## Coverage-oriented Network Scheduling and Location-directed Data Collection Towards Energy-efficient Wireless Sensor Networks

(Draft Version)

## ZHOU, Yangfan

Department of Computer Science & Engineering The Chinese University of Hong Kong September 25, 2009



## Outlines

- > Introduction to wireless sensor networks
- > Part 1: Network partitioning for reducing coverage redundancy
- > Part 2: Network partitioning for maximizing coverage
- > Part 3: Optimizing data forwarding path
- > Part 4: Contour mapping for in-network data preprocessing
- > Conclusions



# Introductions: Sensor Nodes

## Wireless-Integrated Embedded Sensor Device

> Sensors

- e.g., infrared, acoustic, vibration, barometric, humidity, thermoelectrical, photosensitive
- > Micro-computer system
  - ✤ CPU: several to tens of MHz
  - ✤ Memory: several KB
  - Storage: flash memory: e.g., 128KB
- Wireless interface
  - ✤ IEEE 802.15.4: CSMA
  - Low-power: tens of meters
- > Battery: may not be rechargeable or replaceable

Achieve energy-efficiency with limited computational (speed and memory capacity) resource



## Introductions: Wireless Sensor Networks

## Wireless Sensor Networks (WSNs)





Department of Computer Science & Engineering, The Chinese University of Hong Kong

# Introductions: WSN Applications

## Applications of Wireless Sensor Networks (WSNs)

- > Environmental monitoring
- > Environmental measurements
- > Habitat monitoring
- > Drink water quality monitoring
- > Industrial process monitoring
- Structure health monitoring
- > Intruder detection

. . . . . .

> Vehicle classification and tracking





# Network Partitioning (Reducing Redundancy)

## Coverage-oriented network partitioning

## Part 1: Redundancy Reduction



Department of Computer Science & Engineering, The Chinese University of Hong Kong

# Part1: Problem Motivation and Formulation

#### Motivations

- Fault Tolerance
  - WSNs contain a large number of sensor nodes
  - A small number of these nodes are enough to provide entire field coverage
- > Energy-efficiency
  - Exploit the redundancy
  - Put those redundant nodes to sleep mode

#### Network partitioning problem

- Divide the sensors into disjoint subsets
  - Each subset can provide entire network coverage
  - Schedule the subsets so that they can work successively



# Part 1: Problem Illustration

# Coverage-oriented network partitioning > Maximize the number of subsets > Each subset can maintain the required coverage



Department of Computer Science & Engineering, The Chinese University of Hong Kong

# Part 1: Existing Algorithms

#### Algorithms to be compared

- Algorithm based on mixed integer programming proposed by M. Cardei *et al* (MIPA)
  - Model Sensor Grouping Problem as a Disjoint Set Covers (DSC) problem which is NPC
  - Transform the DSC problem to a maximum-flow problem with a mixed integer programming (MIP) formulation
  - Solve the MIP with an MIP solver
- Greedy Algorithm (GA)
  - Key idea: select an ungrouped node to the current subset so that the area covered through adding this node is maximized comparing with adding any other ungrouped nodes

#### MIPA can find more subsets, but it is much slower



# Part 1: Intuitions to Problem Solution

## Intuitions

- Given a coverage redundant network
   For all ungrouped nodes, select them all into the current subset
  - Remove node one by one, until breaking the coverage criteria



These two are the closest  $\rightarrow$ Their covering areas are similar to each other  $\rightarrow$  redundancy!!! Remove the one farther to the other nodes  $\rightarrow$  The rest of the nodes will be closer to each other  $\rightarrow$  More nodes can be removed later, potentially



# Part 1: Introducing the Normalized Minimum Distance

#### Analysis

> Find the closest node pair and remove a node in the pair

\*Effect: Increase  $\min_{\substack{\forall i,j \& i \neq j}} (||x_i - x_j||)$  of the rest

 $x_i$ : The location of each point





# Part 1: Property of the Index

## Property of the index



- If the points are mobile, maximizing t results in an equilateral triangle structure
  - *i.e*, the Voronoi diagram is honeycomb-like
  - The coverage efficiency is the best
- In coverage-related problem, maximizing t is a promising approach to exploit redundancy



# Part 1: Our MAXINE Algorithm

#### Maxine: MAXimizing- $\iota$ Node-redundancy Exploiting

- Basic idea
  - The t of the resulting subsets should be large
  - So, we try to greedily maximize it...
- Process the following procedure to find a subset until eventually, selecting all ungrouped nodes to the current subset cannot guarantee entire field coverage
  - Tentatively selects all ungrouped nodes into the current subset
  - One by one, remove nodes from the subset until the deletion of any of the nodes in the subset will result in uncovered field
    - The deletion of the selected node does not result in any uncovered area
    - The deletion of the selected node results in maximum *l* value of the current subset, comparing to the deletion of all other nodes in the subset
  - Finish processing the current subset, begin to process next subset.



## The number of subsets found by Maxine and GA



#### Maxine performs much better than GA in terms of the number of subsets found



| The numb | per of | subsets | found |  |
|----------|--------|---------|-------|--|
|----------|--------|---------|-------|--|

|     |      | <i>x</i> = 16 |      | X    | c = 36 |
|-----|------|---------------|------|------|--------|
| n   | MIPA | MA            | XINE | MIPA | MAXINE |
| 75  | 2.00 | 2             | .00  | 1.67 | 1.33   |
| 100 | 4.00 | 4             | .00  | 4.00 | 3.33   |
| 125 | 5.33 | 5             | .33  | 4.67 | 4.33   |
| 150 | 7.67 | 7             | .33  | 6.67 | 5.33   |
| 175 | 9.00 | 8             | .33  | 8.67 | 6.67   |

|     | x = 64 |        | x = 100 |        |
|-----|--------|--------|---------|--------|
| n   | MIPA   | MAXINE | MIPA    | MAXINE |
| 75  | 1.33   | 1.33   | 1.33    | 1.33   |
| 100 | 2.67   | 2.67   | 3.00    | 2.67   |
| 125 | 4.00   | 3.33   | 3.67    | 3.00   |
| 150 | 6.00   | 5.00   | 5.67    | 4.67   |
| 175 | 7.00   | 6.00   | 7.33    | 5.00   |

|     | x = 144 |        | x = 196 |        |
|-----|---------|--------|---------|--------|
| n   | MIPA    | MAXINE | MIPA    | MAXINE |
| 75  | 0.67    | 0.67   | 1.00    | 1.00   |
| 100 | 3.00    | 2.67   | 3.00    | 2.33   |
| 125 | 3.67    | 2.67   | 4.00    | 3.00   |
| 150 | 6.00    | 4.67   | 6.00    | 4.67   |
| 175 | 6.00    | 4.33   | 6.33    | 4.67   |

#### Total in-network node number

Total sampling points We use quasi-random sequences to select a set of points in the network area. The network is considered covered if all the points are covered

## The number of subsets found by MIPA and Maxine is comparable





Maxine's converging time is much shorter than MIPA



Department of Computer Science & Engineering, The Chinese University of Hong Kong

## Simulation Conclusions

- Maxine and GA converge more quickly than MIPA does
- The performance of Maxime and MIPA is comparable in terms of # of subsets found
- The performance of Maxine is much better than GA in terms of # of subsets found



## Part 1 Contributions

- Solve a coverage-oriented network partitioning problem which is critical for energy saving. Our approach is fast and the results are satisfactory.
- > Propose a fan-out index and show that maximizing the index can increases coverage efficiency



# Network Partitioning (Maximizing Coverage)

## Coverage-oriented network partitioning

## Part 2: Coverage Maximization



Department of Computer Science & Engineering, The Chinese University of Hong Kong

# Part 2: Background

## Tsing-Ma bridge



## Characteristics

- > Work for a long period of time
- > Work in an unattended manner
- Hence, it needs to conduct some online system migrations
  - \* Reprogramming, e.g., software upgrade
  - \* Re-initialization, e.g., protocol re-initialization

Guangzhou TV tower



# Part 2: Motivations

## Characteristics

Much work has been conducted to provide online system migration support



# Part 2: Motivations



The sensor network configuration problem

How to divide the network into N subsets so that the event detection capability of the network during a system migration is maximized.

Now the problem becomes:

How to divide the network into N subsets?



# Part 2: Problem Formulation

At least one sensor in the working division can detect an event located at (x, y)

$$p_D(x,y) = 1 - \prod_{i=1}^n (1 - c_i p_i(x,y))$$

- QoS is modeled as the event detection probability by the working sensors when a subset is performing a migration task.
- n: sensor numbers
- $\{s_i\}_{i=1}^n$ : sensor nodes
- D: the set of the working sensors
- (x, y): event location
- working division •  $P_i(x, y)$ : the probability that sensor  $s_i$  detects the event
- $c_i$ : whether sensor  $s_i$  is in D: 1 if yes, 0 otherwise

The probability that a sensor detects an event The probability that a sensor CANNOT detect an evant

We name it a working division.

rest of the hodes are called

Subset j is doing migration, the



The probability that all sensors cannot detect an event Department of Computer Science & Engineering, The Chinese University of Hong Kong

# Part 2: Problem Formulation $P_D = \min_{\forall (x,y) \in \phi} p_D(x,y)$ • A pessimistic measure: the worst case is representative



# Part 2: Baseline Algorithms

#### Random Pick (RP)

- **Randomly select** n/N nodes for each subset
- RP is a baseline algorithm to see how well (or how badly) other algorithms perform.

#### Greedy Algorithm (GA)

- First perform the RP algorithm
- Perform the following iteratively
  - Find  $p_{min}$ , locate  $t_x$  and find  $D_y$ 
    - *p<sub>min</sub>*: the minimum event detection probability among the event detection probabilities of any division at any sampling points
  - Find  $S_z$  so that the event detection probability of  $S_z$  is the minimum among all  $S_k$  at  $t_x$
  - Move a node from  $S_y$  to  $S_z$  so that  $p_{min}$  improves the most. We are done if  $p_{min}$  cannot be improved



# Part 2: Simple Partitioning and Picking (SPP)

#### Partitioning Procedure

- Consider all nodes are in one region, and perform the following iteratively until there are less than 2N nodes in every region
  - For each region, draw a line parallel to the x-axis to partition the region into two so that the number of nodes in each partition is the same or their difference is at most 1
  - Then for each region, draw a line parallel to the y-axis to partition the region into two so that the number of nodes in each partition is the same or their difference is at most 1
- Nodes in each region are randomly selected into N different subsets



Department of Computer Science & Engineering, The Chinese University of Hong Kong

N = 2

# Part 2: The SPP Algorithm

### Merging Procedure



on the event detection capability.



Department of Computer Science & Engineering, The Chinese University of Hong Kong

# Part 2: Minimum Spanning Tree-based Grouping (MSTBG)

## Minimum Spanning Tree-Based Grouping Algorithm (MSTBG)

- First build a tree which is composed only by two nearest nodes among all the in-network nodes and randomly assign these two nodes to different subsets.
- Perform the following iteratively until all nodes are in the tree
  - Select a node nearest to the tree but not in the tree
  - Group the node to its farthest subset. Then add this node to the tree.
    - The distance between a node n and a subset S is defined as the distance between n and the nearest node in the tree which is in S.

MSTBG tries to group nodes that are close to each other to different subsets so as to avoid the close-gathering of the nodes in the same subset.





P<sub>all</sub>
 The "Upper Bound" curve shows the EDC upper-bound of the network when one subset ceases to work

$$1 - (1 - P_{all})^{\frac{N-1}{N}}$$

This is a non-achievable upper-bound as it considers the non-achievable but optimum case where each subset has equal event detection probability at any point of the network

RP, GA, SPP, MSTBG

 SNRP: Sensor Network Reconfiguration Protocol, a distributed implementation of MSTBG





- The naive RP algorithm performs by far the worst
- SPP, MSTBG, and SNRP always perform better then GA
- When N > 4, improving N cannot effectively improve EDC
  - Larger N incurs longer time for the entire network to complete a migration task



# Part 2 Contributions

- We identify a critical problem faced by event-detection
   WSN when they are conducting migration tasks.
- > We address this problem with several fast algorithms



# Geographic Forwarding

A Waypoint-Based Geographic Forwarding Protocol for Data Collection WSNs



# Part 3: Background

## Geographic Forwarding

- > Greedy forwarding
  - \* A node finds out its nearest neighbor to the sink
  - If the neighbor is nearer to the sink than the node, forward packet via it



# Part 3: Geographic Forwarding Illustration



The detour-mode forwarding tends to forward data packets along the boundaries of holes.

 $\rightarrow$  The path from the source to the destination is much longer than the optimum.

 $\rightarrow$  More energy consumption in data collection.



Department of Computer Science & Engineering, The Chinese University of Hong Kong

# Part 3: Topological Length

## Definition

The topological length of a path is the total number of hops between the source and the destination of the path

Energy consumption in data forwarding



Department of Computer Science & Engineering, The Chinese University of Hong Kong

# Part 3: Waypoints-based Geographic Forwarding

## Waypoint-based geographic forwarding

- Find a waypoint sequence [w(1), w(2), ..., w(M)] where w(1) is the source and w(M) the destination
- Forward packets via the waypoint sequence one by one
  - Packets are transported between two adjacent waypoints with a geographic forwarding scheme.

# Minimize the unnecessary detours so that the path can bypass holes and barriers.

## Waypoints: Calculated with a trial-and-error approach



## Part 3: Motivations



(a). A network scenario where greedy forwarding results in suboptimal path.



## Existing schemes may result in suboptimal paths

Department of Computer Science & Engineering, The Chinese University of Hong Kong

# Part 3: Geographic Data Reporting Protocol (GDRP)

| Waypoint-Based Geographic Forwarding                                                                                                 |                                      |
|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Procedure 1 The mechanism of GDRP                                                                                                    |                                      |
| 1: $EndFlag \Leftarrow false$<br>2: $L_0 \Leftarrow \emptyset$<br>5: repeat<br>BEGIN<br>Initially, the waypoints<br>are only s and d | Vaypoint-Based Geographic Forwarding |
|                                                                                                                                      |                                      |
|                                                                                                                                      |                                      |
|                                                                                                                                      | ,                                    |
|                                                                                                                                      |                                      |



# Part 3: Acceptable Path

#### strongly perfect sequence

- > It is a greedy-forwarding path from the first node to the last node
- Given an x-y coordinate system with its x-axis passing the first and the last nodes, the maximum difference of the y-coordinates between any two nodes in the sequence is no more than d = a · r, where a is a constant and r is the communication range.





# Part 3: Acceptable Path

#### Lemma

The topological length of a path is linearly related to the Euclidean distance between the source and the destination if the path is a strongly perfect sequence

#### Corollary

If an algorithm finds a path which is a strongly perfect sequence, the algorithm is a linear approximation to the shortest path algorithm in terms of the topological length



## When a path is not an acceptable path

- > There are holes or barriers in between the source and the destination
- > At least one path segment between a pair of adjacent waypoints is not a strongly perfect sequence
- > The impact of holes or barriers can be modeled as how they make the path segment "imperfect"
  - Find which parts of the segment make it fail to be a strongly perfect sequence



#### Perfect sequence

- > Similar to strongly perfect sequence
- > With only one difference: It is not necessary that the last second node is connected with the last node.
  - It is not necessary to be a "path"



Problem 1: Who should be the potential waypoints



1. The last node in a detour part should be a potential waypoint

Reason: The hole or barrier does not influence the path any longer from the node on 2. The first node in a detour part should be a potential waypoint

Reason: The node can avoid the detour part by forwarding packets to another direction



- > Now we have a set of the potential waypoints, how to select a waypoint sequence for the next round?
- > We expect in the next round, we can find an acceptable path



# Part 3: Geographic Routing between Waypoints

#### Routing between adjacent waypoints

- > Geographic forwarding
  - Detour-mode forwarding: routing along the face of the planar graph counter-clockwise or clockwise
  - Use one as default. Change if required by a waypoint (when it is
  - a starting node of a detour part



#### Protocols in simulation study

- > GDRP (Geographic Data Reporting Protocol): Our protocol
- > GPSR (Greedy Perimeter Stateless Routing): Traditional geographic forwarding
- > CONVEX-W
  - Waypoint-based geographic forwarding
  - Packets are forwarded along the convex hull of the known holes





Topological lengths with different numbers of holes and barriers



Department of Computer Science & Engineering, The Chinese University of Hong Kong



Topological lengths as a function of in-network node number



Topological lengths as a function of communication range



# Part 3 Contributions

- We propose a waypoint-based geographic forwarding protocol
- > We prove the performance guarantee of our protocol



An Energy-efficient Contour Mapping Service for WSNs



# Part 4: Background

## Background

- > Data collection WSN
  - $\boldsymbol{\ast}$  reconstruct the information of a scalar field of interest
  - $\boldsymbol{\ast}$  The temperature distribution throughout a monitored space
  - The boundary where the concentration of a toxic gas reaches a dangerous level





## Part 4: Motivation

Motivation: Current WSN contour mapping approaches cannot adaptively handle diverse user requests

- > Optimized for either contour line or contour map enquiries,
  - but not for both
  - \* Map: a set of line enquiries
  - \* Line: a map enquiry



Not energy efficient

# Part 4: Online Active Contour Service (OACS)

## Overview of OACS

- > Divide the network into grids
  - \* Each grid has a head
    - in charge of the contour mapping computation
    - report the results to the sink
  - \* Purpose: in-network preprocessing for energy saving.
- > Initially, only  $\lambda$ %'s nodes are on-duty, the rest are in sleep mode to save energy.



# Part 4: OACS Overview

## **Overview of OACS**

- > Two kinds of enquiries are accommodated.
  - \* M-enquiries: contour map enquiry
    - parameter p: the proportion of sensor nodes that need to work to provide their readings
  - $\star$  L-enquiries: contour line enquiry
    - parameter p
    - parameter cv: the value of the contour line requested
- > The working sensors report readings to their corresponding heads
  - \* M-enquiry: all the working sensors report their readings
  - \* L-enquiry: those with reading close to cv report their readings



# Part 4: OACS Overview

## Overview of OACS

- > The heads know the intensity of the field at a set of locations
  - Compute the contour line/map with kernel Support Vector Regression (SVR)
  - Check whether the precision requirement of the results matches p
    - yes, we are done!
    - no, select a best set of sleeping nodes, turn them on, obtain their readings, and refine the results

Why support vector regression
 How to select a best set of nodes to open



## Design considerations

- > Why kernel SVR
  - It equips OACS with a flexible method to deal with L-enquiries and M-enquiries
  - $\boldsymbol{\ast}$  It can conveniently handle the nonlinear nature of contour lines.
  - $\boldsymbol{\ast}$  The result of SVR is simple in representation.
    - a set of sensor readings/locations, and their weights
    - tens of bytes typically: a data packet is enough!



#### **Precision tuning**

- $\succ$  Initially only  $\lambda\%$  's nodes are working
  - \* If the precision requirement p is larger than  $\lambda$ , we should turn on another (p- $\lambda$ )%'s nodes
  - ✤ How?



#### Precision tuning details

- > For an L-enquiry
  - Step 1: Regress the requested contour line based on the known sensor locations/readings
- \* Step 2: Check whether the precision is acceptable
  - yes: We are done
  - no: Input the location of the sleeping nodes to the regressed function.
  - Select the one with estimated reading the closest to the contour line, open it, and request its actual reading. Continue to step 1.



Regress the requested contour line (cv = 20) based on the known sensor locations/readings

Estimate the reading of the sleeping node based on the regression result

This sleeping node is the closest to the estimated contour line. So it is turned on to obtain its reading.



#### Precision tuning details

- > For an M-enquiry
  - Step 1: Regress the requested contour line based on the known sensor locations/readings
  - \* Step 2: Check whether the precision is acceptable
    - yes: We are done
    - no: Select the sleeping node which is farthest to the working nodes, where such a distance is defined as the minimum distance between a sleeping node to any of the working nodes



# Check who is the farthest to the working nodes

This sleeping node is the closest to the estimated contour line. So it is turned on to obtain its reading.





• Algorithm in comparison: Contour Mapping Engine (CME), the most up-todate approach in WSN contour mapping



# Contour Mapping



Total packet numbers sent by OACS and CME in processing M-enquiries



Department of Computer Science & Engineering, The Chinese University of Hong Kong

# Contour Mapping





# Part 4 Contributions

> We propose an contour mapping service that can handle diverse user requests energy-efficiently



## Conclusion

- > We address two critical coverage-oriented network partitioning problems for event detection WSNs. The algorithms are all fast algorithms with satisfactory performance
- > We propose a waypoint-based geographic routing protocol for data collection WSNs which can find path with performance guarantee
- We propose a contour service that can provide a holistic energy-efficient treatments to diverse user requests for data collection WSNs



## Appendix: Research Papers



# **Research** Papers

## **Journal Publications**

[1] Edith C.-H. Ngai, Yangfan Zhou, Michael R. Lyu, and Jiangchuan Liu. A Delay-Aware Reliable Event Reporting Framework for Wireless Sensor-Actuator Networks, under minor revision, Ad Hoc Networks.
[2] Yangfan Zhou, Michael R. Lyu, and Jiangchuan Liu. A Fan-out Index and Its Application to Coverage-oriented Partitioning in Wireless Sensor Networks, Wireless Communications and Mobile Computing (To appear)
[3] Yangfan Zhou, Michael R. Lyu, and Jiangchuan Liu. On Sensor Network Reconfiguration for Downtime-Free System Migration, ACM/Springer Mobile Networks and Applications (MONET), Vol. 14, No. 2, pp. 241-252, April, 2009.



# **Research** Papers

#### **Conference Publications (Regular Research Papers)**

[4] Yangfan Zhou, Michael R. Lyu, and Jiangchuan Liu. Surviving Holes and Barriers in Geographic Data Reporting for Wireless Sensor Networks, MASS'09 [5] Yangfan Zhou, Junjie Xiong, Michael R. Lyu, Jiangchuan Liu, and Kam-Wing Ng. Energyefficient On-demand Contour Service for Wireless Sensor Networks, MASS'09 [6] Yangfan Zhou, Michael R. Lyu, and Jiangchuan Liu. On Sensor Network Reconfiguration Problem for Downtime-Free System Migrations, QShine'08 [7] Yangfan Zhou, Michael R. Lyu, and Jiangchuan Liu. An Index-Based Sensor-Grouping Mechanism for Field Coverage Wireless Sensor Networks, ICC'08 [8] Edith C.-H. Ngai, Yangfan Zhou, Michael R. Lyu, and Jiangchuan Liu. LOFT: A Latency-Oriented Fault Tolerant Transport Protocol for Wireless Sensor-Actuator Networks, GlobeCom'07 [9] Yangfan Zhou, Edith C.-H. Ngai, Michael R. Lyu, and Jiangchuan Liu. POWER-SPEED: A Power-Controlled Real-Time Data Transport Protocol for Wireless Sensor-Actuator Networks, WCNC'07 [10] Yangfan Zhou and Michael R. Lyu. An Energy-Efficient Mechanism for Self-Monitoring Sensor Web, Aerospace'07



# **Research** Papers

## Earlier Publications 48 citations in total

[11] Edith. C.-H. Ngai, Yangfan Zhou, Michael R. Lyu, and Jiangchuan Liu. Reliable
Reporting of Delay-Sensitive Events in Wireless Sensor-Actuator Networks, MASS'06
[12] Yangfan Zhou, Haixuan Yang, Michael R. Lyu, and Edith C.-H. Ngai. A PointDistribution Index And Its Application to Sensor Grouping in Wireless Sensor
Networks, IWCMC'06
[13] Yangfan Zhou, Michael R. Lyu, and Jiangchuan Liu. On Setting up Energy-Efficient
Paths with Transmitter Power Control in Wireless Sensor Networks, MASS'05
[14] Yangfan Zhou, Michael R. Lyu, Jiangchuan Liu, and Hui Wang. PORT: A PriceOriented Reliable Transport Protocol for Wireless Sensor Networks, ISSRE'05



# Thank you!!!

Q & A



epartment of Computer Science & Engineering, The Chinese University of Hong