Modeling and Exploiting QoS Prediction in Cloud and Service Computing

Yilei Zhang

Thesis Committee Chair: Prof. Pak Ching LEE Supervisor: Prof. Michael R. LYU Member: Prof. Fung Yu YOUNG External Examiner: Prof. Qing LI

Sep. 12, 2013

Outlines

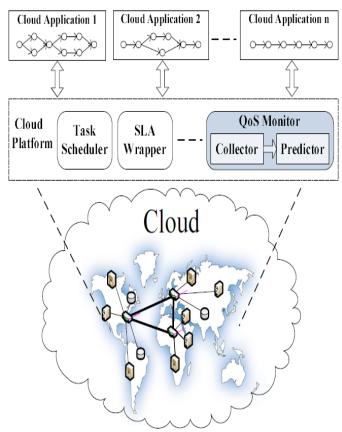
- Introduction
- Part1: QoS Prediction Approaches
 - Neighborhood-Based Approach
 - Time-aware Model-Based Approach
 - Online Approach
- Part2: QoS-Aware Web Service Searching
- Part3: QoS-Aware Byzantine Fault Tolerance
- Conclusion

Cloud Computing

- Cloud component
 - Software, server, database, etc.
- On-demand

Cloud Applications

- Software-as-a-Service (SaaS)
 - Large-scale, complicated, time sensitive, high-quality
- Case 1: New York Times
 - Convert scanned articles to PDF
 - 15 million files, 4TB data
 - EC2 & S3, 100 computers 24 hours
- Case 2: Nasdaq
 - Stock and fund information
 - Millions of files, per 10 minutes
 - 53

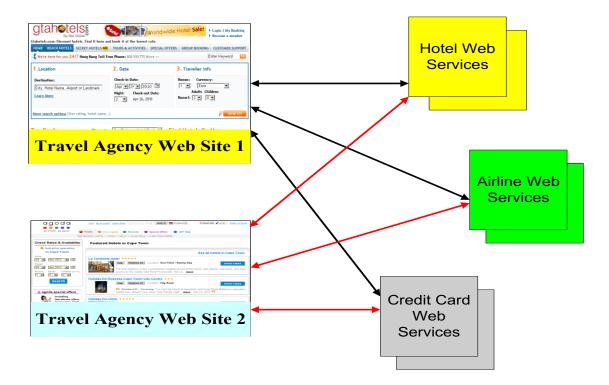


Web Services

- Web APIs
 - Accessed over a network,
 - Executed on remote systems
 - Loosely-coupled
 - Compositional nature

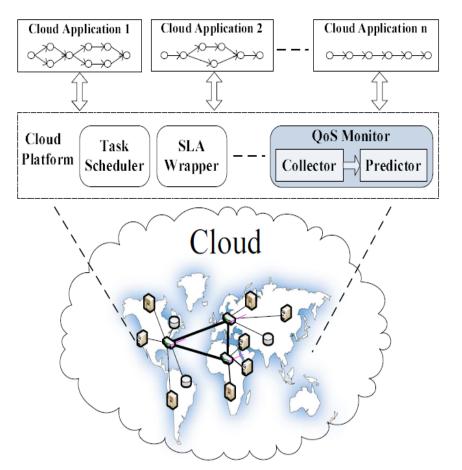
Service-Oriented-Architecture

- Service-Oriented-Architecture (SOA)
 - Distributed Web services
 - 30,000 services, 200,000 documents (seekda.com)



Performance of Services

- Service
 - Web service
 - Cloud component
- User observed performance.
 - Remote network access
 - Location
 - Invocation time



Quality-of-Service

- Quality-of-Service (QoS): non-functional performance
 - User/Time-independent QoS properties
 - price, popularity
 - User/Time-dependent QoS properties
 - failure probability, response time, throughput
- High quality applications depends on high quality services
 - Service selection, service searching, fault tolerance, service composition, etc.

Challenge 1: How to Obtain QoS?

- Conducting real-world evaluations?
- Drawbacks
 - Expensive (charge for real invocations)
 - Time-consuming (thousands of services)
 - Personalized evaluation (users' perspective)
 - Expertise (extra cost and effort)

Challenge 1: How to Obtain QoS?

- Solution: QoS Prediction (Part 1)
 - Collect users' usage experiences
 - Analyze historical QoS data
 - Predict QoS values
- Advantages
 - Economical (no additional invocation)
 - Precise (personalized QoS)
 - Effective (no extra expertise)
 - Efficient (provided as a service)

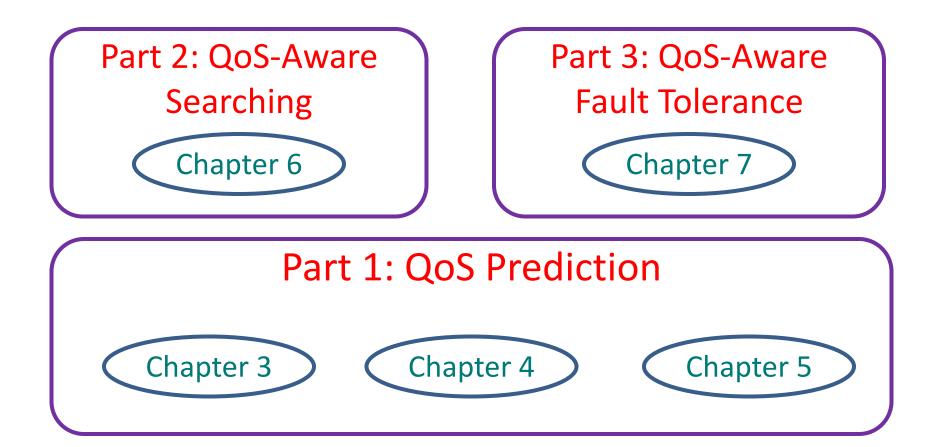
Challenge 2: How to Search Appropriate Services?

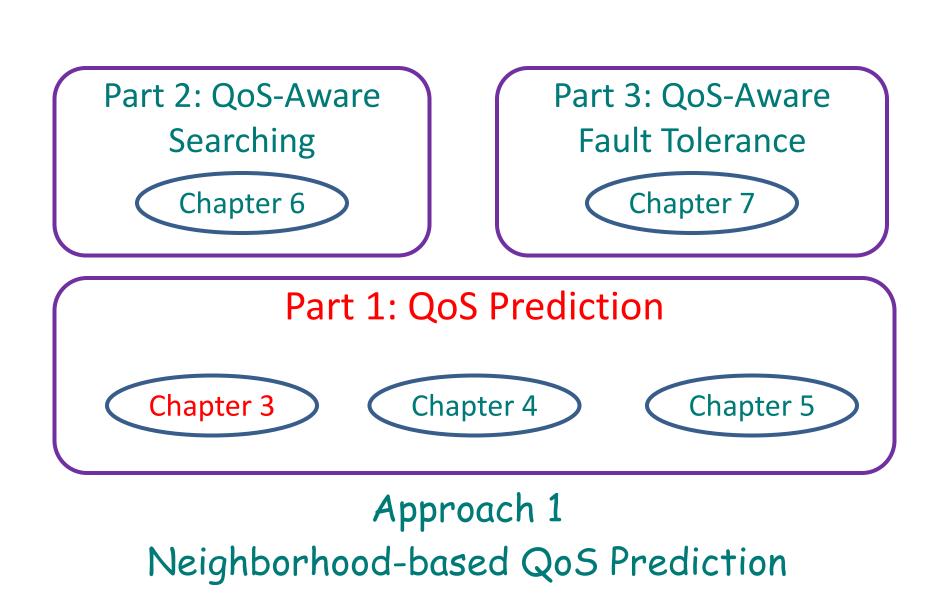
- Problems
 - Thousands of services
 - Different QoS Performance
- Solution: QoS-aware searching (Part 2)

Challenge 3: How to Build Reliable Service-Oriented Systems

- Problems
 - Services may contain various faults
 - QoS of remote services may not be stable, e.g., unavailability problem
- Solution: QoS-aware fault tolerance (Part 3)

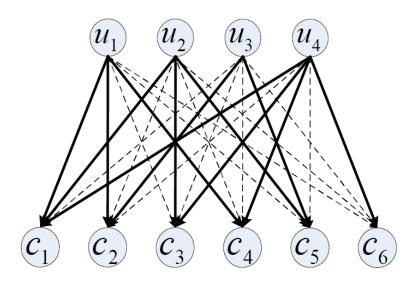
Thesis Structure

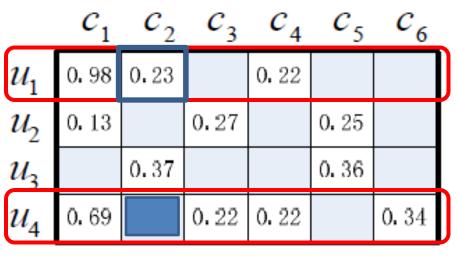


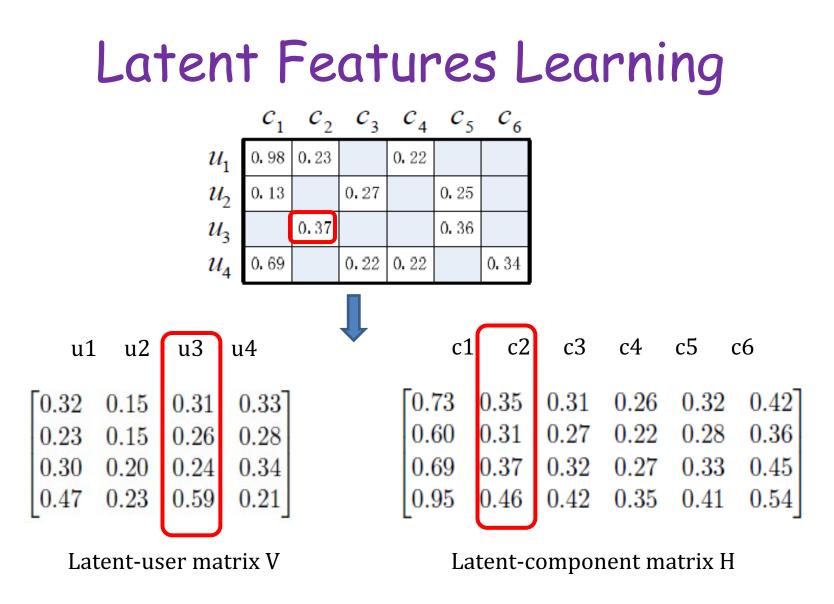


Toy Example

- User-component matrix: m × n, each entry is a QoS value.
 - Sparse
 - Prediction accuracy is greatly influenced by similarity computation.







 $W = V^T \times H$

Similarity Computation

- Pearson Correlation Coefficient (PCC)
- Similarity between users:

$$S(u_i, u_j) = \frac{\sum_{k=1}^l (v_{ik} - \overline{v}_i)(v_{jk} - \overline{v}_j)}{\sqrt{\sum_{k=1}^l (v_{ik} - \overline{v}_i)^2} \sqrt{\sum_{k=1}^l (v_{jk} - \overline{v}_j)^2}}$$

u1	u2	u3	u4
0.32	0.15	0.31	$\begin{array}{c} 0.33 \\ 0.28 \\ 0.34 \end{array}$
0.23	0.15	0.26	0.28
0.30	0.20	0.24	0.34
0.47	0.23	0.59	0.21

Latent-user matrix V

• Similarity between components:

$$S(c_i, c_j) = \frac{\sum_{k=1}^l (h_{ik} - \overline{h}_i)(h_{jk} - \overline{h}_j)}{\sqrt{\sum_{k=1}^l (h_{ik} - \overline{h}_i)^2} \sqrt{\sum_{k=1}^l (h_{jk} - \overline{h}_j)^2}}$$

c1	c2	c3	c4	c5	c6
0.73	0.35	0.31	0.26	0.32	$\begin{array}{c} 0.42 \\ 0.36 \\ 0.45 \\ 0.54 \end{array}$
0.60	0.31	0.27	0.22	0.28	0.36
0.69	0.37	0.32	0.27	0.33	0.45
0.95	0.46	0.42	0.35	0.41	0.54

Latent-component matrix H 17

Neighbors Selection

• For every entry wiji in the matrix, a set of similar users Ψ_i towards user up can be found by:

 $\Psi_i = \{u_k | S(u_i, u_k) > 0, rank_i(k) \le K, k \ne i\}.$

• A set of similar items Φ_j towards component c_j can be found by:

 $\Phi_j = \{c_k | S(c_j, c_k) > 0, rank_p(k) \le K, k \ne j\}$

Missing Value Prediction

• Similar User-based:

$$w_{ij} = \overline{w}_i + \sum_{k \in \Psi_i} \frac{S(u_i, u_k)}{\sum_{a \in \Psi_i} S(u_i, u_a)} (w_{kj} - \overline{w}_k)$$

- Similar Component-based: $w_{ij} = \overline{w}_j + \sum_{k \in \Phi_j} \frac{S(i_j, i_k)}{\sum_{a \in \Phi_j} S(i_j, i_a)} (w_{ik} - \overline{w}_k)$
- Hybrid:

$$w_{ij}^* = \lambda \times w_{ij}^u + (1 - \lambda) \times w_{ij}^c$$

Experiments

QoS Dataset

STATISTICS OF WS QOS DATASET

Statistics	Response-Time	Throughput
Scale	0-20s	0-1000kbps
Mean	0.910s	47.386kbps
Num. of Users	339	339
Num. of Web Services	5,825	5,825
Num. of Records	1,974,675	1,974,675

- Metrices
 - Mean Absolute Error (MAE)
 - Root Mean Squared Error (RMSE)

$$MAE = \frac{\sum_{i,j} |w_{ij} - w_{ij}^*|}{N} \qquad RMSE = \sqrt{\frac{\sum_{i,j} (w_{ij} - w_{ij}^*)^2}{N}}$$

- w_{ij} : the real QoS value.
- w_{ij}^* : the predicted QoS value
- N: the number of predicted values.

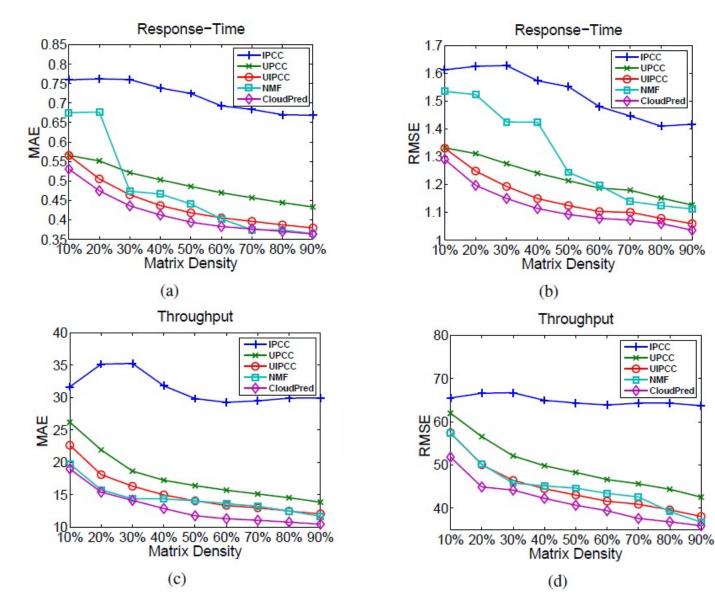
Performance Comparisons

- IPCC
 - similar item
- UPCC
 - similar user
- UIPCC
 - similar item + similar user
- NMF
 - matrix factorization
- CloudPred
 - matrix factorization + similar item + similar user

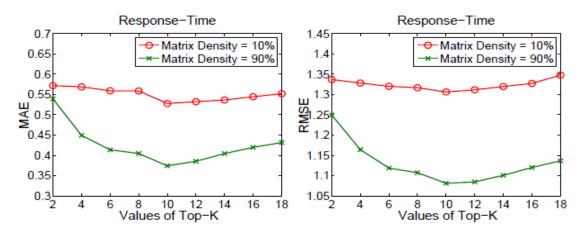
Experimental Results

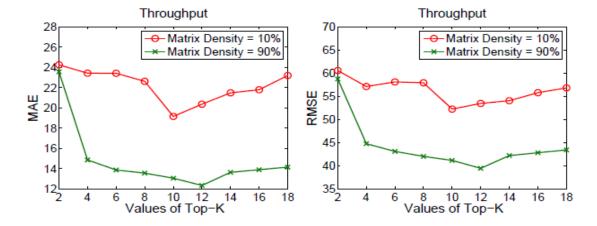
									1 ((11)	,
Matrix	Matrias		Response-Time (seconds)			Throughput (kbps)					
Density	Metrics	IPCC	UPCC	UIPCC	NMF	CloudPred	IPCC	UPCC	UIPCC	NMF	CloudPred
	MAE	0.759	0.565	0.565	0.675	0.530	31.672	26.201	22.656	19.770	19.000
10%	RMSE	1.613	1.332	1.330	1.535	1.290	65.522	61.965	57.465	57.376	51.823
	MAE	0.762	0.551	0.505	0.677	0.474	35.178	21.933	18.123	15.779	15.420
20%	RMSE	1.625	1.311	1.248	1.524	1.197	66.602	56.544	50.0435	50.140	44.897
	MAE	0.670	0.444	0.387	0.374	0.370	29.914	14.549	12.488	12.510	10.788
80%	RMSE	1.410	1.151	1.078	1.124	1.059	64.307	44.373	39.601	39.202	36.850
	MAE	0.668	0.433	0.379	0.364	0.363	29.940	13.876	12.066	11.696	10.472
90%	RMSE	1.417	1.126	1.059	1.112	1.035	63.714	42.553	38.076	36.755	35.922

Impact of Matrix Density

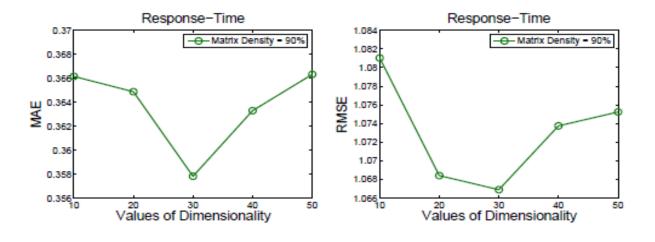


Impact of Top-K

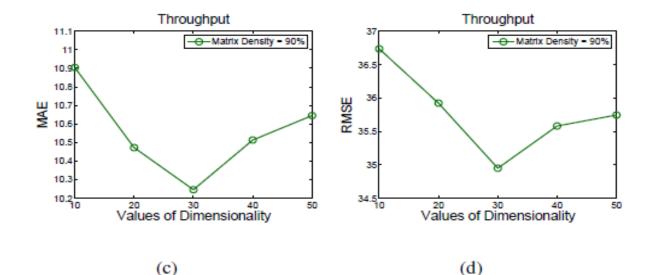




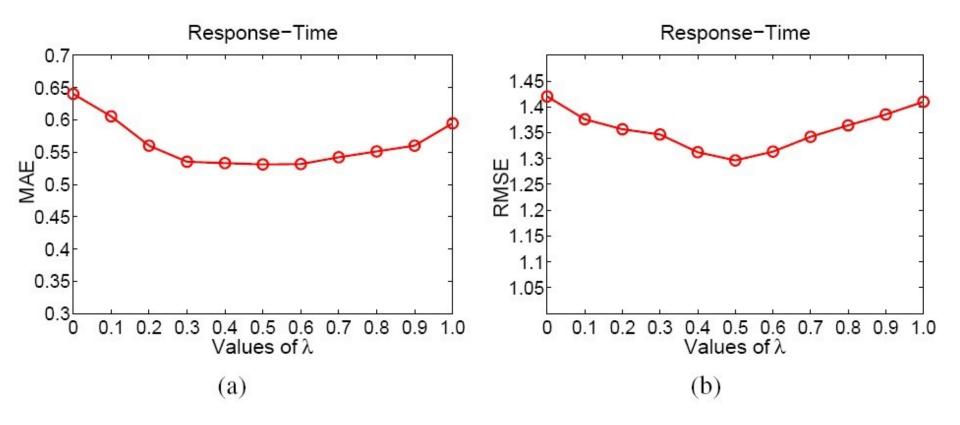
Impact of Dimensionality

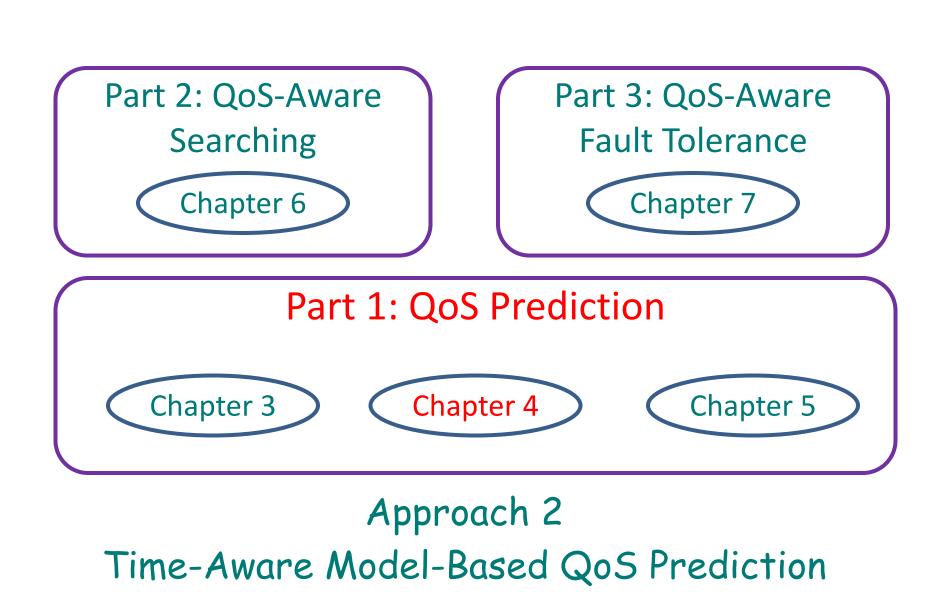


(b)



Impact of Lambda



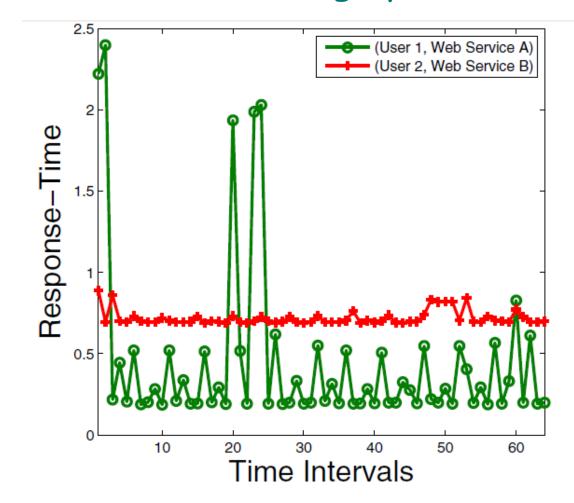


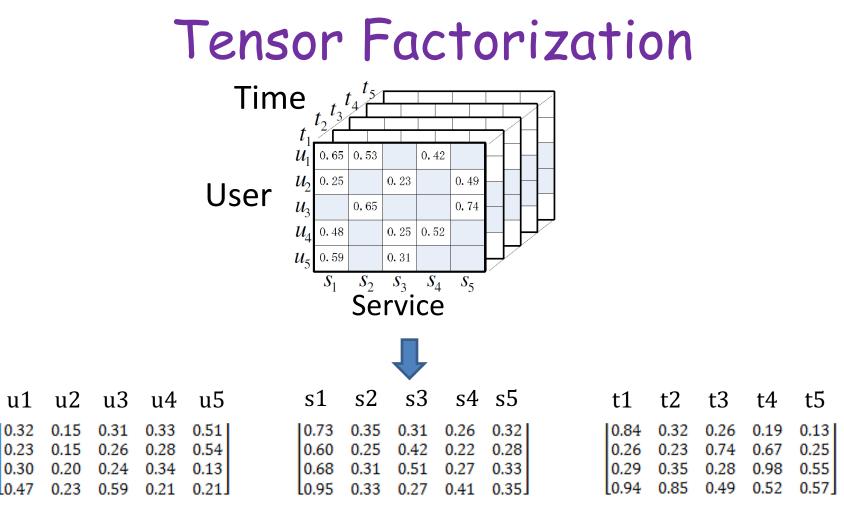
Time-Aware QoS Performance

- Time-aware personalized QoS prediction is essential for:
 - Automatic selection
 - Dynamic composition

Case Study

• Periodic feature + average performance





latent-user matrix

latent-service matrix

$$\hat{Y}_{ijk} = \sum_{f=1}^{l} U_{if} S_{jf} T_{kf}.$$

30

latent-time matrix

Latent Features Learning

Objective function

The error between estimated tensor and the original tensor

 $\min_{U,S,T} \mathcal{L}_{\mathcal{A}}(Y,U,S,T) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} \sum_{k=1}^{n} I_{ijk}(Y_{ijk} - \hat{Y}_{ijk})^{2}$ Regularization terms white h predicted QoS + aables the predicted QoS + aables the predicted QoS + aables the average QoS value + $\frac{\lambda_{1}}{2} ||U||_{F}^{2} + \frac{\lambda_{2}}{2} ||S||_{F}^{2} + \frac{\lambda_{3}}{2} ||T||_{F}^{2}$

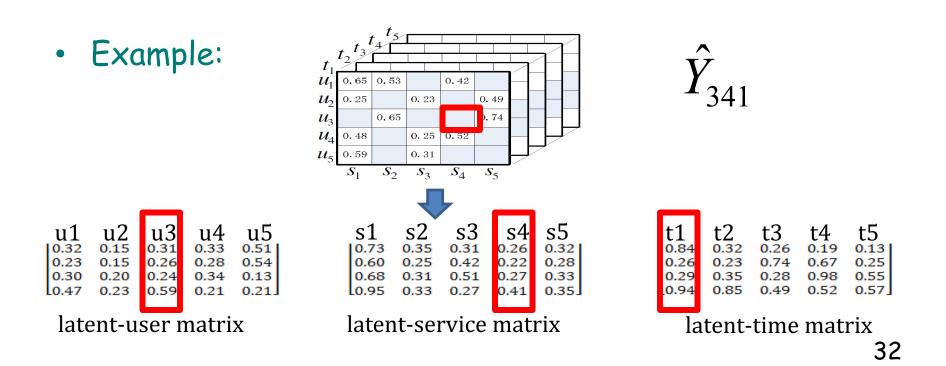
 Local optimal solution is found by incremental gradient descent

$$\frac{\partial \mathcal{L}_{\mathcal{A}}}{\partial U_{if}} = \sum_{j=1}^{n} \sum_{k=1}^{c} I_{ijk} (\hat{Y}_{ijk} - Y_{ijk}) S_j^T T_k + \lambda_1 U_{if} + \eta \sum_{j=1}^{n} \sum_{k=1}^{c} I_{ijk} (\hat{Y}_{ijk} - \bar{Y}_{ij}) S_j^T T_k,$$

Missing Value Prediction

• Given feature spaces U, S and T

$$\hat{Y}_{ijk} = I_{ijk} \sum_{f=1}^{l} U_{if} S_{jf} T_{kf}.$$



Experiments

Time-Aware Web Service QoS Dataset

STATISTICS OF WS QOS DATASET

Statistics	Response-Time	Throughput
Scale	0-20s	0-1000kbps
Mean	3.165s	9.609kbps
Num. of Users	142	142
Num. of Web Services	4,532	4,532
Num. of Time Intervals	64	64
Num. of Records	30,287,611	30,287,611

Performance Comparisons

- Matrix Factorization extended methods
 - MF1: a set of user-service matrix slices in terms of time
 - MF2: compresses the user-service-time tensor into an user-service matrix
- Tensor Factorization methods
 - TF : Tensor factorization-based prediction method.
 - WSPred : Tensor factorization-based prediction method with average QoS value constraints.

Experimental Results

• A smaller MAE or RMSE value means a better performance

Tensor Metrics		Response-Time (seconds)				Throughput (kbps)			
Density	metres	MF1	MF2	TF	WSPred	MF1	MF2	TF	WSPred
50%	MAE	3.4137	2.9187	2.9184	2.5580	10.5460	8.8317	8.7997	8.2761
5%	RMSE	5.3423	5.1024	4.7508	4.3626	46.6735	43.4769	39.5133	39.0962
10%	MAE	2.8518	2.8421	2.7888	2.4990	9.9839	8.7522	8.5080	8.0131
10%	RMSE	5.0667	4.5563	4.5696	4.2892	46.6656	39.7740	39.2792	38.6251
45%	MAE	2.4241	2.2679	2.2511	2.1462	8.6773	7.9590	7.9471	6.9398
43%	RMSE	4.3240	4.2541	4.2071	3.9200	45.0077	39.9388	38.6964	36.5724
50%	MAE	2.3959	2.2596	2.2127	2.1266	8.6224	7.8306	7.8045	6.8558
50%	RMSE	4.2996	4.1490	4.0169	3.8943	44.9407	38.9388	38.6964	36.5724

9~25% 5~15% 3~12% 16~22% 3~13% 1~12% **Performance improvement of WSPred**

Impact of Tensor Density

- TF

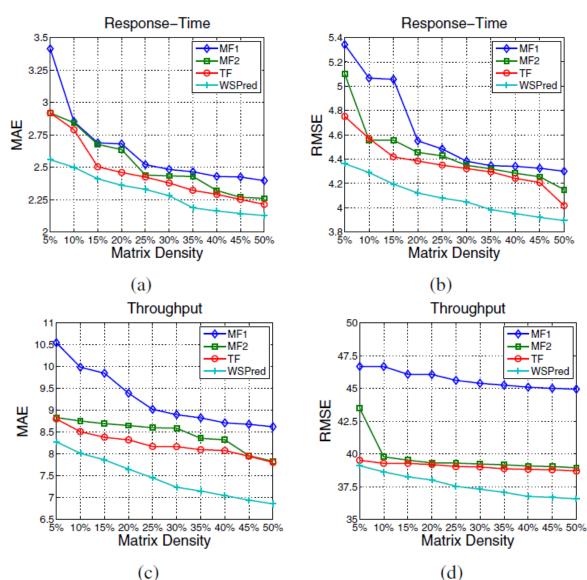
WSPred

♦ MF1

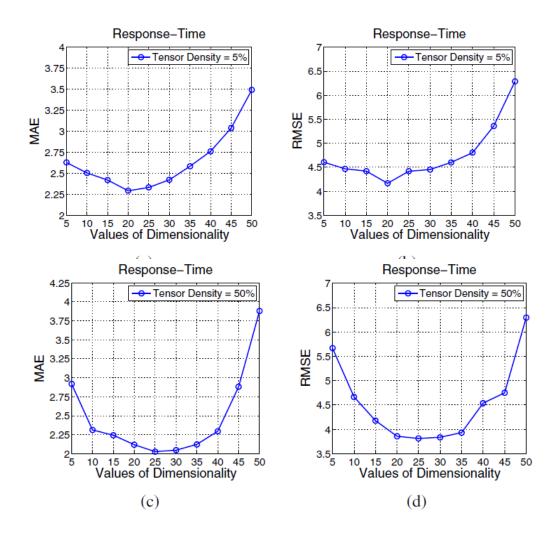
-MF2

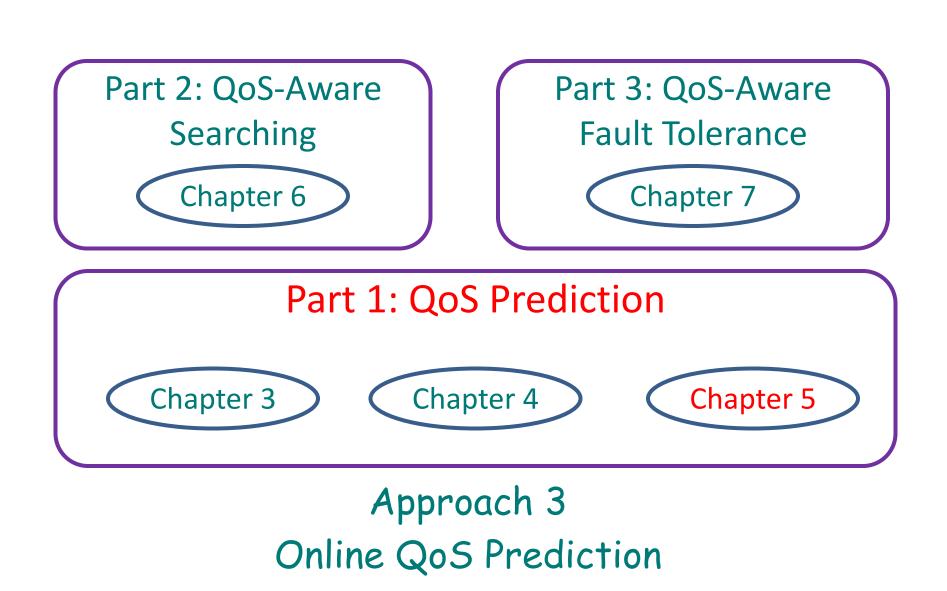
—WSPred

TF

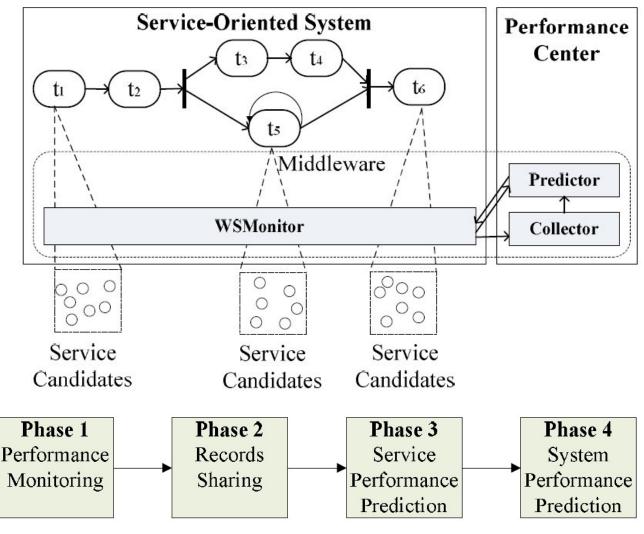


Impact of Dimensionality

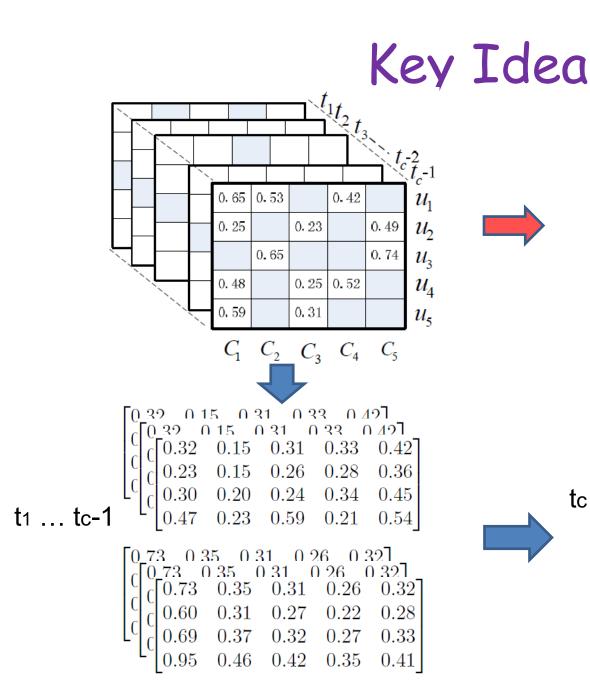




System Architecture



Online QoS Prediction Procedures



C							
?	?	?	?	?			
?	?	?	?	?			
?	?	?	?	?			
?	?	?	?	?			
?	?	?	?	?			

t

0.32	0.15	0.31	0.33	0.42
0.23	0.15	0.26	0.28	0.36
0.30	0.20	0.24	0.34	0.45
0.47	0.23	0.59	0.21	0.54
-				_
0.73	0.35	0.31	0.26	0.32
0.73 0.60	$\begin{array}{c} 0.35 \\ 0.31 \end{array}$	$\begin{array}{c} 0.31 \\ 0.27 \end{array}$	$0.26 \\ 0.22$	$\begin{array}{c} 0.32\\ 0.28 \end{array}$
				0.28
0.60	0.31	0.27	0.22	

tc

Step 1: Time-Aware Latent Feature Learning

- Objective function:
 - $\min \mathcal{L}(p_u(t), p_i(t))$

$$= \left[\frac{1}{2}\sum_{u=1}^{m}\sum_{i=1}^{n} I_{ui}(r_{ui}(t) - g(\hat{r}_{ui}(t)))^2\right]$$

+ $\frac{\lambda_1}{2} ||p(t)||^2 + \frac{\lambda_2}{2} ||q(t)||^2$,

The error between estimated matrix and the original matrix

Regularization terms which constrain the norms of p(t) and q(t), to avoid overfitting problem

	Al	gorithm 4: Time-Aware Latent Features Learning
	Ι	Input : $R(t), l, \lambda_1, \lambda_2$
1	(Dutput: $p(t), q(t)$
	1 I	nitialize $p(t) \in \mathbb{R}^{l \times m}$ and $q(t) \in \mathbb{R}^{l \times n}$ with small random numbers;
	2 I	Load the performance records from matrix $R(t)$;
	3 (Calculate the objective function value $\mathcal{L}(p_u(t), q_i(t))$ by Eq. (5.1) and
	F	Eq. (5.2);
	4 ľ	repeat
	5	Calculate the gradient of feature vectors $\frac{\partial L}{p_{v}(t)}$ and $\frac{\partial L}{q_{v}(t)}$ according
X		Eq. (5.3) and Eq. (5.4), respectively; $P_{\mu(t)}$
	6	Update the latent user and service feature matrices $p(t)$ and $q(t)$;
	7	$p_u(t) \leftarrow p_u(t) - \frac{\partial L}{p_u(t)};$
	8	$q_i(t) \leftarrow q_i(t) - \frac{\partial L}{q_i(t)};$
	9	Update the objective function value $\mathcal{L}(p_u(t), p_i(t))$ by Eq. (5.1) and
		Eq. (5.2);
	10 U	intil Converge;
	G.	41

Step 1: Time-Aware Latent Feature Learning

- Iterative Process :
 - gradient descent

$$\frac{\partial L}{p_u(t)} = I_{ui}(g(\hat{r}_{ui}(t)) - r_{ui}(t))g'(\hat{r}_{ui}(t))q_i(t) +\lambda_1 p_u(t),$$

$$\frac{\partial L}{q_i(t)} = I_{ui}(g(\hat{r}_{ui}(t)) - r_{ui}(t))g'(\hat{r}_{ui}(t))p_u(t) +\lambda_2 q_i(t).$$

Algorithm 4: Time-Aware Latent Features Learning **Input**: $R(t), l, \lambda_1, \lambda_2$ **Output**: p(t), q(t)1 Initialize $p(t) \in \mathbb{R}^{l \times m}$ and $q(t) \in \mathbb{R}^{l \times n}$ with small random numbers; 2 Load the performance records from matrix R(t); ³ Calculate the objective function value $\mathcal{L}(p_u(t), q_i(t))$ by Eq. (5.1) and Eq. (5.2); 4 repeat Calculate the gradient of feature vectors $\frac{\partial L}{p_u(t)}$ and $\frac{\partial L}{q_i(t)}$ according 5 Eq. (5.3) and Eq. (5.4), respectively; Update the latent user and service feature matrices p(t) and q(t); 6 $p_u(t) \leftarrow p_u(t) - \frac{\partial L}{p_u(t)};$ 7 $q_i(t) \leftarrow q_i(t) - \frac{\partial L}{q_i(t)};$ 8 Update the objective function value $\mathcal{L}(p_u(t), p_i(t))$ by Eq. (5.1) and 9 Eq. (5.2); 10 until Converge;

Step 2 & Step 3 (Offline Phase)

$$\hat{p}_u(t_c) = \frac{\sum_{k=1}^w p_u(t_c - k)f(k)}{\sum_{k=1}^w f(k)},$$
$$\hat{q}_i(t_c) = \frac{\sum_{k=1}^w q_i(t_c - k)f(k)}{\sum_{k=1}^w f(k)},$$

u1	u2	u3	u4	u5
0.32	0.15	0.31	0.33	$\begin{array}{c} 0.42 \\ 0.36 \\ 0.45 \\ 0.54 \end{array}$
0.23	0.15	0.26	0.28	0.36
0.30	0.20	0.24	0.34	0.45
0.47	0.23	0.59	0.21	0.54

c1	c2	c3	c4	c5
0.73	0.35	0.31	0.26	0.32
0.60	0.31	0.27	0.22	0.28
0.69	0.37	0.32	0.27	0.33
0.95	0.46	0.42	0.35	$\begin{array}{c} 0.32 \\ 0.28 \\ 0.33 \\ 0.41 \end{array}$

$$f(k) = e^{-\alpha k}$$

$$\hat{r}_{ui}(t_c) = \hat{p}_u^T(t_c)\hat{q}_i(t_c)$$

		°c		
?	?	?	?	?
?	?	?	?	?
?	?	?	?	?
?	?	?	?	?
?	?	?	?	?

t

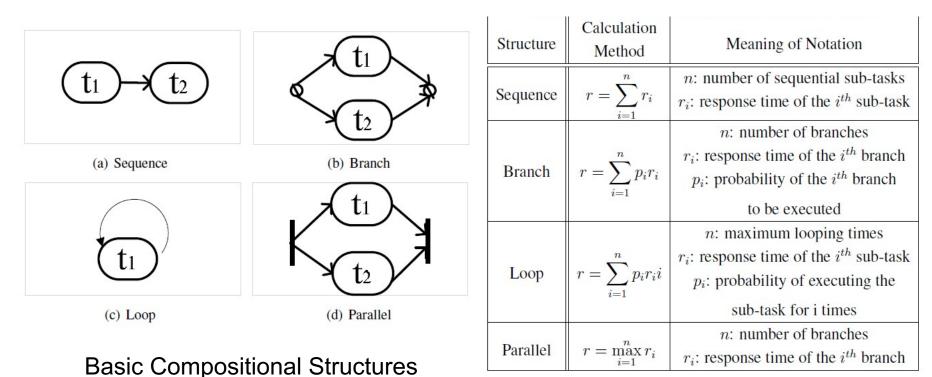
Step 2 & Step 3 (Online Phase)

$$\hat{p}_{u}(t_{c}) = e^{-\alpha} \left(\frac{p_{u}(t_{c-1})}{\sum_{k=1}^{w} f(k)} + \hat{p}_{u}(t_{c-1}) \right) \\
- \frac{p_{u}(t_{c-1-w})f(w)}{\sum_{k=1}^{w} f(k)},$$

$$\hat{q}_{i}(t_{c}) = e^{-\alpha} \left(\frac{q_{i}(t_{c-1})}{\sum_{k=1}^{w} f(k)} + \hat{q}_{i}(t_{c-1}) - \frac{q_{i}(t_{c-1-w})f(w)}{\sum_{k=1}^{w} f(k)} \right),$$

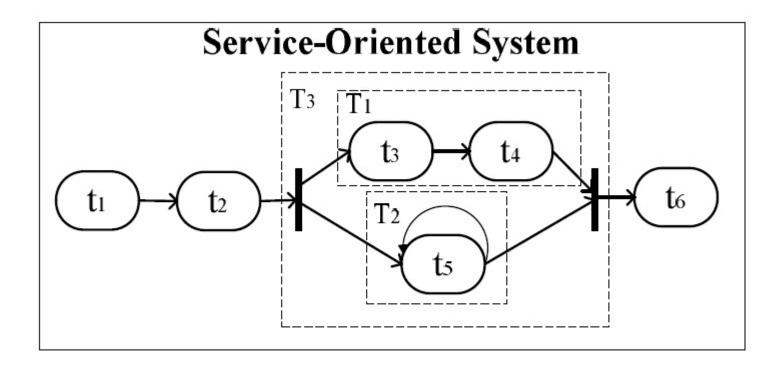
System Level Performance

Calculation of Aggregated Response Time



45

System Level Performance Prediction



Comparison with Other Methods

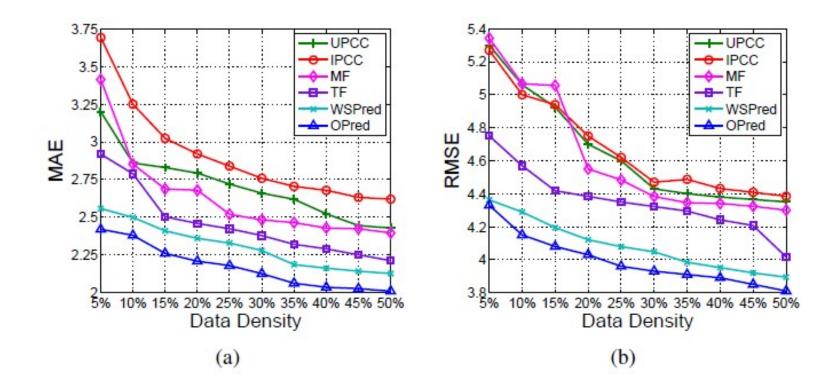
- UPCC (time-insensitive) Mean
- IPCC (time-insensitive) Mean
- MF (time-insensitive) Mean
- TF (time-sensitive) Periodic
- WSPred (time-sensitive) Periodic + Mean
- OPred (time-sensitive) Periodic + Mean + timely trend

Experimental Results

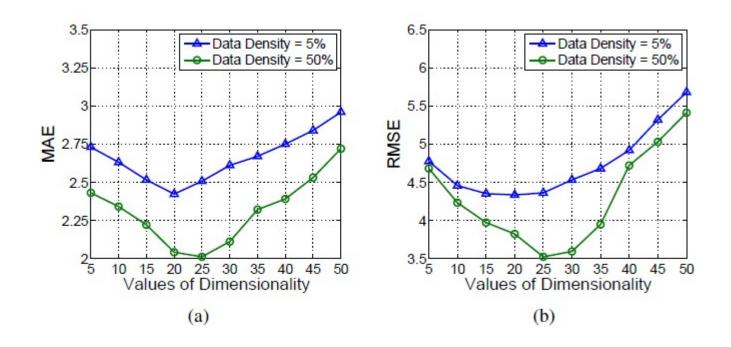
Data	DMCE	Response Time (seconds)					
Density	RMSE	UPCC	IPCC	MF	TF	WSPred	OPred
	Mean	5.312	5.289	5.329	4.751	4.362	4.330
5%	Best	5.263	5.276	5.321	4.747	4.358	4.327
100	Mean	5.043	4.972	5.079	4.567	4.287	4.151
10%	Best	4.962	4.946	5.063	4.563	4.283	4.148
	Mean	4.425	4.371	4.337	4.208	3.923	3.855
45%	Best	4.388	4.342	4.318	4.202	3.918	3.851
	Mean	4.352	4.354	4.298	4.016	3.899	3.809
50%	Best	4.331	4.336	4.274	4.012	3.894	3.808
Data	MAE	Response Time (seconds)					
Density		UPCC	IPCC	MF	TF	WSPred	OPred
	Mean	3.720	3.213	3.387	2.915	2.559	2.417
5%	Best	3.687	3.207	3.381	2.911	2.555	2.413
	Mean	3.264	2.841	2.873	2.786	2.495	2.376
10%	Best	3.243	2.812	2.851	2.782	2.488	2.374
1.7.00	Mean	2.627	2.455	2.436	2.253	2.141	2.029
45%	Best	2.613	2.431	2.423	2.247	2.137	2.026
	Dest	2.015	2.7.7.7.1				
50%	Mean	2.619	2.417	2.391	2.211	2.130	2.011

48

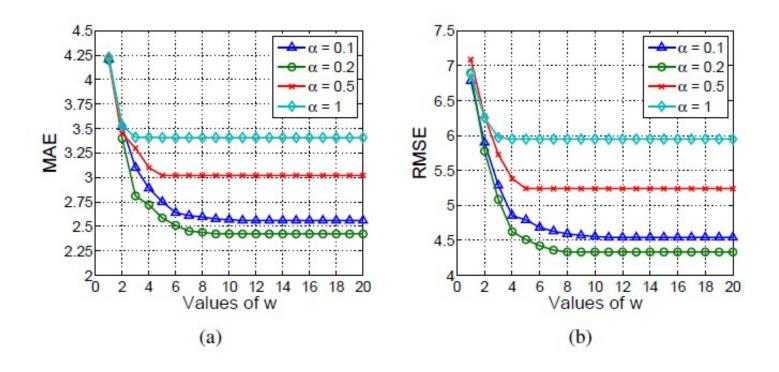
Impact of Density



Impact of Dimensionality



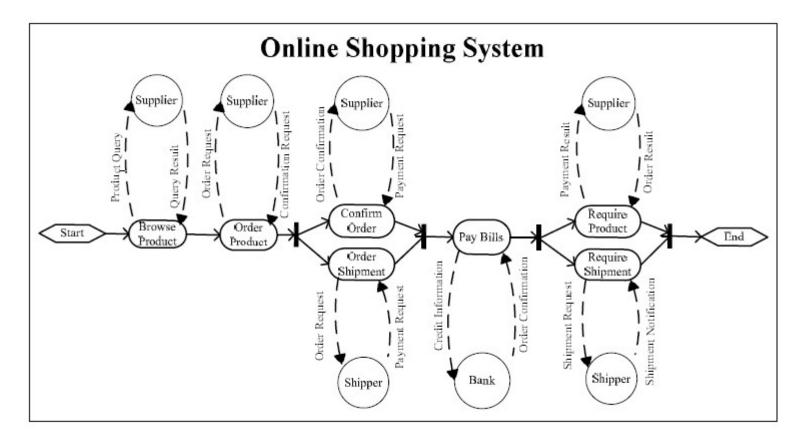
Impact of a and w



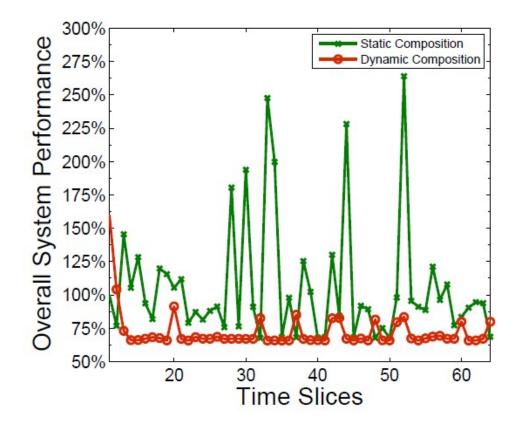
Average Computational Time

Approach	Computational Time	Percentage of A Time Slice
UPCC	10.095m	67.3%
IPCC	9.735m	64.9%
MF	1.575m	10.5%
TF	1.860m	12.4%
WSPred	2.055m	13.7%
OPred	0.240m	1.6%

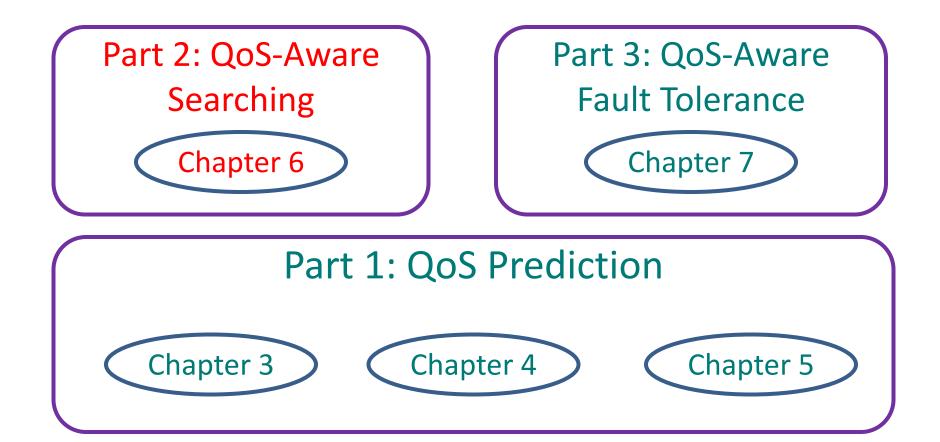
System Level Performance Case Study



System Level Performance Case Study



System Performance Improvement of Dynamic Service Composition

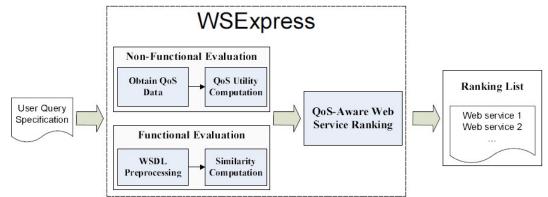


Problems

- How to find a service? → Functionality
 Many Web services
- How to find the best one? → QoS
 Different QoS Performance

WSExpress

- Functional attributes & non-functional features.
 - Non-functional evaluation
 - Obtains QoS criteria values
 - QoS utility computation
 - Functional evaluation
 - WSDL preprocessing
 - Similarity computation



Combination

$$r_i = \lambda \cdot \frac{1}{\log(p_{s_i} + 1)} + (1 - \lambda) \cdot \frac{1}{\log(p_{u_i} + 1)}$$

 $\lambda \in [0,1]$

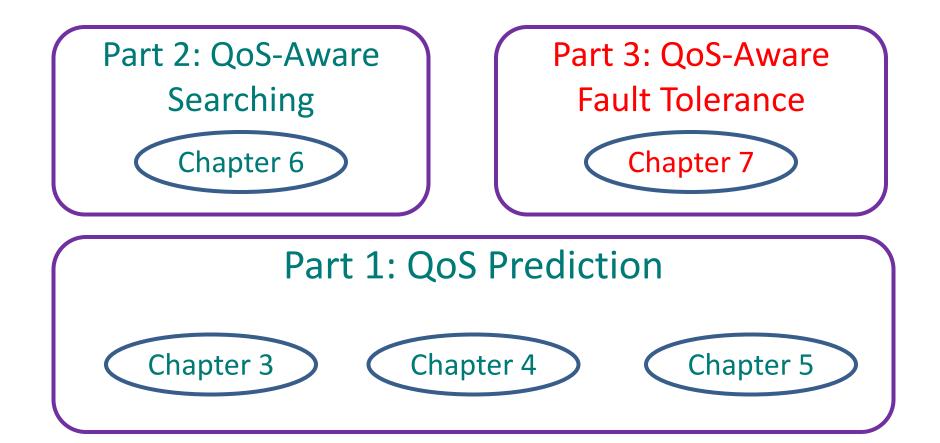
Performance Comparisons

Domain	Query	Top5		T	Top10		Top20		Top40	
Domain	ID	URBE	WSExpress	URBE	WSExpress	URBE	WSExpress	URBE	WSExpress	
	1	0.437	0.661	0.444	0.599	0.439	0.633	0.527	0.659	
	2	0.653	0.653	0.668	0.721	0.657	0.666	0.634	0.645	
Business	3	0.402	0.502	0.456	0.512	0.502	0.544	0.574	0.603	
	4	0.200	0.767	0.303	0.697	0.399	0.667	0.496	0.699	
	5	0.603	0.742	0.604	0.753	0.598	0.664	0.631	0.717	
	6	0.621	0.732	0.571	0.715	0.574	0.675	0.598	0.696	
Education	7	0.645	0.688	0.579	0.671	0.560	0.643	0.632	0.662	
	8	0.509	0.642	0.562	0.642	0.575	0.633	0.600	0.672	
	9	0.423	0.538	0.478	0.549	0.495	0.572	0.502	0.578	
	10	0.573	0.731	0.525	0.717	0.546	0.693	0.602	0.702	
Science	11	0.632	0.819	0.613	0.823	0.583	0.757	0.628	0.774	
	12	0.622	0.754	0.593	0.728	0.582	0.681	0.597	0.734	
9	13	0.214	0.574	0.245	0.551	0.243	0.559	0.259	0.581	
	14	0.713	0.825	0.701	0.814	0.687	0.802	0.725	0.824	
Weather	15	0.431	0.581	0.346	0.566	0.465	0.566	0.530	0.606	
	16	0.475	0.611	0.485	0.519	0.501	0.529	0.525	0.543	
	17	0.409	0.516	0.419	0.485	0.403	0.496	0.589	0.530	
	18	0.393	0.519	0.373	0.488	0.450	0.527	0.532	0.567	
Media	19	0.544	0.740	0.554	0.683	0.512	0.642	0.551	0.683	
	20	0.504	0.678	0.473	0.613	0.451	0.559	0.497	0.602	

A larger NDCG value means a better performance

Contributions

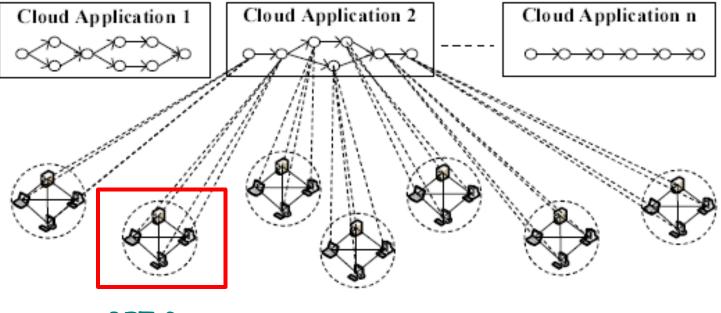
- Functionality and non-functionality
- A large-scale distributed experimental evaluation
 - 3738 Web services
 - 69 countries
- real-world WSDL dataset and QoS dataset
 - 30+ institutes



How to Build Reliable Service-Oriented Systems

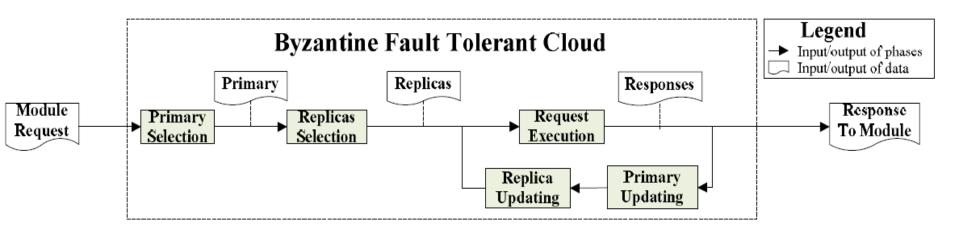
- Problems
 - Services may contain various faults
 - QoS of remote services may not be stable, e.g., unavailability problem
- Solution: QoS-aware fault tolerance

System Architecture

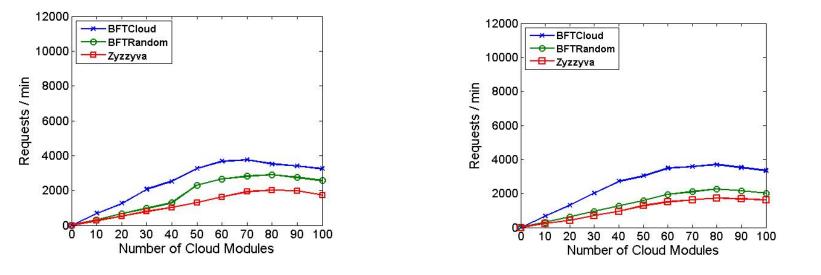


BFT Group

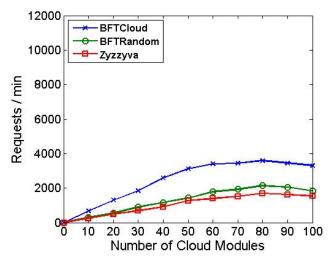
Work Procedures of BFTCloud



Experimental Results



Request/Response Size: 0/0 KB



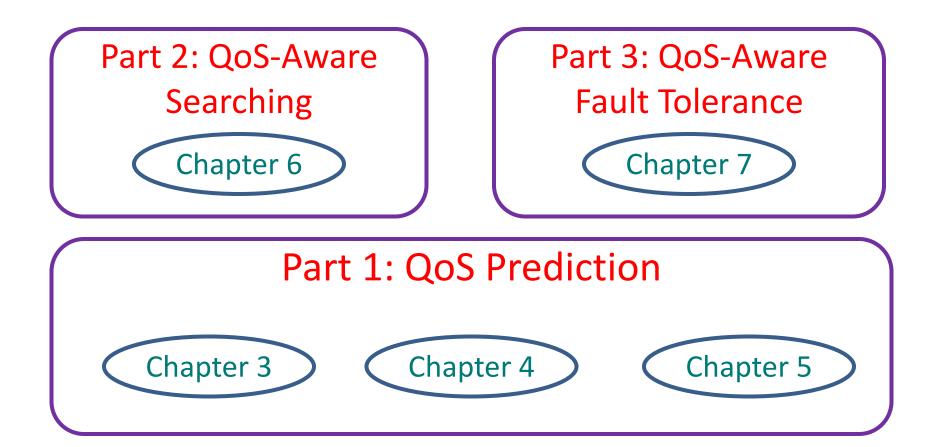
Request/Response Size: 0/4 KB

Request/Response Size: 4/0 KB

Contributions

- A Byzantine fault tolerance framework
 QoS-aware
- A prototype system
- Large-scale real-world experiments

Thesis Structure



Conclusion

- Part 1: QoS prediction
 - Three prediction approaches
 - Several following up works on this topic using the released datasets
- Prat 2: QoS-aware service searching
 - Searching qualities are significantly improved
- Part 3: QoS-aware fault tolerance
 - Byzantine fault tolerance
 - dynamic QoS information

Publications

Paper published

- **Yilei Zhang**, Zibin Zheng and Michael R. Lyu. "Real-Time Performance Prediction for Cloud Components", in Proceedings of the 5th International Workshop on Real-Time Service-Oriented Architecture and Applications (RTSOAA 2012), Shenzhen, China, Apr. 11-Apr. 13, 2012, pp.106-111.
- **Yilei Zhang**, Zibin Zheng and Michael R. Lyu. "WSPred: A Time-Aware Personalized QoS Prediction Framework for Web Services", in Proceedings of the 22th IEEE Symposium on Software Reliability Engineering (ISSRE 2011), Hiroshima, Japan, Nov. 29-Dec. 2, 2011, pp.210-219.
- **Yilei Zhang**, Zibin Zheng and Michael R. Lyu. "Exploring Latent Features for Memory-Based QoS Prediction in Cloud Computing", in Proceedings of the 30th IEEE Symposium on Reliable Distributed Systems (SRDS 2011), Madrid, Spain, Oct. 4-7, 2011, pp.1-10.
- **Yilei Zhang**, Zibin Zheng and Michael R. Lyu. "BFTCloud: A Byzantine Fault Tolerance Framework for Voluntary-Resource Cloud Computing", in Proceedings of the 4th IEEE International Conference on Cloud Computing (CLOUD 2011), Washington DC, USA, July 4-9, 2011, pp.444-451.
- Zibin Zheng, **Yilei Zhang**, and Michael R. Lyu, "Investigating QoS of Real-World Web Services", IEEE Transactions on Service Computing.

Publications

- Yilei Zhang, Zibin Zheng and Michael R. Lyu. "WSExpress: A QoS-Aware Search Engine for Web Services", in Proceedings of the 8th IEEE International Conference on Web Services (ICWS 2010), Miami, Florida, USA, July 5-10, 2010, pp. 91-98.
- Zibin Zheng, Xinmiao Wu, Yilei Zhang, Michael R. Lyu and Jianmin Wang. "QoS Ranking Prediction for Cloud Services", IEEE Transactions on Parallel and Distributed Systems.
- Zibin Zheng, **Yilei Zhang** and Michael R. Lyu. "Distributed QoS Evaluation for Real-World Web Services", in Proceedings of the 8th IEEE International Conference on Web Services (ICWS 2010), Miami, Florida, USA, July 5-10, 2010, pp. 83-90.
- Zibin Zheng, **Yilei Zhang** and Michael R. Lyu. "CloudRank: A QoS-Driven Component Ranking Framework for Cloud Computing", in proceedings of the 28th IEEE International Symposium on Reliable Distributed Systems (SRDS 2010), New Delhi, India, Oct.31-Nov.3, 2010.

Paper under review/preparation

- **Yilei Zhang**, Zibin Zheng and Michael R. Lyu. "An Online Performance Prediction Framework for Service-Oriented Systems", submitted to the IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans.
- **Yilei Zhang**, Zibin Zheng and Michael R. Lyu. "QoS-Aware Web Service Searching ", prepared to submit to IEEE Transactions on Service Computing.
- **Yilei Zhang**, Zibin Zheng and Michael R. Lyu. "QoS Prediction via Latent Feature Learning in Cloud Computing", prepared to submit to IEEE Transactions on Cloud Computing.

• Thank you!

• Q & A

• Email: ylzhang@cse.cuhk.edu.hk