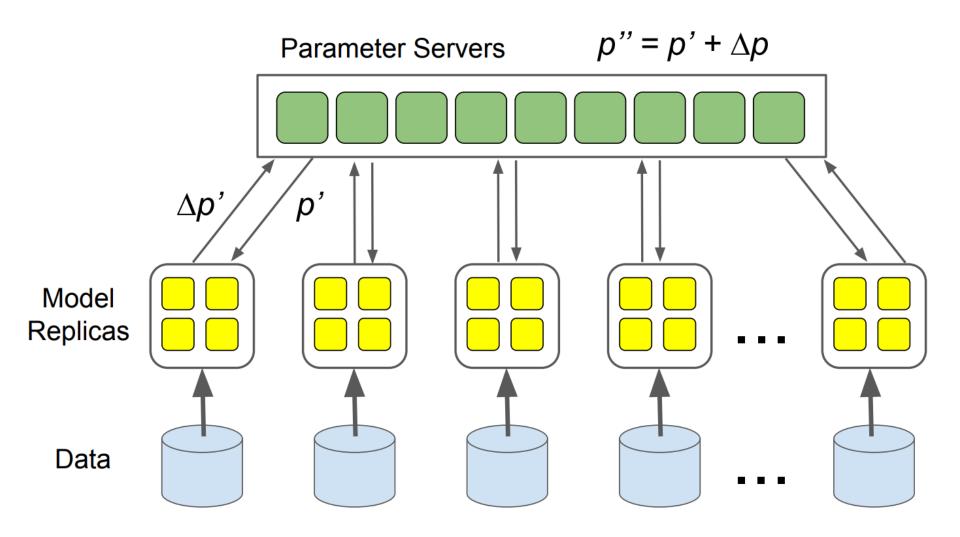
Sohn, Kihyuk. "Improved deep metric learning with multi-class n-pair loss objective." Advances in Neural Information Processing Systems. 2016.

Challenges

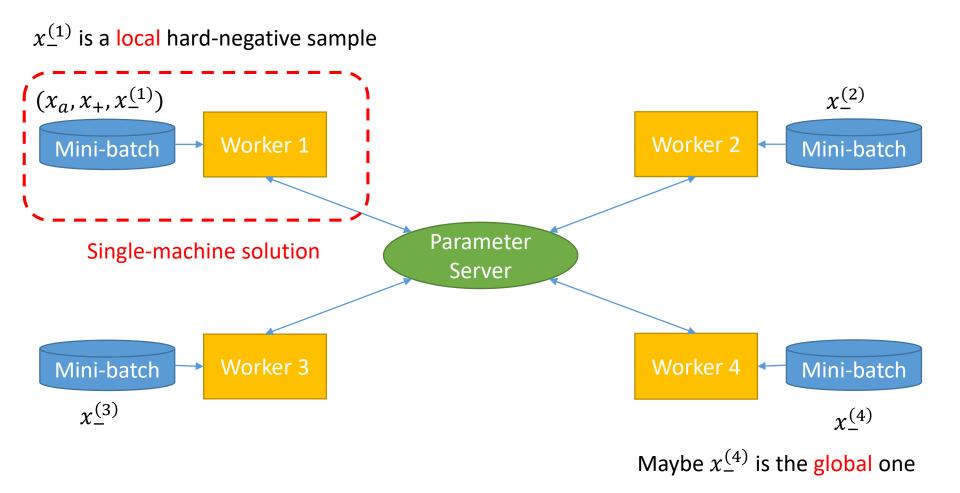


Let's consider multiple machines solution!

Distributed Deep Learning



Distributed Deep Distance Learning



Contributions

Synchronization of global hard negative samples

 This is the first distance learning oriented distributed deep distance learning approach

Hybrid synchronization

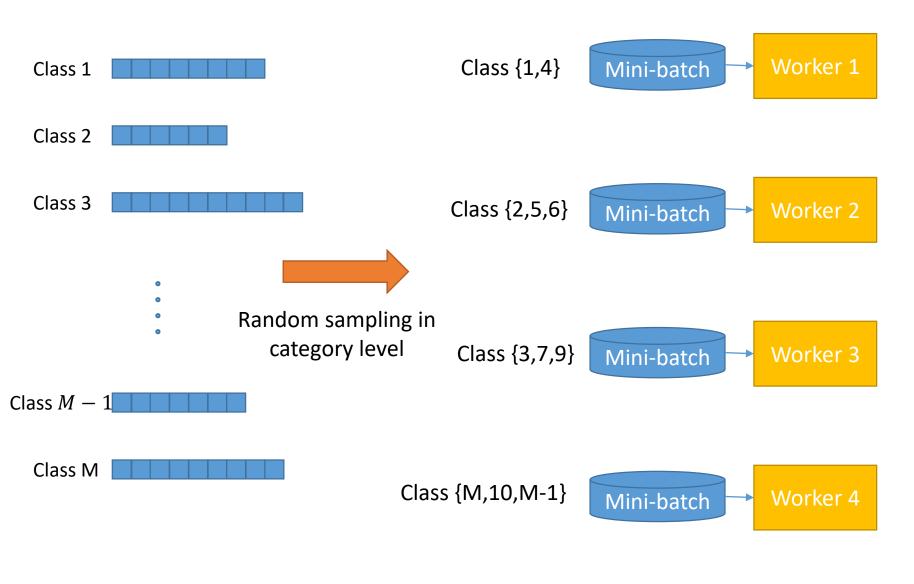
Synchronization of DNN model

 Communication-efficient approach to synchronize DNN model with mixed topology

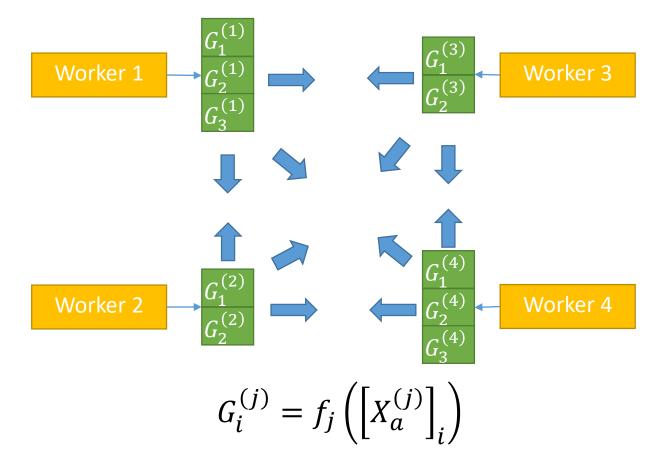
Experimental report

 Huge improvements in terms of accuracy of image retrieval and runtime speedup

Batching with Category Information



Broadcast of Embedded Anchor Points

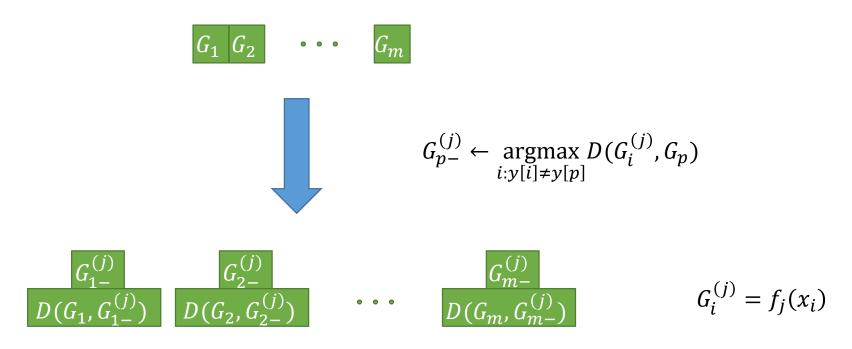


 $X_a^{(j)}$ is the collection of anchor points in worker j $f_i(\cdot)$ is the DNN model in worker j

The dimensionality of *G* is relative small

Scatter the Corresponding Hard Negative Samples

• For the machine *j*:



Scatter to other machines

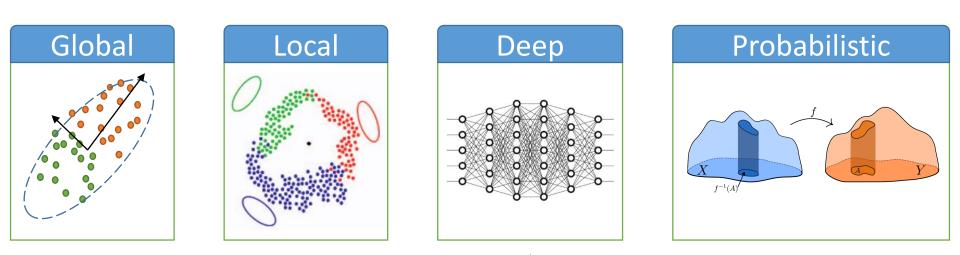
N-positive Pairs Embedding

• For the machine *j*:

$$\ell(X, y) = -\frac{1}{|\mathcal{P}|} \sum_{(i,k)\in\mathcal{P}} \log \frac{\exp\{S_{i,k}\}}{\exp\{S_{i,k}\} + \exp\{S_{i,\mathbb{I}}(i)\}} + \frac{\lambda}{m} \sum_{i}^{m} ||f(x_i)||_2$$

•
$$\mathbb{I}(i) \leftarrow \underset{p}{\operatorname{argmax}} D\left(G_{i}, G_{i-}^{(p)}\right)$$
 "Global" hard negative sample

• $S_{i,k} = f(x_i)^T f(x_k)$



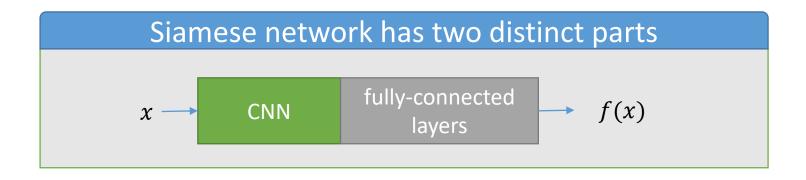
Deep Distance Learning

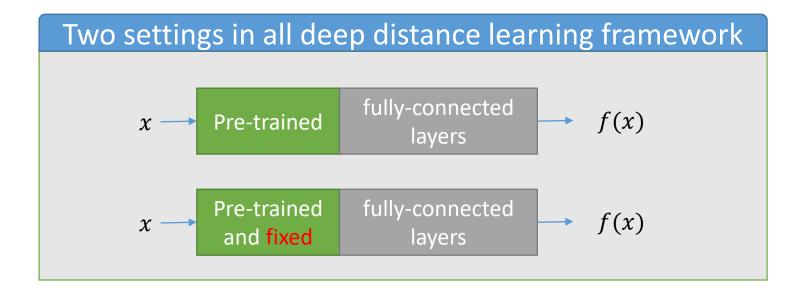
Parallel Algorithm

Experiments

Distributed Implementation

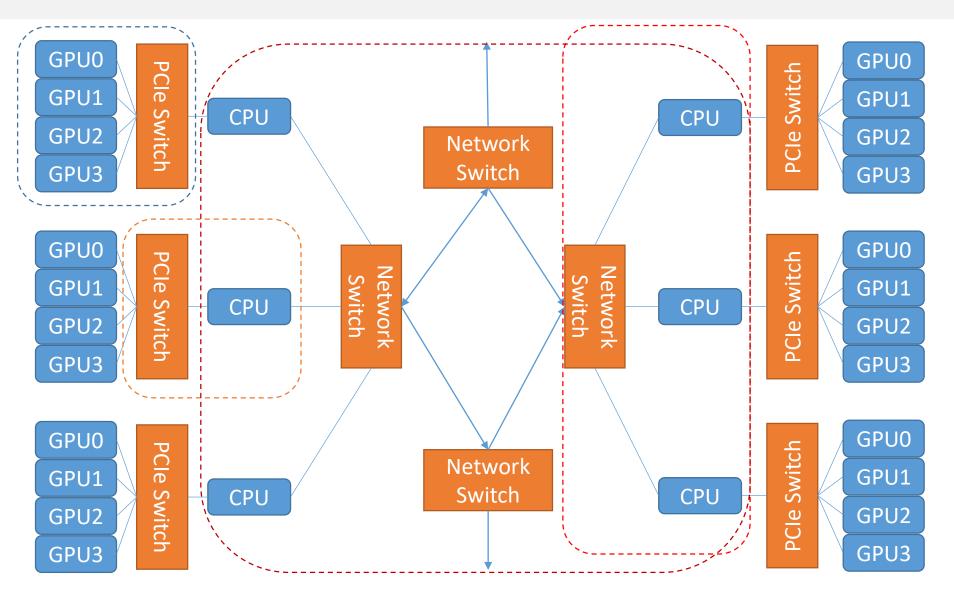
Model Synchronization: Observation I



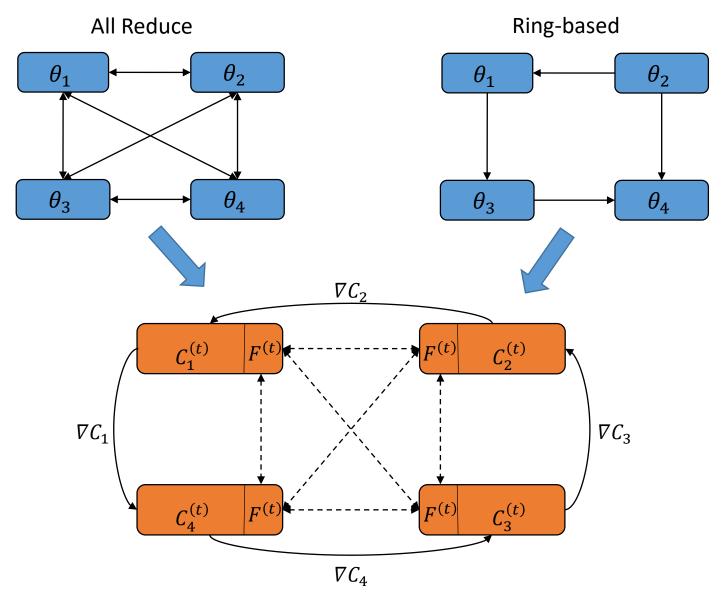


SU, Yuxin

Observation II: Hierarchical Topology

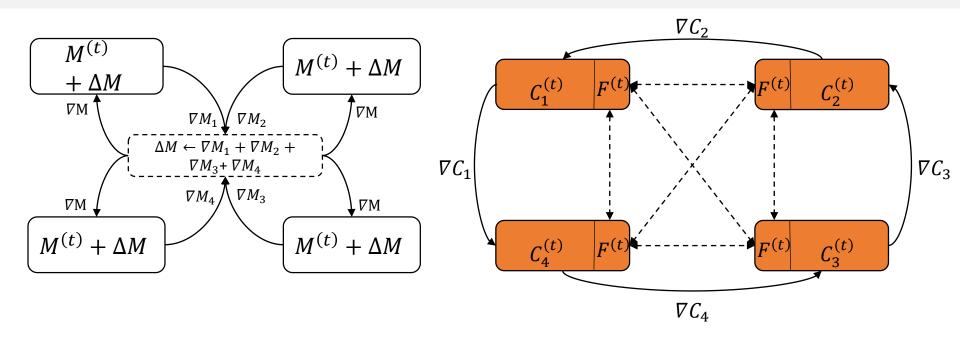


Model Synchronization: Mixed Topology



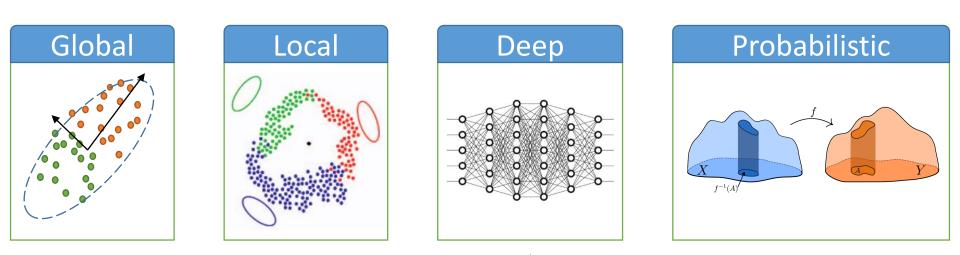
Distributed Distance Learning Algorithms and Applications

Parameter Server vs Mixed Topology



$$\theta_i^{(t+1)} \leftarrow \theta_i^{(t)} + \eta^{(t)} \sum_{j \in P} \nabla f\left(\theta_j^{(t)}\right) \qquad \leftarrow C_i^{(t)} + \eta^{(t)} \left(\beta \nabla f\left(C_i^{(t)}\right) + (1-\beta) \nabla f\left(C_{\text{Left}(i)}\right)\right)$$

Distributed Distance Learning Algorithms and Applications



Deep Distance Learning

Parallel Algorithm

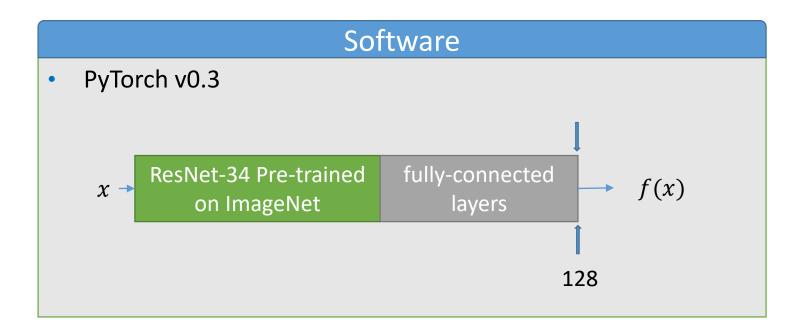
Experiments

Distributed Implementation

Configuration

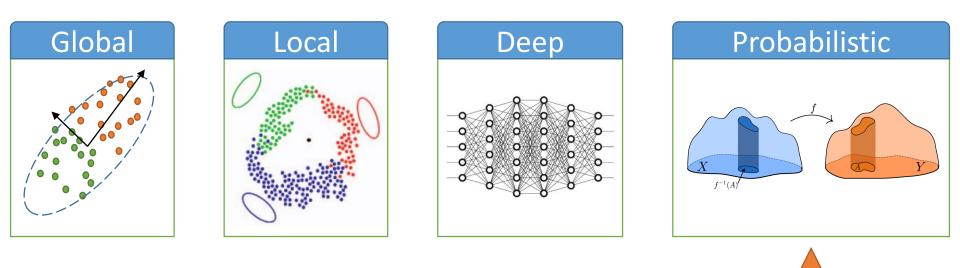
Hardware

- 4 servers with 2 NVIDIA GTX 1080 GPUs each
- 10 Gbit/s switch network



Evaluation on Cars196

Method	Time (s) / epoch	NMI	Recall@1	Recall@5	Recall@10
Triplet semi-hard [CVPR'15]	507	54.09	41.30	75.21	80.32
Lifted struct [CVPR'16]	530	56.90	53.70	75.98	83.30
Histogram [NIPS'16]	512	-	53.67	75.56	81.20
N-pairs [NIPS'16]	489	58.04	54.36	79.03	84.23
NMI-based [CVPR'17]	832	57.27	57.29	79.90	88.24
Spectral [ICML'17]	798	61.08	69.35	81.08	90.35
Ours (2 machines)	423	61.24	70.07	82.13	89.25
Ours (4 machines)	298	61.30	70.23	81.97	90.10

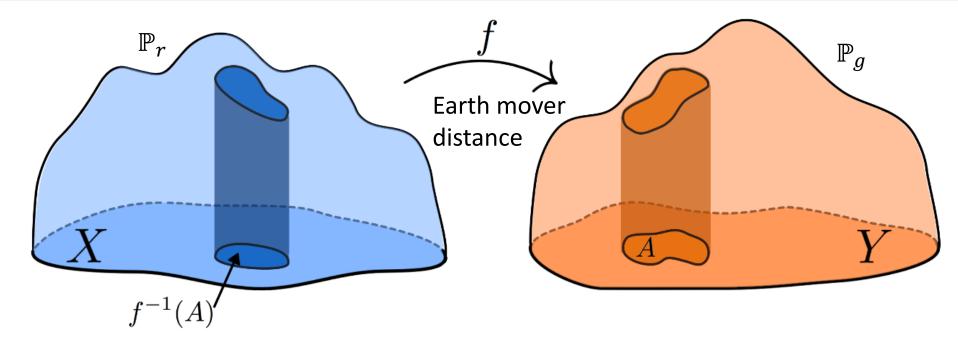


Distance between Probability Distribution

Distributed Primal Form of Wasserstein Distance

Experiments

Probability Distributions and Wasserstein Distance



• Optimal transport problem:

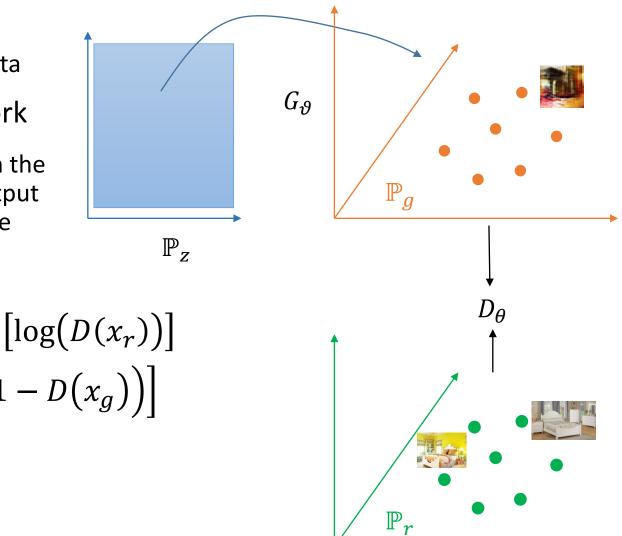
$$W_{c}(\mathbb{P}_{r},\mathbb{P}_{g}) = \min_{\gamma \in \Pi(\mathbb{P}_{r},\mathbb{P}_{g})} \int_{X \times Y} c(x_{r},x_{g}) d\gamma(x_{r},x_{g})$$

• Wasserstein-p distance: $c(\cdot, \cdot) = \|\cdot\|_p$

http://faculty.virginia.edu/rohde/transport/OTCrashCourse.pdf

Generative Adversarial Nets (GANs)

- Generator network:
 - creates plausible data
- Discriminator network
 - distinguish between the generator's fake output and real data sample



$$\min_{G} \max_{D} \mathbb{E}_{x_{r} \sim \mathbb{P}_{r}} \left[\log(D(x_{r})) \right] \\ + \mathbb{E}_{x_{g} \sim \mathbb{P}_{g}} \left[\log\left(1 - D(x_{g})\right) \right]$$

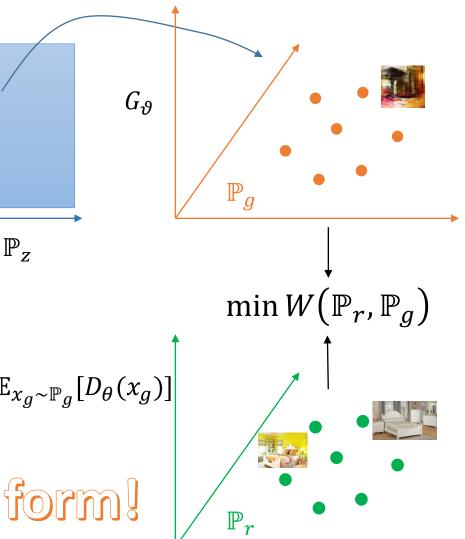
Stability!

Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014.

Wasserstein Generative Adversarial Nets

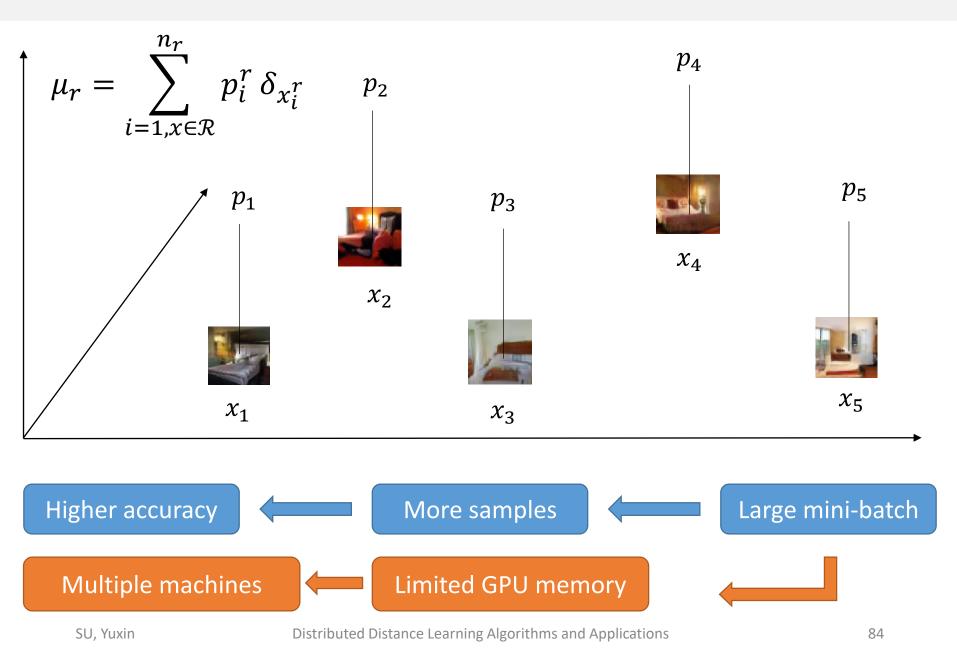
- Introduce Wasserstein distance to GAN
 Minimize the distance between real distributions and fake distributions
 - Kantorovich-Rubinstein dual form with 1-Lipschitz constraint:

$$W_1(\mathbb{P}_r, \mathbb{P}_g) = \sup_{\substack{\|D_\theta\|_L < 1}} \mathbb{E}_{x_r \sim \mathbb{P}_r}[D_\theta(x_r)] - \mathbb{E}_{x_g \sim \mathbb{P}_g}[D_\theta(x_g)]$$

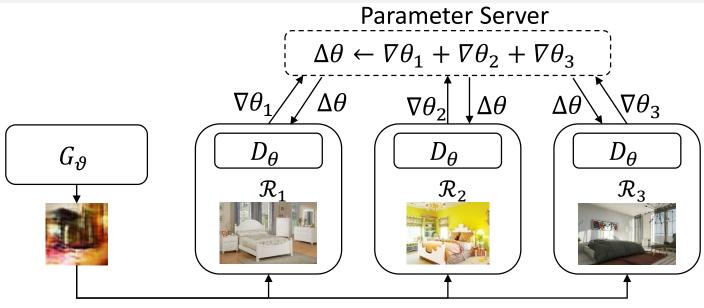


Arjovsky, Martin, Soumith Chintala, and Léon Bottou. "Wasserstein generative adversarial networks." International conference on machine learning. 2017.

Empirical Discrete Distributions



Conventional Distributed Approach



broadcast the generated data

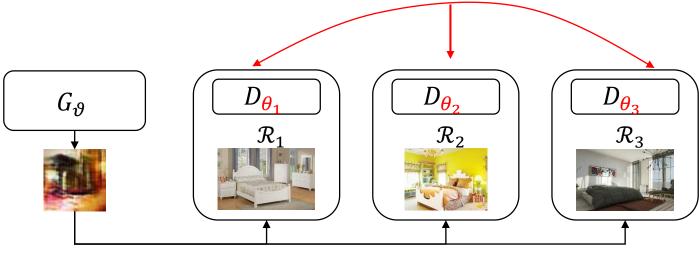
- Distribute supervised real images into multiple machines
- Discriminator is trained collaboratively
- Parameters is synchronized by parameter server

Problems

- Synchronization is expensive
- Synchronization is frequent

Our Solution: Multiple Discriminators

Goal: No heavy communication



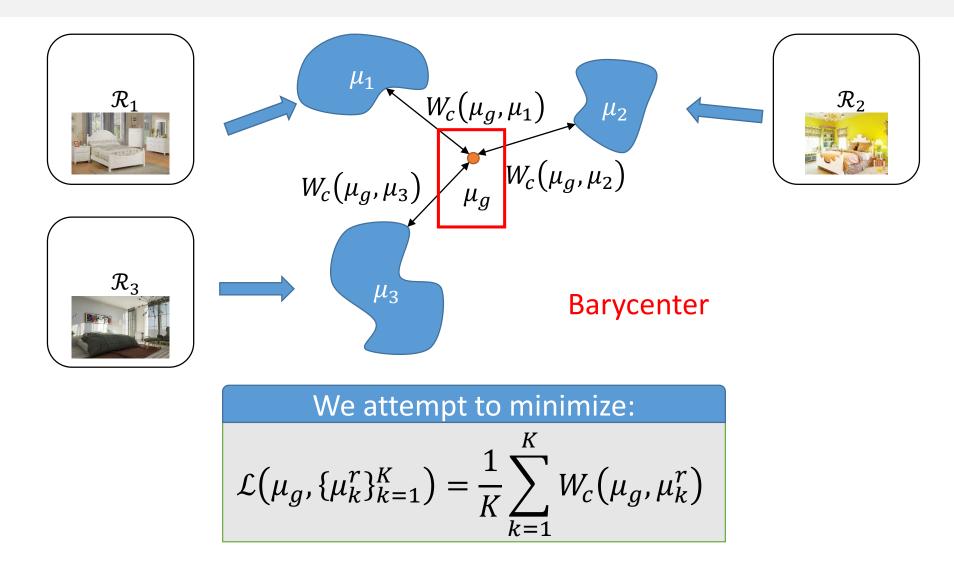
broadcast the generated data

- Generator is more important
- Discriminator could be inconsistent

Challenge

How to provide mathematically sound solution to compute Wasserstein distance?

Wasserstein Barycenter



Primal Problem of Wasserstein Distance

• Semi-discrete Kantorovich's formulations of the primal problem:

$$W_{c}(\mu_{g},\mu_{r}) = \max_{\varphi \in \mathbb{R}^{n_{g}}} \left\{ \sum_{j=1}^{n_{g}} \varphi_{j} p_{j}^{g} + \int_{\Omega} \varphi^{c}(x_{r}) d\mu_{r}(x_{r}) \right\}$$

•
$$\varphi^c(x_r) = c(x_r, x_j^g) - \varphi_j$$

• Minimize:

$$\mathcal{L}(\mu_g, \{\mu_k^r\}_{k=1}^K)$$

=
$$\max_{\varphi \in \mathbb{R}^{n_g}} \left\{ F(\varphi) = \sum_{j=1}^{n_g} \varphi_j p_j^g + \frac{1}{K} \sum_{k=1}^K \int_{\Omega} \varphi^c(x_r) d\mu_k^r(x_r) \right\}$$

Voronoi Cells

• $F(\varphi)$ is concave and derivative:

$$\frac{\partial F}{\partial \varphi_j} = p_j^g - \frac{1}{K} \sum_{k=1}^K \int_{\operatorname{Vor}_{\varphi_j}^k} \mathrm{d}\,\mu_k^r(x_r)$$

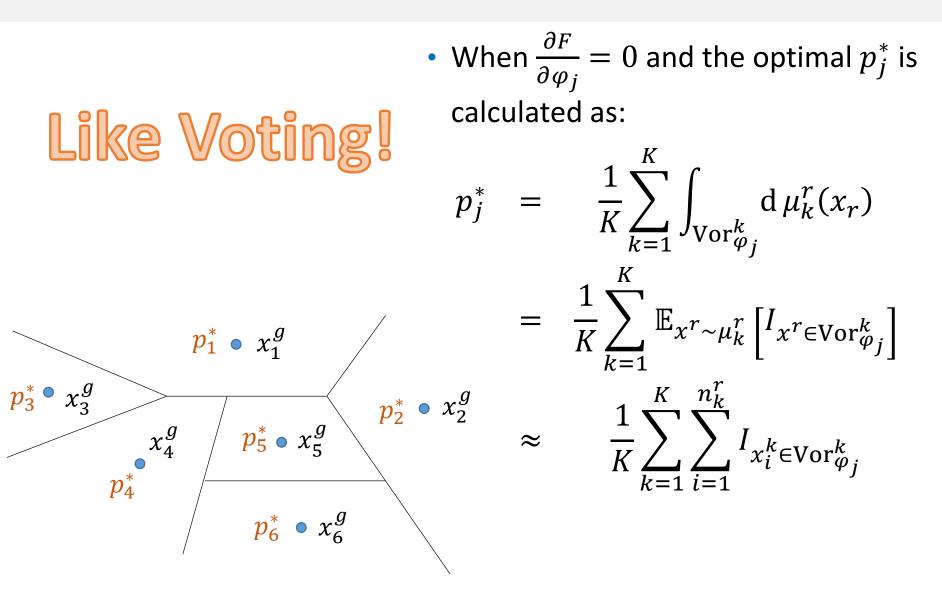
• Voronoi cells:

$$\operatorname{Vor}_{\varphi_{j}} = \left\{ x \in \mathcal{R} : c(x, x_{j}^{g}) - \varphi_{j} \leq c(x, x_{j'}^{g}) - \varphi_{j}, \forall j' \right\}$$
• x_{1}^{g}
• x_{2}^{g}
• x_{4}^{g}
• x_{5}^{g}
• x_{6}^{g}

Santambrogio, Filippo. Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling. Vol. 87. Birkhäuser, 2015.

Distributed Distance Learning Algorithms and Applications

Optimization



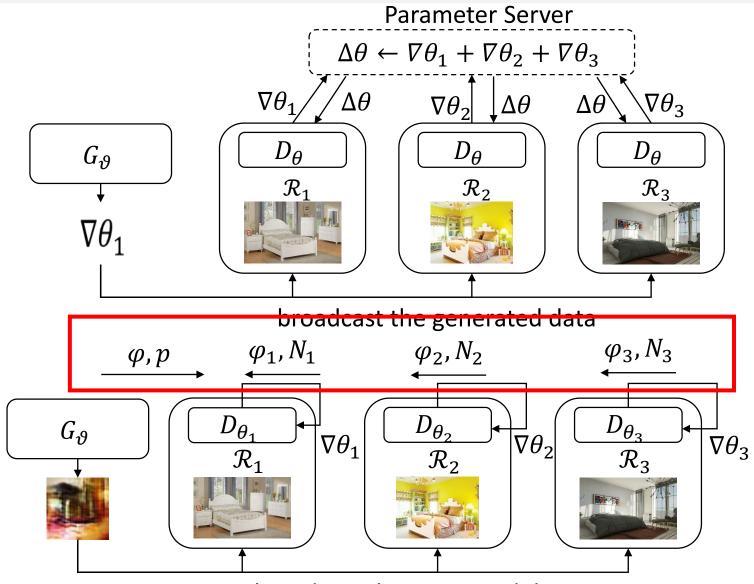
Overall Algorithm: Generator

Algorithm 1: Generator as Master Unit **Input:** K: number of worker unit, n_q : batch size in generator, n_r : batch size in worker, T: number of iteration for the estimation of the probability Dirac mass. **Output:** G_{ϑ} : the generator model. while ϑ has not converged do Sample Gaussian noise z_1, \ldots, z_{n_g} from $\mathcal{N}(0, 1)$ Generate fake images $\left\{x_j^g; x_j^g = G_{\vartheta}\left(z_j\right)\right\}_{i=1}^{n_g}$ $\varphi_j \leftarrow 0 \; \forall j \in [1, n_r]$ **Broadcast** $\{x_{i}^{g}\}_{i=1}^{n_{g}}$ to workers for $l=1,\ldots,T$ do $\varphi_j \leftarrow \frac{1}{K} \sum_{k=1}^{K} \varphi_j^k \; \forall j \in [1, n_g]$ **Broadcast** $\{\varphi_j, p_j^g\}_{j=1}^{n_g}$ to workers **Receive** $\{\varphi_j^k, N_j^k\}_{j=1}^{n_g}$ from workers $p_j^g \leftarrow \frac{1}{K} \sum_{k=1}^K N_j^k \ \forall j \in [1, n_g]$ end Conduct back-propagation with the loss: $\operatorname{Loss}(\{D^g_{\theta}(G_{\vartheta}(z_j))\}_{j=1}^{n_g}, \{p^g_j\})$ end

Overall Algorithm: Discriminator

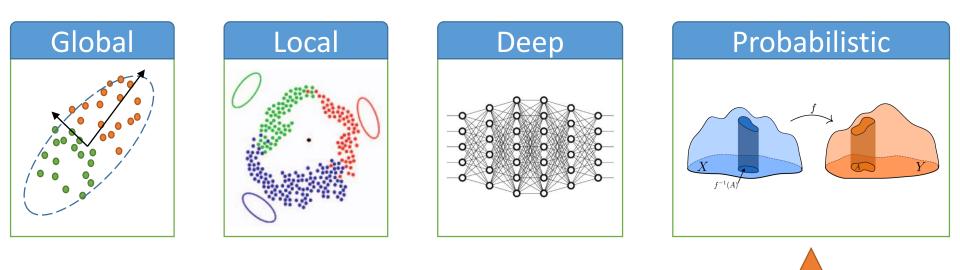
Algorithm 2: Discriminator as Worker Unit **Input:** K: number of worker unit, n_r : batch size in worker unit, η : learning rate for Kantorovich potential, T: number of iterations for the Dirac mass estimation. for all *worker* $k \in [1, K]$ do in parallel Sample $\{x_i\}_{i=1}^{n_r}$ a batch from the real dataset \mathcal{R}_k **Receive** fake images $\{x_j^g\}_{i=1}^{n_g}$ from the master unit Evaluate cost $c_{ij} = \left\| D_{\theta_k} \left(x_i^r \right) - D_{\theta_k} \left(x_j^g \right) \right\| \ \forall i \in$ $[1,n_r], j \in [1,n_g]$ for $t = 1, \ldots, T$ do **Receive** $\{\varphi_j, p_j^g\}_{j=1}^{n_g}$ from master for $j = 1, \ldots, n_g$ do Compute $\operatorname{Vor}_{\varphi_j}$ from Eq. (10) $N_j^k \leftarrow \sum_{i=1}^{n_k^r} I_{x_i^k \in \operatorname{Vor}_{\varphi_i}^k}$ $\varphi_j^k \leftarrow \varphi_j - \eta N_j^k$ Send $\{\varphi_j^k, N_j^k\}_{j=1}^{n_g}$ to master enu Conduct back-propagation with the loss: $\text{Loss}(\{D_{\theta}^{k}(x_{j}^{g})\}_{j=1}^{n_{g}}, \{N_{j}^{k}\})$ end

Summary



broadcast the generated data

Distributed Distance Learning Algorithms and Applications



Distance between Probability Distribution

Distributed Primal Form of Wasserstein Distance

Experiments

Experimental Setting

• Datasets:

	Image size	Number of images
LSUN with bedrooms	128×128	3,000,000
CIFAR10	32×32	60,000

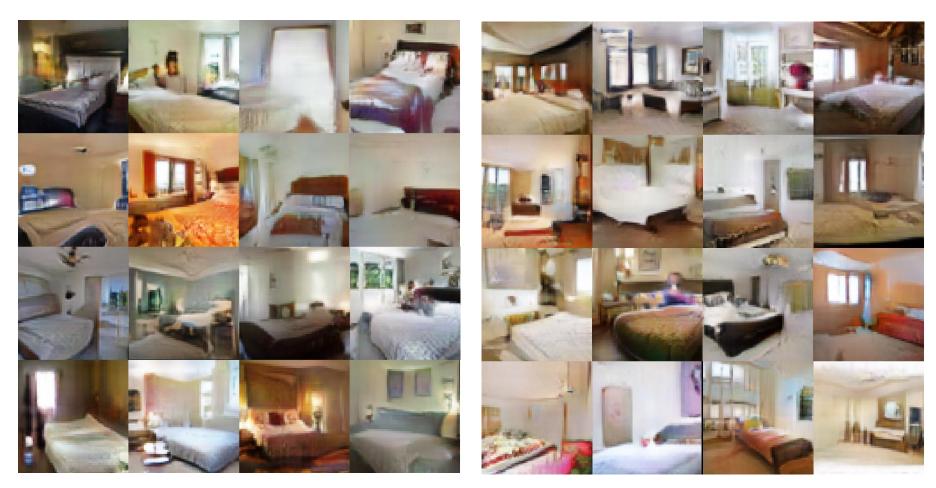
- Machines:
 - 4 machines with 2 NVIDIA GTX 1080 each
- Network:
 - 101-layer ResNet block for generator and discriminators

Quantitative evaluations

Method	LSUN with bedroom (FID)	CIFAR10 (IS)
WGAN-GP (8 GPUs)	27.3	7.73
Ours (2 GPUs)	23.2	7.12
Ours (4 GPUs)	21.9	7.68
Ours (8 GPUs)	21.0	7.81

 Smaller Fréchet Inception Distance (FID) is better, larger Inception scores (IS) is better

Comparisons on Bedroom dataset



Wasserstein GAN with gradient penalty

Ours (2 GPUs)

Comparisons on Bedroom dataset

Wasserstein GAN with gradient penalty

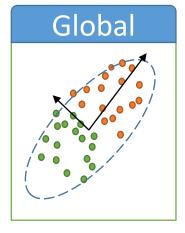
Ours (4 GPUs)

Comparisons on Bedroom dataset

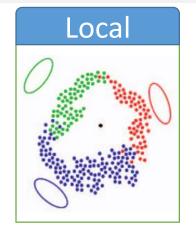
Wasserstein GAN with gradient penalty

Ours (8 GPUs)

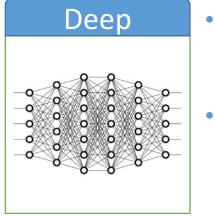
Conclusions



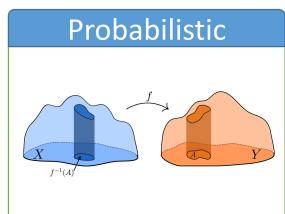
- Semi-synchronous parallel approach
- Theoretical bound
- Efficient distributed implementation



 localized GMML algorithm for the query-independent ranking framework



- Distributed approach for smart sampling
- Hybrid communication



- Primal form
- Master-slave distributed solution

Published and In-progress Papers

- In-progress:
 - 1. Scalable Gromov-Wasserstein Distance for Large-scale Graph Convolutional Networks.
 - Yuxin Su, S. Zhao, X. Chen, X. Shen, Irwin King, Michael Lyu. Powering Graph Convolutional Networks with Wasserstein Barycenter Aggregator on Distributional Node Representation.
 - 3. X. Chen, **Yuxin Su**, S. Zhao, X. Shen, Michael Lyu, Irwin King. A Simple Orthogonality Regularization to Improve the Training of Deep CNNs.
- Published:
 - 1. Yuxin Su, S. Zhao, X. Chen, Irwin King and Michael Lyu. Parallel Wasserstein Generative Adversarial Nets with Multiple Discriminators. IJCAI 2019
 - 2. Yuxin Su, Michael Lyu, and Irwin King. Communication Efficient Distributed Deep Metric Learning with Hybrid Synchronization. CIKM 2018
 - 3. Yuxin Su, Irwin King, and Michael Lyu. Learning to Rank Using Localized Geometric Mean Metrics. SIGIR 2017
 - 4. Yuxin Su, H. Yang, Irwin King, and Michael Lyu. Distributed Information Theoretic Metric Learning in Apache Spark. IJCNN 2016
 - 5. Yuxin Su, H. Yang, Michael Lyu, Irwin King. Distributed Non-negative Matrix Factorization with Loose Synchronization. WSDM workshop, 2015
 - 6. J. Hu, H. Yang, **Yuxin Su**, Michael Lyu, Irwin King. Accelerated Information-Theoretic Metric Learning. WSDM workshop 2015
 - 7. H. Yang, G. Ling, **Yuxin Su**, Michael R. Lyu, and Irwin King. Boosting response aware modelbased collaborative filtering. TKDE 2015

Thank You

Appendix

Optimization for Distance Learning

 $\min_{M} L(M, \mathcal{S}, \mathcal{D}, \mathcal{R}) + \lambda \cdot \operatorname{Reg}(M)$

- *L* is a loss function associated with training constraints
- λ is a regularization parameter
- Reg(*M*) is some regularizer term

Global Distance Learning

Appendix

Multivariate Gaussian Distribution

• Probability density function:

$$p(x;A) = \frac{1}{Z} \exp(-\frac{1}{2}d_A(x,\mu))$$

• Minimizing difference relative entropy:

$$\begin{array}{ll} \min & KL(p(x;A_0)||p(x;A))\\ s.t. & d_A(x_i,x_j) \leq u \quad (i,j) \in S\\ & d_A(x_i,x_j) \geq l \quad (i,j) \in D \end{array}$$

Where

$$KL(p(x|\mu_0, A_0)||p(x|\mu, A)) = \int p(x|\mu_0, A_0) \log \frac{p(x|\mu_0, A_0)}{p(x|\mu, A)} dx$$

Bregman Divergence

• KL divergence:

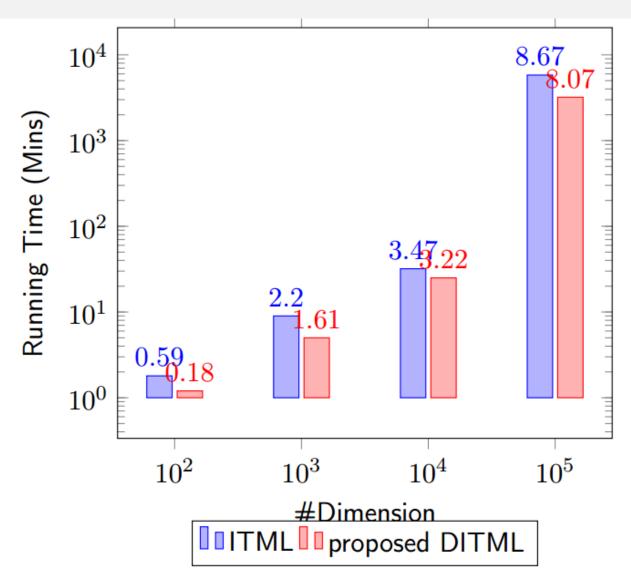
$$KL(p(x|\mu_0, A_0)||p(x|\mu, A) = \frac{1}{2}D_{\phi}(A, A_0) + \frac{1}{2}d_{\Sigma^{-1}}(\mu_0, \mu)$$

• Bregman divergence:

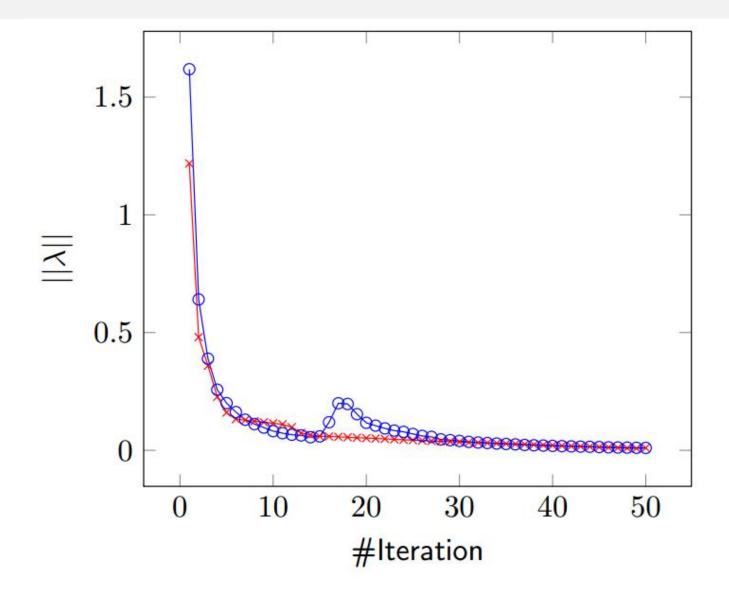
$$D_{\phi}(A,A_0) = \phi(A) - \phi(A_0) - \operatorname{tr}(\nabla \phi(A_0)^T (A - A_0))$$

where $\phi(A) = -logdet(A)$

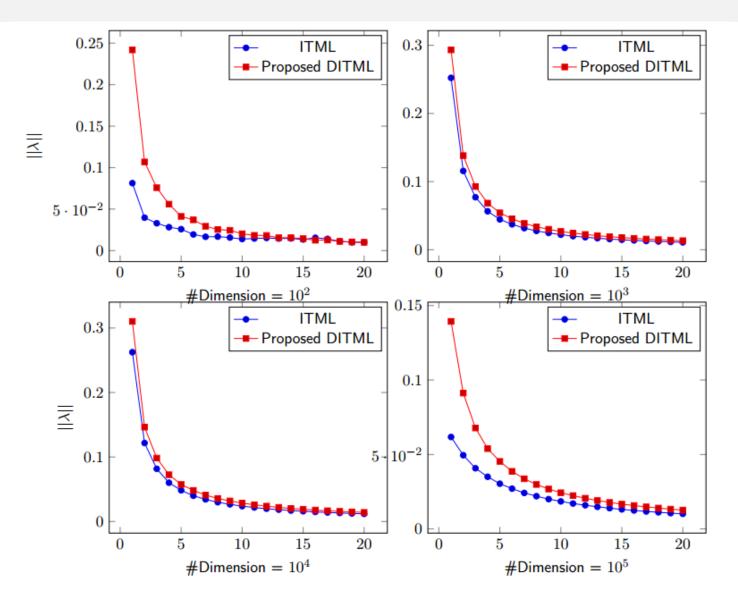
Performance on Running Time



Performance on Accuracy



Performance on Accuracy



Distributed Distance Learning Algorithms and Applications

Local Distance Learning

Appendix

Experiments: Questions

Correctness ex Accuracy Correctness ex • Do • Do • Do

Scalability

 Is the proposed method a correct extension to the global GMML?

 Does our solution outperform any state-of-the-art LtR algorithm on accuracy?

Does our solution enjoy high computational efficiency and good scalability for scaled datasets?

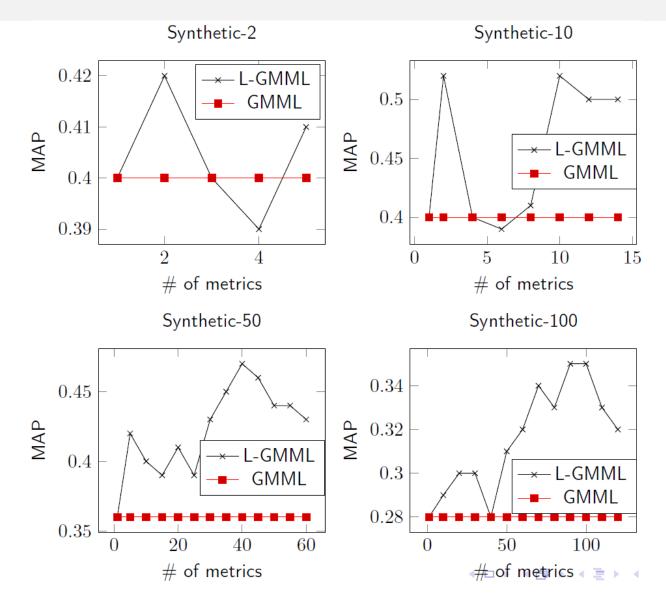
Datasets

Query-dependent Dataset: CAL10K				
		# of Features	# of Songs	
	Audio	1,024	5,419	
	Lyrics-128	128	2000	
	Lyrics-256	256	2000	

Query-independent Datasets (Query-document pairs)

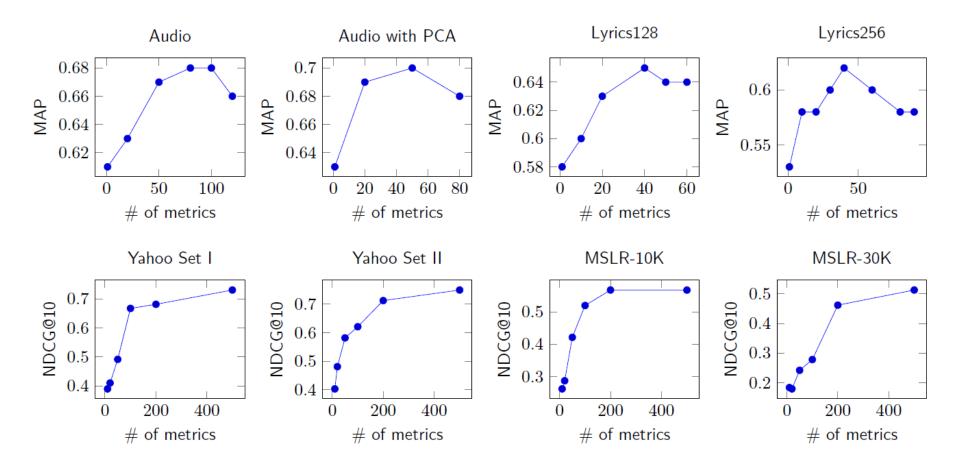
Nama	# of Queries		# of Doc.		Rel.	# of
Name	Train	Test	Train	Test	Levels	Features
Yahoo! Set I	19,944	6,983	473,134	165,660	5	519
Yahoo! Set II	1,266	3,798	34,815	103,174	5	596
MSLR-WEB10K	6,000	2,000	723,412	235,259	5	136
MSLR-WEB30K	31,531	6,306	3,771k	753k	5	136

Global GMML vs Local GMML

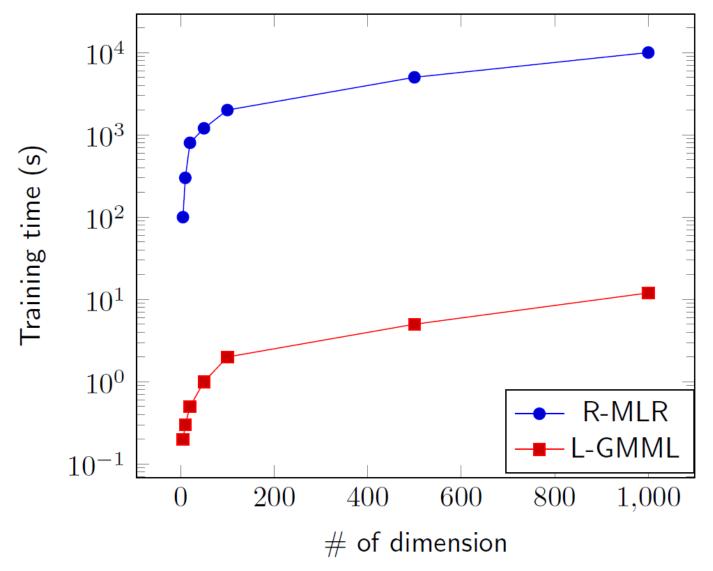


Distributed Distance Learning Algorithms and Applications

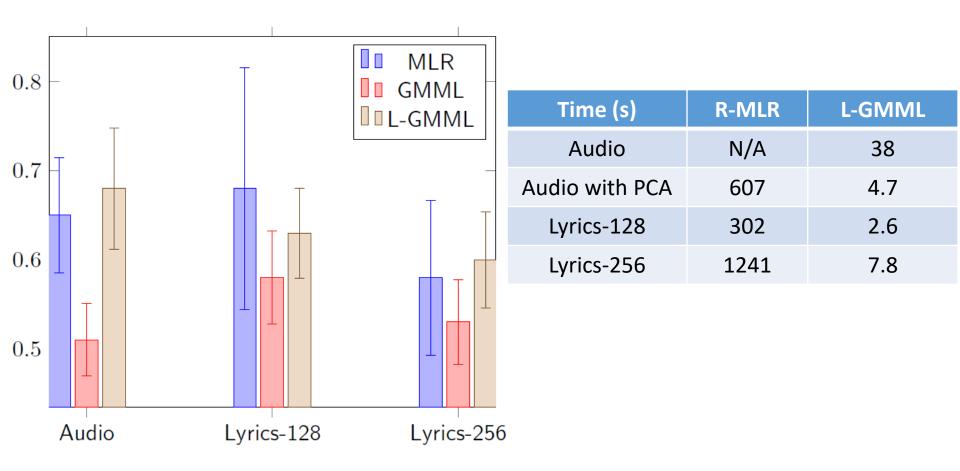
Number of Local Metrics



Scalability: Training Time of L-GMML on Different Scaled Synthetic Datasets

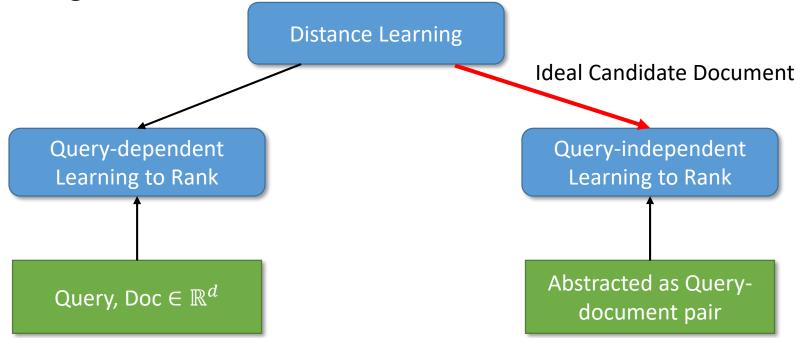


Comparison with R-MLR [Lim et al., ICML13]



Conclusions

 Developed a localized GMML algorithm for the query-independent ranking framework

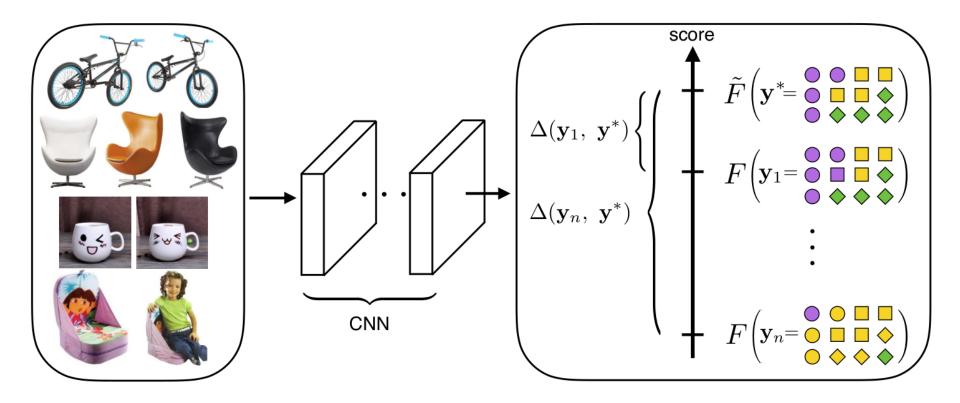


 Experiments show proposed method outperforms the state-ofthe-art

Deep Distance Learning

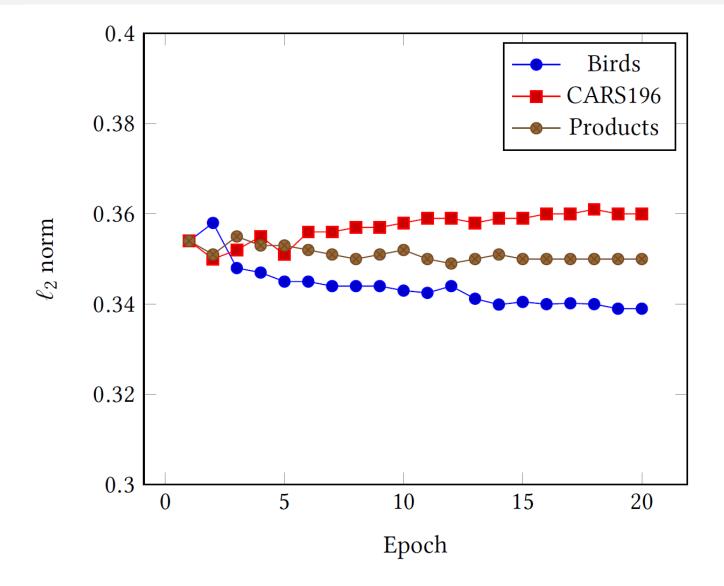
Appendix

Facility Location (NMI-based) [Song et al, CVPR'17]



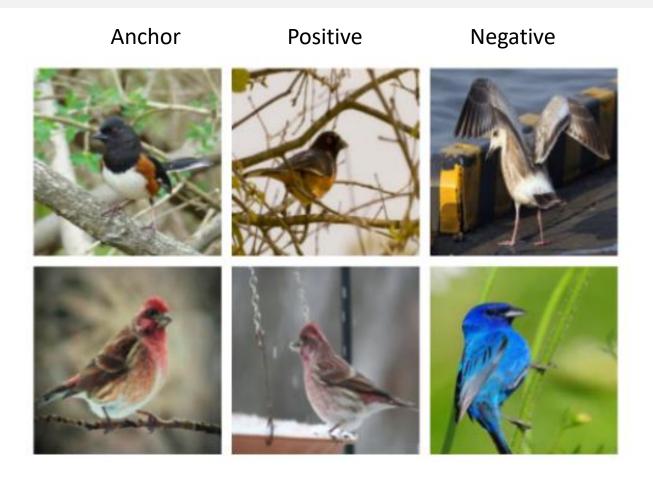
Learn to rank the clustering score

The Average of the ℓ_2 Norm of All Parameters in CNN



Distributed Distance Learning Algorithms and Applications

Datasets: CUB-200-2011



11,788 images of birds from 200 different categories

Datasets: Cars196 [Krause et al, CVPR'13]

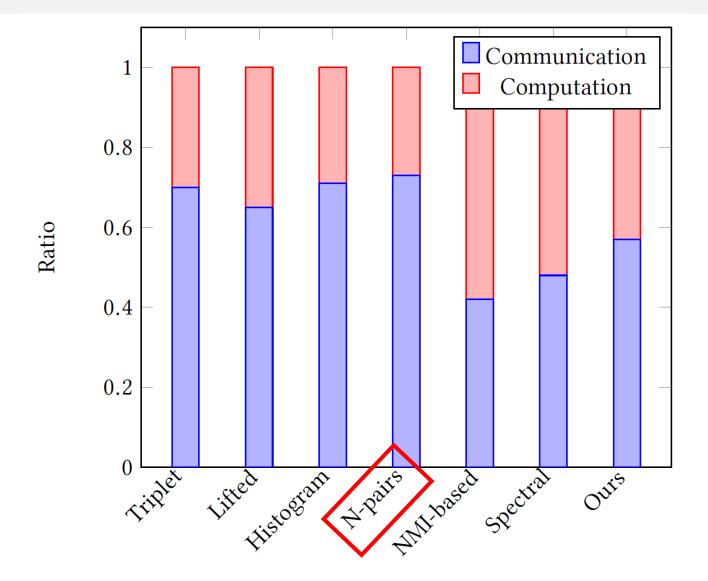
16,185 images of cars from 196 categories

Datasets: Stanford Online Products [Song et al, CVPR'16]

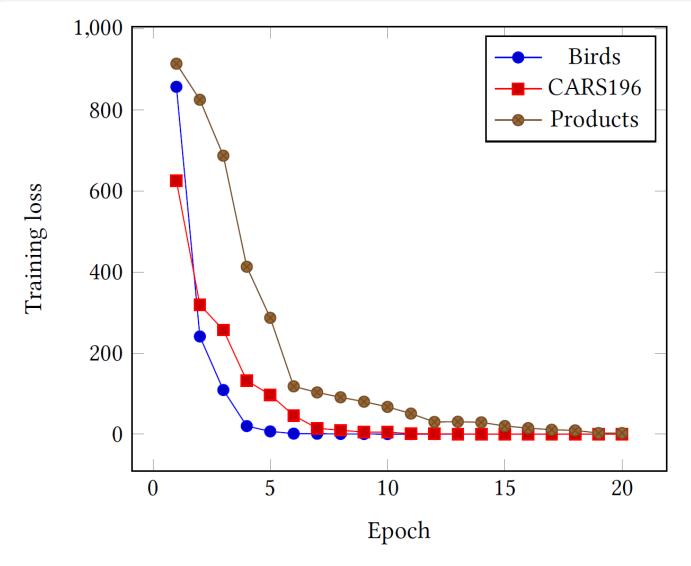
120,253 images from 22,634 categories

Distributed Distance Learning Algorithms and Applications

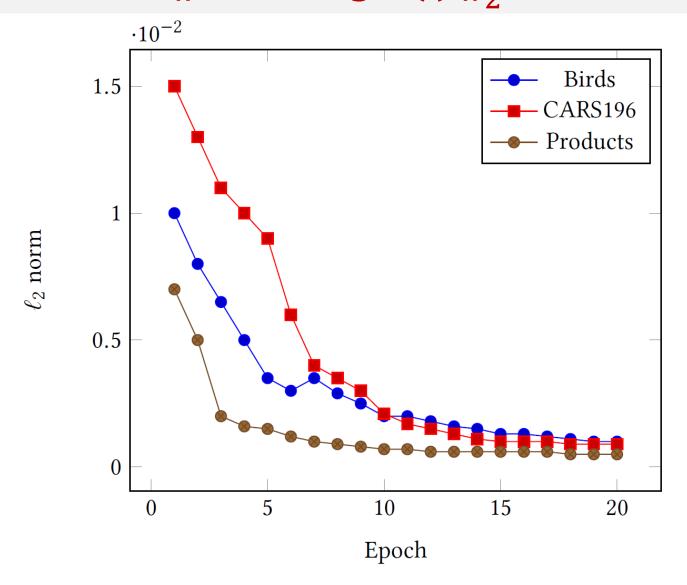
Computation Time vs Communication Time



The Training Loss of the Averaged DML model in proposed framework with 4 machines



The Average of $\|C_i - C_{\text{Right}(i)}\|_2$



Evaluation on CUB-200-2011

Method	Time (s) / epoch	NMI	Recall@1	Recall@5	Recall@10
Triplet semi-hard [CVPR'15]	424	56.12	40.46	58.15	69.28
Lifted struct [CVPR'16]	536	56.30	43.24	66.73	79.61
Histogram [NIPS'16]	520	-	49.34	68.61	80.58
N-pairs [NIPS'16]	413	58.87	44.29	67.26	79.18
NMI-based [CVPR'17]	617	60.19	48.38	72.47	82.25
Spectral [ICML'17]	702	58.13	50.28	76.80	85.79
Ours (2 machines)	378	61.19	52.45	77.08	84.24
Ours (4 machines)	234	61.56	52.40	77.19	85.07

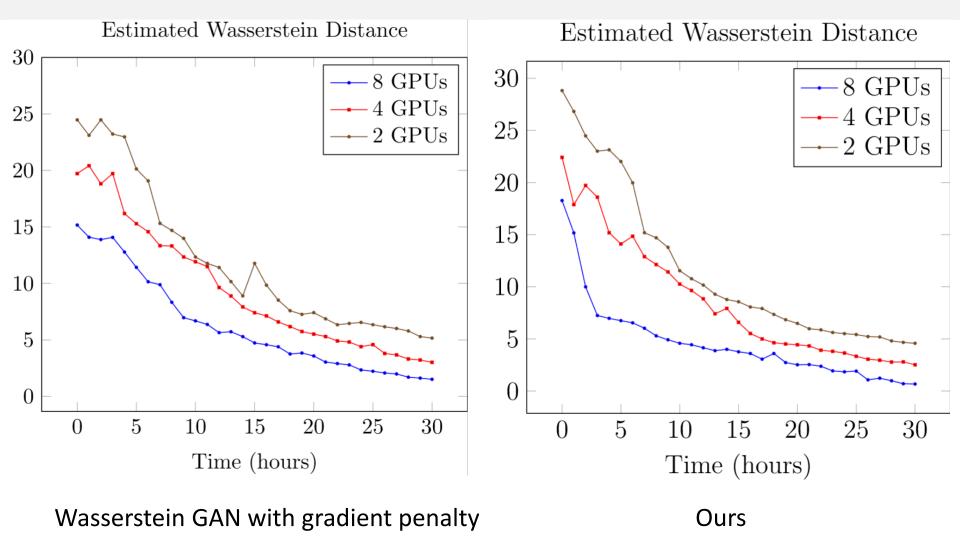
Evaluation on Stanford Online Products

Method	Time (s) / epoch	NMI	Recall@1	Recall@5	Recall@10
Triplet semi-hard [CVPR'15]	4,097	88.38	67.12	77.97	82.28
Lifted struct [CVPR'16]	3,814	88.19	65.50	78.23	81.08
Histogram [NIPS'16]	3,856	-	65.55	78.73	81.56
N-pairs [NIPS'16]	3,701	89.01	67.12	79.15	84.09
NMI-based [CVPR'17]	6,238	90.27	66.98	77.06	82.15
Spectral [ICML'17]	5,713	87.38	66.09	78.98	83.12
Ours (2 machines)	3,028	89.77	68.02	78.34	85.45
Ours (4 machines)	2,356	89.56	67.79	78.49	84.73

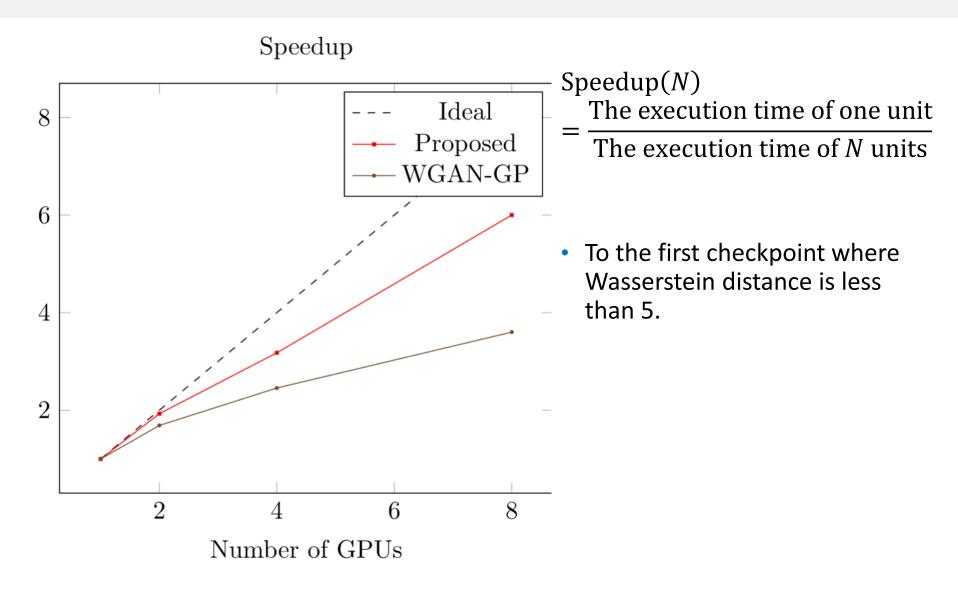
Distance between Probability Distribution

Appendix

Convergence Speed



Speedup



Comparisons on CIFAR10 dataset

Wasserstein GAN with gradient penalty

Ours (8 GPUs)

Quantitative evaluations

Method	LSUN with bedroom (FID)	CIFAR10 (IS)
WGAN-GP (8 GPUs)	27.3	7.73
Ours (2 GPUs)	23.2	7.12
Ours (4 GPUs)	21.9	7.68
Ours (8 GPUs)	21.0	7.81

• Smaller FID is better, larger IS is better

Conclusion

- We introduce a novel parallel architecture to speedup Wasserstein GAN.
- We develop an efficient stochastic algorithm to approximate the Wasserstein distance with higher accuracy.